
Incorporation of Application Layer Protocol

Syntax into Anomaly Detection

Patrick Düssel1, Christian Gehl1, Pavel Laskov1,2 and Konrad Rieck1

1 Fraunhofer Institute FIRST
Intelligent Data Analysis, Berlin, Germany

2 University of Tübingen
Wilhelm-Schickard-Institute for Computer Science, Tübingen, Germany

{duessel,gehl,laskov,rieck}@first.fraunhofer.de

Abstract. The syntax of application layer protocols carries valuable in-
formation for network intrusion detection. Hence, the majority of modern
IDS perform some form of protocol analysis to refine their signatures with
application layer context. Protocol analysis, however, has been mainly
used for misuse detection, which limits its application for the detection of
unknown and novel attacks. In this contribution we address the issue of
incorporating application layer context into anomaly-based intrusion de-
tection. We extend a payload-based anomaly detection method by incor-
porating structural information obtained from a protocol analyzer. The
basis for our extension is computation of similarity between attributed
tokens derived from a protocol grammar. The enhanced anomaly detec-
tion method is evaluated in experiments on detection of web attacks,
yielding an improvement of detection accuracy of 49%. While byte-level
anomaly detection is sufficient for detection of buffer overflow attacks,
identification of recent attacks such as SQL and PHP code injection
strongly depends on the availability of application layer context.

Key words: Anomaly Detection, Protocol Analysis, Web Security

1 Introduction

Analysis of application layer content of network traffic is getting increasingly
important for protecting modern distributed systems against remote attacks. In
many cases such systems must deal with untrusted communication parties, e.g.
the majority of web-based applications. Application-specific attack can only be
detected by monitoring the content of a respective application layer protocol.
Signature-based intrusion detection systems (IDS) possess a number of mecha-
nisms for analyzing the application layer protocol content ranging from simple
payload scanning for specific byte patterns, as in Snort [19], to protocol analysis
coupled with a specialized language for writing signatures and policy scripts, as
in Bro [15]. By understanding the protocol context of potential attack patterns,
significant improvements in the detection accuracy of unknown application layer
attacks can be achieved.

The main drawback of signature-based IDS is their dependence on the availabil-
ity of appropriate exploit signatures. Rapid development of new exploits and
their growing variability make keeping signatures up-to-date a daunting if not
impossible task. This motivates investigation of alternative techniques, such as
anomaly detection, that are capable to detect previously unknown attacks.
Incorporation of the protocol context into anomaly detection techniques is, how-
ever, a difficult task. Unlike a signature-based system which looks for a specific

pattern within a specific context, an anomaly-based system must translate general

knowledge about patterns and their context into a numeric measure of abnormal-
ity. The latter is usually measured by a distance from some typical “profile” of a
normal event. Hence, incorporation of protocol syntax into the computation of
distances between network events (e.g. packets, TCP connections etc.) is needed
in order to give anomaly detection algorithm access to protocol context.
The idea behind the proposed method for syntactically aware comparison of
network event is roughly the following. A protocol analyzer can transform a
byte stream of each event into a structured representation, e.g. a sequence of
token/attribute pairs. The tokens correspond to particular syntactic constructs
of a protocol. The attributes are byte sequences attached to the syntactic ele-
ments of a protocol. Measuring similarity between sequences is well understood,
for general object sequences [18], as well as byte streams of network events
[16; 17; 23]. To compare sequences of token/attribute pairs we perform compu-
tation of sequential similarity at two levels: for sequences of tokens (with partial
ordering) and byte sequence values of corresponding tokens. The resulting sim-
ilarity measure, which we call the attributed token kernel, can be transformed
into a Euclidean distance easily handled by most anomaly detection algorithms.
To illustrate effectiveness of the protocol syntax-aware anomaly detection, we
apply the proposed method for detection of web application attacks. Such at-
tacks, for example SQL injection, cross-site scripting (XSS) and other script
injection attacks, are particularly difficult for detection due to (a) their variabil-
ity, which makes development of signature a futile exercise, and (b) entanglement
of attack vector within the protocol framework, which makes simple byte-level
content analysis ineffective. Our experiments carried out on client-side HTTP
traffic demonstrate a strong performance improvement for these kinds of at-
tacks compared to byte-level analysis. The proposed method should be easily
adaptable for other application layer protocols for which a protocol dissector is
available.

2 Related Work

A large amount of previous work in the domain of network intrusion detection
systems has focused on features derived from network and transport layer pro-
tocols. An example of such features can be found in the data mining approach
of Lee and Stolfo [9], containing packet, connection and time window features
derived from IP and TCP headers. The same work has pioneered the use of “con-
tent” features that comprised selected application-level properties such as num-

ber shell prompts, number of failed login prompts, etc. deemed to be relevant for
detection of specific attacks. Similar features comprising selected keywords from
application layer protocols have been used by Mahoney and Chan for anomaly
detection [12].
General content-based features using payload distribution of specific byte groups
have been first proposed by Kruegel et al. [7] in the context of service-specific
anomaly detection using separate normality models for different application layer
protocols. Full distributions of byte values have been considered by Wang and
Stolfo [23], extended to models of various languages that can be defined over
byte sequences, e.g. n-grams [16; 22].
Incorporation of application-level protocol information into the detection pro-
cess has been first realized in signature-based IDS. Robust and efficient protocol
parsers have been developed for the Bro IDS [15]; however, until recently they
were tightly coupled with Bro’s signature engine, which has prevented their
use in other systems. The development of a stand-alone protocol parser binpac
[14] has provided a possibility for combining protocol parsing with other de-
tection techniques. Especially attractive features of binpac are incremental and
bi-directional parsing as well as error recovery. These issues are treated in depth
in the recent. Similar properties at a more abstract level are exhibited by the
recent interpreted protocol analyzer GAPAL [1].
Combination of protocol parsing and anomaly detection still remains largely
unexplored. By considering separate models corresponding to specific URI at-
tributes in the HTTP protocol, Kruegel and Vigna [8] have developed a highly
effective system for the detection of web attacks. The system combines models
built for specific features, such as length and character distribution, defined for
attributes of applications associated with particular URI paths. Ingham et al.
[6] learn a generalized DFA representation of tokenized HTTP requests using
delimiters defined by the protocol. The DFA inference and the n-grams defined
over an alphabet of protocol tokens performed significantly better than other
content-based methods in a recent empirical evaluation [5]. Our approach dif-
fers from the work of Ingham and Inoue in that our method explicitly operates
on a two-tier representation – namely token/attribute pairs – obtained from a
full protocol analyzer (binpac/Bro) which provides a more fine-grained view on
HTTP traffic.

3 Methodology

A payload-based anomaly detection approach benefits from its ability to cope
with unknown attacks. The architecture of our system which is specifically built
for the requirements of anomaly detection at application layer is illustrated in
Fig. 1. The following four stages outline the essential building blocks of our
approach and will be explained in detail for the rest of this section.

1. Protocol Analysis. Inbound packets are captured from the network by Bro which
provides robust TCP re-assembly and forwards incoming packets to the binpac
protocol analyzer. The latter extracts application-layer events at different levels

of granularity, typical for common text protocols such as HTTP, FTP, SMTP or
SIP. Initially, extraction starts at the level of request/response messages and can
be further refined to specific protocol elements. A key benefit of using protocol
dissectors as part of data pre-processing is the capability to incorporate expert
knowledge into the feature extraction process. Details on protocol analysis can be
found in Section 3.1.

2. Feature Extraction. Each parsed event is mapped into a feature vector which
reflects essential characteristics. However, an event can be projected into byte-level
or syntax-level feature spaces. Our approach allows to combine both. Details of the
feature extraction process can be found in Section 3.2.

3. Similarity Computation. The similarity computation between strings is a cru-
cial task for payload-based anomaly detection. Once a message is brought into a
corresponding vectorial representation two events can be compared by computing
their pairwise distance in a high-dimensional geometric space. We extend the com-
mon string similarity measures for token/attribute representations provided by a
protocol parser, as explained in Section 3.4.

4. Anomaly Detection. In an initial training phase the anomaly detection algorithm
learns a global model of ”normality” which can be interpreted as a center of mass of
a subset of training data. At detection time an incoming message is compared to a
previously learned model and based on its distance an anomaly score is computed.
The anomaly detection process is described in Section 3.3.

Protocol

Analyzer Learner

Payload-based Anomaly Detection

Model

Feature

Extraction

Extraction of

strings

Feature

object

Protocol dissection

A
n
o
m

a
ly

d
e

te
c
ti
o
n

T
ra

in
in

g
 w

ith

n
o
rm

a
l tra

ffic

Application-Layer

messages

Similarity

Measure

Anomaly Detector

Packets Anomaly

scoreNetwork

capture

Fig. 1. Architecture of payload-based anomaly detection

3.1 Protocol Analysis

Network protocols specify rules for syntax, semantics, and synchronization for
bidirectional data communication between network endpoints. The protocol syn-
tax is usually defined by an augmented Backus-Naur Form.
Our goal is to analyze network traffic based on the grammatical characteris-
tics of an underlying protocol in order to detect network attacks. We perform
the analysis at the granularity of protocol elements present in request/response
messages. The HTTP protocol definition is a classical representative of such re-
quest/response protocols. Additionally, HTTP is the most frequently used proto-
col for web applications and so we limit our focus to this particular specification.

Usually, a request is transmitted in a single TCP packet, although certain fea-
tures of the TCP/IP (e.g. fragmentation) can make the process more compli-
cated. An application protocol analyzer, e.g. binpac [14], allows one to transform
the network event’s raw byte payload into a structured representation reflect-
ing the syntactic aspects of an underlying application protocol. For example in
the syntactic context of HTTP the sequence ”Content-Length: 169” refers to a
header ”Content-Length” with attribute ”169”.
We present two examples of HTTP connections to illustrate the effect of apply-
ing binpac’s grammar and parser to an application-level specification. The first
example is a benign GET request containing common HTTP headers together
with a CGI parameter.

GET /search.asp?keyword=master+thesis+learning HTTP/1.1\r\nHost: www.firs

t.fraunhofer.de\r\nUser-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows

NT 5.1; SV1)\r\nConnection: Keep-alive\r\nAccept-Encoding: gzip\r\n\r\n

The second example shows a SQL injection attack against a Microsoft SQL
Server exploiting the vulnerable CGI parameter keyword.

GET /search.asp?keyword=’+exec+master..xp_cmdshell(’tftp -i badhost.com g

et backdoor.exe c:/windows/system32/calc.exe’)+-- HTTP/1.1\r\nHost: www.f

irst.fraunhofer.de\r\nUser-Agent: Mozilla/5.0\r\nConnection: Keep-alive\r

\nAccept-Language: en-us,en\r\nAccept-Encoding: gzip\r\n\r\n

The token/attribute pairs generated by the protocol analyzer are shown in Fig. 2.
One can clearly see that the difference between these two requests is given by
the attributes attached to the token “keyword” of the parsed GET request.

Method

Path

Version

Host

Accept−Encoding

t

t

t

t

t

t

GET

gzip

HTTP/1.1

/search.asp

www.first.fraunhofer.de

......

t

t

t

Version

keyword

Method

Path

t

t

Host

keyword

t
Accept−Encoding

...
gzip

www.first.fraunhofer.de

HTTP/1.1

/search.asp

GET

...
’+exec+master..xp_cmdshell(’tftp −i badhost.com
get backdoor.exe c:/windows/system32/calc.exe’)+−−master+thesis+2008

Token Attribute Token Attribute

Fig. 2. Attributed token sequence of a benign and malicious HTTP request

3.2 Feature Extraction

Anomaly detection usually requires data to be in a vectorial representation.
Therefore, the feature extraction process maps application layer messages, such

as HTTP requests, into a feature space in which similarity between messages can
be computed. Protocol dissection in the pre-processing stage allows to deploy
feature extraction on two different levels explained in the following.

Byte-Level Features. An intuitive way to represent a message at byte level is to
extract unique substrings by moving a sliding window of a particular length n

over a message. The resulting set of feature strings are called n-grams. The first
example in Fig. 3 shows the mapping of the benign HTTP request introduced in
Section 3.1 into a binary 2-gram feature space.

Syntax-Level Features. Each message is transformed into a set of tokens. Although
shown as a sequence of tokens in Fig. 2, these feature have only partial sequen-
tial order as the order of many (but not all) tokens in an HTTP request is not
defined. An embedding of the benign HTTP request into a token feature space is
exemplarily presented in Fig. 3.

oo

...
1
1
0...
1
0...

ar
as
at...
se
sf...

0 0
0
1
1

...0
1

0
1
1
...

aa
...
ar
as
at

...

...

t

t

... ...
...

...1
1

0 aa
...t

t

t
tEU

ET

Accept

Accept−Charset

Accept−Encoding

Accept−Language

Method

Path

tPath

byte−level syntax−level attributed token−level

(v = /search.asp)(GET /search.asp?keyword=...)

Fig. 3. Feature extraction for Byte-level, Syntax-level and attributed token-level

With the extraction of byte-level features from token attributes a semantic notion
is implicitly assigned to the corresponding protocol token. Note, that an explicit
representation of application layer messages can easily become computational
infeasible due to the combinatorial nature of byte sequences. Therefore, we use
efficient data structures such as suffix trees or hash tables (”feature objects” in
Fig. 1) that allow an implicit vectorial representation.

3.3 Anomaly Detection

Once, application layer messages are mapped into some feature space the prob-
lem of anomaly detection can be solved mathematically considering the ge-
ometric relationship between vectorial representations of messages. Although
anomaly detection methods have been successfully applied to different problems
in intrusion detection, e.g. identification of anomalous program behavior [e.g.
3; 4], anomalous packet headers [e.g. 11] or anomalous network payloads [e.g.
8; 16; 17; 22; 23], all methods share the same concept – anomalies are deviations

from a model of normality – and differ in concrete notions of normality and devi-
ation. For our purpose we use the one-class support vector machine (OC-SVM)
proposed in [21] which fits a minimal enclosing hypersphere to the data which
is characterized by a center c and a radius R as illustrated in Fig. 4.

cc

z

c

R

SV

SV

SV

SVSV

Step 1 Step 2

(a) Learning (b) Normal Model (c) Anomaly Detection

sc(z)

Fig. 4. Learning and anomaly detection using a one-class support vector machine

Mathematically, this can be formulated as a quadratic programming optimiza-
tion problem:

min
R∈R

ξ ∈ R
n

R2 + C

n
∑

i=1

ξi

subject to: ||φ(xi) − c||2 ≤ R2 + ξi,

ξi ≥ 0.

(1)

By minimizing R2 the volume of the hypersphere is minimized given the con-
straint that training objects are still contained in the sphere which can be ex-
pressed by the constraint in Eq.(1). A major benefit of this approach is the
control of generalization ability of the algorithm [13], which enables one to cope
with noise in the training data and thus dispense with laborious sanitization,
as recently proposed by Cretu et al. [2]. By introducing slack variables ξi and
penalizing the cost function we allow the constraint to be softened. The regular-
ization parameter C controls the trade-off between radius and errors (number
of training points that violate the constraint). The solution of the optimization
problem shown in Eq. (1) yields two important facts:

1. The center c =
P

i
αiφ(xi) of the sphere is a linear combination of data points,

while αi is a sparse vector that determines the contribution of the i-th data point
to the center. A small number of training points having αi > 0 are called support

vectors (SV) which define the model of normality as illustrated in Fig. 4.

2. The radius R which is explicitly given by the solution of the optimization problem
in Eq. (1) refers to the distance from the center c of the sphere to the boundary
(defined by the set of support vectors) and can be interpreted as a threshold for a
decision function.

Finally, having determined a model of normality the anomaly score sc(z) for a
test object z can be defined as the distance from the center:

sc(z) = ||φ(z) − c||2 = k(z, z) − 2
∑

i

αik(z, xi) +
∑

i,j

αiαjk(xi, xj), (2)

where the similarity measure k(x, y) between two points x and y refers to a kernel

function which allows to compute similarity between two data points embedded
in some geometric feature space F . Given an arbitrary mapping φ : X 7→ F of
a data point x ∈ X a common similarity measure can be defined from the dot

product in F :

k(x, y) = 〈φ(x), φ(y)〉 =

N
∑

i=1

φi(x)φi(y), (3)

where φi(x) refers to the i-th dimension of a data point x mapped into F .

3.4 Similarity Measures

Having defined a set of characteristic features we can develop similarity measures
that, given two data points, returns a real number reflecting their similarity.

Spectrum Kernel. A natural way to define a kernel k(s, u) between two ap-
plication layer messages s and u is to consider n-grams that both messages have
in common. Given the set An of all possible strings of length n induced by an
alphabet A we can define a kernel function computing the dot product of both
messages embedded into a |A|n dimensional feature space.

k(s, u) = 〈φ(s), φ(u)〉 =
∑

w∈An

φw(s)φw(u), (4)

where φw(s)3 refers to a signum function that returns 1 if the w is contained in
s and 0 otherwise. The kernel function k(s, u) is referred to as spectrum kernel

[10]. Using n-grams to characterize messages is intuitive but may result in a
high-dimensional feature space. From an algorithmic point of view, it may seem
that running a summation over all possible substrings w ∈ An can become
computationally infeasible. Thus, special data structures such as tries, suffix
trees or suffix arrays enable one to compute k(s, u) in O(|s| + |u|) time [20].
Interestingly, the Euclidean distance deucl(s, u) which is of particular interest for
anomaly detection can be easily derived from the above kernel formulation:

deucl(s, u) =
√

k(s, s) + k(u, u) − 2k(s, u). (5)

Attributed Token Kernel. In this section we address the problem of how to
combine string similarity as defined in Section 3.4 and structural similarity of
two application layer messages. Consider an alphabet A = t1, t2, . . . , tz of tokens.
Let s = s1, s2, ..., sn and u = u1, u2, ..., um, si, uj ∈ A, be the token sets of two
application layer messages returned by a protocol analyzer. Let vu

t denote an

3 Alternatively, the embedding function φw(s) may return the count or the term fre-
quency of w in s

attribute attached to the token t found in a token set u. We can define a kernel
function for attributes in the same way we have done it in Eq.(4):

kt(s, u) =

{

k(vs
t , v

u
t), if t is found in both s and u

0, otherwise.
(6)

Finally, we combine definitions (4) and (6) in the following way:

k(s, u) =
∑

t∈s∩u

γ(t)

G
kt(s, u), (7)

where s∩ u is an intersection of tokens in s and u, γ(t) is a weight assigned to a
particular token, and G is an overall normalization constant. The computation
of the kernel function in Eq. (7) runs through all matching tokens and computes
the similarity measure defined in Eq. (4) over associated attributes at byte level.
The weighting constant is defined as:

γ(t) = log(|vs
t |) × log(|vu

t |),

and the normalization constant is defined as:

G =
∑

t∈s∪u

γ(t).

These constants are motivated by the need to normalize contributions from in-
dividual value sequences according to their lengths. The overall normalization

44t tlog(|v |) log(|v |)s u

1 2 3

1 2

4

4

t

t

t

t t

t

v
1

v v
2 3

v
4

v
1

v
2 4

s

u

match match match

t

v

G: 1 1 2 2

s
t

s
t

s
t

s
t

u u
t t

u
t

slog(|v |)t t log(|v |)t tlog(|v |)u s log(|v |)u

mismatch

log(|v |)t
s
3

Fig. 5. Normalization of the similarity measure between attributed token sequences.

constant also includes contributions from mismatching tokens. This allows the
latter to indirectly influence the similarity measure by rescaling contributions
from matching tokens; direct influence is not possible since it does not make any
sense to compare value strings for mismatching tokens. For the rest of this paper
we refer to the kernel function defined in Eq. (7) as attributed token kernel.

4 Experiments

We evaluate the impact of incorporation of protocol context into anomaly detec-
tion on two data sets containing HTTP traffic. Both data sets comprise exploits
taken from the Metasploit framework4 as well as from common security mailing
lists and archives such as xssed.com, sla.ckers.org or Bugtraq.

The first dataset (FIRST07) contains a sample of 16000 normal HTTP connec-
tions drawn from two months incoming traffic recorded at our institute’s web
server. We mixed normal data with 42 attack instances of 14 different types,
mostly overflow-based attacks (8 stack overflows, 4 heap overflows, 1 format
string exploit, 1 web application attack). Except for using unsanitized data, this
a typical experimental protocol used in previous work, e.g. [5; 8; 23].

The second data set (NYT08) has been motivated by the observation that a
traffic profile of a mostly static web site may be quite different from a profile of
a site running web applications. In particular, a much more involved structure of
URI and certain header fields can be expected in normal traffic, which may cause
significantly higher false positive rates than the ones reported in evaluations on
static normal traffic. Since we do not have access to a “pure” web application
traffic, as e.g. the Google data used by Kruegel and Vigna [8], we have attempted
to simulate such traffic using specially developed crawlers. Our request engine
analyzes the structure and content of existing static traffic (in our case, the
FIRST07 data) and generates valid HTTP requests using frequently observed
protocol header elements while randomly visiting a target domain. We generated
15000 client-side connections accessing the nytimes.com news site and mixed the
traffic with 17 instances of web application attacks (1 buffer overflow, 1 arbi-
trary command execution vulnerability, 3 Perl injection, 2 PHP include, 4 SQL
injections and 6 XSS attacks). XSS attacks and SQL injections were launched
against two prototypical CGI programs that were adapted to the structure of a
”login”-site (8 CGI parameters) and a ”search”-site (18 CGI parameters) found
in the nytimes.com domain. In order to obtain a normal behavior for these sites
we generated 1000 requests containing varying user names and passwords as well
as search phrases and realistic parameter values for both prototypical “mirrors”
of NYT sites. In contrast to previous work in which the structure of HTTP
requests in exploits was used “as is”, we have also normalized the attacks by
using the same typical headers injected by crawlers, in order to avoid attacks
being flagged as anomalous purely because of programmatic but non-essential
difference in their request structure.

In our experiments, a model was trained using 500 requests taken from a normal
pool of data and subsequently applied to 500 unknown requests taken from a
distinct test set mixed with attacks. The detection accuracy was measured in
terms of area under receiver operating characteristic curve (ROC0.1) for false
positive rates ≤ 10%. For statistical reasons experiments were repeated and the
detection accuracy was averaged over 50 repetitions.

4 http://www.metasploit.com/

4.1 Detection Accuracy: Byte-Level versus Attributed Token-Level

In the experiment on FIRST07 we investigate the detection of overflow-based
attacks in HTTP requests. As shown in Fig. 6(a), the spectrum kernel sk on
binary 3-grams attains a detection rate of 82% at 0% false positives anomaly,
which is comparable to Snort. The only attack that repeatedly suffered a high
false positive rate (1.5%-2%) is a file inclusion (”php include”) which is the only
non-buffer-overflow attack in this data set. Similar results have been obtained
for the attributed token kernel except for some initial false positives due to proxy
requests containing anonymized header attributes.
In the experiment on NYT08 we investigate the detection of attacks that are
bound to specific parameters of a CGI program. The results presented in Fig.
6(b) reveal that the detection of web application attacks using byte-level simi-
larity over n-grams is much more difficult than for overflow-based attacks (Fig.
6(a)). The OC-SVM achieves its best detection rate of approximately 64% at
zero percent false positives using a spectrum kernel (sk) over 3-grams and a
binary feature embedding. Moreover, it can be observed that the accuracy of
byte-level detection rises by increasing the size of n-grams. As illustrated in Fig.

0 0.02 0.04 0.06 0.08 0.1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive

tr
ue

 p
os

iti
ve

HTTP requests (FIRST07)

sk,k=1
sk,k=3
atk,k=1
snort(2008)

(a) ROC curve of OC-SVM on the
FIRST07 data set (overflow attacks)

0 0.02 0.04 0.06 0.08 0.1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive

tr
ue

 p
os

iti
ve

HTTP requests (NYT08)

sk,k=1
sk,k=3
atk,k=1
snort(2008)

(b) ROC curve of OC-SVM on the
NYT08 data set (web application attacks)

Fig. 6. Detection accuracy on intrusion detection datasets FIRST07 and NYT08

6(b) significant improvements can be obtained by incorporating structure of ap-
plication layer messages into payload-based anomaly detection as illustrated in
Fig. 2. It turns out that anomaly detection using the attributed token kernel
(atk) achieves a 97% detection rate without suffering any false positive.
In order to assess the computational effort of our method we measured the
runtime for involved processing steps. Parsing and feature extraction require on
average 1.2ms per request; average kernel computation and anomaly detection
take 3.5ms per request. The overall processing time of 4.7ms per request yields
a throughput of approximately 212 HTTP requests per second.

4.2 Visualization of Discriminative Features

In order to illustrate the increase of discriminative power gained through incor-
poration of application layer context into anomaly detection Fig. 4.2 displays
1-gram frequency differences between 1000 normal HTTP requests and two dif-
ferent attacks, a buffer overflow and a SQL injection. A frequency difference
of 1 arises from bytes that only appear in normal data points whereas bytes
that can be exclusively observed in the attack instance result in a frequency
difference of -1. Bytes with a frequency difference close to zero do not provide
discriminative information. The upper two charts display frequency differences
for a buffer overflow attack (”edirectory host shikata ga nai”) and a SQL injec-
tion (”sql union injection”) that results from conventional byte-level analysis.
The buffer overflow can be easily detected due to the presence of a large amount

Fig. 7. Byte-frequency differences at request-level and token-level

of non-printable characters (a large number of points at -1 for lower byte values
and values above 128). On the other hand, the SQL injection contains mostly
ASCII characters, which is reflected by close to zero frequency differences for
most of the printable characters. As a consequence, the detection of this attack
is relatively difficult. The lower two charts show the frequency differences for the
same attacks within their appropriate application layer context. The frequency
differences of the buffer overflow attack become even more obvious by examin-
ing the local byte distribution within the exploited request parameter ”Host”.

Similar clarification takes place for the SQL injection attack for which many pre-
viously normal bytes become clearly anomalous considering the CGI parameter
”USERID”. This results in a major improvement of detection accuracy.

4.3 Comparison with Other Methods

To give a comparison to different intrusion detection techniques we examined
a model-based anomaly detection method (model-based AD) proposed by
Kruegel and Vigna [8] and the well-known signature IDS Snort5. The model-
based detection method applies a number of different models to individual pa-
rameters of HTTP queries. By learning various parameter models this method
creates a ”user profile” for each server-side program that is compared against
incoming requests for a particular resource. To allow a fair comparison to our
method we build models of not only CGI parameters in the URI, but also of
header parameters and CGI parameters present in the request’s body.
In our experiments the model-based AD comprises two models:

Attribute length model (ALM) estimates the attribute length distribution of CGI
parameters and detects data points that significantly deviate from normal models.

Attribute character distribution model learns the idealized character distribu-
tion (ICD) of a given attribute. Using ICD instances are detected whose sorted
frequencies differ from the previously learned frequency profile.

A comparison of false positive rates per attack class (percentage of false positives
in test set given a detection of all instances from that attack class) is provided
in Table 1. Anomaly detection using the attributed token kernel exhibits almost

HTTP attacks model-based AD Snort OC-SVM
(NYT08 dataset) ALM ICD Combined sk atk

edirectory host alpha mixed .0728 .0208 .0362 + .0 .0
sql 1=1 .0112 .0379 .0214 − .1798 .0002
sql backdoor .0 .0006 .0 + .0004 .0
sql fileloader .0025 .0006 .0010 − .0065 .0
sql union injection .0 .0020 .0 − .0047 .0
xss alert .0 .0 .0 + .0388 .0
xss dom injection .0 .0 .0 + .0001 .0
xss img injection .0 .0 .0 − .0004 .0

Table 1. Comparison of fp-rates between model-based AD, Snort and OC-SVM

perfect accuracy of the 8 selected attacks, whereas both models of Kruegel and
Vigna as well as their combination suffer from significant false positive rates for
the first two attacks. Interestingly, Snort reported alarms for most of the cross
site scripting and buffer overflow instances but failed to detect the majority of
SQL injections which shows that specific exploits may require customization of
signatures in order to provide a consistent protection.

5 VRT Certified Rules (registered user release) downloaded 07/15/2008

5 Conclusions

In this paper, we have developed a general method for the incorporation of
application layer protocol syntax into anomaly detection. The key instrument
of our method is computation of similarity between token/attribute sequences
that can be obtained from a protocol analyzer. A combined similarity measure
is developed for such sequences which takes into account the syntactic context
contained in tokens as well as the byte-level payload semantics.
The proposed method has proved to be especially useful for the detection of
web application attacks. We have carried out experiments on realistic traffic
using the HTTP protocol analyzer developed in binpac. Although the additional
effort of protocol analysis does not pay off for simple buffer overflow exploits, the
detection rate for web application attacks has been boosted from 70% to 100% in
the false positive rate interval of less than 0.14%. Surprisingly, our method has
even outperformed a very effective model-based method of Kruegel and Vigna
[8] that was specially designed for the detection of web application attacks.
Due to its generality, the proposed method can be used with any other applica-
tion layer protocol for which a protocol analyzer is available. It can be deployed
in a variety of distributed systems applications, especially the ones for which
very few examples of potential exploits are currently known (e.g. IP multimedia
infrastructure and SCADA systems).

Acknowledgements This work was supported by the German Bundesminis-
terium für Bildung und Forschung (BMBF) under the project ReMIND (FKZ
01-IS07007A).

Bibliography

[1] N. Borisov, D. Brumley, H. Wang, J. Dunagan, P. Joshi, and C. Guo. Generic
application-level protocol analyzer and its language. In Proc. of Network and
Distributed System Security Symposium (NDSS), 2007.

[2] G. Cretu, A. Stavrou, M. Locasto, S. Stolfo, and A. Keromytis. Casting out
demons: Sanitizing training data for anomaly sensors. In ieeesp, 2008. to appear.

[3] S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff. A sense of self for unix
processes. In Proc. of IEEE Symposium on Security and Privacy, pages 120–128,
Oakland, CA, USA, 1996.

[4] D. Gao, M. Reiter, and D. Song. Behavioral distance measurement using hidden
markov models. In Recent Adances in Intrusion Detection (RAID), pages 19–40,
2006.

[5] K. L. Ingham and H. Inoue. Comparing anomaly detection techniques for http.
In Recent Adances in Intrusion Detection (RAID), pages 42 – 62, 2007.

[6] K. L. Ingham, A. Somayaji, J. Burge, and S. Forrest. Learning dfa representations
of http for protecting web applications. Computer Networks, 51(5):1239–1255,
2007.

[7] C. Kruegel, T. Toth, and E. Kirda. Service specific anomaly detection for network
intrusion detection. In Proc. of ACM Symposium on Applied Computing, pages
201–208, 2002.

[8] C. Kruegel and G. Vigna. Anomaly detection of web-based attacks. In Proc.
of 10th ACM Conf. on Computer and Communications Security, pages 251–261,
2003.

[9] W. Lee and S. Stolfo. A framework for constructing features and models for
intrusion detection systems. ACM Transactions on Information Systems Security,
3:227–261, 2000.

[10] C. Leslie, E. Eskin, and W. Noble. The spectrum kernel: A string kernel for SVM
protein classification. In Proc. Pacific Symp. Biocomputing, pages 564–575, 2002.

[11] M. Mahoney and P. Chan. PHAD: Packet header anomaly detection for iden-
tifying hostile network traffic. Technical Report CS-2001-2, Florida Institute of
Technology, 2001.

[12] M. Mahoney and P. Chan. Learning nonstationary models of normal network
traffic for detecting novel attacks. In Proc. of ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (KDD), pages 376–385, 2002.

[13] K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf. An introduction
to kernel-based learning algorithms. IEEE Neural Networks, 12(2):181–201, May
2001.

[14] R. Pang, V. Paxson, R. Sommer, and L. Peterson. binpac: a yacc for writing
application protocol parsers. In Proc. of ACM Internet Measurement Conference,
pages 289–300, 2006.

[15] V. Paxson. Bro: a system for detecting network intruders in real-time. In Proc.
of USENIX Security Symposium, pages 31–51, 1998.

[16] K. Rieck and P. Laskov. Detecting unknown network attacks using language
models. In Detection of Intrusions and Malware, and Vulnerability Assessment,
Proc. of 3rd DIMVA Conference, LNCS, pages 74–90, July 2006.

[17] K. Rieck and P. Laskov. Language models for detection of unknown attacks in
network traffic. Journal in Computer Virology, 2(4):243–256, 2007.

[18] K. Rieck and P. Laskov. Linear-time computation of similarity measures for se-
quential data. Journal of Machine Learning Research, 9(Jan):23–48, 2008.

[19] M. Roesch. Snort: Lightweight intrusion detection for networks. In Proc. of
USENIX Large Installation System Administration Conference LISA, pages 229–
238, 1999.

[20] J. Shawe-Taylor and N. Cristianini. Kernel methods for pattern analysis. Cam-
bridge University Press, 2004.

[21] D. Tax and R. Duin. Data domain description by support vectors. In M. Verleysen,
editor, Proc. ESANN, pages 251–256, Brussels, 1999. D. Facto Press.

[22] K. Wang, J. Parekh, and S. Stolfo. Anagram: A content anomaly detector resistant
to mimicry attack. In Recent Adances in Intrusion Detection (RAID), pages 226–
248, 2006.

[23] K. Wang and S. Stolfo. Anomalous payload-based network intrusion detection. In
Recent Adances in Intrusion Detection (RAID), pages 203–222, 2004.

