
4 Large Scale Learning with String Kernels

Sören Sonnenburg Soeren.Sonnenburg@first.fraunhofer.de

Gunnar Rätsch Gunnar.Raetsch@tuebingen.mpg.de

Konrad Rieck Konrad.Rieck@first.fraunhofer.de

In genomic sequence analysis tasks like splice site recognition or promoter identifica-

tion, large amounts of training sequences are available, and indeed needed to achieve

sufficiently high classification performances. In this chapter we study string kernels

that can be computed in linear time w.r.t. the length of the input sequences. In par-

ticular the recently proposed Spectrum kernel, the Weighted Degree kernel (WD)

and the Weighted Degree kernel with shifts, which have been successfully used for

various sequence analysis tasks. We discuss extensions using data structures such as

tries and suffix trees as well as modifications of a SVM chunking algorithm in order

to significantly accelerate SVM training and their evaluation on test sequences. Our

simulations using the WD kernel and Spectrum kernel show that large scale SVM

training can be accelerated by factors of 7 and 60 times, respectively, while requiring

considerably less memory. We demonstrate that these algorithms can be effectively

parallelized for further acceleration. Our method allows us to train SVMs on sets

as large as 10 million sequences and solve Multiple Kernel Learning problems with

1 million sequences. Moreover, using these techniques the evaluation on new se-

quences is often several thousand times faster, allowing us to apply the classifiers

on genome-sized data sets with seven billion test examples. We finally demonstrate

how the proposed data structures can be used to understand the SVM classifiers de-

cision function. All presented algorithms are implemented in our Machine Learning

toolbox SHOGUN 1.

4.1 Introduction

Kernel-based methods such as Support Vector Machines (SVMs) have proven to

be powerful for a wide range of different data analysis problems, in particular for

the analysis of texts and biological sequences. In analysis tasks like email or web

1. http://www.fml.tuebingen.mpg.de/raetsch/projects/shogun.

74 Large Scale Learning with String Kernels

spam detection (Webb et al., 2006), splice site recognition (Rätsch and Sonnenburg,

2004) or promoter identification (Sonnenburg et al., 2006c), large amounts of

training sequences are available and seemingly required to achieve sufficiently

high classification performances. However, training SVMs becomes prohibitively

computationally expensive when using genome-sized training samples.

In this work we review and develop string kernels that are particularly well

suited for sequence analysis tasks (Section 4.2). We study kernels that consider the

occurrence of sub-sequences in the sequence up to a certain length for two typical

analysis problems: the analysis of the whole content of the sequences (e.g. web spam

classification) and the content relative to a biological signal of interest (e.g. splice

sites). We are especially interested in variants of the Spectrum kernel (Leslie et al.,

2002) and the Weighted Degree kernel (WD) (Rätsch and Sonnenburg, 2004),

where the latter considers sequences of constant length and uses position dependent

information which the former does not.

We will discuss strategies to efficiently compute linear combinations of sequence

kernel elements which are frequently used during SVM training and testing. They

exploit that the normal vector of the hyperplane in feature space is extremely sparse

and build up appropriate index data structures allowing efficient operations on the

non-zero elements (Section 4.3). Moreover, we outline algorithms taking advantage

of the properties of such kernels in order to efficiently compute the optimal SVM

solution (Section 4.4).

Our benchmark experiments in Section 4.5 show that we can significantly speed

up the training phase (60× faster for spectrum kernel and ≈ 7× faster for WD

kernel) and testing phase (often several thousand times faster). Additionally, during

training the algorithms do not require much working memory, as the data structures

make memory-demanding kernel caching unnecessary (Sonnenburg et al., 2006b).

In Section 4.6 we discuss other applications of the presented ideas. We show how

one can solve Multiple Kernel Learning (Sonnenburg et al., 2006b) problems with a

million examples and how the data structures can be used to obtain representations

comprehensible to humans of resulting SVM classifiers.

4.2 String Kernels

Given two strings x and x′, there is no obvious answer to the question: How similar

are x and x′? In contrast to vectors in R
d where a quantity inverse to ‖x− x′‖ can

be used, similarity of strings can be expressed in a variety of ways – each accounting

and emphasizing different features and aspects.

Let us start by defining a few terms: A string (or sequence) x is defined as x ∈ Σ∗,

where Σ∗ is the Kleene closure over all symbols from the finite alphabet Σ. The

length of the string x is given as lx := |x|. Using these definitions we can define

similarity measures for use with kernel machines on strings, the so-called string

kernels. In general there are two major types of string kernels, first the ones that are

directly defined on strings and second kernels that are defined on generative models

4.2 String Kernels 75

(like hidden Markov models, e.g. Jaakkola et al., 2000; Tsuda et al., 2002a,b), or

by using appropriately defined scores (for instance alignment scores; e.g. Liao and

Noble, 2002; Vert et al., 2004).

The following section will cover only string kernels of the first type, such as the

Bag-of-Words (Salton, 1979; Joachims, 1998), n-gram (Damashek, 1995; Joachims,

1999a), Locality Improved (Zien et al., 2000), Spectrum (Leslie et al., 2002),

Weighted Degree kernel (Rätsch and Sonnenburg, 2004) and Weighted Degree

kernel with shifts (Rätsch et al., 2005). For additional work that is not directly

covered2 by this work the reader is refered to (Haussler, 1999; Lodhi et al., 2002;

Leslie et al., 2003a; Leslie and Kuang, 2004; Schölkopf et al., 2004; Cortes et al.,

2004).

4.2.1 Bag-of-Words and n-gram Kernel

In information retrieval a classic way to characterize a text document is to represent

the text by the words it contains – the bag of words (Salton, 1979). The text

document is split at word boundaries into contained words using a set of delimiter

symbols, such as space, comma and period. Note that in this representation the

ordering of words (e.g. in a sentence) will not be taken into account. The feature

space F consists of all possible words and a document x is mapped to a sparse vector

Φ(x) ∈ F, so that Φi(x) = 1 if the word represented by index i is contained in the

document. Further alternatives for mapping x into a feature space F correspond to

associating Φi(x) with frequencies or counts of contained words. The bag-of-words

kernel is then computed as the inner product in F

k(x,x′) = 〈Φ(x),Φ(x′)〉 =
∑

i∈words

Φi(x)Φi(x
′) (4.1)

which – in practice – boils down to counting the number of words common to both

documents and can thus be computed very efficiently.

Another common approach is to characterize a document by contained n-grams

– substrings of n consecutive characters including word boundaries – where n is

fixed beforehand (Suen, 1979; Damashek, 1995). The corresponding feature space

F is spanned by all possible strings of length n. Here no dependencies other than

the consecutive n characters are taken into account, which however might contain

more than one word. The kernel is computed as in (4.1). Note that the n-gram

kernel can cope with mismatches, as for instance a single mismatch only affects n

neighboring n-grams, while keeping further surrounding ones intact.

2. Though the linadd optimization trick presented here is - in some cases - also applicable.

76 Large Scale Learning with String Kernels

4.2.2 The Spectrum Kernel

The spectrum kernel (Leslie et al., 2002) implements the n-gram kernel in the

context of biological sequence analysis. The idea is to count how often a d-mer

(bioinformatics terminology for d-gram, a contiguous string of length d) is contained

in the sequences x and x′. Summing up the product of these counts for every possible

d-mer (note that there are exponentially many) gives rise to the kernel value which

formally is defined as follows: Let Σ be an alphabet and u ∈ Σd a d-mer and #u(x)

the number of occurrences of u in x. Then the spectrum kernel is defined as:

k(x,x′) =
∑

u∈Σd

#u(x)#u(x′) (4.2)

Note that spectrum-like kernels cannot extract any positional information from

the sequence which goes beyond the d-mer length. It is well suited for describing

the content of a sequence but is less suitable for instance for analyzing signals

where motifs may appear in a certain order or at specific positions. Also note that

spectrum-like kernels are capable of dealing with sequences with varying length.

The spectrum kernel can be efficiently computed in O(d(lx + lx′)) using tries

(Leslie et al., 2002) and O(lx + lx′) using suffix trees (Vishwanathan and Smola,

2003), where lx and lx′ denote the length of sequence x and x′. An easier and less

complex way to compute the kernel for two sequences x and x′ is to separately

extract and sort the (lx + lx′) d-mers in each sequence, which can be done in

a preprocessing step. Then one iterates over all d-mers of sequences x and x′

simultaneously, counts which d-mers appear in both sequences and finally sums

up the product of their counts. For small alphabets and d-gram lengths individual

d-mers can be stored in fixed-size variables, e.g. DNA d-mers of length d ≤ 16 can

be efficiently represented as a 32-bit integer values. The ability to store d-mers in

fixed-bit variables or even CPU registers greatly improves performance, as only a

single CPU instruction is necessary to compare or index a d-mer. The computational

complexity of the kernel computation is O(lx + lx′) omitting the preprocessing step.

4.2.3 The Weighted Degree Kernel

The so-called weighted degree (WD) kernel (Rätsch and Sonnenburg, 2004) effi-

ciently computes similarities between sequences while taking positional information

of multiple k-mers into account. The main idea of the WD kernel is to count the

(exact) co-occurrences of k-mers at corresponding positions in the two sequences to

be compared. The WD kernel of order d compares two sequences x and x′ of equal

length l by summing all contributions of k-mer matches of lengths k ∈ {1, . . . , d},
weighted by coefficients βk:

k(x,x′) =
d∑

k=1

βk

l−k+1∑

i=1

I(uk,i(x) = uk,i(x
′)). (4.3)

4.2 String Kernels 77

Here, uk,i(x) is the string of length k starting at position i of the sequence x and

I(·) is the indicator function which evaluates to 1 when its argument is true and to

0 otherwise. For the weighting coefficients, Rätsch and Sonnenburg (2004) proposed

to use βk = 2d−k+1
d(d+1) . Matching substrings are thus rewarded with a score depending

on the length of the substring. Note that although in our case βk+1 < βk, longer

matches nevertheless contribute more strongly than shorter ones: this is due to the

fact that each long match implies several short matches, adding to the value of

(4.3). Exploiting this knowledge allows for a more intuitive O(l) reformulation of

the kernel using “block-weights” as has been done by Sonnenburg et al. (2005b)

and is displayed in Figure 4.1.

Figure 4.1: Given two sequences x1 and x2 of equal length, the kernel
consists of a weighted sum to which each match in the sequences makes a
contribution wB depending on its length B, where longer matches contribute
more significantly.

Note that the WD kernel can be understood as a spectrum kernel where the

k-mers starting at different positions are treated independently of each other.

Additionally, the WD kernel considers substrings of length up to d. Hence, the

feature space for each position has
∑d

k=1 |Σ|k = |Σ|d+1−1
|Σ|−1 − 1 dimensions and

is additionally duplicated l times (leading to O(l|Σ|d) dimensions). However, the

computational complexity of the original WD kernel is in the worst case O(dl) as

can be directly seen from (4.3).

4.2.4 The Weighted Degree Kernel with shifts

The recognition of matching blocks using the WD kernel strongly depends on the

position of the sub-sequence and does not tolerate any positional variation. For

instance, if a consecutive block in one sequence is shifted by only one position,

the WD kernel fails to discover similar blocks and returns a lower similarity score.

Depending on the application in mind, this problem might lead to suboptimal

results. Hence, Rätsch et al. (2005) suggested the WD kernel with shifts (WDS),

which shifts the two sequences against each other in order to tolerate a small

positional variations of sequence motifs. Conceptually, it is a mixture between the

78 Large Scale Learning with String Kernels

WD and the spectrum kernel. It is defined as

k(x,x′) =

d∑

k=1

βk

l−k+1∑

i=1

S∑

s=0
s+i≤l

δs µk,i,s,x,x′ , (4.4)

µk,i,s,x,x′ =I(uk,i+s(x)=uk,i(x
′))+I(uk,i(x)=uk,i+s(x

′)),

where βk = 2(d − k + 1)/(d(d + 1)), δs = 1/(2(s + 1)) and uk,i(x) is the sub-

sequence of x of length k that starts at position i. The idea is to count the matches

between two sequences x and x′ between the words uk,i(x) and uk,i(x
′) where

uk,i(x) = xixi+1 . . . xi+k−1 for all i and 1 ≤ k ≤ d. The parameter d denotes the

maximal length of the words to be compared, and S is the maximum distance by

k(x1,x2) = 6,3 + 6,-3 + 3,4
x1

x2

γγγ

Figure 4.2: Given two sequences x1 and x2 of equal length, the WD kernel
with shift consists of a weighted sum to which each match in the sequences
makes a contribution γk,p depending on its length k and relative position p,
where long matches at the same position contribute most significantly. The
γ’s can be computed from the β’s and δ’s in (4.4). The spectrum kernel is
based on a similar idea, but it only considers substrings of a fixed length and
the contributions are independent of the relative positions of the matches to
each other.

which a sequence is shifted. Note that this kernel is computationally proportional to

the maximum shift l and thus much more demanding requiring O(lS). See Figure 4.2

and (Rätsch et al., 2005) for a further discussion.

4.2.5 Summary

The string kernels revisited in this section are based on counting substrings of

certain lengths. While the computational complexity is linear in the length of the

input sequences, there are some significant differences: the spectrum kernel requires

O(lx+ lx′), the WD kernel O(l) and the WDS kernel is most demanding with O(lS).

As there is no obvious way to further speed up single kernel computations, one can

try to exploit the inherent structure of learning algorithms using string kernels. One

can particularly benefit from the fact that these algorithms often need to compute

linear combinations of kernel elements during training and testing, which can be

significantly sped up by exploiting the sparsity of the representation in feature

space. Before going into algorithmic details on how one can make use of the sparse

feature space to accelerate SVM training and testing in Section 4.4, we will discuss

4.3 Sparse Feature Maps 79

methods to represent sparse feature maps in the next section (Section 4.3) as the

appropriate data representation is crucial for computational efficiency.

4.3 Sparse Feature Maps

The string kernels introduced in the previous section share two important prop-

erties: (a) the mapping Φ is explicit, so that elements in the feature space F can

be accessed directly, and (b) mapped examples Φ(x) are very sparse in comparison

to the huge dimensionality of F. In the following sections we illustrate how these

properties can be exploited to efficiently store and compute sparse feature vectors.

4.3.1 Efficient Storage of Sparse Weights

The considered string kernels correspond to very large feature spaces, for instance

DNA d-mers of order ten span a feature space of over 1 million dimensions. However,

most dimensions in the feature space are always zero since only a few of the

many different d-mers actually appear in the training sequences, and furthermore

a sequence x can only comprise at most lx unique d-mers. In this section we

briefly discuss four efficient data structures for sparse representation of sequences

supporting the basic operations: clear, add and lookup. We assume that the

elements of a sparse vector v are indexed by some index set U (for sequences,

e.g. U = Σd). The first operation clear sets v to zero. The add operation increases

either the weight of a dimension of v for an element u ∈ U by some amount or

increases a set of weights in v corresponding to all d-mers present in a given sequence

x. Similar to add, the lookup operation either requests the value of a particular

component vu of v or returns a set of values matching all d-mers in a provided

sequence x. The latter two operations need to be performed as quickly as possible.

4.3.1.1 Explicit Map

If the dimensionality of the feature space is small enough, then one might consider

keeping the whole vector v in memory and to perform direct operations on its

elements. In this case each add or lookup operation on single elements takes O(1)

time.3 The approach, however, has expensive memory requirements (O(|Σ|d)), but

is highly efficient and best suited for instance for the spectrum kernel on DNA

sequences with d ≤ 14 and on protein sequences with d ≤ 6.

3. More precisely, it is log d, but for small enough d (which we have to assume anyway)
the computational effort is exactly one memory access.

80 Large Scale Learning with String Kernels

4.3.1.2 Sorted Arrays and Hash Tables

More memory efficient but computationally more expensive are sorted arrays of

index-value pairs (u, vu). Assuming lx indices of a sequence x are given and sorted

in advance, one can efficiently add or lookup up a single vu for a corresponding u

by employing a binary search procedure with O(log lx) run-time. Given a sequence

x′ to look up all contained d-mers at once, one may sort the d-mers of x′ in advance

and then simultaneously traverse the arrays of x and x′ in order to determine which

elements appear in x′. This procedure results in O(lx + lx′) operations – omitting

the sorting of the second array – instead of O(lx′ log lx). The approach is well suited

for cases where lx and lx′ are of comparable size, as for instance for computations

of single spectrum kernel elements (Leslie et al., 2003b). If lx ≫ lx′ , then the binary

search procedure should be preferred.

A trade-off between the efficiency of explicit maps and the low memory require-

ments of sorted arrays can be achieved by storing the index-value pairs (u, vu) in

a hash table, where u is hashed to a bin in the hash table containing vu (Rieck

et al., 2006a). Both operations add and lookup for u ∈ Σd can be carried out in

O(1) time in best-case – however the worst-case run-time is O(log lx), if all u of a

sequence x are mapped to the same bin. The two opposed runtime bounds suggest

that the hash table size has to be chosen very carefully in advance and also strongly

depends on the lengths of the considered sequences, which makes the sorted array

approach more practicable in terms of run-time requirements.

4.3.1.3 Tries

Another way of organizing the non-zero elements are tries (Fredkin, 1960; Knuth,

1973): The idea is to use a tree with at most |Σ| siblings of depth d. The leaves

store a single value: the element vu, where u ∈ Σd is a d-mer and the path to the

leaf corresponds to u.

To add an element to a trie one needs O(d) in order to create the necessary nodes

on the way from the root to a leave. Similar to the add operation, a lookup takes

O(d) time in the worst-case, however, with growing d the probability for an arbitrary

u to be present in a trie decreases exponentially, so that a logarithmic run-time of

O(log|Σ| d) can be expected for large d. Note that the worst-case computational

complexity of both operations is independent of the number of d-mers/elements

stored in the tree.

Tries need considerably more storage than sorted arrays (for instance storing

edges in nodes usually requires using hash tables or balanced tree maps), however,

tries are useful for the previously discussed WD kernel. Here we not only have

to lookup one substring u ∈ Σd, but also all prefixes of u. For sorted arrays this

amounts to d separate lookup operations, while for tries all prefixes of u are already

known when the bottom of the trie is reached. In this case the trie has to store

aggregated weights in internal nodes (Sonnenburg et al., 2006b; Rieck et al., 2006a).

This is illustrated for the WD kernel in Figure 4.3.

4.3 Sparse Feature Maps 81

A G

A G A

A A A

α1 + α2

α1

α1

α2

α2

α3

α3

α3

Figure 4.3: Trie containing the 3-mers AAA, AGA, GAA with weights α1, α2,
α3. Additionally the figure displays resulting weights at inner nodes.

4.3.1.4 Suffix Trees and Matching Statistics

A fourth alternative for efficient storage of sparse weights and string kernel com-

putation builds on two data structures: suffix trees and matching statistics (Vish-

wanathan and Smola, 2003). A suffix tree Sx is a compact representation of a trie,

which stores all suffixes of a sequence x in O(lx) space and allows efficient retrieval

of arbitrary sub-sequences of x (Gusfield, 1997). A matching statistic Mx′ for a

suffix tree Sx is defined by two vectors v and c of length lx′ , where vi reflects the

length of the longest substring of x matching x′ at position i and ci is a corre-

sponding node in Sx (Chang and Lawler, 1994). As an example Figure 4.4 shows a

suffix tree Sx and a matching statistic Mx′ for the sequences x = GAGAAG and

x′ = GAACG.

a

b

c

d e f

g h i

A

GA

AG$ GAAG$ $

AG$ GAAG$ $

(a) Suffix tree Sx

x′ G A A C G

vi 3 2 1 0 1

ci g d b a c

(b) Matching statistic Mx′

Figure 4.4: Suffix tree Sx for the sequence x = GAGAAG and matching
statistic Mx′ for x′ = GAACG matched against Sx. A sentinel symbol $ has
been added to x, s.t. that all leaves correspond to suffixes.

By traversing Sx and looping over Mx′ in parallel a variety of string kernels

k(x,x′) – including the spectrum and WD kernel – can be computed using O(lx+lx′)

run-time. A detailed discussion of the corresponding algorithms, weighting schemes

82 Large Scale Learning with String Kernels

and extensions is given in (Vishwanathan and Smola, 2004; Rieck et al., 2006b). The

approach can be further extended to support the operations clear, add and lookup.

In contrast to sorted arrays and tries, these operations are favorably performed

on the domain of sequences instead of single d-mers to ensure linear run-time.

Starting with an empty suffix tree S obtained using clear, the add operation is

realized by appending sequences and implicitly contained d-mers to S using an

online construction algorithm, (e.g. Ukkonen, 1995). In order to avoid matches over

multiple sequences, each sequence xi is delimited by a sentinel symbol $i /∈ Σ. Given

S, the lookup operation for a sequence x′ is performed by calculating Mx′ , so that

a kernel computation can be carried out in O(lx′) run-time using S and Mx′ .

In practice however, suffix trees introduce a crucial overhead in storage space

due to the high complexity of the data structure, which makes memory preserving

data structures such as sorted arrays more attractive, especially on small alphabets.

Recently an alternative, suffix arrays, have been proposed to reduce the memory

requirements, still n input symbols results in at least 19n bytes of allocated memory

independent of the considered alphabet (Teo and Vishwanathan, 2006)

4.3.1.5 Summary

Table 4.1 coarsely summarizes the worst-case run-times for multiple calls of clear,

add and lookup using the previously introduced data structures. From the provided

run-time bounds, it is obvious that the explicit map representation is favorable if

the considered alphabet Σ and order d is sufficiently small – for instance as in

several application of DNA analysis where |Σ| = 4 and d ≤ 6. For larger alphabets

and higher d, the sorted array approach is more attractive in practice. Other than

tries and suffix trees, the sorted array approach is much easier to implement and its

memory requirements are easier to estimate. If either Σ or d can get arbitrarily large,

suffix trees are the data structure of choice as they operate linear in sequence lengths

independent of Σ and d, however, as mentioned earlier there is a large overhead in

storage space due to the complexity of the suffix tree structure. The trie-based

approach may not seem suitable for large scale learning in comparison to the other

methods, but the per-node augmentation of tries with additional values such as

aggregated weights shown in Figure 4.3 can drastically speed up computation of

complex string kernels such as the WD kernel, which can not efficiently be mapped

to other approaches.

Explicit map Sorted arrays Tries Suffix trees

clear of v O(|Σ|d) O(1) O(1) O(1)

add of all u from x to v O(lx) O(lx log lx) O(lxd) O(lx)

lookup of all u from x′ in v O(lx′) O(lx + lx′) O(lx′d) O(lx′)

Table 4.1: Comparison of worst-case run-times for multiple calls of clear,
add and lookup on a sparse vector v using explicit maps, sorted arrays, tries
and suffix trees.

4.4 Speeding up SVM Training and Testing 83

4.4 Speeding up SVM Training and Testing

As it is not feasible to use standard optimization toolboxes for solving large

scale SVM training problems, decomposition techniques are frequently used in

practice. Most chunking algorithms work by first selecting Q variables (working

set W ⊆ {1, . . . , N}, Q := |W |) based on the current solution and then solve

the reduced problem with respect to the working set variables. These two steps are

repeated until some optimality conditions are satisfied as displayed in Algorithm 4.1.

Algorithm 4.1 A SVM Chunking Algorithm (see e.g. Joachims, 1998).

while optimality conditions are violated do
select Q variables for the working set.
solve reduced problem on the working set.

end while

For selecting the working set and checking the termination criteria in each iteration,

the vector g with gi =
∑N

j=1 αjyjk(xi, xj), i = 1, . . . , N , is usually needed. Without

further assumptions, computing g from scratch in every iteration requires O(N2)

kernel computations. To avoid re-computation of g one typically starts with g = 0

and only computes updates of g on the working set W

gi ← gold
i +

∑

j∈W

(αj − αold
j)yjk(xi, xj) (4.5)

for all i = 1, . . . , N . As a result the effort decreases to O(QN) kernel computations,

which can be further accelerated by using kernel caching (Joachims, 1998). However,

kernel caching is not efficient enough for large scale problems4 and thus most time

is spent computing kernel rows for the updates of g on the working set W . Note

however that this update as well as computing the Q kernel rows can be easily

parallelized (see Section 4.5.2).

Exploiting k(xi,xj) = 〈Φ(xi),Φ(xj)〉 and w =
∑N

i=1 αiyiΦ(xi) we can rewrite

the update rule as

gi ← gold
i +

∑

j∈W

(αj − αold
j)yj〈Φ(xi),Φ(xj)〉 = gold

i + 〈wW ,Φ(xi)〉, (4.6)

where wW =
∑

j∈W (αj − αold
j)yjΦ(xj) is the normal vector on the working set.

If the kernel feature map can be computed explicitly and is sparse (as discussed

before), then computing the update in (4.6) can be accelerated. One only needs to

compute and store wW (using the clear and
∑

q∈W |{Φj(xq) 6= 0}| add operations)

4. For instance when using a million examples one can only fit 268 rows into 1 GB.
Moreover, caching 268 rows is insufficient when for instance having many thousands of
active variables.

84 Large Scale Learning with String Kernels

and performing the scalar product 〈wW ,Φ(xi)〉 (using |{Φj(xi) 6= 0}| lookup
operations).

Depending on the kernel, the way the sparse vectors are stored (cf. Section 4.3.1)

and on the sparseness of the feature vectors, the speedup can be quite drastic. For

instance, a single WD kernel computation (as in (4.3)) requires O(dl) operations.

Hence, computing (4.5) N times requires O(NQld) operations. When using tries for

computing (4.6), one needsQl add operations (each O(d)) andNl lookup operations

(each O(d)). Hence, only O(Qld+Nld) basic operations are needed in total. When

N is large enough it leads to a speedup by a factor of Q. Finally note that kernel

caching is no longer required and as Q is small in practice (e.g. Q = 42) the resulting

trie has rather few leaves and thus only needs little storage.

The pseudo-code of our linadd SVM chunking algorithm is given in Algo-

rithm 4.2.

Algorithm 4.2 Outline of the chunking algorithm that exploits the fast computa-

tions of linear combinations of kernels (e.g. by tries).

INITIALIZATION
gi = 0, αi = 0 for i = 1, . . . , N
LOOP UNTIL CONVERGENCE
for t = 1, 2, . . . do

Check optimality conditions and stop if optimal
select working set W based on g and α, store αold = α

solve reduced problem W and update α

clear w
w← w + (αj − αold

j)yjΦ(xj) for all j ∈W (using add)
update gi = gi + 〈w, Φ(xi)〉 for all i = 1, . . . , N (using lookup)

end for

4.4.1 A Parallel Chunking Algorithm

As still most time is spent in evaluating g(x) for all training examples further

speedups are gained when parallelizing the evaluation of g(x). When using the

linadd algorithm, one first constructs the data structure representing the update

vector w and then performs parallel lookup operations using several CPUs (e.g. us-

ing shared memory or several copies of the data structure on separate computing

nodes). We have implemented this algorithm based on multiple threads and gain

reasonable speedups (see next section).

Note that this part of the computations is almost ideal to distribute to many

CPUs, as only the updated α (or w depending on the communication costs and size)

have to be transferred before each CPU computes a large chunk Ik ⊂ {1, . . . , N} of

h
(k)
i = 〈w,Φ(xi)〉, ∀i ∈ Ik, ∀k = 1, . . . , N, where (I1 ∪ · · · ∪ In) = (1, . . . , N)

which is transferred to a master node that finally computes g← g+h, as illustrated

4.5 Benchmark Experiments 85

in Algorithm 4.3.

Algorithm 4.3 Outline of the parallel chunking algorithm that exploits the fast

computations of linear combinations of kernels.

Master node
INITIALIZATION
gi = 0, αi = 0 for i = 1, . . . , N
LOOP UNTIL CONVERGENCE
for t = 1, 2, . . . do

Check optimality conditions and stop if optimal
select working set W based on g and α, store αold = α

solve reduced problem W and update α

transfer to Slave nodes: αj − αold
j for all j ∈W

fetch from n Slave nodes: h = (h(1), . . . ,h(n))
update gi = gi + hi for all i = 1, . . . , N

end for
signal convergence to slave nodes

Slave nodes
LOOP UNTIL CONVERGENCE
while not converged do

fetch from Master node αj − αold
j for all j ∈W

clear w
w← w + (αj − αold

j)yjΦ(xj) for all j ∈W (using add)

node k computes h
(k)
i = 〈w, Φ(xi)〉

for all i = ⌈(k − 1)N
n
⌉+ 1, . . . , ⌈k N

n
⌉ (using lookup)

transfer to master: h(k)

end while

4.5 Benchmark Experiments

In this section we will perform a benchmark comparing the running times of SVMs

using the proposed algorithmic optimizations.

4.5.1 Experimental Setup

To demonstrate the effect of the linadd SVM training optimizations (Algo-

rithm 4.2) we applied the standard and the linadd algorithm using 1 to 8 CPUs to

a human splice site data set,5 comparing it to the original WD and spectrum kernel

formulation. The splice data set contains 159,771 true acceptor splice site sequences

5. The splice dataset can be downloaded from http://www.fml.tuebingen.mpg.de/

raetsch/projects/lsmkl

86 Large Scale Learning with String Kernels

and 14,868,555 decoys, leading to a total of 15,028,326 sequences each 141 base pairs

in length. It was generated following a procedure similar to the one of Sonnenburg

et al. (2005a) for C. elegans, which only contained 1,026,036 examples. Note that

the dataset is very unbalanced as 98.94% of the examples are negatively labeled. For

training we selected 500, 1, 000, 5, 000, 10, 000, 30, 000, 50, 000, 100, 000, 200, 000,

500, 000, 1, 000, 000, 2, 000, 000, 5, 000, 000 and 10, 000, 000 randomly sub-sampled

examples and measured the time needed in SVM training. For classification perfor-

mance evaluation we always use the same remaining 5,028,326 examples as a test

data set. We set the degree parameter to d = 20 for the WD kernel and to d = 8

for the spectrum kernel fixing the SVM’s regularization parameter to C = 1. We

used tries for the WD kernel and explicit maps with 216 elements for the spectrum

kernel as the DNA alphabet requires only two bits to enumerate the four symbols

A,C,G, T leading to 16-bit 8-th order words.

Since the spectrum kernel is position independent it is not well suited for the

splice site recognition problem that requires knowledge of the position of substring

relative to the splice site. We therefore applied this kernel to a web spam data set

(d = 4), where the task is to distinguish web pages that are maliciously tailored to

achieve high ranks by search engines – so called web spam – from normal web pages.

As negative examples we obtained the Webb Spam Corpus6 (Webb et al., 2006),

which comprises about 350,000 pages of web spam. In order to generate normal

data, we selected an initial set of popular web sites (e.g. cnn.com, microsoft.com,

slashdot.org and heise.de) and recursively followed links up to a depth of 3,

resulting in 250,000 downloaded web pages from more than 10,000 web sites. The

average length of the web pages is 20 Kb with a standard deviation of 25 Kb.

We then filtered all pages that did not contain the <html> tag (case insensitive

matching) leading to 300,000 spam and 180,000 normal pages with an average size

of 30 Kb per page and a total size of 5 GB. As a sparse mapping we used sorted

arrays of 64-bit unsigned integers allowing us to consider up to 8-mers, due to

the fact that some of the retrieved web pages are in fact binaries (8-bit alphabet:

0 . . . 255). We used a random subset of 100,000 examples for training and a separate

set of the same size for testing. The total size of the training and test data set is

≈ 4 GB, which results in ≈ 30 GB of memory requirements using sorted arrays of

64-bit variables.

The splice and the web spam data sets are used in all benchmark experiments

and SVMs are trained using the SHOGUN machine learning toolbox, 7 which

contains a modified version of SVMlight (Joachims, 1999a). SVMlight’s subproblem

size (parameter qpsize) and convergence criterion (parameter epsilon) were set

to Q = 42 and ǫSV M = 10−5. See Table 4.6 for other choices of Q. A kernel cache

of 1 GB was used for all kernels except the precomputed kernel and algorithms

using the linadd extension for which the kernel-cache was disabled. Experiments

6. Available from http://spamarchive.org/gt/
7. The toolbox source code is freely available from http://www.fml.tuebingen.mpg.de/

raetsch/projects/shogun.

4.5 Benchmark Experiments 87

were performed on a PC powered by eight 2.4GHz AMD Opteron(tm) processors

running Linux. We measured the training time for each of the algorithms (single,

quad or eight CPU version) and data set sizes.

4.5.2 Benchmarking SVM

Splice Dataset The obtained training times for the different SVM algorithms on

the splice dataset are displayed in Table 4.2, 4.3 and in Figure 4.5. First, SVMs were

trained using standard SVMlight with the Weighted Degree Kernel precomputed

(WDPre), the standard WD kernel (WD1) and the precomputed (SpecPre) and

standard spectrum kernel (Spec). Then SVMs utilizing the linadd extension8 were

trained using the WD (LinWD) and spectrum (LinSpec) kernel. Finally, SVMs

were trained on four and eight CPUs using the parallel version of the linadd

algorithm (LinWD4, LinWD8). WD4 and WD8 demonstrate the effect of a simple

parallelization strategy, where the computation of kernel rows and updates on the

working set are parallelized, which works with any kernel.

N WDPre WD1 WD4 WD8 LinWD1 LinWD4 LinWD8

500 1 1 1 1 1 1 1

1,000 2 1 1 1 3 1 1

5,000 29 7 5 5 16 4 5

10,000 109 19 13 12 35 10 11

30,000 934 110 52 45 136 33 27

50,000 - 448 170 125 254 61 45

100,000 - 1233 472 386 309 101 84

200,000 - 4460 1543 1284 779 220 166

500,000 - 22229 8664 6998 2978 898 611

1,000,000 - - - - 7189 2366 1474

2,000,000 - - - - - - 4274

5,000,000 - - - - - - 18547

10,000,000 - - - - - - 97484

Table 4.2: Speed comparison of the standard single CPU Weighted Degree
Kernel algorithm (WD1) in SVMlight training, compared to the four (WD4)
and eight (WD8) CPUs parallelized version, the precomputed version (Pre)
and the linadd extension used in conjunction with the standard WD kernel
for 1,4 and 8 CPUs (LinWD1, LinWD4, LinWD8) on the splice dataset

.

8. More precisely the O(l) block formulation of the WD kernel as proposed by Sonnenburg
et al. (2005b) was used in all WD-SVM benchmarks (potentially in addition to the linadd
extension).

88 Large Scale Learning with String Kernels

N SpecPre Spec LinSpec1 LinSpec4 LinSpec8

500 1 1 1 1 1

1,000 2 2 1 1 1

5,000 27 38 4 2 3

10,000 104 117 4 5 4

30,000 915 715 33 17 13

50,000 - 1207 38 25 26

100,000 - 3982 127 64 84

200,000 - 14200 419 254 283

500,000 - 181241 3027 1719 1611

1,000,000 - - 27350 14581 12991

Table 4.3: Speed comparison of the spectrum kernel without (Spec) and with
linadd (LinSpec1, LinSpec4, LinSpec8 using 1,4 and 8 processors) on the
splice data set. SpecPre denotes the precomputed version. The first column
shows the sample size N of the data set used in SVM training while the
following columns display the time (measured in seconds) needed in the
training phase.

The training times obtained when precomputing the kernel matrix (which in-

cludes the time needed to precompute the full kernel matrix) is in all cases larger

than the times obtained using the standard WD kernel demonstrating the effec-

tiveness of SVMlight’s kernel cache. The overhead of constructing a trie on Q = 42

examples is visible: only starting from 50,000 examples linadd optimization be-

comes more efficient than the original WD kernel algorithm as the kernel cache

cannot hold all kernel elements anymore.9

The linadd formulation outperforms the original WD kernel by a factor of 7.5

on half a million examples. The picture is similar for the spectrum kernel, here

speedups of factor 59.9 on 500, 000 examples are reached which stems from the

fact that explicit maps (and not tries as in the WD kernel case) as discussed in

Section 4.3.1 were used. This led to a lookup cost of O(1) and a dramatically

reduced map construction time. For that reason the parallelization effort benefits

the WD kernel more than the spectrum kernel: on half a million examples the

parallelization using 4 CPUs (8 CPUs) leads to a speedup of factor 3.3 (4.9) for

the WD kernel, but only 1.8 (1.9) for the spectrum kernel. Thus parallelization will

help more if the kernel computation is slow. Training with the original WD kernel

with a sample size of 500, 000 takes about 6 hours, the linadd version still requires

about 50 minutes while with the 8 CPU parallel implementation requires about 2

hours and in conjunction with the linadd optimization only 20 minutes are needed.

Finally, training on 10 million examples takes about 27 hours. Note that this data

9. When single precision 4-byte floating point numbers are used, caching all kernel
elements is possible when training with up to 16384 examples.

4.5 Benchmark Experiments 89

1000 10000 100000 1000000 10000000

1

10

100

1000

10000

Number of training examples (logarithmic)

S
V

M
 t

ra
in

in
g

 t
im

e
 i
n

 s
e

c
o

n
d

s
 (

lo
g

a
ri
th

m
ic

)

WD−Precompute

WD 1CPU

WD 4CPU

WD 8CPU

WD−Linadd 1CPU

WD−Linadd 4CPU

WD−Linadd 8CPU

1000 10000 100000 1000000

1

10

100

1000

10000

100000

Number of training examples (logarithmic)

S
V

M
 t
ra

in
in

g
 t
im

e
 i
n
 s

e
c
o
n
d
s
 (

lo
g
a
ri
th

m
ic

)

Spec−Precompute

Spec−orig

Spec−linadd 1CPU

Spec−linadd 4CPU

Spec−linadd 8CPU

Figure 4.5: Comparison of the running time of the different SVM training
algorithms using the weighted degree kernel on the splice data set. Note that
as this is a log-log plot small appearing distances are large for larger N and
that each slope corresponds to a different exponent. In the left figure the
Weighted Degree kernel training times are measured, the right figure displays
spectrum kernel training times.

set is already 2.1 GB in size.

N 100 500 1,000 5,000 10,000 20,000 50,000 70,000 100,000

Spec 2 97 201 1977 6039 19063 94012 193327 -

LinSpec 3 255 840 4030 9128 11948 44706 83802 107661

Accuracy 89.59 92.12 93.50 96.36 97.03 97.46 97.83 97.98 98.18

auROC 94.37 97.82 98.41 99.11 99.32 99.43 99.59 99.61 99.64

Table 4.4: Speed and classification accuracy comparison of the spectrum
kernel without (Spec) and with linadd (LinSpec) on the web spam data set.
The first row shows the sample size N of the data set used in SVM training.
The next two rows display the time (measured in seconds) needed in the
training phase, followed by the classification accuracy and and area under the
Receiver Operator Characteristic Curve (in percent, cf. Section 4.5.3)

Web Spam Dataset Table 4.4 lists measured run-times with and without the

linadd optimization on the web spam data set introduced in Section 4.5.1, as

well as classification accuracy. As before, we used Q = 42 as quadratic sub-

problem size. A discussion on the sub-problem size for the splice dataset can be

found in Section 4.5.4 suggesting that a mid-range Q = 42 works best in most

90 Large Scale Learning with String Kernels

cases. Similarly to the splice data set, the linadd optimization yields performance

improvements for larger training sets, e.g. for 70,000 training instances of up to

a factor of 2.3. The classification accuracy steadily increases with the number of

training examples and finally reaches an accuracy of 98.18% and an area under

the Receiver Operator Characteristic Curve of 99.64% on 100, 000 examples (for a

discussion of the performance measures, see Section 4.5.3).

The large alphabet, however, requires utilization of sorted arrays in contrast to

the explicit map representation used for the splice data set. Furthermore, the web

spam pages are on average 200 times longer than DNA sequences in the splice data

set. As a result the speedup achieved through the linadd optimization is limited

by maintenance of the sorted arrays and, hence, the less effective CPU cache. Note

that as web documents have an average size of 30 kb, training on 100,000 examples

requires ≈ 15 GB of memory just to store the 64-bit variables in sorted arrays.

4.5.3 Classification Performance

1000 10000 100000 1000000 10000000

10

20

30

40

50

60

70

80

90

Number of training examples

C
la

ss
ifi

ca
tio

n
 P

e
rf

o
rm

a
n
ce

 (
in

 p
e
rc

e
n
t)

Area under the ROC

Area under the PRC

Figure 4.6: Comparison of the classification performance of the Weighted
Degree kernel based SVM classifier for different training set sizes. The area
under the Receiver Operator Characteristic (ROC) Curve and the area under
the Precision Recall Curve (PRC) are displayed (in percent). Note that as this
is a very unbalanced dataset, the area under the ROC curve is less meaningful
than the area under the PRC.

Figure 4.6 and Table 4.5 show the classification performance10 in terms of area

10. We omit to show the classification accuracy, as 98.94% of the examples are negatively
labeled. Thus, the simplest classifier, predicting −1 for all examples, already achieves

4.5 Benchmark Experiments 91

under the Receiver Operator Characteristic (ROC) Curve (Metz, 1978; Fawcett,

2003) and the area under the Precision Recall Curve (PRC) (see e.g. Davis and

Goadrich, 2006) of SVMs on the human splice data set for different data set sizes

using the WD kernel.

Recall the definition of the ROC and PRC curves: The sensitivity (or recall)

is defined as the fraction of correctly classified positive examples among the total

number of positive examples, i.e. it equals the true positive rate TPR = TP/(TP +

FN). Analogously, the fraction FPR = FP/(TN + FP) of negative examples

wrongly classified as positive is called the false positive rate. Plotting FPR against

TPR results in the Receiver Operator Characteristic Curve (ROC) (Metz, 1978;

Fawcett, 2003). Plotting the true positive rate against the positive predictive value

(also precision) PPV = TP/(FP + TP), i.e. the fraction of correct positive

predictions among all positively predicted examples, one obtains the Precision

Recall Curve (PRC) (see e.g. Davis and Goadrich, 2006). Note that this is a very

unbalanced dataset. Hence, the area under the ROC curve is rather meaningless,

since this measure is independent of class ratios. The area under the Precision

Recall Curve (auPRC) seems a more sensible measure here. It steadily increases

as more training examples are used for learning. Thus one should train using all

available data to obtain the best results.

N auROC auPRC

500 75.55 3.94

1,000 79.86 6.22

5,000 90.49 15.07

10,000 92.83 25.25

30,000 94.77 34.76

50,000 95.52 41.06

100,000 96.14 47.61

N auROC auPRC

200,000 96.57 53.04

500,000 96.93 59.09

1,000,000 97.19 63.51

2,000,000 97.36 67.04

5,000,000 97.54 70.47

10,000,000 97.67 72.46

10,000,000 96.03∗ 44.64∗

Table 4.5: Comparison of the classification performance of the Weighted
Degree kernel based SVM classifier for different training set sizes. The area
under the ROC curve (auROC) and the area under the Precision Recall Curve
(auPRC) are displayed (in percent). Larger values are better. An optimal
classifier would achieve 100% Note that as this is a very unbalanced dataset
the area under the ROC curve is almost meaningless. For comparison, the
classification performance achieved using a 4th order Markov chain on 10
million examples is displayed in the last row (marked ∗; order 4 was chosen
based on model selection, where orders 1-8 using several values for the pseudo-
count were considered).

98.94% rendering the accuracy measure meaningless.

92 Large Scale Learning with String Kernels

Q

N 12 32 42 52 72 92 112 132 152

500 2 1 1 2 2 1 2 2 2

1,000 4 3 3 3 3 3 3 3 3

5,000 22 16 16 15 15 15 16 16 17

10,000 51 35 35 36 39 42 43 43 43

30,000 204 138 136 139 148 156 165 175 132

50,000 397 264 254 266 272 290 303 315 327

100,000 449 317 309 368 344 374 387 721 752

200,000 1107 771 779 848 796 867 1573 940 1670

500,000 4691 2754 2978 2714 2910 3063 4369 3995 3457

1,000,000 14429 8211 7189 8462 8524 9857 9574 8727 9077

Table 4.6: Influence on training time when varying the size of the quadratic
program Q in SVMlight, when using the linadd formulation of the WD kernel.
While training times do not vary dramatically one still observes the tendency
that with larger sample size a larger Q becomes optimal. The Q = 42 column
displays the same result as column LinWD1 in Table 4.2.

4.5.4 Varying the subproblem size Q

As discussed in Section 4.4 and Algorithm 4.2, using the linadd algorithm for

computing the output for all training examples w.r.t. to some working set can

be sped up by a factor of Q (i.e. the size of the quadratic subproblems, termed

qpsize in SVMlight). However, there is a trade-off in choosing Q as solving larger

quadratic subproblems is expensive (quadratic to cubic effort). Table 4.6 shows the

dependence of the computing time from Q and N . For example choosing Q = 42

instead of Q = 12 for 1 million examples leads to a speedup of factor 2. Sticking

with a mid-range Q (here Q = 42) seems to be a good idea for this task. However, a

large variance can be observed, as the SVM training time depends to a large extent

on which Q variables are selected in each optimization step. For example, on the

related C. elegans splice data set Q = 141 was optimal for large sample sizes, while

a mid-range Q = 71 led to the overall best performance. Here any Q > 12 leads to

a similar SVM training time.

4.6 Extensions

In this section we show that the linadd extensions are especially helpful for Multiple

Kernel Learning (Section 4.6.1). We show that speedups of up to a factor 50 for

the WD kernel are possible (using a single CPU). In Section 4.6.2 we discuss

methods for improving the interpretability of the classifier. We show that we can

extract useful knowledge from the learned decision boundaries by using our data

4.6 Extensions 93

structures. Moreover, we illustrate that Multiple Kernel Learning can also be helpful

for understanding which information is used by the SVM for discrimination. We

study several toy and real world examples for illustration.

4.6.1 Large Scale Multiple Kernel Learning

In the Multiple Kernel Learning (MKL) problem for binary classification one is

given N data points (xi, yi) (yi ∈ {±1}), where xi is translated via K map-

pings Φk(x) 7→ R
Dk , k = 1, . . . ,K, from the input into K feature spaces

(Φ1(xi), . . . ,ΦK(xi)) each of which corresponding to a different kernel. Here Dk

denotes the dimensionality of the k-th feature space. Now the aim is to learn a

weighting over the different kernels. To do so one solves the following optimization

problem (Bach et al., 2004),11 which is equivalent to the linear SVM for K = 1:12

MKL Primal for Classification

min
1

2

KX

k=1

‖wk‖2
!2

+ C
NX

i=1

ξi (4.7)

w.r.t. wk ∈ R
Dk , ξ ∈ R

N , b ∈ R,

s.t. ξi ≥ 0 and yi

KX

k=1

〈wk, Φk(xi)〉+ b

!
≥ 1− ξi, ∀i = 1, . . . , N

Note that (4.7) is different to taking a normal SVM and adding the kernels

together as the regularizer (
∑

k ‖wk‖2)2 instead of (
∑

k ‖wk‖22) is used, leading to

a feature selection over kernels.

4.6.1.1 Solving the MKL Problem

In (Sonnenburg et al., 2006b) we proposed to reformulate this problem as a Semi-

Infinite Linear Program (SILP), which can be derived using the dual formulation of

(4.7) as suggested by Bach et al. (2004). The SILP formulation (4.8) can be solved

using so-called Column Generation techniques (Hettich and Kortanek, 1993; Demi-

riz et al., 2002; Rätsch et al., 2002). The basic idea is to compute the optimal (β, θ)

for a restricted subset of constraints on α of a Semi-Infinite Linear Program (SILP):

Semi-Infinite Linear Program

11. See (Sonnenburg et al., 2006a) for generalizations to other problem settings such as
regression. Also note that very similar MKL algorithms can be found in (Weston, 1999;
Bennett et al., 2002; Bi et al., 2004).
12. We assume tr(Kk) = 1, k = 1, . . . , K and set dj in (Bach et al., 2004) to one.

94 Large Scale Learning with String Kernels

max θ (4.8)

w.r.t. θ ∈ R, β ∈ R
K

s.t. 0 ≤ β,
X

k

βk = 1 and

1

2

NX

i,j=1

αiαjyiyj

KX

k=1

βkkk(xi,xj)−
NX

i=1

αi ≥ θ (4.9)

for all α ∈ R
N with 0 ≤ α ≤ C1 and

X

i

yiαi = 0

Then a second algorithm generates a new, yet unsatisfied constraint determined

by α. These two algorithms iterate until guaranteed convergence (Hettich and

Kortanek, 1993). It turns out that to find the most violated constraint, one needs to

solve a single-kernel SVM problem using the intermediate solution β (Sonnenburg

et al., 2005a). Using this idea we can thus take advantage of the efficient single-

kernel SVM implementations (with and without linadd optimization).

A more efficient version (Sonnenburg et al., 2006b) adapts the β’s while the

chunking algorithm optimizes the α’s. This algorithm also requires the computation

of linear combinations of kernels

gi =

N∑

j=1

αjyi

(
K∑

k=1

βkkk(xi,xj)

)
.

However, since the β’s change during the optimization, one has to maintain iterates

for every example and kernel:

gi,k =
N∑

j=1

αjyikk(xi,xj)

in order to compute gi =
∑K

k=1 βkgi,k. Unfortunately, this approach is inefficient

in combination with the common kernel caching strategies, since one now requires

independent caching ofK kernels, which considerably reduces the effectiveness when

using large numbers of kernels or examples. Here, the linadd approach completely

avoids kernel caching and can be straightforwardly applied to MKL. It turns out

to be particularly effective as will be illustrated in simulation experiments in the

next subsection. More details on these concepts and algorithms can be found in

(Sonnenburg et al., 2006b).

4.6.1.2 Benchmarking MKL

The WD kernel of degree 20 consists of a weighted sum of 20 sub-kernels each count-

ing matching d-mers, for d = 1, . . . , 20. Using MKL we learned the weighting on

the splice site recognition task for one million examples. Focusing on a speed com-

parison we now show the obtained training times for the different MKL algorithms

4.6 Extensions 95

1000 10000 100000 1000000
10

100

1000

10000

100000

Number of training examples (logarithmic)

M
K

L
 t
ra

in
in

g
 t
im

e
 in

 s
e
co

n
d
s

(l
o
g
a
ri
th

m
ic

)

MKL WD precompute

MKL WD cache

MKL WD linadd 1CPU

MKL WD linadd 4CPU

MKL WD linadd 8CPU

Figure 4.7: Comparison of the running time of the different MKL algorithms
when used with the weighted degree kernel. Note that as this is a log-log
plot, small appearing distances are large for larger N and that each slope
corresponds to a different exponent.

applied to learning weightings of the WD kernel on the splice site classification

task. To do so, several MKL-SVMs were trained using precomputed kernel matrices

(PreMKL), kernel matrices which are computed on the fly employing kernel caching

(MKL), MKL using the linadd extension (LinMKL1) and linadd with its parallel

implementation13 (LinMKL4 and LinMKL8 - on 4 and 8 CPUs). In contrast to the

previous experiments, the SVMs regularization parameter was set to C = 5 and

subproblem size was fixed at Q = 112. The results14 are displayed in Table 4.7 and

in Figure 4.7. While precomputing kernel matrices seems beneficial, it cannot be

applied to large scale cases (e.g. > 10, 000 examples) due to the O(KN2) memory

requirement for storing the kernel matrices.15 On-the-fly-computation of the ker-

nel matrices is computationally extremely demanding, but since kernel caching16

is used, it is still possible on 50,000 examples in about 57 hours. Note that no WD-

kernel specific optimizations are involved here, so one expects a similar result for

arbitrary kernels.

The linadd variants outperform the other algorithms by far (speedup factor 53

on 50,000 examples) and are still applicable to datasets of size up to one million.

13. Algorithm 4.3 with the linadd extensions including parallelization of Algorithm 4.3.
14. Erratum: A programming error caused the optimizer to terminate the MKL SVM
optimization before reaching the desired accuracy ǫSV M = 10−5. Since this affects the
linadd and vanilla formulations, the benchmark comparison is still fair.
15. Using 20 kernels on 10,000 examples requires already 7.5GB, on 30,000 examples 67GB
would be required (both using single precision floats)
16. Each kernel has a cache of 1GB.

96 Large Scale Learning with String Kernels

Note that without parallelization MKL on one million examples would take more

than a week, compared with 2.5 (2) days in the quad-CPU (eight-CPU) version. The

parallel versions outperform the single processor version from the start achieving a

speedup for 10,000 examples of 2.27 (2.75), quickly reaching a plateau at a speedup

factor of 2.98 (4.49) at a level of 50, 000 examples and approaching a speedup

factor of 3.28 (5.53) on 500,000 examples (efficiency: 82% (69%)). Note that the

performance gain using 8 CPUs is relatively small as for instance solving the QP

and constructing the tries is not parallelized.

N PreMKL MKL LinMKL1 LinMKL4 LinMKL8

500 22 22 11 10 80

1,000 56 64 139 116 116

5,000 518 393 223 124 108

10,000 2,786 1,181 474 209 172

30,000 - 25,227 1,853 648 462

50,000 - 204,492 3,849 1292 857

100,000 - - 10,745 3,456 2,145

200,000 - - 34,933 10,677 6,540

500,000 - - 185,886 56,614 33,625

1,000,000 - - - 214,021 124,691

Table 4.7: Speed comparison when determining the WD kernel weight by
Multiple Kernel Learning using the chunking algorithm (MKL) and MKL
in conjunction with the (parallelized) linadd algorithm using 1, 4, and 8
processors (LinMKL1, LinMKL4, LinMKL8). The first column shows the
sample size N of the data set used in SVM training while the following
columns display the time (measured in seconds) needed in the training phase.

4.6.1.3 MKL Applications

Multiple Kernel Learning can be applied to knowledge discovery tasks. It can be

used for automated model selection and to interpret the learned model (Rätsch

et al., 2006; Sonnenburg et al., 2006b). MKL has been successfully used on real-

world datasets in the field of computational biology (Lanckriet et al., 2004; Son-

nenburg et al., 2005a). It was shown to improve classification performance on the

task of ribosomal and membrane protein prediction (Lanckriet et al., 2004), where

a weighting over different kernels each corresponding to a different feature set was

learned. In their result, the included random channels obtained low kernel weights.

However, as the data sets were rather small (≈ 1, 000 examples) the kernel matrices

could be precomputed and simultaneously kept in memory, which was not possible

in (Sonnenburg et al., 2005a). There, we considered a splice site recognition task

for the worm C. elegans and used MKL mainly to interpret the resulting classifier

4.6 Extensions 97

(Sonnenburg et al., 2005b; Rätsch et al., 2006). In the next section we will propose

alternative ways to facilitate understanding of the SVM classifier taking advantage

of the discussed data representations.

4.6.2 Interpreting the SVM Classifier

One of the problems with kernel methods compared to probabilistic methods, such

as position weight matrices or interpolated Markov models (Delcher et al., 1999),

is that the resulting decision function is hard to interpret and, hence, difficult to

use in order to extract relevant biological knowledge from it (see also Kuang et al.,

2004; Zhang et al., 2003b). The resulting classifier can be written as a dot product

between a α weighted linear combination of support vectors mapped into the feature

space that is often only implicitly defined via the kernel function:

f(x) =

Ns∑

i=1

αiyiΦ(xi)

︸ ︷︷ ︸
w

·Φ(x) =

Ns∑

i=1

αiyik(xi,x)

In the case of sparse feature spaces, as with string kernels, we have shown how

one can represent w in an appropriate sparse form and then efficiently compute dot

products between w and Φ(x) in order to speed up SVM training or testing. This

sparse representation comes with the additional benefit of providing us with means

to interpret the SVM classifier. For k-mer based string kernels like the spectrum

kernel, each dimension wu in w represents a weight assigned to that k-mer u. From

the learned weighting one can thus easily identify the k-mers with highest absolute

weight or above a given threshold τ : {u | |wu| > τ}. Note that the total number of k-

mers appearing in the support vectors is bounded by dNsL where L is the maximum

length of the sequences L = maxi=1,...,Ns
lxi
. This approach also works for the WD

kernel (with and without shifts). Here a weight is assigned to each k-mer with

1 ≤ k ≤ d at each position in the sequence. While this approach will identify the

k-mers contributing most to class discrimination, it is unsuitable for visualization of

all possible |Σ|k substrings of length k per position. With growing order d, extracting

all weights especially for the WD-kernel quickly becomes infeasible: the number

grows exponentially in d (O(l|Σ|d)). Thus, one would need to accept a lower degree

d̃ < d for visualization. However, this might lead for inferior generalization results

(e.g. when using d̃ instead of d in training) or to an incomplete understanding of

how the SVM is discriminating the sequences.

Extracting discriminative k-mers We therefore propose to choose a lower

order d̃ just for visualization while making use of the original potentially higher

order SVM classifier, by computing the contributions of the k−mers with 1 ≤ k ≤ d
to the d̃-mers. The idea of this k-mer extraction technique is to identify all k-mers

with 1 ≤ k ≤ d overlapping with the d̃-mers of the trained SVM classifier. The

weights of the overlapping k-mers are then marginalized by the length of the match,

98 Large Scale Learning with String Kernels

i.e. w 7→ 1
|Σ|lp

w where lp is the length of the non-overlapping part. The marginalized

weights are then summed up and assigned to the identified d̃-mers.

This can be done rather efficiently for the WD (shift) kernel: The sparse repre-

sentation used for the WD kernels is a suffix trie at each position in the sequence.

Thus all one needs to do is to traverse the tries – one after the other while adding

up contributing weights. For example, if one wants to know the weight for the

trimer AAA at position 42 for a WD kernel of degree 10, then 10-mers XXXXXXXXXA

(X ∈ {A,C,G, T}) at position 33, 10-mers XXXXXXAAAX at position 36 and 10-mers

AXXXXXXXXX at position 44, as well as all shorter overlapping k−mers (k = 1 . . . 9)

contribute. Thus the weights in the contributing region AAA are collected, marginal-

ized and added to the weight for AAA at position 42.

We have now obtained a weighting for d̃−mers for each position in the sequence:

Wu,p, p = 1 . . . l, u ∈ U. Running the algorithm for different orders (e.g. d̃ = 1 . . . 8),

one may be interested in generating a graphical representation from which it is

possible to judge where in the sequence which substring lengths are of importance.

We suggest to compute this scoring by taking the maximum for each order per

position,17 i.e.

Sd̃,p = max(Wu,p)u∈U.

4.6.3 Illustration on toy data

We will now use this approach for interpreting the SVM classifier. For a proof of

concept, we apply the k-mer extraction technique to two toy data sets. For one

dataset we insert two motifs at fixed positions in a random DNA sequence, which

are to be detected by the Weighted Degree kernel. The other dataset is constructed

in a way that it contains a small motif at a variable position. Here we use the

Weighted Degree kernel with shifts.

Motifs at fixed positions For this toy dataset we generated 11, 000 sequences

of length 50, where the symbols of the alphabet {A,C,G, T} follow a uniform

distribution. We choose 1, 000 of these sequences to be positive examples and hide

two motifs of length seven: at position 10 and 30 the motifs GATTACA and AGTAGTG,

respectively. To harden the problem we create different realizations of this dataset

containing different amounts of noise: In the positive examples, we randomly replace

s ∈ {0, 2, 4, 5} symbols in each motif with a random letter. This leads to four

different data sets which we randomly permute and split such that the first 1, 000

examples become training and the remaining 10, 000 validation examples. For every

noise level, we train a SVM (parameters C = 2, ǫ = 0.001) using the WD kernel of

degree 20 followed by running the k-mer extraction technique. We also apply MKL,

using a WD kernel of degree 7, to learn M = 350 WD kernel parameters (one

17. Other operators like for example the mean could also be considered.

4.6 Extensions 99

Artificial motifs − no noise

D
eg

re
e

Position in Sequence
10 20 30 40 50

1

2

3

4

5

6

7

8

Artifical motifs − 2 randomly inserted symbols per motif

D
eg

re
e

Position in Sequence
10 20 30 40 50

1

2

3

4

5

6

7

8

Artifical motifs − 4 randomly inserted symbols per motif

D
eg

re
e

Position in Sequence
10 20 30 40 50

1

2

3

4

5

6

7

8

Artifical motifs − 5 randomly inserted symbols per motif

D
eg

re
e

Position in Sequence
10 20 30 40 50

1

2

3

4

5

6

7

8

(a) Weighting S: Weights assigned to each d̃-mer at each position in the sequence for different
noise levels

0 Random Symbols

Position in Sequence

N
uc

le
ot

id
e

10 20 30 40 50

A

C

G

T

2 Random Symbols

Position in Sequence

N
uc

le
ot

id
e

10 20 30 40 50

A

C

G

T

4 Random Symbols

Position in Sequence

N
uc

le
ot

id
e

10 20 30 40 50

A

C

G

T

5 Random Symbols

Position in Sequence

N
uc

le
ot

id
e

10 20 30 40 50

A

C

G

T

(b) Individual weights assigned to each 1-gram A,C,G,T at each position in the sequence for
different noise levels

Figure 4.8: The figure illustrates positional weights W and S obtained using
the k-mer extraction technique for increasing levels of noise (noise increases
column-wise from left to right). Plots (a) shows the weighting assigned to d-
mers from 1 to 8 for, where the x-axis corresponds to sequence positions and
the y-axis to k-mer lengths. The plots (b) shows individual weights for 1-mers
listed on the y-axis, where the x-axis corresponds to sequence positions. .

parameter per position and k−mer length). The results are shown in Figure 4.8

and 4.9. In the figures columns correspond to different noise levels – from no noise

to 5 out of 7 nucleotides in the motifs being randomly replaced. For the WD-

SVM (Figure 4.8), each figure in the upper row shows a scoring S where columns

correspond to sequence position and rows to k-mer lengths used at that position.

The lower row displays the k-mer weighting for d̃ = 1, i.e. the weight assigned to

each nucleotide A,C,G,T at each position in the sequence.

In Figure 4.9 (MKL), each figure shows the obtained kernel weights β, where

columns correspond to weights used at a certain sequence position and rows to

the k-mer length used at that position. In contrast to the SVM, MKL leads to a

sparse solution implied by the 1-norm constraint on the weighting β. Hence, in the

case of no noise one observes just a single 3-mer in the first motif to be sufficient

to distinguish the sequences. The WD-SVM produces a rather dense solution. It

exactly shows, however, that 7-mers at positions 10 and 30 have a large impact.

With increasing noise level the motifs are split into smaller motifs. Thus one would

expect shorter k-mers to be of importance. One indeed observes this tendency for

the WD-SVM: The increased noise results in 4 and 3-mers to achieve the highest

weights (2nd column). When 4 out of 7 nucleotides in each motif are randomly

replaced, and 3 and 4-mers contribute most to discrimination. Considering the

1-gram weights with the highest scores at the positions 10-16 and 30-36 (sub-

100 Large Scale Learning with String Kernels

k−
m

er

position in sequence
10 20 30 40 50

1

2

3

4

5

6

7

k−
m

er

position in sequence
10 20 30 40 50

1

2

3

4

5

6

7

k−
m

er

position in sequence
10 20 30 40 50

1

2

3

4

5

6

7

k−
m

er

position in sequence
10 20 30 40 50

1

2

3

4

5

6

7

(a) Single Trial MKL Weights

k−
m

er

position in sequence
10 20 30 40 50

1

2

3

4

5

6

7

k−
m

er

position in sequence
10 20 30 40 50

1

2

3

4

5

6

7

k−
m

er

position in sequence
10 20 30 40 50

1

2

3

4

5

6

7

k−
m

er

position in sequence
10 20 30 40 50

1

2

3

4

5

6

7

(b) Averaged MKL Weights

Figure 4.9: In this figures the columns correspond to the noise level, i.e.
different numbers of nucleotides randomly substituted in the motif of the
toy dataset. Each sub-plot shows the kernel weighting β, where columns
correspond to weights used at a certain sequence position and rows to the
k-mer length used at that position. While the upper row displays a single trial
β, the lower row shows an averaged weighting obtained using 100 bootstrap
runs, i.e. 1/100β100

i=1

figure 4.8 (b)), the nucleotides compose the exact motifs embedded into the DNA

sequences: GATTACA and AGTAGTG. Note that the classification performance also

drops with increased noise from 100% auROC in the first two columns to 99.8% in

the third and finally 85% when 5/7 nucleotides in each motif are noise. At that noise

level the SVM picks up random motifs from regions not belonging to the hidden

motifs. However the motifs – though a lot weaker – are still visible in the 1-gram

plot. For Multiple Kernel Learning we have similar observations. However, when

running the MKL algorithm on the data with 2 or more random nucleotides, it picks

up a few unrelated k-mers. In (Sonnenburg et al., 2005a) we therefore proposed to

use bootstrap replicates in order to obtain more reliable weightings (the average

is shown in Figure 4.9 (b)) and additionally combined it with an statistical test

such that only significant weights are detected. However, one can observe the same

tendency as before: Shorter k-mers are picked up with increasing noise level. In

column 3 a average ROC score of 99.6% is achieved. In the last column the ROC

score drops down to 83%, while random k-mer lengths are detected.

Motif at varying positions In contrast to the previous paragraph, where we

considered motifs at a fixed position, we are now study a dataset that contains

a single motif somewhere in the interval [49, 67]. The dataset was generated in

the following way: We created 5000 training and test examples which contain the

letters C, G and T (uniformly, with the exception that C appears twice as often).

4.6 Extensions 101

In the positive dataset we inserted the motif AAA randomly in the above interval

Toy Dataset with motif AAA

k−
m

er

Position in Sequence
20 40 60 80 100

1

2

3

4

5

6

7

8

Toy Dataset with motif AAA

Position in Sequence

T
ri−

m
e

rs

20 40 60 80 100

AAA
ACA
AGA
ATA

CAA
CCA
CGA
CTA
GAA
GCA
GGA
GTA
TAA
TCA
TGA
TTA −1

0

1

2

3

4

5

Figure 4.10: In the region [49, 67] a motif AAA is hidden for the positive
examples, and for the negative examples three A’s are placed in the same
region, but in most cases non-consecutive. This Figure shows the result of the
k-mer extraction technique applied to an SVM classifier using the Weighted
Degree Kernel with shifts. The left figure shows the k−mer importance per
position (absolute values; darker colors correspond to higher importance).
The right figure displays the weights assigned to each trimer at each position
(gray values correspond to weights around zero and thus don’t contribute in
discrimination; white and light gray spots highlight silencers that add to a
negative class label ; black and dark gray regions correspond to enhancers
suggesting a positive class label).

and placed three A’s (in most cases non-consecutive) in the same region for the

negative examples. The task is again to learn a discrimination between the classes

followed by a k-mer extraction analysis as above. While the Weighted Degree kernel

with shifts is made for this kind of analysis it is obvious that the WD kernel would

have a hard time in this setup, although due to the dominance of the AAA triplet

in that region it will not fail totally. In this experiment we trained two SVMs one

with the WD and one with the WDS kernel of order 20 and shift 15. We set SVM

parameters to ǫ = 10−3 and C = 1. While the WD kernel achieves a respectable

auROC of 92.8%, it is outperformed by the WDS kernel getting 96.6%. Running

the k-mer extraction technique on the WDS-SVM result we obtain Figure 4.10.

One clearly observes that 3-mers are getting the highest weights and one is able to

even identify the motif AAA to be of importance in the range 49 to 64.

Real-World Splice Dataset We finally apply the same procedure to a splice

dataset of (Sonnenburg et al., 2005a). This dataset contains 262,421 DNA sequences

of length 141 nucleotides and was extracted by taking windows around a C.elegans

acceptor splice site. We used a WD kernel of degree 20, trained a SVM (ǫ = 10−3

and C = 1) on the first 100,000 examples and obtained a classification performance

102 Large Scale Learning with String Kernels

Acceptor Splice Dataset

k−
m

er

Position in Sequence
20 40 60 80 100 120 140

1

2

3

4

5

6

7

8

Acceptor Splice Dataset

Position in Sequence

D
in

uc
le

ot
id

es

20 40 60 80 100 120 140

AA
AC
AG
AT
CA
CC
CG
CT
GA
GC
GG
GT
TA
TC
TG
TT

−1

0

1

2

3

4

Figure 4.11: Results using the k-mer extraction technique on a splice dataset.
The left figure shows the k−mer importance per position (absolute values;
darker colors correspond to higher importance). The right figure displays the
weights assigned to each trimer at each position (gray values correspond to
weights around zero and thus don’t contribute in discrimination; white and
light gray spots highlight silencers that add to a negative class label ; black
and dark gray regions correspond to enhancers suggesting a positive class
label).

on the remaining 162,421 examples of auROC 99.7%. We then applied the k-

mer extraction technique to the WD-SVM. The obtained results are shown in

Figure 4.11. One observes a very focused signal in front of the acceptor splice site

which is located between positions 60-61 followed by the AG consensus at positions

61 and 62 (see Sonnenburg et al., 2005a, for more details). It is also interesting to

note that hexamers and pentamers are most discriminative at positions 57 and 58.

Also a weak signal can be found around position 17 (33nt upstream of the splice site)

which coincides with a upstream donor splice site as introns in C.elegans are often

very short. Looking at the dinucleotide weighting one can even see an increased

weighting for the GT consensus of the upstream donor splice. One also recognizes

the known T-rich region in front of the splice sites as well as a strong aversion

against T’s downstream of the splice site.

Discussion The presented k-mer extraction technique proves very useful in un-

derstanding the SVM classifier. It is advantageous compared to MKL as one can

directly use the SVM performing best on a certain task. One does not have to

retrain a MKL-SVM on a smaller dataset (MKL is computationally much more de-

manding) and also bootstrapping is not necessary. It will not only tell which degree

d̃ is of importance and where in the sequence, but also highlights the locations of

the exact motifs contributing most in discrimination. MKL will also work nicely

to extract at which position in the sequence which k-mer length is important (at

least when a additional statistical test is used). It is, however, not limited to kernels

whose feature space is sparse and can be enumerated, but will also work with e.g.

4.7 Conclusion 103

RBF kernels as was shown in (Sonnenburg et al., 2006b). MKL is superior when

one seeks a sparse solution and the data contains little noise. It might be necessary

to incorporate the learned α into the scoring.

4.7 Conclusion

This chapter proposes performance enhancements to make large scale learning with

string kernels and any kernel that can be written as an inner product of sparse

feature vectors, practical. The linadd algorithm (Algorithm 4.2), does not only

speed up standalone SVM training but also helps to drastically reduce training

times for Multiple Kernel Learning. Also, the sparse representation of the SVM

normal vector allows one to look inside of the resulting SVM classifier, as each

substring is assigned a weight. In a speed benchmark comparison the linadd

algorithm greatly accelerates SVM training. For the standalone SVM using the

spectrum kernel it achieves speedups of factor 60 (for the weighted degree kernel,

about 7). For MKL we gained a speedup of factor 53. Finally we proposed a parallel

version of the linadd algorithm running on a 8 CPU multiprocessor system which

lead to additional speedups of factor up to 5.5 for MKL, and up to 4.9 for vanilla

SVM training.

Acknowledgments The authors gratefully acknowledge partial support from

the PASCAL Network of Excellence (EU #506778), DFG grants (JA 379/13-2,

MU 987/2-1) and the BMBF project MIND (FKZ 01-SC40A). We thank Alexander

Zien, Bernhard Schölkopf, Olivier Chapelle, Pavel Laskov, Cheng Soon Ong, Jason

Weston and K.-R. Müller for great discussions. Additionally, we would like to

express thanks to Alexander Zien for correcting and extending the visualization

of contributions of k-mers for the WD-kernel.

