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Abstract

�e JavaScript language is a core component of active and dynamic web content in
the Internet today. Besides its great success in enhancing web applications, however,
JavaScript provides the basis for drive-by downloads—attacks exploiting vulnerabilities
in web browsers and their extensions for unnoticeably downloading malicious so�ware.
Due to the diversity and frequent use of obfuscation in these JavaScript attacks, static
code inspection proves ine�ective in practice. While dynamic analysis and honeypots
provide means to identify drive-by-download attacks, current approaches induce a sig-
ni�cant overhead which renders immediate prevention of attacks intractable.

In this paper, we present C���, a system for automatic detection and prevention of
drive-by-download attacks. Embedded in a web proxy, C��� transparently inspects web
pages and blocks delivery of malicious JavaScript code. Static and dynamic code features
are extracted on-the-�y and analysed for malicious patterns using e�cient techniques of
machine learning. We demonstrate the e�cacy of C��� in di�erent experiments, where
it detects ��% of the drive-by downloads with few false alarms and a median run-time of
���ms per web page—a quality that, to the best of our knowledge, has not been attained
in previous work on detection of drive-by-download attacks.

� Introduction

�e JavaScript language is a ubiquitous tool for providing active and dynamic content in the
Internet. �e vast majority of web sites, including large social networks, such as Facebook and
Twitter, makes heavy use of JavaScript for enhancing the appearance and functionality of their
services. In contrast to server-based scripting languages, JavaScript code is executed in the
web browser of the client and thus provides means for directly interacting with the user and
the browser environment. Although the execution of JavaScript code at the client is restricted
by several security policies, the interaction with the browser and its extensions alone gives rise
to a severe security threat.

JavaScript is increasingly used as basis for so-called drive-by downloads, attacks exploiting
vulnerabilities in web browsers and their extensions for unnoticeably downloading malicious
so�ware [see ��, ��]. �ese attacks take advantage of the tight integration of JavaScript with
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the browser environment to exploit di�erent types of vulnerabilities and eventually assume
control of the web client. Due to the complexity of browsers and their extensions, there exist
numerous of these vulnerabilities, ranging from insecure interfaces of third-party extensions
to bu�er over�ows and memory corruptions [�, �, ��]. Four of the top �ve most attacked
vulnerabilities observed by Symantec in ���� have been such client-side vulnerabilities and
involved in drive-by-download attacks [�].

As a consequence, detection of drive-by downloads has gained a focus in security research.
Two classes of defense measures have been proposed to counteract this threat: First, several
security vendors have equipped their products with rules and heuristics for identifying mali-
cious code directly at the client. �is static code inspection, however, is largely obstructed by
the frequent use of obfuscation in drive-by downloads. A second strain of research has thus
studied detection of drive-by downloads using dynamic code analysis, for example using code
emulation [�, ��], sandboxing [�, �, ��] and client honeypots [��, ��, ��]. Although e�ective in
detecting attacks, these approaches su�er from either of two shortcomings: Some are limited
to speci�c attack types, such as heap spraying [e.g., �, ��], whereas the more general [e.g., �, ��]
induce an overhead prohibitive for preventing attacks at the client.

As a remedy, we presentC����, a system for detection andprevention of drive-by-download
attacks, which combines advantages of static and dynamic analysis concepts. Embedded in a
web proxy, C��� transparently inspects web pages and blocks delivery of malicious JavaScript
code to the client. �e analysis and detection methodology implemented in this system rests
on the following contributions of this paper:

• Lightweight JavaScript analysis. We devise e�cient techniques for static and dynamic
analysis of JavaScript code contained in web pages, which provide expressive analysis
results with very small run-time overhead.

• Generic feature extraction. For generic detection of attacks, we introduce a mapping
from analysis reports to a vector space that is spanned by short analysis patterns and
independent of particular attack characteristics.

• Learning-based detection. We apply techniques of machine learning for generating de-
tection models for static and dynamic analysis, which spares us from manually cra�ing
and updating detection rules as in current security products.

An empirical evaluation with ���,��� web pages and ��� real drive-by-download attacks
demonstrates the e�cacy of this approach: C��� detects ��%of the attacks with a false-positive
rate of �.���%, corresponding to � false alarms in ���,��� visited web sites, and thus is almost
on par with o�ine analysis systems, such as J���� [�]. In terms of run-time, however, C���
signi�cantly surpasses these systems. With caching enabled, C��� provides a median run-
time of ���ms per web page, including downloading of web page content and full analysis of
JavaScript code. To the best of our knowledge, C��� is the �rst system capable to e�ectively
and e�ciently block drive-by-download attacks in practice.

�e rest of this paper is organized as follows: C��� and its detection methodology are
introduced in Section � including JavaScript analysis, feature extraction and learning-based

�C��� = “Classi�cation of Unknown JavaScript Objects”
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detection. Experiments and comparisons to related techniques are presented in Section �. Re-
lated work is discussed in Section � and Section � concludes.

� Methodology

Drive-by-download attacks can take almost arbitrary structure and form, depending on the
exploited vulnerabilities as well as the use of obfuscation. E�cient analysis and detection of
these attacks resembles a challenging problem, which requires careful balancing of detection
and run-time performance. We address this problem by applying lightweight static and dy-
namic code analysis, thereby providing two complementary views on JavaScript code. To avoid
manually cra�ing detection rules for each of these views, we employ techniques of machine
learning, which enable generalizing from known attacks and allow to automatically construct
detection models. A schematic depiction of the resulting system is presented in Figure �.
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Figure �: Schematic depiction of C���. Incoming web data is processed using static and dy-
namic analysis of JavaScript code. Depending on individual analysis results, the data is either
forwarded to the Web client or blocked.

C��� is embedded in a web proxy and transparently inspects communication between a
web client and a web service. Prior to delivery of web page data from the service to the client,
C��� performs a series of analysis steps and depending on their results blocks pages likely
containingmalicious JavaScript code. To improve processing performance, two analysis caches
are employed: First, all incoming web data is cached to reduce loading times and, second,
analysis results are cached, if all embedded and external code associated with a web page has
not changed within a limited period of time.

�.� JavaScript Analysis

As �rst analysis step, we aim at e�ciently getting a comprehensive view on JavaScript code.
To this end, we inspect all HTML and XML documents passing our system for occurrences
of JavaScript. For each requested document, we extract all code blocks embedded using the
HTML tag script and contained in HTML event handlers, such as onload and onmouseover.
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Moreover, we recursively pre-load all external code referenced in the document, including
scripts, frames and iframes, to obtain the complete code base of the web page. All code blocks
of a requested document are then merged for further static and dynamic analysis.

As an example running the following sections, we consider the JavaScript code shown in
Figure �(a).�e code is obfuscated using a simple substitution cipher and contains a routine for
constructing a NOP sled, an array of NOP instructions common in most memory corruption
attacks. Analysis reports for the static and dynamic analysis of this code snippet are shown in
Figure �(b) and �(c), respectively.

� a = "";
� b = "{@xqhvfdsh+%(x<3<3%,>zk"+
� "loh+{1ohqjwk?4333,{.@{>";
� for (i = 0; i < b.length; i++) {
� c = b.charCodeAt(i) - 3;
� a += String.fromCharCode(c);
� }
� eval(a);

(a) Obfuscated JavaScript code

� ID = STR.00 ;
� ID = STR.02 +
� STR.02 ;
� FOR ( ID = NUM ; ID < ID . ID ; ID ++ ) {
� ID = ID . ID ( ID ) - NUM ;
� ID + = ID . ID ( ID ) ;
� }
� EVAL ( ID ) ;

(b) Static analysis: Report of lexical tokens

� SET global.a TO ""
� SET global.b TO "{@xqhvfdsh+%(x<3<3%,>zkloh+{1ohqjwk?4333,{.@{>"
� SET global.i TO "0"
� CALL charCodeAt
� SET global.c TO "120"
� CALL fromCharCode
� SET global.a TO "x"
...

��� SET global.a TO "x=unescape("%u9090");while(x.length<1000)x+=x;"
��� SET global.i TO "46"
��� CALL eval
��� CALL unescape
��� SET global.x TO "<90><90>"

...
��� SET global.x TO "<90><90> ... ���� bytes ... <90><90>"

(c) Dynamic analysis: Behavior report

Figure �: Example of static and dynamic JavaScript analysis: (a) Obfuscated code snippet of
a NOP sled generation, (b) lexical tokens extracted using static analysis, (c) a behavior report
generated using dynamic analysis. �e deobfuscated code is visible in line ���.

Static analysis. Our static analysis relies on basic principles of compiler design [�]: Before
the source code of a program can be interpreted or compiled, it needs to be decomposed into
lexical tokens, which are then fed to the actual parser. �e static analysis component in C���
takes advantage of this process and e�ciently extracts lexical tokens from the JavaScript code
of a web page using a customized Y��� grammar.
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�is lexical analysis closely follows the language speci�cation of JavaScript [�], where source
code is sequentially decomposed into keywords, punctuators, identi�ers and literals. As the
actual names of identi�ers do not contribute to the structure of code, we replace them by the
generic token ID. Similarly, we encode numerical literals by NUM and string literals by STR. An
example of this basic decomposition is illustrated in the following

x = foo(y) + "bar"; �→ ID = ID ( ID ) + STR ;

where keywords and punctuators are represented by individual tokens, while identi�ers and
strings are subsumed by the generic tokens ID and STR, respectively.

To further strengthen our static analysis for detection of drive-by-download attacks, we
make two re�nements to the lexical analysis. First, we additionally encode the length of string
literals as decimal logarithm. �at is, STR.01 refers to a string with up to ��� characters, STR.02
to a string with up to ��� characters and so on. Second, we add EVAL as a new keyword to the
lexical analysis. Both re�nements target common constructs of drive-by-download attacks,
which frequently involve string operations and calls to the eval() function.

Although obfuscation techniquesmay hide code from this static analysis, several program-
ming constructs and structures can be distinguished in terms of lexical tokens. As an example,
Figure �(b) shows an analysis report of lexical tokens. While the code for generating a NOP
sled is hidden in the encrypted string (line �–�), several patterns indicative for obfuscation,
such as the decryption loop (line �–�) and the call to EVAL (line �), are accessible to means of
detection techniques

Dynamic analysis. For dynamic analysis, we adopt an enhanced version of ADS������, a
lightweight JavaScript sandbox developed by Dewald et al. [�]. �e sandbox takes the code
associated with a web page and executes it within the JavaScript interpreter S�����M������.
�e interpreter operates in a virtual browser environment and reports all operations changing
the state of this environment. Additionally, we invoke all event handlers of the code to trigger
functionality dependent on external events. As result of this analysis, the sandbox provides a
report containing all monitored operations, as shown in Figure �(c).

To emphasize behavior related to drive-by-download attacks, we extend the dynamic code
analysis with abstract operations, which represent patterns of common attack activity.�ese ab-
stract operations are encoded as regular expressions and matched on-the-�y during the moni-
toring of a JavaScript code. Currently,C��� supports two of these operations: First, we indicate
typical behavior of heap spraying attacks, such as excessive allocation of memory chunks by
appending the operation HEAP SPRAYING and, second, we mark the use of browser functions
inducing a re-evaluation of strings by the interpreter using the operation PSEUDO-EVAL. While
both abstract operations are indicative for particular attacks, they are not su�cient for detec-
tion alone and a full inspection of behavior reports is required.

Although this lightweight analysis provides only a coarse view on the behavior of JavaScript
code in comparison to o�ine analysis [e.g., �, ��, ��], it enables accurate detection of drive-by
downloads with a median run-time of less than ��� ms per web page, as demonstrated in

�SpiderMonkey (JavaScript-C) Engine – http://www.mozilla.org/js/SpiderMonkey
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Section �.�. As an example, Figure �(c) shows a behavior report for the code snippet given in
Figure �(a). �e �rst lines of the report cover the decryption of the obfuscated string, which
is �nally revealed in line ���. Starting with the call to eval, this string is evaluated by the
interpreter and results in the construction of a NOP sled with ���� bytes in line ���.

�.� Feature Extraction

In the second analysis step of C���, we extract features from the analysis reports of static and
dynamic analysis, suitable for application of detection methods. In contrast to previous work,
we propose a generic feature extraction, which is independent of particular attack characteris-
tics and allows to jointly process reports of static and dynamic analysis.

Q-grams features. Our feature extraction builds on the concept of q-grams, which has been
widely studied in the �eld of intrusion detection [e.g., ��, ��]. To unify the representation
of static and dynamic analysis, we �rst partition each report into a sequence of words using
white-space characters. We then move a �xed-length window over each report and extract
subsequences of q words at each position, so-called q-grams. �e following example shows
the extraction of q-grams for two snippets of analysis reports with q = �,

ID = ID + NUM �→ � (ID = ID), (= ID +), (ID + NUM)�
SET global.a to "x" �→ � (SET global.a to), (global.a to "x")�.

As a result, each report is represented by a set of q-grams, which re�ect short analysis patterns
and provide the basis for mapping analysis reports to a vector space.

Intuitively, we are interested in constructing a vector space, where analysis reports sharing
several q-grams lie close to each other, while reports with dissimilar content are separated by
large distances. To establish such a mapping, we associate each q-gram with one particular
dimension in the vector space. Formally, this vector space is de�ned using the set S of all
possible q-grams, where a corresponding mapping function for a report x is given by

� ∶ x �→ ��s(x)�s∈S with �s(x) =
�������
� if x contains the q-gram s,
� otherwise.

�e function � maps a report x to the vector space R�S� such that all dimensions associated
with q-grams contained in x are set to one and all other dimensions are zero. To avoid an
implicit bias on the length of reports, we normalize �(x) to one, that is, we set ���(x)�� = �.
�is procedure ensures that patterns contained in a report x contribute to the vector �(x)
only according to their relative length in x.

E�cient computation. At the �rst glance, this mapping seems intractable and inappropriate
for e�cient analysis: the set S covers all possible q-grams of words and thus induces a vector
space of arbitrarily large dimension. However, the number of q-grams contained in a report is
linear in its length. �at is, a report x containingm words comprises at most (m− q) di�erent
q-grams. Consequently, only (m−q)dimensions are non-zero in the vector �(x)—irrespective
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of the dimension of the vector space. It thus su�ces to only store the q-grams contained in each
report x for sparsely representing the vector �(x), for example, using e�cient data structures
such as Tries [��] or Bloom �lters [��]. As demonstrated in Section �.�, this sparse represen-
tation of feature vectors provides the basis for very e�cient feature extraction with median
run-times below �ms per analysis report.

�.� Learning-based Detection

As �nal analysis step of C���, we present a learning-based detection of drive-by-download
attacks, which builds on the vectorial representation of analysis reports. �e application of
machine learning spares us frommanually constructing and updating detection rules for static
and dynamic code analysis, and limits the delay to detection of novel drive-by downloads.

w

�(x)

+

�

Figure �: Hyperplane
withmaximal margin.

Support Vector Machines. For automatically generating de-
tection models from the reports of attacks and benign code, we
apply the technique of Support Vector Machines (SVM) [see ��].
Given vectors of two classes as training data, an SVMdetermines
an hyperplane that separates both classes with maximal margin.
In our setting, one of these classes is associated with analysis re-
ports of drive-by downloads, whereas the other class corresponds
to reports of benign web pages. An unknown report is classi�ed
by mapping it to the vector space and checking if it falls on the
malicious (+) or benign (-) side of the hyperplane.

Formally, the detection model of an SVM corresponds to a vector w and bias b, specifying
the direction and o�set of the hyperplane. �e corresponding detection function f is given by

f (x) = ��(x),w� + b =�
s∈S

�s(x) ⋅ws + b.
and returns the orientation of �(x) with respect to the hyperplane. �at is, f (x) > � indicates
malicious activity in the report x and f (x) ≤ � corresponds to benign data.

In contrast to many other learning techniques, SVMs possess the ability to compensate
a certain amount of noise in the labels of the training data—a crucial property for practical
application of C���. �is ability renders the learning process robust to a minor amount of un-
known attacks in the benign portion of the training data and enables generating accurate detec-
tion models, even if some of the web pages labeled as benign data contain drive-by-download
attacks. �eory and further details on this ability are provided in [��].

E�cient computation. For e�ciently computing f , we again exploit the sparse representa-
tion of vectors induced by �. Given a report x, we know that only q-grams contained in x have
non-zero entries in �(x), that is, all other dimensions in �(x) are zero and do not contribute
to the computation of f (x). Hence, we can simplify the detection function f as follows

f (x) =�
s∈S

�s(x) ⋅ws + b = �
s in x

�s(x) ⋅ws + b,
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where we determine f (x) by simply looking up the values ws for each q-gram contained in x.
As a consequence, the classi�cation of a report can be carried out with linear time complexity
and a median run-time below �.� ms per report (cf. Section �.�). For learning the detection
model of the SVM we employ L��L����� [�], a fast SVM library which enables us to train
detection models from ���,��� reports in ��� seconds for dynamic analysis and in �� seconds
for static analysis.

Explanation. In practice, a detection systems must not only �ag malicious events but also
provide insights into the detection process, such that attack patterns and exploited vulnerabil-
ities can be inspected during operation. Fortunately, we can adapt the detection function for
explaining the decision process of the SVM. During computation of f , we additionally store
the individual contribution �s(x) ⋅ ws of each q-gram to the �nal detection score f (x). If an
explanation is requested, we output the q-grams with largest contribution and thereby present
those analysis patterns that shi�ed the analysis report x to the positive side of the hyperplane.
We illustrate this concept in Section �.�, where we present explanations for detections of drive-
by-download attacks using dynamic analysis reports.

�e learning-based detection completes the design of our system C���. As illustrated in
Figure �, C��� uses two independent processing chains for static and dynamic code analysis,
where an alert is reported if one of the detection models indicates a drive-by download.

�is combined detection renders evasion of our system di�cult, as it requires the attacker
to cloak his attacks from both, static and dynamic analysis. While static analysis alone can be
thwarted through massive obfuscation, the hidden code needs to be decrypted during run-
time which in turn can be tracked by dynamic analysis. Similarly, if fewer obfuscation is used
and the attacker tries to spoil the sandbox emulation, patterns of the respective code might be
visible to static analysis. Although this argumentation does not rule out evasion in general, it
clearly shows the e�ort necessary for evading our system.

� Evaluation

A�er presenting the detection methodology of C���, we turn to an empirical evaluation of
its performance. In particular, we conduct experiments to study the detection and run-time
performance in detail. Before presenting these experiments, we introduce our data sets of
drive-by-download attacks and benign web pages.

Data sets. We consider two data sets containing URLs of benign web pages, Alexa-���k and
Sur�ng, which are listed in Table �(a). �e Alexa-���k data set corresponds to the ���,���
most visited web pages in Internet as listed by Alexa� and thus covers a wide range of JavaScript
code, including several search engines, social networks and on-line shops. �e Sur�ng data set
comprises ��,���URLs of web pages visited during usual web sur�ng at our institute. �e data
has been recorded over a period of �� days and contains individual sessions of �ve users. Both
data sets have been sanitized by scanning the web pages for drive-by downloads using common

�Alexa Top Sites – http://www.alexa.com/topsites
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attack strings and theG�����S���B������� service. While very few unknown attacksmight
still be present in the data, we rely on the ability of the SVM learning algorithm to compensate
this inconsistency e�ectively.

(a) Benign data sets

Data set �URLs
Alexa-���k ���,���
Sur�ng ��,���

(b) Attack data sets
Data set � attacks
Spam Trap ���
SQL Injection ��
Malware Forum ���

Data set � attacks
Wepawet-new ��
Obfuscated ��

Table �: Description of benign and attack data sets. �e attack data sets have been mainly taken
from Cova et al. [�] and adapted to contain valid HTML documents.

�e attack data sets are listed in Table �(b) and have beenmainly taken fromCova et al. [�].
In total, the attack data sets comprise ���HTML documents containing several types of drive-
by-download attacks collected over a period of two years. �e attacks are organized according
to their origin: the Spam Trap set comprises attacks extracted from URLs in spam messages,
the SQL Injection set contains drive-by downloads injected into benign web sites, theMalware
Forum set covers attacks published in Internet forums, and theWepawet-new set contains ma-
licious JavaScript code submitted to the Wepawet service�. A detailed description of these
classes is provided in [�]. Moreover, we provide the Obfuscated set which contains �� attacks
from the other sets additionally obfuscated using a popular JavaScript packer�.

�.� Detection Performance

In our �rst experiment, we study the detection performance of C��� in terms of true-positive
rate (ratio of detected attacks) and false-positive rate (ratio of misclassi�ed benign web pages).
As the learning-based detection implemented in C��� requires a set of known attacks and
benign data for constructing detection models, we conduct the following experimental proce-
dure: We randomly split all data sets into a known and an unknown partition. �e detection
models and respective parameters, such as the best length of q-grams, are determined on the
known partition, whereas the unknown partition is only used formeasuring the �nal detection
performance. We repeat this procedure �� times and average results. �e partitioning ensures
that reported results only refer to attacks unknown during the learning phase of C���.

For comparing the performance of C��� with state-of-the-art methods, we also consider
static detection methods, namely the anti-virus scanner C���A�� and the web proxy of the
security suite A���V���. As C���A� does not provide any proxy capabilities, we manually
feed the downloaded web pages and respective JavaScript code to the scanner. Moreover, we
add results presented by Cova et al. [�] for the o�ine analysis system J���� to our evaluation.

�Wepawet Service – http://wepawet.cs.ucsb.edu
�JavaScript Packer by Dean Edward – http://dean.edwards.name/packer
�Clam AntiVirus – http://www.clamav.net/
�Avira AntiVir Premium – http://www.avira.com/

�

http://wepawet.cs.ucsb.edu
http://dean.edwards.name/packer
http://www.clamav.net/
http://www.avira.com/


Attack data sets C��� C���A� A���V�� J����
static dynamic combined

Spam Trap 96.5% 98.8% 99.4% 41.0% 58.2% 99.7%
SQL Injection 91.4% 86.7% 99.2% 18.2% 95.5% 100.0%
Malware Forum 77.1% 79.4% 86.7% 45.3% 83.1% 99.6%
Wepawet-new 87.0% 86.1% 95.6% 19.6% 93.5% —
Wepawet-old — — — — — 100.0%
Obfuscated 100.0% 93.3% 100.0% 4.8% 54.8% —
Total 89.7% 90.2% 95.0% 35.0% 70.0% 99.8%

Table 2: Comparison of true-positive rates on attack data sets. Results for C��� have been av-
eraged over 10 independent runs. Results for J���� have been taken from Cova et al. [4]. �e
Wepawet-new data set is a recent version of Wepawet-old.

True-positive rates. Table � lists the detection performance in terms of true-positive rates
for C��� and the other detection methods. �e static and dynamic code analysis of C���
alone attain a true-positive rate of ��.�% and ��.�%, respectively. �e combination of both,
however, allows to identify ��% of the attacks, demonstrating the advantage of two comple-
mentary views on JavaScript code. A better performance is achieved by J���� which is able
to almost perfectly detect all attacks. However, J���� generally operates o�ine and spends
considerably more time for analysis of JavaScript code. �e anti-virus tools, C���A� andA�-
��V��, achieve lower detection rates of ��% and ��%, respectively, although both have been
equipped with up-to-date signatures. �ese results clearly con�rm the need for alternative
detection techniques, as provided by C��� and J����, for successfully defending against the
threat of drive-by-download attacks.

False-positive rates. Table � shows the false-positive rates on the benign data sets for all
detection methods. Except for A���V�� all methods attain reasonably low false-positive rates.
�e combined analysis of C���, for example, yields a false-positive rate of �.���%, correspond-
ing to � false alarms in ���.��� visited web sites, on the Alexa-���k data set.

Benign data sets C��� C���A� A���V�� J����
static dynamic combined

Alexa-200k 0.003% 0.001% 0.004% 0.000% 0.087% —
Sur�ng 0.000% 0.000% 0.000% 0.000% 0.000% —
Cova et al. [4] — — — — — 0.013%

Table 3: Comparison of false-positive rates on benign data sets. Results for C��� have been
averaged over 10 independent runs. Results for J���� have been taken from Cova et al. [4].

�e high false-positive rate of A���V�� with �.���% is mainly due to over generic de-
tection rules. �e majority of false alarms shows the label HTML/Redirector.X, indicating a
potential redirect, where the remaining alerts have generic labels, such as HTML/Crypted.Gen
and HTML/Downloader.Gen. We veri�ed each of these alerts using a client-based honeypot [��],
but could not determine any malicious activity.

For the false alarms raised by C���, we identify two main causes: �.���% of the web pages
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in the Alexa-���k data set contain fully encrypted JavaScript code with no plain-text opera-
tions except for unescape and eval. �is drastic form of obfuscation induces the false alarms
of our static analysis. �e �.���% false positives of the dynamic analysis result from web pages
redirecting error messages of JavaScript to customized functions. �ough applied in a benign
context in these �.���% cases, such redirection is frequently used in drive-by downloads to
hide errors during exploitation of vulnerabilities.

Overall, this experiment demonstrates the excellent detection performance of C���which
identi�es the vast majority of drive-by downloads with very few false alarms—although all
attacks have been unknown to the system. C��� thereby signi�cantly outperforms current
anti-virus tools and is almost on par with the o�ine analysis system J����.

�.� Explanations

A�er studying the detection performance of C���, we explore its ability to equip alerts with
appropriate explanations, which provides a valuable instrument for further analysis of detected
attacks in practice. Due space constraints, we herein focus on explanations of dynamic analysis,
though similar results can also be generated for static analysis of C���.

Figure �(a) shows the top �ve features (�-grams) with largest contribution to detection of
a heap spraying attack, as described in Section �.�. �e attack type is clearly manifested in all
�ve features. �e �rst feature corresponds to the abstract operation HEAP SPRAYING DETECTED

which is triggered by our sandbox and indicates unusual memory activity. �e remaining fea-
tures re�ect typical patterns of a shellcode construction, including the unescaping of an en-
coded string along with a corresponding NOP sled.

�s(x) ⋅ws Features (�-grams)
0.190 HEAP SPRAYING DETECTED
0.121 CALL unescape SET
0.053 SET global.shellcode TO
0.053 unescape SET global.shellcode
0.036 TO "%90%90%90%90%90%90%90...

(a) Dynamic features of a heap spraying attack

�s(x) ⋅ws Features (�-grams)
0.036 CALL unescape CALL
0.030 CALL fromCharCode CALL
0.025 CALL eval CONVERT
0.024 parseInt CALL fromCharCode
0.024 CALL createElement ("object")

(b) Dynamic features of an obfuscated attack

Figure 4: Examples for explanation of dynamic detection. �e �ve features with highest contri-
bution to the dynamic detection are presented for two drive-by-download attacks.

A second example for explanations of a detection is presented in Figure �(b), which shows
the top �ve features of a drive-by-download attack with strong obfuscation. Several calls to
functions typical for obfuscation and corresponding substitution ciphers are visible, including
eval and unescape as well as the conversion functions parseInt and fromCharCode used dur-
ing decryption of the attack. �e last feature re�ects the instantiation of an object likely related
to a vulnerability in a browser extension, though the actual details of this exploitation are not
covered by the �rst �ve features.
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It is important to note that the explanations of C��� are speci�c to the detection of par-
ticular attacks and must not be interpreted as stand-alone detection rules. While we have only
shown the top �ve features for explanations, the underlying detection model of C��� involves
�million features for dynamic analysis and thus realizes a complex decision function, hard to
explain in a general manner.

�.� Run-time Performance

Given the accurate detection of drive-by downloads, it remains to show that C��� provides
su�cient run-time performance for practical application. Hence, we �rst examine the indi-
vidual run-time of each system component individually and then study the overall processing
time in a real application setting with multiple users. All run-time experiments are conducted
on a system with an Intel Core � Duo � GHz processor and � Gigabytes of memory.

Run-time of components. For the �rst analysis, we split the total run-time of C��� to the
contributions of individual components as depicted in Figure �. For this, we add extra timing
information to the JavaScript analysis, the feature extraction and learning-based detection. We
then measure the exact contributions to the total run-time on a sample of ��,��� URLs from
the Alexa-���k data set.
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(b) Statistical breakdown of run-time

Figure �: Run-time performance of C���. Loading and analysis times have been measured on
a sample of ��.��� URLs from Alexa-���k data set. Analysis time divides into lexing JavaScript
(LX), sandbox emulation (SE), feature extraction (FE) and detection (DE).

Figure �(a) shows the median run-time per URL in milliseconds, including loading of a
web page, pre-loading of external JavaScript code and the actual analysis of C���. Surprisingly,
most of the time is spent for loading and pre-loading of content, whereas only ��% is devoted
to the analysis part of C���. As we will see in the following section, we can greatly bene�t from
this imbalance by employing regular caching techniques.

A detailed statistical breakdown of the analysis run-time is presented in Figure �(b), where
the distributions of run-time perURL are plotted for the static and dynamic analysis separately.
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Each distribution is displayed as a boxplot, in which the box itself represents ��% of the data
and the lower and upper markers the minimum and maximum run-time per URL. Addition-
ally, the median is given as a middle line in each box. Except for the sandbox emulation, all
components induce a very small run-time overhead ranging between �.�� and ��ms per URL.
�e sandbox analysis requires a median run-time of ��� ms per URL which is costly but still
signi�cantly faster then related sandbox approaches.

Operating run-time. In this experiment, we empirically evaluate the total run-time of C���
in a real application setting. In particular, we deployC��� as a web proxy andmeasure the time
required per delivery of a web page. To obtain reproducible measurements, we use the URLs in
the Sur�ng data set as basis for this experiment, as it contains multiple sur�ng sessions of �ve
individual users. For comparison, we also employ a regular web proxy, which just forwards
data to the users. As most of the total run-time is spent for the loading and pre-loading of
resources, we enable all caching capabilities in C��� and the web proxy.
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Figure �: Operating run-time of C��� and regular web proxy. �e run-time has beenmeasured
on ��.���URLs from Sur�ng data set. �e URLs have been processed in their original order to
take advantage of caching capabilities.

Results for this experiment are shown in Figure �, where the distribution of run-time per
URL is presented as a density plot. As expected the regular proxy proxy ranges in the front
part of the plot with a median processing speed of roughly ��� ms per request. �e run-time
of C��� is slightly shi�ed to the right in comparison with the regular proxy, yet its median
lies around ��� ms per web page, thus inducing only a minimal delay at the web client. �e
run-time distribution of C��� shows an elongated tail, where few web pages require more
than �,��� ms for processing due to excessive analysis of JavaScript code. We are currently
experimenting with stopping the dynamic code analysis a�er �,��� ms in these cases, though
the limited analysis may negatively impact detection accuracy.

Overall, this experiment demonstrates that C��� strongly bene�ts from caching capabili-
ties, such that a median run-time of ���ms can be attained. Although minor run-time peaks
still exists, C��� is actively used as secure web proxy in our institute for protecting (voluntary)
web users from drive-by-download attacks.
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� RelatedWork

Since the �rst discovery of drive-by downloads, analysis and detection of this threat has been a
vital topic in security research. One of the �rst studies on these attacks and respective defenses
has been conducted by Provos et al. [��, ��].�e authors inspect web pages bymonitoring aweb
browser for anomalous activity in a virtual machine. �is setup allows for detecting a broad
range of attacks. However, the analysis requires prohibitive run-time for on-line application,
as the virtual machine needs to be restored and run for each web page individually.

A similar approach for identi�cation of drive-by downloads is realized by client-based hon-
eypots, such as C������-HPC [��] and P�����C [��]. While C������-HPC also relies on
monitoring state changes in a virtual machine, P�����C emulates known vulnerabilities to
capture attacks in a lightweight manner. Although e�ective in identifying web pages with ma-
licious content, client-based honeypots are designed for o�ine analysis and thus su�er from
considerable run-time overhead.

In contrast to these generic techniques, other approaches focus on identifying particular
attacks types, namely heap spraying attacks. For example, the system N����� proposed by
Ratanaworabhan et al. [��] intercepts thememorymanagement of a browser for detecting valid
x�� code in heap objects. Similarly, Egele et al. [�] instrument S�����M����� for scanning
JavaScript strings for the presence of executable x�� code. Both systems provide an accurate
and e�cient detection of heap spraying attacks, yet they fail to identify other common types
of drive-by downloads, for example, using insecure third-party extensions for infections.

Closest to our work is the analysis system J���� developed by Cova et al. [�] as part of
the W������ service. J���� analyses JavaScript using the framework H���U��� and inter-
preter R���� which enable emulating an entire browser environment and monitoring sophis-
ticated interactionwith theDOM tree.�e recorded behavior is then analysed using �� features
speci�c to drive-by-download attacks for anomalous activity. Due to its public web interface,
J���� is frequently used by security researchers to study novel attacks and has proven to be
a valuable analysis instrument. However, its broad analysis of JavaScript code is costly and
induces a prohibitive average run-time of about �� seconds per web page.

Finally, the systemN���� devised by Kirda et al. [��] implements a web proxy for prevent-
ing cross-site scripting attacks. Although not directly related to this work, N���� is a good
example of how a proxy system can transparently protect users from malicious web content.
Obviously, this approach targets only cross-site scripting attacks and does not protect from
other threats, such as drive-by downloads.

� Conclusions

In this paper, we have presented C���, a system for e�ective and e�cient prevention of drive-
by downloads. As an extension to a web proxy, C��� transparently inspects web pages using
static and dynamic detection models and allows for blocking malicious code prior to delivery
to the client. In an empirical evaluation with ���,��� web pages and ��� drive-by-download
attacks, a prototype of this system signi�cantly outperforms current anti-virus products and
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enables detecting ��% of the drive-by downloads with few false alarms and a median run-time
of ���ms per web page—a delay hardly perceived at the web client

While the proposed system does not generally eliminate the threat of drive-by downloads,
it considerably raises the bar for adversaries to infect client systems. To further harden this
defense, we currently investigate combining C��� with o�ine analysis and honeypot systems.
For example, malicious code detected using honeypots might be directly added to the training
data of C��� for keeping detection models up-to-date. Similarly, o�ine analysis might be
applied for inspecting and explaining detected attacks in practice.
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