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Abstract: Visualization of learning-based intrusion detection noefhis a challeng-
ing problem. In this paper we propose a novel method for lization of anomaly
detection and feature selection, based on predictiontsétysiThe method allows an
expert to discover informative features for separationafmal and attack instances.
Experiments performed on the KDD Cup dataset show that eapitasns provided by
prediction sensitivity reveal the nature of attacks. Apgion of prediction sensitivity
for feature selection yields a major improvement of detecticcuracy.

1 Introduction

Transparency is an essential requirement for intrusioaatien algorithms to be used in
practice. It does not suffice that an algorithm tells — peshaiph a degree of uncertainty
— if some attack (or a specific attack) is present; an algorithust be able to provide a
credible evidence to its prediction.

While such evidence is easy to produce for rule-based detettethods, whose rules are
understandable to an expert, such credibility cannot bimeldby many approaches using
learning-based methods, such as Neural Networks or Suppordr Machines [GSS99,
MJS02]. The situation is somewhat better for misuse detectiethods, for which several
feature selection techniques are available, e.g. [WKIG GEO3]. The problem is much
graver for anomaly detection methods, for which almost ractical feature selection
techniques are known to date.

In this contribution we propose a technique that enablestorvsualize predictions of
the quarter-sphere SVM, an anomaly detection techniqusogsexd in [LSK04, LSKMO04].
The technique is based on the notiopaddiction sensitivityvhich measures the degree to
which prediction is affected by adding weight to a partictiéemture. Using this technique
we were able to gain interesting information about the mtéatis made by the quarter-
sphere SVM on the KDD Cup dataset. The information we obthisieomparable but not
identical to rules inferred by RIPPER, a classical ruleeolamethod [Coh95].

By averaging prediction sensitivity over several datasets can select the features that



are most important for anomaly detection. In our experimemt the KDD Cup dataset
we have observed that reducing the set of features to the smgggested by prediction
sensitivity remarkably improves the accuracy of detechipthe quarter-sphere SVM.

2 Approach: analysisof prediction sensitivity

The notion ofprediction sensitivitgxpresses the degree to which prediction is affected by
adding weight to individual features. Mathematically ttés be described by the Jacobian
matrix of the prediction function with respect to the inpe&fures. The derivation of the
expression for this Jacobian matrix — which depends on acpéat anomaly detection
method, in our case, the quarter-sphere SVM — is rather teghtherefore, due to space
limitations, only the main idea is presented in this sectibhe mathematical details will

be subject of a forthcoming publication.

Let X be ad x [ data matrix containing features collected ovéobservations. \We assume
that an anomaly detection algorithm assignsahemaly scores(z;) to every data point
z; € X (a column in the data matrix). THex d Jacobian matrix is defined as the partial
derivatives ofs with respect to the componentsof

0s(z;)
J('Lk) = 8Ik ) =0t =t

1<k<d (1)

For the sake of more intuitive visualization we will alwaysnsider the transposed Jaco-
bian matrixJ” whose dimensions are identical to those of the initial matii Thus, each
column of the (transposed) Jacobian matrix can be seen asitiséivity of the prediction
s(z;) of the algorithm on the data poimt with respect to thé-th feature of the data. The
definition of s(x;) for the quarter-sphere SVM used in this paper is given in Bjjir(
Sec. 3.

Further information can be gained by considering statispcoperties of prediction sensi-
tivity. To perform such analysis, randomly drawn data sasfl;, . .., Xy are collected,
in which the percentage of attacks is fixed. Once the data Issngpe collected, one
computes the mean and the standard deviation of the regpdettobian matrices over
N samples. Based on this information, heuristic criteria lsardefined (cf. Sec. 5) for
selecting informative features for separating attacksramchal patterns.

3 Application: anomaly detection using quarter-sphere SVM

The quarter-sphere SVM [LSK04, LSKMO04] is an anomaly detectechnique based
on the idea of fitting a sphere onto the center of mass of datece Ghe center of the
sphere is fixed, the distance of points from the center defireeanomaly score. Choosing
a threshold for the attack scores determines the radiuseo$phere encompassing the
normal data points.



This geometric model can be extended for non-linear susfadé first apply some non-
linear mappingd to the original features. Then, for each data point, theadist from the
center of mass in the transformed space — which is our scacdidun — is computed as:

s(ai) = ||®(x:) — + 30, ®(x)|l. (2)

It remains to be shown how the score function (2) can be obtaivithout explicitly com-
puting the mappingp, since the latter can map the data into a high- or even infinite
dimensional space.

It is well known in the machine learning literature (e.g. [NRVI01, SS02]), that, under
some technical assumptions, inner products between indgésta points under a non-
linear transformation can be computed by an appropriategkéunction:

k(zi,x5) = (x;)" @(x;5).

For many interesting transformation the kernel functiokriswn in advance and is easy
to compute. For example, for the space of radial-basis foms{RBF) the kernel function
is computed as

_lley—ey11?
k(xi,zj) =e z

To compute the score functiof{z;) using the kernel function, the following steps are
needed:

1. Form thel x [ kernel matrix X’ whose entries are the values of the kernel function
k(z;,x;) for all pairs of data pointsandj.

2. Compute the centered kernel matrix [SSM98, S\8B]:
K=K-1K—-K1,+1,K1, (3)
wherel; is anl x [ matrix with all values equal té.

3. The score function is given by the entries on the main diafof the centered kernel
matrix:

s(i) = \/ K- 4)

4 Experimental setup

Before presenting the operation of our visualization tégpha a few remarks need to
be made on data preprocessing. In our experiments we useDBeCGUp 1999 dataset
[SWLT99], a standard dataset for the evaluation of data miningnigces. The set com-
prises a fixed set of connection-based features computedtfre DARPA 1998 IDS eval-
uation [LCF~99] and contains 4898430 records of which 3925650 are attatKist of
all features is provided in [LS01, LSKMO04]. In-depth deption of some features, e.g.
thehot feature, is available in the Bro IDS documentation [Pax2&04].



The distribution of attacks in the KDD Cup dataset is extrigraabalanced. Some attacks
are represented with only a few examples, e.gptiie andf t p_wr i t e attacks, whereas
thesmur f andnept une attacks cover millions of records. In general, the distidou
of attacks is dominated by probes and denial-of-servieelks; the most interesting — and
dangerous — attacks, such as compromises, are grossly-napiesented.

In order to cope with the unbalanced attack distributiontarnidvestigate the characteristic
features of particular attacks, we construct separatese@taontaining a fixed attack ratio
of 5%. The desired ratio is achieved by combining two rangaanhwn sub-samples. The
first sub-sample is drawn from the attacks in question. Iftsack is under-represented,
i.e. there are too few samples to carry random sampling ttaltlaexamples are drawn.
The second sub-sample is drawn randomly from normal datahimaf the services used
in the chosen attack. The number of examples in both subisarschosen so as to attain
the desired attack ratio.

In order to analyze the statistical properties of predicsiensitivity, as indicated in Sec. 2,
10 datasets of 1000 data points are generated for each.attahk number of available
attacks in the data is smaller than 50 (required to have 5%tatks in datasets of size
1000), we reduce the dataset sizelto< 1000, sufficient to accommodate all available
attacks, and increase the number of generated datasets factar of1000/ L.

After the sub-sampled datasets are generated, a datacig@ormalization [EAPQ2] is
computed, a quarter-sphere SVM is applied to each datad¢haorresponding Jacobian
matrices (cf. Eq. (1)) are calculated.

5 Interpretation of anomaly detection on the KDD Cup dataset

The proposed prediction sensitivity criterion can be Viiged by plotting the Jacobian

matrix. If multiple training sets are available the mean #hredstandard deviation Jacobian
matrices are plotted. The rows of the matrices correspordatures and the columns
correspond to normal and attack instances.

An example of such visualization for theand attack is shown in Fig. 1. The following
observations can be inferred from the prediction sensitiviatrices:

— Random sampling and averaging of prediction sensit&vigimphasize the salient
features of the data. As a result, instances correspondiaggrticular attack are
characterized by consistent regions in the mean Jacobitiixyvehereas the much
more heterogeneous normal data exhibits random sengitivit

— The consistency of prediction sensitivity for attack amtes can be quantified by
the standard deviation Jacobian matrix. Salient featudeibi: low standard devia-
tion. Thus one can suggest the following heuristic critefar feature selectiorfor
attack instances, features must have high values in the @edtow values in the
standard deviation Jacobian matrix
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Figure 1: Visualization of prediction sensitivity. The mmeand the standard deviation Jacobian
matrices for thé and attack exhibit different patterns for attack and normahdas well as different
impact of particular features on prediction. The grey-sdars to the right of the figure illustrate
the range of matrix values.

In order to illustrate feature selection based on the pregasiterion, we calculate the
mean and the standard deviation of the mean Jacobian matrithé attack instances
only. These quantities computed for thand attack are shown in Fig. 2. One can see
that the numerical characteristics of prediction sengjtprovide substantial information
for identifying candidate features. According to the “higiean/low variance” criterion,
most prominent for this example are the features 38, 39, 80,Their names and brief
descriptions are shown in Table 1. These features are inteatingful for thd and
attack. This attack is manifested in transmission of sifigl® packets (with SYN set)
that crash a server without eliciting an ACK reply; as a rekigh SYN error rates are
observed. The features 48, 50, 52, 53 may also be added asiselvoice candidates.

Number | Name | Description
38 srv_count Number of connections to service
39 serror_rate SYN error rate
40 srv_serror_rate SYN error rate for service
45 srv_di ff_host rate | SYN error rate for service on multiple hosts

Table 1: Feature subset selected using prediction satysitiv



Mean and standard deviation of mean Jacobian matrix for instances of the "land" attack
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Figure 2: Mean and standard deviation of mean Jacobianxrfatrinstances of thé and attack.
According to the “high mean/low variance” criterion a subsefeatures and additional candidate
features have been selected.

We have performed the interpretation and analysis of alltedcks present in the KDD
Cup dataset. Due to space constraints we cannot presergtdited analysis here; so we
restrict ourselves to 5 characteristic attacks which destrate the strengths as well as the
limitations of the proposed visualization technique.

For each of the attack classesmote-to-localR2L), user-to-root(U2R) andprobe one
attack was arbitrarily selected. For the clasd@fial-of-servicdDoS) attacks we decided
to interpret two attacks which differ in activity. The folling attacks were chosen:

— thephf (R2L) attack exploits a security flaw in the input handling@! scripts
which allows the execution of local commands on a remote \eeles,

— thel oadnodul e (U2R) attack exploits an improper boundary check in the pro-
graml oadnodul e of the Solaris operating system and allows a local attaaker t
gain super-user privileges,

— theport sweep (probe) attack discovers active services on remote hosty$®y
tematically requesting connections to multiple TCP ports,

— thepod (DoS) attack crashes or reboots remote systems by sendingle, ©ver-
sized IP datagram corrupting the host's packet reassembly,

— thesnur f (DoS) attack uses misconfigured broadcast hosts to floodiianvimst
with spoofed ICMP datagrams.

In order to qualitatively compare the proposed featurectiele method with alternative
techniques, we applied the RIPPER classifier to our datasesssimilar way as it was
previously used in [LSM99, LS01] for feature analysis andegation of detection rules.

Table 2 lists the selected features based on predictioitiségsand corresponding RIP-
PER rule sets for the five example attacks.



phf Feature selection based on prediction sensitivity:
hot, num access_files, duration

RIPPER rule set:

phf :- root_shell>=1, src_bytes<=51.

| oadnodul e  Feature selection based on prediction sensitivity:

dst _host _same_srv_rate, dst_host_diff_srv_rate,
dst_host_same_src_port_rate

RIPPER rule set:

| oadnodul e : - dst_host _count <=6, src_bytes<=0, count>=2.
| oadnodul e : - dst_host _count<=6, numfile_creations>=1,
dur ati on<=103.

port sweep Feature selection based on prediction sensitivity:

rerror_rate, srv_rerror_rate, dst_host_rerror_rate,
dst _host_srv_rerror_rate

RIPPER rule set:

portsweep :- dst_host_srv_rerror_rate>=1,
dst _host_sane_srv_rat e<=0. 01,
dst _host _sanme_src_port_rate>=0.02.

portsweep :- src_bytes<=1, dst_host_sane_srv_rate<=0.02,
dst _host_sane_src_port_rate>=0. 03.
portsweep :- rerror_rate>=0.19, dst_host_sane_srv_rate<=0. 8,

dst _host _sane_src_port _rat e>=0. 08,
dst _host _count >=78, protocol _type=tcp.

portsweep :- src_bytes<=0, service=private.

portsweep :- src_bytes<=8, protocol _type=icnp.

portsweep :- src_bytes<=0, service=ftp_data, dst_bytes<=0.
portsweep :- duration>=42908.

portsweep :- dst_host_rerror_rate>=0.95,

dst_host _di ff_srv_rate>=0.47.
portsweep :- flag=0TH, service=sntp.

pod Feature selection based on prediction sensitivity:
src_bytes, wong_fragnment

RIPPER rule set:

pod :- src_bytes>=564.

snur f Feature selection based on prediction sensitivity:
count, src_count, src_bytes

RIPPER rule set:

normal :- src_bytes<=64.

Table 2: Feature selection based on prediction sensitwityRIPPER rule sets for selected attacks



Two questions arise from Table 2: How are the selected featuglated to the nature of
attacks and why do features extracted by RIPPER and predistinsitivity differ?

— Forthephf attack the selected features indicate malicious actigitgasing system
files, e.g. / et ¢/ passwd, and an anomal connection duration. These features
match the typical application pattern of tpéf attack, in which system files are
retrieved by a short HTTP GET request. The correspondingRFPrule set reveals
the problem ofverfitting The rules match specific properties of the training sets,
but do not identify the general properties of the attack iastion.

— Thel oadnodul e attack belongs to the class of U2R attacks and thus eviddnce o
the attack is only present ikcontent-basefieatures. The selected features and the
RIPPER rules mainly containaffic-basedeatures. Both methods fail to select the
relevant features because no content-based featurely aiefbect the presence of
thel oadnodul e attack.

— For thepor t sweep probe the prediction sensitivity reveals features reltdee-
jection errors, e.grerror rate. A side effect of vanilla portscans, as in case
of port sweep, is a very high number of rejected connection requests Isecau
only few services are present on most network hosts. The ERPfle set is too
complex for realistic application. Furthermore most ruleslve the service and
protocol feature which are not inherent properties ofthet sweep attack.

— The selected features for tlp@d attack indicate an influence of the number of
transmitted bytes and the presence of wrong fragmentsvainévery characteristic
for the ping-of-deathfdod) attack. The RIPPER rule is, however, too specific: there
is no reason to believe that 564 bytes is a good thresholddegtwormal data and
thepod attack.

— Thesnurf attack is represented by traffic-based features, suohoast and
srv_count . The attack involves tremendous traffic from various spdaf@urces.
The selected feature set matches slmaur f attack, but also contains generaliza-
tion which applies to successor attacks, é.gaggl e. The RIPPER rule exhibits
similar overfitting as for th@od attack.

One can see that, provided relevant features are presene idata, both RIPPER and
prediction sensitivity succeed in selecting an informatbubset of features. However
the RIPPER classifier is prone to overfitting, and the infémdes often lack necessary
generality, which undermines the main advantage of rusethdearning: understandable
rules. Feature selection based on prediction sensitwitydre accurate and exhibits good
generalization ability. Another difference between the techniques is that prediction
sensitivity determines a threshold for a combination dieathan for single features.



6 Improvement of detection by feature selection

As it was shown in the previous section, the prediction siityi criterion allows one
to select an informative subset of features characterigingle attacks. Although we
used labels for feature selection, the underlying concepbid the notion of prediction
sensitivity is anomaly detection in unlabeled data. In fi@istion we demonstrate that the
feature selection based on our criterion improves the acguwf the quarter-sphere SVM,
an unsupervised anomaly detection algorithm.

The experiments presented below were carried out underdemesios. First we selected
features forsingle attacksand applied a quarter-sphere SVM on the reduced feature sets
In the second experiment, the datasets — for feature smbeati well as for anomaly de-
tection — were composed of multiple attacks (ab)using theesservice: FTP, HTTP and
SMTP. The objective of both experiments is to investigatetivar pre-selection of fea-
tures improves detection accuracy compared to the fullffetatures. In all experiments,
unseen datavas used for the evaluation of feature selection in ordemsuee that the
selection generalizes beyond the particular datasets.

The impact of feature selection on the accuracy of anomaéctien by the quarter-sphere
SVMis shown in Fig. 3. The evaluation criterion is the aredenthe ROC curve restricted

to the low false-positive intervdl, 0.1] (AUCY1). The area is multiplied by a factor of
10; this allows one to interpret AUE as a percentage of the maximum attainable area on
the desired interval of interest.

It can be seen from Fig. 3 that reducing the features acaptdiprediction sensitivity pro-
vides a major improvement of the AUC values. For no attack does the AlEdecrease
after the feature selection. These results are very pram&nce detection accuracy at
low false-positive rates is extremely important in IDS.

The full ROC curves for four attacks analyzed in Sec. 5 arevshio Fig. 4. The ROC
curve for thepod attack was almost perfect before feature selection andsmeat shown
in Fig. 4.

7 Discussion and conclusions

We have presented a new technique for visualization of ahodetection based on pre-
diction sensitivity. Its application enables an expertt¢ainterpret the predictions made
by anomaly detection and (b) to select informative featimesder to improve detection
accuracy.

Our experiments were conducted using the quarter-sphdvessid the KDD Cup dataset.
The features highlighted by prediction sensitivity reasay reveal the nature of attacks
present in this dataset, and, furthermore, exhibit moregsity than the rules suggested
by RIPPER, a rule-based learning method.



Anomaly detection accuracy before and after feature selection
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Figure 3: Anomaly detection accuracy before and after feagelection. The left part shows exper-
iments with single attack datasets. The right part cornedpdo experiments with FTP, HTTP and
SMTP datasets.

The feature selection experiments showed major improveioéthe accuracy for anomaly
detection on a specific subset of features chosen by predisg¢insitivity, which confirms
the explanatory power of prediction sensitivity.

How can the proposed technique be useful in practice? liéstirat the experimental setup
presented in Sec. 4 is not fully unsupervised. One cannainasvould like to, simply
feed the data into the algorithm and obtain the explanatomsedictions and the set of
informative features. On the other hand, the label inforomais anyway needed for test-
ing of intrusion detection systems: nobody would venturddploy an IDS without ever
wondering if it works right. At this point, using our techmig, one can utilize the avail-
able label information to look beyond the bare accuracy iceettnd obtain insights into
why the anomaly detection produces the results it is produaitgadnat can be done to
improve it. Although labels are used for feature selectiamexplicit training is required,
and in this sense the procedure remains unsupervised effondhe, the explanatory infor-
mation provided by prediction sensitivity can be particiylaseful as a first guidance for
development of signatures for unknown attacks.
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