
ASAP: Automatic Semantics-Aware Analysis
of Network Payloads

Tammo Krueger1, Nicole Krämer2,3, and Konrad Rieck3

1 Fraunhofer Institute FIRST, Germany
2 Weierstrass Institute for Applied Analysis and Stochastics, Germany

3 Berlin Institute of Technology, Germany

Abstract. Automatic inspection of network payloads is a prerequisite
for effective analysis of network communication. Security research has
largely focused on network analysis using protocol specifications, for ex-
ample for intrusion detection, fuzz testing and forensic analysis. The
specification of a protocol alone, however, is often not sufficient for accu-
rate analysis of communication, as it fails to reflect individual semantics
of network applications. We propose a framework for semantics-aware
analysis of network payloads which automatically extracts semantics-
aware components from recorded network traffic. Our method proceeds
by mapping network payloads to a vector space and identifying commu-
nication templates corresponding to base directions in the vector space.
We demonstrate the efficacy of semantics-aware analysis in different se-
curity applications: automatic discovery of patterns in honeypot data,
analysis of malware communication and network intrusion detection.

1 Introduction

Automatic analysis of network data is a crucial task in many applications of
computer security. For example, intrusion detection systems often require parsing
of network payloads for identification of attacks [1–3], fuzz testing tools build
on automatically crafting network messages from protocol specifications [4–6],
and forensic analysis depends on inspecting network data involved in security
incidents [7–9]. In these and several other security applications, the analysis of
communication—whether from live traffic or recorded traces—critically depends
on automatic extraction of meaningful patterns from network payloads, such as
application parameters, cookie values and user credentials.

A large body of security research has thus focused on analysis of network
data using protocol specifications [10–12]. The specification of a protocol defines
the basic structure of its communication as well as the syntax of its network mes-
sages. While these analysis techniques are successful in parsing network data,
they are by design confined to the examination of protocol syntax. However, at-
tacks and security threats are rarely reflected in syntax alone but in semantics,
functionality realized on top of protocol specifications. As an example, malicious
software often employs standard network protocols for communication. However,
parsing of corresponding network traffic is not sufficient for accurate analysis,

and significant manual effort is necessary for deducing relevant information from
parsed content. What is needed are techniques capable of automatically identi-
fying and extracting semantics-aware components from communication, thereby
reducing the gap between protocol syntax and semantics.

In this paper, we propose a framework for automatic, semantics-aware analy-
sis of network payloads (ASAP). This framework is orthogonal in design to
specification-based approaches and automatically extracts semantics-aware com-
ponents from recorded traffic—even if the underlying protocols are unknown. To
this end, ASAP ignores any protocol specification and exploits occurrences and
combinations of strings for inferring communication templates which are more
focused on the semantics instead of the syntax of communication. The main
contributions of this framework are:

1. Alphabet extraction for network payloads. For automatic analysis, we devise
a technique for extracting an alphabet of strings from network payloads. The
alphabet concisely characterizes the network traffic by filtering out unnec-
essary protocol or volatile information via a multiple testing procedure and
embeds the payloads into a vector space.

2. Analysis using matrix factorization. The method proceeds by identifying
base directions in this vector space using concepts of matrix factorization,
which combines these letters to meaningful building blocks.

3. Construction of communication templates. Discovered base directions are
transformed to communication templates—conjunctions of strings—which
give insights into semantics of communication and provide a basis for inter-
pretation of traffic beyond syntax-based analysis.

Empirically, we demonstrate the capabilities of semantics-aware analysis in
different security applications. First, we conduct experiments on network traffic
captured using honeypots where we pinpoint exploited vulnerabilities as well as
attack sources using the ASAP framework. Second, we apply semantics-aware
analysis for investigation of network traces recorded from malware executed in
sandbox environments. We exemplarily extract typical communication patterns
for the malware Vanbot. Finally, we employ our framework in the domain of
network anomaly detection by mapping payloads into a low-dimensional space
without accuracy loss yet significantly increased runtime performance.

2 The ASAP Framework

The ASAP framework proceeds in three analysis stages, which are outlined in
Figure 1. First, an alphabet of relevant strings is extracted from raw network
payloads and used to map these payloads into a vector space for analysis. Second,
concepts of matrix factorization are applied for identification of base directions
in the vector space, characterizing usage patterns of mapped payloads. Third,
each of these base directions is traced back to a conjunction of strings from the
underlying alphabet and results in a template of typical communication content.

b

P
ay

l.
1

P
ay

l.
2

P
ay

l.
4

P
ay

l.
3

P
ay

l.
5

P
ay

l.
6

a

c

d

e

f

g

h

i

j

k

l

b

B
as

is
 1

B
as

is
 2

B
as

is
 3

a

c

d

e

f

g

h

i

j

k

l

Dim. 2

P
ay

l.
1

P
ay

l.
2

P
ay

l.4

P
ay

l.
3

P
ay

l.
5

P
ay

l.
6

Dim. 1

Dim. 3

Payload 1

Alphabet

Extraction

Matrix

Factorization

Visualization &

Communication Templates

X = B C

Fig. 1: Overview of the ASAP framework.

2.1 Alphabet Extraction for Network Payloads

A payload p is a string of bytes contained in network communication. For de-
scribing and characterizing the content of a payload, we automatically extract an
alphabet S of relevant strings from a set of payloads which provides the ground
for inferring communication templates. The alphabet S is initially constructed
from a set of basic strings and then refined using filtering and correlation tech-
niques.

Basic strings. Depending on the network data to be analyzed, we build the
alphabet from a different set of basic strings. If we consider a protocol with
distinct delimiter bytes, such as HTTP, SMTP or FTP, we base the alphabet
on tokens—the set of all strings separated by delimiters. For a set of delimiter
bytes D, such as space or carriage return, tokens can be defined as

S = {{0, . . . , 255} \D}∗ .

However, for binary network protocols such as DNS, SMB and NFS, we need
to define the basic strings differently, as no delimiter symbols are available. In
these cases we apply the concept of n-grams which denotes the set of all strings
with fixed length n. Formally, this set of basic strings can be defined as

S = {0, . . . , 255}n.

Alphabet filtering and correlation. Strings within network payloads naturally ap-
pear with different frequency, ranging from volatile to constant occurrences. For
instance, every HTTP request is required to contain the string HTTP in its header,
whereas other parts such as timestamps or session numbers are highly variable.
Both, constant and highly volatile components, do not augment semantics and
thus are filtered from the alphabet S. More precisely, we employ a statistical
t-test for identifying non-constant and non-volatile strings by testing whether
their frequency is significantly different from 0 and 1. We apply the correction
proposed by Holm [13] to avoid problems with multiple testing.

With the remaining alphabet, we apply a correlation analysis to combine
co-occurring strings. That is, for each string s ∈ S we compute the Pearson

correlation coefficient to all other strings and group strings which are highly
correlated, i.e. have a correlation coefficient of roughly one. Hence, we combine
elements of S which co-occur in the analyzed data and thereby further refine
our alphabet. Together, filtering and correlation compact the alphabet and lead
to a focused representation of S ignoring both static and volatile information.

Map to vector space. Using the alphabet S, we map a network payload p to
an |S|-dimensional vector space, such that each dimension is associated with a
string s ∈ S. In particular, we define a mapping function φ as

φ : P → {0, 1}|S|, φ : p 7→ (I(s, p))s∈S ,

where P is the domain of all considered payloads and I(s, p) an indicator function
returning 1 if the string s is contained in p and 0 otherwise. Note, that the
mapping φ is sparse, that is, the vast majority of dimensions is zero, allowing
for linear-time algorithms for extraction and comparison of vectors [14].

2.2 Matrix Factorization

The mapping of network payloads to a vector space induces a geometry reflecting
characteristics captured by the alphabet S. For instance, payloads sharing several
substrings appear close to each other, whereas network payloads with different
content exhibit larger geometric distances. The focused alphabet of the ASAP
framework enables us now to identify semantics-aware components geometrically.
In particular, we apply the concept of matrix factorization for identifying base
directions in the vector space. Given a set of payloads P = {p1, . . . pN} we first
define a data matrix X containing the vectors of P as columns by

X := [φ(p1), . . . , φ(pN)] ∈ R|S|×N .

For determining semantics-aware components, we seek a representation of X
that retains most information but describes X in terms of few base directions.
This can be achieved in terms of a matrix factorization of X into two matrices
B ∈ R|S|×L and C ∈ RL×N such that L � |S| and

X ≈ BC =

basis︷ ︸︸ ︷[
b1 . . . bL

] [
c1 . . . cN

]︸ ︷︷ ︸
coordinates

. (1)

The columns b1, . . . , bL ∈ R|S| of B form a new basis for the N payloads,
where the dimensions of each base direction bi are associated with the alphabet
S. As we show in later experiments, this relation of base directions and the
alphabet can be exploited to construct communication templates from a matrix
factorization. The columns c1, . . . , cN ∈ RL of C form a new set of coordinates
for the payloads in a low-dimensional space, which can be used for visualization.

In general, matrix factorization methods differ in the constraints imposed on
the matrices B and C. In this paper, we study two standard techniques widely

used in the field of statistics and data analysis: Principal Components Analysis
(PCA) [15, 16] and Non-negative Matrix Factorization (NMF) [17].

In PCA, we seek base directions, which are orthogonal and capture as much
of the variance inside the data as possible. Formally, the ith direction bi con-
secutively maximizes the variance of X>bi under the constraint that all base
directions are mutually orthonormal:

bi = arg max
‖b‖=1

var
(
X>b

)
s.t. b ⊥ bj , j < i.

In NMF, the orthogonality constraints are replaced by the requirement that
the matrix B and C only contain non-negative entries. Non-negative entries in
the basis vectors are a more natural representation for sequential data, as each
string contributes positively to the basis representation. For a fixed dimension-
ality L, the factorization (1) is defined in terms of the minimization criterion

(B,C) = arg min
B,C

‖X −BC‖ s.t. bij ≥ 0, cjn ≥ 0 .

2.3 Construction of Communication Templates

After identification of base directions B in the vector space, every payload can
be expressed as a tuple of coordinates. For the interpretation, it is now crucial
to find a re-mapping of these coordinates to a meaningful representation, that
can be used to judge semantical content of network communication.

In case of tokens as basic strings of the alphabet we can simply select all
tokens exceeding a specific threshold inside the base directions for constructing
a template. For alphabets of n-grams we can try to concatenate occurring n-
grams and regain parts of the original ordering. For example, if we have a basis
containing the 3-grams Hos ∧ ost ∧ st: we can easily infer, that these tokens
overlap and can be concatenated to Host:.

Obviously, there is no guarantee against false concatenation. Therefore we
propose a greedy algorithm, which takes the calculated values for each token of
the alphabet into account: By sorting the n-grams according to their assigned
weights and using this inherent ordering for the matching process, we ensure
a data-driven reassembly of n-grams. We first pick the token with the highest
weight and look for overlaps to the other tokens, which are also ordered by their
respective weights. If we find an overlap, we merge the n-grams and remove the
corresponding token from the list of pending tokens. With this merged token we
restart the procedure until no more overlaps are found. This token is then added
to the representation list and the procedure is repeated for the next token with
the highest value left, until no more tokens are in the pending list.

3 Experiments and Applications

After presenting the ASAP framework, we turn to an empirical evaluation of its
capabilities in different security applications. First, we study the framework on

GET static/3lpAN6C2.html HTTP/1.1

Host: www.foobar.com

Accept: */*
Request for static content

GET cgi/search.php?s=Eh0YKj3r3wD2I HTTP/1.1

Host: www.foobar.com

Accept: */*
Search query

GET cgi/admin.php?action=rename&par=dBJh7hS0r5 HTTP/1.1

Host: www.foobar.com

Accept: */*
Administrative request

Fig. 2: Example payloads of the artificial dataset.

a toy dataset, which allows us to establish an understanding of how communica-
tion templates are inferred from communication (Section 3.1). We then proceed
to real-world applications, where network traces containing malicious communi-
cation are analyzed for interesting components, such as exploited vulnerabilities
and attack sources (Section 3.2 and 3.3). Finally, we apply our framework in the
field of network anomaly detection by reducing the processing of network data
using communication templates (Section 3.4).

3.1 A Showcase Analysis

For our first experiment, we consider an artificial dataset of HTTP commu-
nication where we have total control over protocol syntax and semantics. We
simulate a web application supporting three different types of requests, whose
network payloads are depicted in Figure 2. The first payload reflects a request
for static content, the second payload resembles a search query and the last pay-
load corresponds to an administrative request, in which the action parameter is
one of the following rename, move, delete or show. All requests are equipped
with random parts (the name of the static web page, the search string and the
administration parameter) to simulate usual fluctuation of web traffic.

Using this web application, we generate a dataset of 1,000 network payloads
with a uniform distribution of the three request types. We then apply the ASAP
framework to this dataset as detailed in Section 2.1–2.3 using tokens as basic
strings with delimiters selected according to the specification of HTTP. Based on
the extracted alphabet, we then apply matrix factorization algorithms, namely
Principal Component Analysis (PCA) and Non-negative Matrix Factorization
(NMF) for determining base directions in the vector space of payloads. Finally,
we construct communication templates for these base directions.

The extracted alphabet S consists of 8 “letters” (tokens combined by the
co-occurrence analysis are grouped by brackets and the ∧ operator):

S = {static, cgi, (search.php ∧ s), (action ∧ admin.php ∧ par),
rename, move, delete, show}.

Table 1: Templates extracted for the artificial dataset. The templates have been con-
structed using tokens as basic strings and NMF as factorization.

Communication Templates

1) static

2) cgi ∧ (search.php ∧ s)
3) cgi ∧ (action ∧ admin.php ∧ par)
4) cgi ∧ (action ∧ admin.php ∧ par) ∧ move

5) cgi ∧ (action ∧ admin.php ∧ par) ∧ rename

6) cgi ∧ (action ∧ admin.php ∧ par) ∧ delete

7) cgi ∧ (action ∧ admin.php ∧ par) ∧ show

Note that the alphabet does not contain tokens related to HTTP syntax or
highly volatile parts of the data and thereby concentrates the following analysis
on parts, which are more likely to capture the semantics of the application.

Results for the application of matrix factorization algorithms to the artificial
dataset are visualized in Figure 3. For the algorithms PCA and NMF, base
directions (matrix B) are shown, where the x-axis details the different directions
and the y-axis the contribution of individual alphabet symbols.

While both techniques perform a matrix factorization of the payload data,
the matrices differ significantly. PCA yields positive and negative contributions
in the matrix B indicated by different colors. Although a certain structure and
relation of alphabet symbols may be deduced from the matrix, a clear separation
of different elements is not possible. By contrast, the NMF matrix shows a
crisp representation of the base directions. Static and search requests are clearly
reflected in individual base directions. The remaining base directions correspond
to administrative requests, where different combinations of action types and
other alphabet symbols have been correctly identified.

Due to this superior performance, we restrict our analysis to base directions
determined using the NMF algorithm in the following. Communication templates
resulting from the NMF matrix in Figure 3 are presented in Table 1. The tem-
plates accurately capture the semantics implemented in the example application.
A set of 7 templates is constructed which covers static access of web content,

1 2 3 4 5 6 7 8

static

search.php

cgi

move

rename

delete

show

action

1 2a 2b 3 4 5 6 7

static

search.php

cgi

move

rename

delete

show

action

Fig. 3: Visualization of bases for PCA (left) and NMF (right) on the artificial dataset.
Colors signify the intensity of the entry ranging from -1 (red) to 1 (blue).

search queries and different administrative tasks. Note that two base directions
in Figure 3 are identical, resulting in a total of 7 templates. The templates
even exhibit hierarchical structure: template 3 resembles a basic administrative
request with all following templates being special cases for particular adminis-
trative actions,which renders NMF as prominent candidate for the construction
of easily comprehensible communication templates.

3.2 Analysis of Honeypot Data

Network honeypots have proven to be useful instruments for identification and
analysis of novel threats. Often however, the amount of data collected by hon-
eypots is huge, such that manual inspection of network payloads becomes te-
dious and futile. The proposed ASAP framework allows for analyzing such large
datasets of unknown traffic and extracts semantically interesting network fea-
tures automatically.

We illustrate the utility of our framework on network data collected using
the web-based honeypot Glastopf (http://glastopf.org). The honeypot captures
attacks against web applications, such as remote file inclusions (RFI) and SQL in-
jection attacks, by exposing typical patterns of vulnerable applications to search
engines. The honeypot has been deployed over a period of 2 months and col-
lected on average 3,400 requests per day. For our experiments, we randomly pick
1,000 requests from the collected data and apply our framework using tokens
as underlying alphabet. In particular, we extract 40 communication templates
using the base direction identified by NMF from the embedded HTTP payloads.
The templates are shown in Table 2. Note that 12 templates have been omitted
as they contain redundant or unspecific information.

The extracted communication templates can be classified into three cate-
gories: semantics of malware, vulnerabilities and attack sources. For example,
the first templates reflect different options supplied to a web-based malware.
Malicious functionality such as preparing a remote shell (shellz), setting up an
IRC bouncer (psybnc) or scanning for vulnerable hosts (scannerz) are clearly
manifested in strings of the templates. The following templates characterize
vulnerabilities of web applications including corresponding file and parameter
names. Finally, the last set of templates corresponds to domain and host names
used as sources of remote file inclusions. Often not only the originating host but
also parts of the complete URL have been discovered.

Note that although the communication templates have been generated from
raw HTTP traffic, no syntactic and protocol-specific strings have been extracted,
demonstrating the ability of ASAP to focus on semantics of communication.

3.3 Analysis of Malware Communication

A second application domain for the proposed framework is the automatic analy-
sis of malware communication. While there exist several methods for automatic
collection and monitoring of malware [18–21], analysis of monitored malware
communication still requires significant manual effort. As a remedy, we apply

Table 2: Templates for honeypot dataset. The templates have been constructed using
tokens as basic strings and NMF as factorization.

Communication Templates Description

1) modez ∧ shellz ∧ csp.txt Semantics of RFI malware
2) modez ∧ psybnc ∧ csp.txt —
3) modez ∧ botz ∧ bot.txt —
4) modez ∧ scannerz ∧ bot.txt —

5) mosConfig.absolute.path ∧ option ∧ http Vulnerability (VirtueMart)
6) mosConfig absolute path ∧ option ∧ Itemid —
7) com virtuemart ∧ show image in imgtag.php . . . —
8) com virtuemart ∧ export.php ∧ php.txt —
9) shop this skin path ∧ skin shop ∧ standard . . . Vulnerability (Technote)

10) board skin path ∧ Smileys ∧ http Vulnerability (GNUBoard)
11) board ∧ skin ∧ http —
12) write update.php ∧ files ∧ 1 —
13) write comment update.php ∧ files ∧ http —
14) delete all.php ∧ admin ∧ zefa.txt —
15) delete comment.php ∧ http ∧ fx29id1.txt —
16) appserv ∧ appserv root ∧ main.php Vulnerability (Appserv)
17) SERVER ∧ DOCUMENT ROOT ∧ media Vulnerability (PHP)
18) error.php ∧ dir ∧ 1 Misc. RFI vulnerabilities
19) errors.php ∧ error ∧ php.txt ∧ bot.txt —
20) administrator ∧ index.php ∧ raw.txt —
21) admin ∧ include ∧ http —

22) med.buu.ac.th ∧ com mylink ∧ stealth . . . Sources of attacks
23) http ∧ med.buu.ac.th ∧ com mylink ∧ components —
24) http ∧ www.hfsb.org ∧ sites ∧ 10225 ∧ img —
25) zerozon.co.kr ∧ eeng ∧ zefa.txt —
26) http ∧ zerozon.co.kr ∧ photos ∧ count —
27) http ∧ musicadelibreria.net ∧ footer —
28) qqe.ru ∧ forum ∧ Smileys —

the ASAP framework for discovery of typical components in malware communi-
cation. In particular, we analyze the communication of 20 malware binaries that
has been recorded during repetitive executions of each binary in a sandbox en-
vironment [see 22]. Since we do not know, which kind of protocols are contained
in the traffic, we apply the ASAP framework using 4-grams as basic strings and
extract base directions via the NMF algorithm. From the 20 binaries, we pick
Vanbot as an example and present the respective communication templates in
Table 3 as they particularly emphasize the capabilities of our framework.

First, we observe that the extracted components clearly separate protocol
semantics: three components contain IRC related strings (1, 2, 4), while one
component contains HTTP data (3). A closer look reveals, that the first two
components contain IRC communication typical for Vanbot : the malware joins
two IRC channels, namely #las6 and #ns, and signifies the start of a TFTP
service. The HTTP component in turn comprises update requests, where the
malware tries to download updates of itself from different hosts. Interestingly,

Table 3: Templates for communication of a malware binary. The templates have been
constructed using 4-grams as basic strings and NMF as factorization.

Communication Templates

1) MODE #las6←↩USER b ∧ JOIN #las6 ∧ 041- Running TFTP wormride...

2) c←↩MODE #ns←↩USER ∧ c +xi←↩JOIN #ns ∧ ub.28465.com←↩PONG :hub.2

3) GET /lal222.exe HTTP/1.0←↩Host: zonetech.info ∧ /lb3.ex ∧ /las1.ex...

4) x←↩USER e020501 . . . ∧ JOIN &virtu3 ∧ NICK bb ∧ CK gv ∧ R h020

our analysis also extracts an IRC component (4), which contains typical commu-
nication of the Virut malware, for example, as indicated by the channel name
#virtu3. We credit this finding to a co-infection: the malware binary labeled
Vanbot has been additionally infected by the malware Virut, a file infector.

3.4 Anomaly Detection

As final experiment, we evaluate the capabilities of ASAP in the fields of net-
work intrusion detection. Anomaly detection is frequently applied as extension
to signature-based intrusion detection systems, such as the Snort [1] and Bro [2]
system, as it enables identification of unknown and novel network threats.

For evaluation of intrusion detection performance, we consider two datasets of
network payloads: The first dataset (FIRST08) contains HTTP requests mon-
itored at the web server of a research institute during a period of 60 days.
The second dataset (FTP03) comprises FTP sessions recorded over 10 days at
Lawrence Berkeley National Laboratory [23]. Additionally to this benign data,
we inject network attacks into the traffic. The attacks are executed in a virtual
environment using common tools for penetration testing, such as Metasploit,
and are carefully adapted to match characteristics of the datasets [see 24].

For the experiment, we apply a detection method similar to the work of Rieck
and Laskov [25]. A centroid model of normal network payloads is constructed us-
ing n-grams, µfull = 1

N

∑N
i=1 φ(pi), and used for identifying unusual network con-

tent. Additionally, we consider a second model in which the n-grams are refined
using communication templates. Formally, after calculating the matrix factor-
ization X = BC, we construct this model as follows: µreduced = B(1

N

∑N
i=1 ci),

where we calculate the centroid in the lower-dimensional space obtained by the
first 20 base directions of NMF. The two models are trained on 1,000 randomly
drawn payloads for each data set and anomaly detection is performed on 200,000
randomly chosen HTTP requests and 20,000 FTP sessions respectively.

Results are shown as Receiver Operating Characteristics (ROC) curves in
Figure 4 (left). The performance of the full and reduced centroid model is iden-
tical on all three datasets. This demonstrates that the base directions identified
by NMF capture semantic information of the underlying protocols accurately for
detection of anomalies and attacks. Figure 4 (right) details the run-time perfor-
mance attained by the different models. Reducing the analysis using communi-
cation templates provides a significant performance gain over regular anomaly
detection. Speed-up factors of up to 15 can be observed and clearly indicate the
utility of ASAP as a preprocessing step for anomaly detection.

0.00 0.01 0.02 0.03 0.04 0.05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positve rate

Tr
ue

 p
os

itv
e

ra
te

FIRST2008 normal
FTP normal
FIRST2008 pruned
FTP pruned

FTP FIRST2008

Full model
Pruned model

M
ea

n
tim

e
pe

r
re

qu
es

t/s
es

si
on

 (
us

ec
)

0
50

10
0

15
0

20
0

25
0

30
0

8.08x 14.65x

Fig. 4: ROC curves (left) and run-time (right) for network anomaly detection. Models
are constructed using 4-grams and NMF for matrix factorization.

4 Related Work

The problem of re-creating a certain structure based on data like network or
execution traces has been extensively studied in the domain of protocol reverse
engineering. The ultimate goal here is to reconstruct the grammar and also
underlying state machines employed during communication. Discoverer [10] by
Cui et al. works directly on recorded network traces to extract message formats
by a combination of clustering of tokens and subsequent merging by sequence
alignment. Wondracek et al. [11] are able to create grammar-like structures with
the use of dynamic data tainting: a protocol is automatically constructed by
monitoring data flow of protocol messages during request serving. This concept
is further refined in Prospex [12] by Comparetti et al. which also incorporates
the inference of the underlying state machine of the communication. All these
approaches are orthogonal to the ASAP framework, since they try to extract the
underlying syntax of the communication. With the ASAP method we address
the extraction of semantics-aware components for a monitored application, which
leads to different constraints and methods employed during the analysis.

A natural extension of protocol reverse engineering is to use the newly ex-
tracted protocol and communication state automaton and build an automated
honeypot service, which is capable of mimicking the monitored application be-
havior. The work of Leita et al. [18, 19] target the honeyd platform: by ex-
amination of a tcpdump, which contains a sample interaction, they are able to
generate a honeyd script, which can emulate to a certain extent the monitored
application. In line with this work Cui et al. present RolePlayer [26], which is
able to replay both the client and server side of a given communication. The Re-
player [27] by Newsome et al. uses methods from program verification to build
up a logical sound solution to the replaying problem. The ASAP framework in
its current state does not incorporate any communication semantics apart from
single message semantics. However, it would be a valuable extension to include
communication behavior analysis by exploiting methods of time series analysis
inside the ASAP framework.

Dimension reduction methods have been used before to visualize network
traffic data [28] or track down traffic anomalies [29, 30]. While Principal Compo-
nent Analysis and Non-negative Matrix Factorization (NMF) have been studied
before, the ASAP framework analyzes the traffic both on the basis of tokens and
n-grams in a unified way, which leads to a semantic-driven and easily compre-
hensible result. Furthermore NMF has also been used for intrusion detection by
Wang et al. [31, 32] on system call traces and even for the task of document
summarization [33] on a word level. This shows that the basis of the ASAP
framework is well established even beyond analysis of structured network data.

5 Conclusions

We have introduced the ASAP framework, a new technique for automatic extrac-
tion of communication templates from recorded network traffic. The framework
identifies components of network payloads by mapping them to a vector space
and determining informative base directions using techniques of matrix factor-
ization. This approach is orthogonal to existing techniques for network analysis
based on protocol specifications, as it can be applied for analysis of unknown
network protocols as well as network traces containing mixtures of protocols.

Empirically, we have demonstrated the utility of our framework in different
security applications. For example, we have been able to automatically analyze
data from a network honeypot and identify exploited vulnerabilities and attack
sources—a task not attainable by sole means of specification-based analysis.
Moreover, we have exemplarily dissected the communication of the malware
Vanbot, demonstrating the ability of the ASAP framework to discover semantics
in network traces of mixed protocols. Finally, we have applied our framework
for preprocessing the input of a network anomaly detection method, realizing a
speed-up factor of up to 15 while preserving an accurate detection of attacks.

Our analysis shows that base directions generated by our framework can be
used to easily extract valuable details from a dataset, where nearly no infor-
mation is available in advance. The ASAP framework is capable of analyzing
network data even without knowledge about the underlying protocols. The flex-
ibility of n-gram analysis paired with the structuring and summarization power
of matrix factorization generates semantics-aware components, which enable fast
and efficient insights for network traces at hand.

Besides applications presented in this work, the extracted base directions pro-
vide good candidates as input for other security methods: signature generation
methods may use the concise representation of data as direct basis for construct-
ing precise signatures, automatic construction of honeypot services could greatly
profit from semantics-aware representations of communication and the process
of forensic network analysis may be accelerated by taking these communication
templates as starting points for further investigations. Finally, the incorporation
of other matrix factorization methods like sparse NMF [34] or sparse PCA [35]
and the evaluation of their respective performance in terms of data explanation
and description would be a further extension of the ASAP framework.

Acknowledgements: The authors were supported by the BMBF grant FKZ
01-IS07007A (REMIND) and the FP7-ICT Programme of the European Com-
munity, under the PASCAL2 Network of Excellence, ICT-216886.

Bibliography

[1] Roesch, M.: Snort: Lightweight intrusion detection for networks. In: Proc.
of USENIX Large Installation System Administration Conference LISA.
(1999) 229–238

[2] Paxson, V.: Bro: A system for detecting network intruders in real-time.
Computer Networks 31(23–24) (December 1999) 2435–2466

[3] Vigna, G., Kemmerer, R.A.: NetSTAT: a network-based intrusion detection
system. Journal of Computer Security 7(1) (1999) 37–71

[4] Offutt, J., Liu, S., Abdurazik, A., Ammann, P.: Generating test data from
state-based specifications. The Journal of Software Testing, Verification and
Reliability 13 (2003) 25–53

[5] McAllister, S., Kirda, E., Kruegel, C.: Leveraging user interationcs for in-
depth testing of web applications. In: Recent Adances in Intrusion Detection
(RAID). (2008) 191–210

[6] Abdelnur, H.J., State, R., Festor, O.: Advanced fuzzing in the voip space.
Journal in Computer Virology 6(1) (2010) 57–64

[7] Garfinkel, S.: Network Forensics: Tapping the Internet. O’Reilly (2002)
[8] Moore, D., Shannon, C., Brown, J.: Code-Red: a case study on the spread

and victims of an internet worm. In: Proc. of Internet Measurement Work-
shop (IMW). (2002) 273–284

[9] Gates, C., McHugh, J.: The contact surface: A technique for exploring
internet scale emergent behaviors. In: Detection of Intrusions and Malware
& Vulnerability Assessment (DIMVA). (2008) 228–246

[10] Cui, W., Kannan, J., Wang, H.J.: Discoverer: automatic protocol reverse
engineering from network traces. In: Proc. of 16th USENIX Security Sym-
posium. (2007) 1–14

[11] Wondracek, G., Comparetti, P.M., Krügel, C., Kirda, E.: Automatic net-
work protocol analysis. In: Proc. of Network and Distributed System Secu-
rity Symposium (NDSS). (2008)

[12] Comparetti, P.M., Wondracek, G., Kruegel, C., Kirda, E.: Prospex: Protocol
specification extraction. In: Proc. of the 30th IEEE Symposium on Security
and Privacy. (2009) 110–125

[13] Holm, S.: A simple sequentially rejective multiple test procedure. Scandi-
navian Journal of Statistics 6 (1979) 65–70

[14] Rieck, K., Laskov, P.: Linear-time computation of similarity measures for
sequential data. Journal of Machine Learning Research 9(Jan) (2008) 23–48

[15] Jolliffe, I.: Principal Component Analysis. Springer (2002)
[16] Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear component analysis as a

kernel eigenvalue problem. Neural Computation 10 (1998) 1299–1319
[17] Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization.

In: Advances in Neural Information Processing Systems 13. (2000) 556–562
[18] Leita, C., Mermoud, K., Dacier, M.: Scriptgen: an automated script gener-

ation tool for honeyd. In: Proc. of Annual Computer Security Applications
Conference (ACSAC). (2005) 203–214

[19] Leita, C., Dacier, M., Massicotte, F.: Automatic handling of protocol de-
pendencies and reaction to 0-day attacks with scriptgen based honeypots.
In: Recent Adances in Intrusion Detection (RAID). (2006) 185–205

[20] Bayer, U., Moser, A., Kruegel, C., Kirda, E.: Dynamic analysis of malicious
code. Journal in Computer Virology (JICV) 2(1) (2006) 67–77

[21] Bächer, P., Kötter, M., Holz, T., Freiling, F., Dornseif, M.: The nepenthes
platform: An efficient approach to collect malware. In: Recent Adances in
Intrusion Detection (RAID). (2006) 165–184

[22] Rieck, K., Schwenk, G., Limmer, T., Holz, T., Laskov, P.: Botzilla: De-
tecting the ”phoning home” of malicious software. In: Proc. of 25th ACM
Symposium on Applied Computing (SAC). (March 2010) 1978–1984

[23] Paxson, V., Pang, R.: A high-level programming environment for packet
trace anonymization and transformation. In: Proc. of ACM SIGCOMM.
(2003) 339 – 351

[24] Krueger, T., Gehl, C., Rieck, K., Laskov, P.: TokDoc: A self-healing web
application firewall. In: Proc. of 25th ACM Symposium on Applied Com-
puting (SAC). (March 2010) 1846–1853

[25] Rieck, K., Laskov, P.: Detecting unknown network attacks using language
models. In: Detection of Intrusions and Malware, and Vulnerability Assess-
ment, Proc. of 3rd DIMVA Conference. (July 2006) 74–90

[26] Cui, W., Paxson, V., Weaver, N., Katz, R.H.: Protocol-independent adap-
tive replay of application dialog. In: Proc. of Network and Distributed
System Security Symposium (NDSS). (2006)

[27] Newsome, J., Brumley, D., Franklin, J., Song, D.: Replayer: automatic
protocol replay by binary analysis. In: Conference on Computer and Com-
munications Security (CCS). (2006) 311–321

[28] Patwari, N., Hero, III, A.O., Pacholski, A.: Manifold learning visualization
of network traffic data. In: Proc. of the ACM SIGCOMM workshop on
Mining network data. (2005) 191–196

[29] Lakhina, A., Crovella, M., Diot, C.: Diagnosing network-wide traffic anoma-
lies. In: Proc. of ACM SIGCOMM. (2004) 219–230

[30] Ringberg, H., Soule, A., Rexford, J., Diot, C.: Sensitivity of PCA for traffic
anomaly detection. In: Proc. of the ACM SIGMETRICS. (2007) 109–120

[31] Wang, W., Zhang, X., Gombault, S.: Constructing attribute weights from
computer audit data for effective intrusion detection. J. Syst. Softw. 82(12)
(2009) 1974–1981

[32] Guan, X., Wang, W., Zhang, X.: Fast intrusion detection based on a non-
negative matrix factorization model. J. Netw. Comput. Appl. 32(1) (2009)

[33] Wang, D., Li, T., Zhu, S., Ding, C.: Multi-document summarization via
sentence-level semantic analysis and symmetric matrix factorization. In:
Proc. of the 31st ACM SIGIR. (2008) 307–314

[34] Hoyer, P.O.: Non-negative matrix factorization with sparseness constraints.
J. Mach. Learn. Res. 5 (2004) 1457–1469

[35] Zou, H., Hastie, T., Tibshirani, R.: Sparse principal component analysis.
Journal of Computational and Graphical Statistics 15 (2004) 2006–2035

