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ABSTRACT

Expressive comparison of strings is a prerequisite for analysis of
sequential data in many areas of computer science. However,
comparing strings and assessing their similarity is not a trivial task
and there exists several contrasting approaches for defining simi-
larity measures over sequential data. In this article, we review
three major classes of such similarity measures: edit distances,
bag-of-word models and string kernels. Each of these classes orig-
inates from a particular application domain and models similar-
ity of strings differently. We present these classes and underlying
comparison concepts in detail, highlight advantages and differ-
ences as well as provide basic algorithms for practical application.

INTRODUCTION

Strings and sequences are a natural representation of data
in many areas of computer science. For example, several
applications in bioinformatics are concerned with study-
ing sequences of DNA, many tasks of information retrieval
center on analysis of text documents, and even computer
security deals with finding attacks in strings of network
packets and file contents. Application of data mining and
machine learning in these areas critically depends on the
availability of an interface to sequential data, which allows
for comparing, analyzing and learning in the domain of
strings.

Algorithms for data mining and machine learning have
been traditionally designed for vectorial data, whereas
strings resemble variable-length objects that do not fit into
the rigid representation of vectors. However, a large body
of learning algorithms rests on analysis of pairwise rela-
tionships between objects, which imposes a looser con-
straint on the type of data that can be handled. For in-
stance, several learning methods, such as nearest neigh-
bor classification, linkage clustering and multi-dimensional
scaling, solely depend on computing distances between ob-
jects. This implicit abstraction from vectorial representa-
tions can be exploited for applying machine learning to se-

quential data. Instead of operating in the domain of vec-
tors, the learning methods are applied to pairwise relation-
ships of sequential data, such as distances, angles or kernels
defined over strings. As a consequence, a powerful yet in-
tuitive interface for learning with sequential data can be
established, which is rooted in assessing the similarity or
dissimilarity of strings.

Comparing strings and assessing their similarity is far
from trivial, as sequential data is usually characterized by
complex and rich content. As an example, this article itself
is a string of data and comparison with related texts clearly
resembles an involved task. As a consequence, several con-
trasting approaches have been proposed for comparison of
strings, reflecting particular application domains and em-
phasizing different aspects of strings.

In this article, we review three major classes of similar-
ity measures for sequential data, which have been widely
studied in data mining and machine learning. First, we in-
troduce the edit distance and related measures, which de-
rive from early telecommunication and model similarity
by transforming strings into each other. We then proceed
to bag-of-words models, which originate from information
retrieval and implement comparison of strings by embed-
ding sequential data in a vector space. Finally, we present
string kernels, a recent class of similarity measures based
on the paradigm of kernel-based learning, which allows for
designing feature spaces for comparison with almost arbi-
trary complexity. For each of the three classes of similarity
measures, we discuss underlying concepts, highlight advan-
tages and differences to related techniques, and introduce
basic algorithms for application in practice.

NOTATION

Before presenting similarity measures in detail, we intro-
duce some basic notation. Let .¢/ be a set of symbols de-
noted as alphabet, such as the characters in text or the bases
in DNA. Then, a string x is a concatenation of symbols
from the alphabet .¢/. Moreover, we denote the set of all
strings by ./* and refer to the set of strings with length 7
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as .&/”. A function f for comparison of two strings takes
the form f : .&* x .&/* — R where for (dis)similarity
measures the returned quantity increases with pairwise
(dis)similarity of strings. For simplicity, we use the term
similarity measure synonymously with dissimilarity mea-
sure, as both types of functions mainly differ in the direc-
tion of comparison. To navigate within a string x, we ad-
dress the i-th symbol of x by x[i] and refer to the symbols
from position i to j as a substring x[i:j] of x. Finally, we de-
note the empty string by ¢ and define |x| to be the length
of the string x.

Let us, as an example, consider the string z = cute Kitty.
Depending on how we define the alphabet ./, the string z
either corresponds to a concatenation of characters (couo
t...) with |z| = 10 or a concatenation of words (cuteokitty)
with |z| = 2. Thus, by selecting the alphabet of strings,
we are able to refine the scope of the analysis depending
on the application at hand. In the following, we restrict
ourselves to the simple alphabet .o/ = {a,b} and use the
strings x = ababba and y = bababb as examples through-
out the article. However, all of the presented similarity
measures are applicable to arbitrary alphabets, which may
range from binary symbols in telecommunication to huge
dictionaries for natural language processing.

EDIT DISTANCE

As the first class of similarity measures for sequential data,
we introduce the edit distance and variants thereof. The
idea underlying the edit distance is to assess the similarity
of two strings by transforming one string into the other
and determining the minimal costs for this transformation.
Strictly speaking, the edit distance is a metric distance and
thus a dissimilarity measure which returns zero if no trans-
formation is required and positive values depending on the
amount of changes otherwise. A generic definition of dis-
tances for strings is provided in Box 1.

Box 1 A distance for strings is a function comparing two
strings and returning a numeric measure of their dissim-
ilarity. Formally, a function d : o/* X &/* — R isa
distance if and only if for all x,y,z € .o/* holds

d(x,y)20
d(x,y)=0 &< x=y
d(x,y)=d(y,x)

A function d is a metric distance if additionally

d(x,2) < d(x,y) +d(y,2)

(non-negativity)
(isolation)
(symmetry).

(triangle inequality).

To transform a string x into another string y, we require
a set of possible edit operations that provide the basis for

transformation of strings. In the original formulation of
the edit distance these operations are defined as

(a) the insertion of a symbol into x,
(b) the deletion of a symbol from x and
(c) the substitution of a symbol of x with a symbol of y.

A transformation of strings can now be defined as a se-
quence of edit operations where the costs correspond to
the length of this sequence. Assessing the similarity of two
strings x and y thus amounts to determining the shortest
sequence of edit operations that transforms x to y. In this
view, the edit distance d(x,y) is simply the length of this
shortest sequence and corresponds to the minimal number
of edit operations required to change x into y.

Formally, the edit distance d(x,y) for two strings x and
y can be defined recursively, starting with small substrings
and continuing until the shortest transformation from x
to y has been discovered. As base cases of this recursive
definition, we have

d(e,€)=0, d(x,e)=Ix|, d(e,y)=y|
where for the first base case the distance between empty
strings is zero and in the other two cases the shortest se-
quence of operations corresponds to the length of the non-
empty string. In all other cases, the edit distance d(x,y) is
defined recursively by

d(x[1:-1],y[1:]) + 1
d(x[:i,y[1;]) = min{ d(x[1:4], y[1-1]) + 1
d(x[1:i-1], y[1:j-1]) + m (i, )

in which the indicator function m(z, ;) is 1 for a mismatch
of symbols x[i] # y[;], and 0 for a match of symbols x[i] =
Yl

This recursive definition builds on the technique of dy-
namic programming: the distance computation for x[1:i]
and y[1:/] is solved by considering distances of smaller sub-
strings for each edit operation. In the first case, the symbol
x[i] is discarded, which corresponds to deleting a symbol
from x. The second case matches an insertion, as the last
symbol of y[;] is omitted. If x[i] # y[;], the third case re-
flects a substitution, whereas otherwise x[i] = y[;] and no
operation is necessary. The final distance value d(x,y) of x
and y is obtained by starting the recursion with ; = |x| and
7=l

In practice, this dynamic programming is realized by
keeping intermediate distance values in a table, such that
the edit distance of the substrings x[1:i] and y[1:j] can be ef-
ficiently determined using results of previous iterations. To
illustrate this concept, we consider the strings x = ababba
and y = bababb and construct a corresponding table.
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X

a b a b b a

01 2 3 4 5 6
b1 1 1 2 3 4 5
al2 1 212 3 4
b|3 2 1 2 1 2 3
Val4 3 212 2 2
b|5 4 3 21 2 3
ble6 5 4 3 2 1 2

During computation of the edit distance the table is filled
from the upper left to the lower right corner. The cell (z, 7)
contains the distance value d(x[1:],y[1:/]) which is com-
puted using the elements [, 7—1], [i—1,7] and [i—1,7—1]
determined in previous iterations. In our example, we get
d(x,y) = 2, as the string x can be transformed to y by in-
serting “b” to its beginning and removing its last symbol
“a”. The corresponding shortest sequence of edit opera-
tions can be obtained by traversing back from the lower
right to the upper left corner of the table using an addi-
tional table of back pointers. The respective path in the
above table is indicated by bold face font.

The run-time complexity for computing the edit dis-
tance is quadratic in the length of the strings. In particu-
lar, (|| 4+ 1) - (Jy| + 1) distance values need to be computed,
resulting in a complexity of O(|x| - |y]). While there ex-
ist techniques to accelerate computation below quadratic
complexity (Masek and Patterson, 1980), no linear-time al-
gorithm is known for calculating the edit distance. The
computational effort, however, often pays off, as not only
a distance but a transformation is returned, which allows
for insights into the nature of compared strings.

The edit distance has been first studied by Levenshtein
(1966) as a generalization of the Hamming distance—a pre-
ceding distance restricted to strings of equal length (Ham-
ming, 1950). The seminal concept of describing similarity
in terms of edit operations has been extended in a variety of
ways, for example, by incorporation of different cost func-
tions and weightings for operations, symbols and strings.
A discussion of several variants is provided by Sankoff and
Kruskal (1983). Furthermore, the technique of sequence
alignment is closely related to the edit distance. Although
alignments focus on similarities of strings, the underlying
framework of dynamic programming is identical in both
settings (Needleman and Wunsch, 1970, Smith and Water-
man, 1981, Doolittle, 1986). A comprehensive discussion
of edit distances and sequence alignments along with im-
plementations is provided in the book of Gusfield (1997).

BAG-OF-WORDS MODELS

From the edit distance, we turn to another concept for
comparison of strings widely used in data mining applica-

tions: bag-of-words models. In these models, sequential data
is characterized using a predefined set of strings, such as a
dictionary of words or fixed terms. We herein refer to this
set as an embedding language L C ./* and to astring w € L
as a word of L. The set L enables embedding strings in a
vector space, such that vectorial similarity measures can be
applied for analysis of sequential data. Before studying this
embedding and respective similarity measures in detail, we
present two definitions of embedding languages frequently
used in previous work: words and n-grams.

The main representation of data in information retrieval
and natural language processing are strings of regular text.
Thus, L is usually defined as words of a natural language,
such as English or Esperanto. In this setting, L is either
given explicitly by providing a dictionary of terms or im-
plicitly by partitioning strings according to a set of delim-
iter symbols D C ./, such that

L=(o/\Dy

where L corresponds to all possible concatenations of non-
delimiter symbols. Based on this definition, the contents
of a string can be described in terms of contained words of
L, hence the term “bag of words”.

Models based on words are intuitive if strings derive
from natural language text or similarly structured se-
quences. In several applications, however, the structure
underlying strings is unknown and hence no delimiters can
be defined a priori, for example, as in analysis of DNA and
protein sequences. An alternative technique for defining
an embedding language L is to move a sliding window of
length 7 over each string and extract n-grams (substrings
of length 7). Formally, this embedding language can be
defined as

L=.",

where .o/” is the set of all possible concatenations with
length 7. The contents of a string is characterized in terms
of contained 7-grams, in reference to original bag-of-words
models, referred to as a “bag of n-grams”.

Equipped with an appropriate embedding language L,
we are ready to embed strings in a vector space. Specif-
ically, a string x is mapped to an |L|-dimensional vector
space spanned by the words of L using a function ¢ defined
as

¢ >R b (b,())yer

where ¢ (x) returns the number of occurrences of the
word @ in the string x. In practice, the mapping ¢ is
often refined to particular application contexts. For ex-
ample, ¢, (x) may be alternatively defined as frequency,
probability or binary flag for the occurrences of w in x.
Additionaly, a weighting of individual words can be in-
troduced to embedding to account for irrelevant terms in
strings (Salton and McGill, 1986).

Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery



Similarity Measures for Sequential Data

As an example, let us consider the strings x = ababba
and y = bababb. If we choose the embedding language as
L = .¢/° and define ¢_ (x) to be the number of occurrences
of w in x, we obtain the following vectors for the strings x
and y:

0 aaa 0 aaa
0 aab 0 aab
1 aba 1 aba
1 abb 1 abb
¢(x) ~1lo baa and ¢(y) ~lo baa
1 bab 2 bab
1 bba 0 bba
0 bbb 0 bbb

The strings are mapped to 8-dimensional vectors associ-
ated with all 3-grams of the alphabet ./ = {a,b}. While the
edit distance compares the global structure of strings, the
embedding characterizes sequential data with a local scope.
The substrings aba and abb are shared by both strings and
reflected in particular dimensions—irrespective of their po-
sition and surrounding in the two strings. Similarly, the
absence of the substring bba in y and the repeated occur-
rences of the substring bab in y are modeled in a local man-
ner. This characterization of local similarity provides the
basis for embedding of strings and enables effective com-
parison by means of vectorial similarity measures.

A large variety of similarity and dissimilarity measure
is defined for vectors of real numbers, such as various
distance functions, kernel functions and similarity coeffi-
cients. Most of these measures can be extended to handle
sequential data using the mapping ¢. For example, we can
express the Euclidean distance (also denoted as ¢? distance)
as follows

dy,(x,9)= [ D 1$u(x) = ()

wel

Similarly, we can adapt the Manhattan distance (also de-
noted as ¢! distance) to operate over embedded strings,

dy (%,9)= D _|p(x) = 0l

wel

and define the cosine similarity measure used in informa-
tion retrieval for comparison of strings by

SYuabut) $u0)
Voo P Suer b))

An extensive list of vectorial similarity and dissimilarity
measures suitable for application to sequential data is pro-
vided by Rieck and Laskov (2008).

Scos(x’y) =

Besides the capability to adapt the embedding languages
to a particular application domain, the proposed embed-
ding brings about another advantage over other similar-
ity measures, such as the edit distance. Several learning
methods can be explicitly formulated in the induced vec-
tor space, such that not only the input but also the learned
models are expressed using the map ¢. For example, the
centers of k-means clustering and the weights of linear
classification can be directly phrased as linear combination
of embedded strings, thereby providing a transparent and
efficient representation of learned concepts (Sonnenburg
et al., 2007).

The vector space induced by words and 7-grams is high-
dimensional, that is, for a typical alphabet with around
50 symbols an embedding using 4-grams induces 50* =
6,250,000 distinct dimensions. Computing and comparing
vectors in such high-dimensional spaces seems intractable
at a first glance. However, for both types of languages,
words and 7-grams, the number of words contained in a
string x is linear in its length. Consequently, the vector
&(x) contains at most |x| non-zero dimensions—regardless
of the actual dimensionality of the vector space. This spar-
sity can be exploited to design very efficient techniques
for embedding and comparison of strings, for example, us-
ing data structures such as sorted arrays, tries and suffix
trees (Rieck and Laskov, 2008). The run-time complexity
for comparison is O(|x| + |y|), such that embeddings us-
ing words and n-grams are a technique of choice in many
real-time applications.

The idea of mapping text to vectors using a “bag of
words” has been first introduced by Salton et al. (1975)
under the term wvector space model. Several extensions of
this influential work have been studied for information re-
trieval and natural language processing using different al-
phabets, similarity measures and learning methods (Salton
and McGill, 1986, Joachims, 2002). The concept of using
n-grams for modeling strings evolved concurrently to this
work, for example for analysis of textual documents and
language structure (Suen, 1979, Damashek, 1995, Robert-
son and Willett, 1998). The ease of mapping strings to vec-
tors and subsequent application of vectorial similarity mea-
sures also influenced other fields of computer science, such
that there are several related applications in the fields of
bioinformatics (Leslie et al., 2002, Sonnenburg et al., 2007)
and computer security (Liao and Vemuri, 2002, Hofmeyr
et al., 1998, Rieck and Laskov, 2007).

STRING KERNELS

As the last and most recent class of similarity measures
for sequential data, we consider string kernels. At the first
sight, a string kernel is a regular similarity measure for se-
quential data—though, as we will see shortly, string kernels
reach far beyond regular measures of similarity. In contrast
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to similarity measures specifically designed for comparison
of sequential data, string kernels rest on a mathematical
motivation—the concept of kernel functions and the re-
spective field of kernel-based learning. Hence, we first need
to explore some underlying theory before moving on to
practical kernels for strings.

Box 2 A kernel for strings is a function comparing two
strings and returning a numeric measure of their sim-
ilarivy. Formally, a function k : /" X &* — R is
a kernel if and only if for any finite subset of strings
{x,...,x,} C .&*, the function k is symmetric and posi-
tive semi-definite, that is,

ch k( (x;5%;) )>0 forall c,...,c, €R.
1,7=1

Note that a kernel is always associated with a (possibly im-
plicit) feature space and corresponds to an inner product

k(x’y) = <¢(x)’ 95(9’))

where § is a map from strings to the feature space.

Formally, a kernel function or short kernel is a function
k:Z x Z — R that assess the similarity of objects from
adomain 2 and is linked with a feature space F —a special
form of a vector space (Scholkopf and Smola, 2002). A brief
definition of string kernels is provided in Box 2. Simply
put, any kernel function % induces a mapping ¢ : X —
Z from the domain & to the feature space Z, where the
kernel & equals an inner product in %, that is,

k(x,7) = (p(x), 9(2))-

This association between a kernel and an inner product al-
lows for establishing a generic interface to the geometry
in the feature space .7, independent of the type and struc-
ture of the input domain &'. To illustrate this interface,
let us consider some examples, where we assume that the
mapping ¢ simply embeds strings in Z without giving any
details on how this mapping is carried out. We will come
back to this point shortly.

As first example, the length ((>-norm) of a vector corre-
sponding to a string x can be expressed in terms of kernels

as follows
lpColl = 4/ (x, x).

Similar to the length, the Euclidean distance between two
strings x and y in the feature space & can be formulated
using kernels by

16(x) = Gl = 4/ k(x,x) = 2k(x, ) + k(y, ).

Moreover, also the angle 0, , between two strings x and y

embedded in the feature space Z can be solely expressed

in terms of kernel functions using the inverse cosince func-
tion as follows,

g . =arccos

k(x,) .
» k(x,x) - k(y,7)

These examples demonstrate how geometric quantities
corresponding to distances, angles and norms in feature
space can be defined solely in terms of kernel functions.
Several learning methods infer dependencies of data using
geometry, such as separating hyperplanes, enclosing hy-
perspheres or sets of descriptive directions. By virtue of
kernels all these geometric models can be formulated inde-
pendent of particular input data &', which builds the basis
for kernel-based learning and respective methods, such as
support vector machines and kernel principle component
analysis (Miiller et al., 2001, Scholkopf and Smola, 2002).

It is evident that the mapping ¢ is related to the func-
tion ¢ introduced for embedding strings in vector spaces
and, clearly, by defining ¢ := ¢, we obtain kernel functions
for bag-of-words models. However, the mapping ¢ under-
lying a kernel is more general: any similarity measure with
the properties of being symmetric and positive semi-definite
is a kernel and corresponds to an inner product in a feature
space—even if the mapping ¢ and the space F are totally
unknown. As a result, we gain the ability to design similar-
ity measures for strings which operate in implicit feature
spaces and thereby combine the advantages of access to ge-
ometry and expressive characterization of strings.

On the basis on this generic definition of kernel func-
tions, a large variety of string kernels has been devised,
ranging from kernels for words (Joachims, 1999) and -
grams (Leslie et al., 2002) to involved string comparison
with alignments (Watkins, 2000), gaps (Lodhi et al., 2002),
mismatches (Leslie et al., 2003) and wild cards (Leslie and
Kuang, 2004). From this wide range of kernels, we select
the all-substring kernel (Vishwanathan and Smola, 2004)
for presentation as it generalizes the idea of characterizing
strings using 7-grams to all possible substrings, while pre-
serving linear-time comparison. Formally, the all-substring

kernel can be defined as follows
> 9.(x)-9.(

zed”

k(x,y)=(p(x), p(y)) =

where ¢, (x) returns the number of occurrences of the sub-
string z in the string x and the function ¢ maps strings to a
feature space Z =R spanned by all possible strings .o/*.

In this generic setting, a string x may contain (|x|* +
|x])/2 different substrings z and explicitly accessing all val-
ues ¢,(x) is impossible in linear time. Thus, techniques
for linear-time comparison of sparse vectors, as presented
for words and n-grams, are not applicable. The key to effi-
ciently computing the all-substring kernel is implicitly ac-
cessing the feature space F using two data structures:
suffix tree and a matching statistic.

Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery



Similarity Measures for Sequential Data

A suffix tree S, is a tree containing all suffixes of the
string x. Every path from the root to a leaf corresponds
to one suffix where edges are labeled with substrings. Suf-
fixes that share the same prefix initially pass along the same
edges and nodes. If one path from the root is a suffix of
another path, the respective end nodes are connected by a
so-called suffix link—a shortcut for traversing the tree. A
suffix tree comprises a quadratic amount of information,
namely all suffixes of x, in a linear representation and can
be constructed in ©(|x|) time and space (Gusfield, 1997).

A matching statistic M, is a compact representation of all
matches between two strings x and y. The statistic is com-
puted in ©(|y|) time by traversing the suffix tree S with
the symbols of y, making use of suffix links on mismatches
(Chang and Lawler, 1994). The statistic M, contains only
two vectors 7 and v of length |y|, where 7; reflects the
length of the longest substring of x matching at position ;
of y and v; the node in S, directly below this match.

Additionally, we augment the nodes of the suffix tree S,
with three fields. For each node v, we store the number of
symbols on the path to v in d(v) and the number of leaves
below v in [(v). Moreover, we recursively pre-compute
s(v) for each node: the number of occurrences of all strings
starting at the root and terminating on the path to v.

bba| abbal ba|

g b & W

(a) Suffix tree S, for string x = ababba

y| b a b a b b
n|3 5 4 3 2 1
v h 3 h k d b

(b) Matching statistic M, for string y = bababb

Figure 1: Suffix tree and matching statistic for exemplary strings
x and y. The additional symbol | indicates the different suffices of
x. For simplicity only two suffix links (dotted lines) are shown.

Figure 1 shows a suffix tree and a matching statistic for
the exemplary strings x and y. The suffix tree S, contains
six leaves corresponding to the suffices of x. A suffix link

connects node f with node b, as the substring terminating
at b is a suffix of the path ending at /. Similarly, node e is
linked to node c. For simplicity only these two suffix links
are shown in Figure 1 where further suffix links have been
omitted. The matching statistic /, contains six columns
corresponding to the positions of matches in the string y.
For example, at position 3 of M, we have v; =4 and n; =
h which indicates a match of length 4 between x and y
starting at position 3 of string ¥ and ending on the edge
to node 4 in S, . Obviously, this match is babb.

Based on the suffix tree S, and the matching statistic 47,

the all-substring kernel can be computed by passing over
M, as follows

=D 6,(x)-9,(

z€.d/*
bl
:izz; |:5(7)i>_

To understand how this computation works, we first
note that substrings z present in either x or y do not
contribute to the kernel, as either ¢,(x) or ¢,(y) is zero.
Hence, the computation can be restricted to the shared
substrings reflected in the matching statistics 4. Let us
If the match
terminates exactly at node the v;, we have n, —d(v;) =0
and s(v;) corresponds to the occurrences of all shared sub-
strings in x along this path. If the match terminates on
the edge, however, s(v;) is slightly too large and we need
to discount all occurrences of substrings below the match
by substracting /(v;) - (n; — d(v;)). By finally adding up
all occurrences of shared substrings in x, we arrive at the
all-substring kernel &(x, y).

The run-time for the kernel computation is linear in
the lengths of the strings with @(|x| + |y|), as first a suf-
fix tree is constructed and then a matching statistic is com-
puted. Although the induced feature space has infinite di-
mension and there exist further involved weights of sub-
strings (Vishwanathan and Smola, 2004), the all-substring
kernel can be generally computed in linear-time—a capabil-
ity shared with many string kernels and rooted in implicit
access to feature space based on advanced data structures
for string comparison.

Due to their versatility and ease of incorporation with
kernel-based learning, string kernels have gained consider-
able attention in research. A large variety of kernels has
been developed, starting from first realizations of Haus-
sler (1999) and Watkins (2000), and extending to domain-
specific variants, such as string kernels designed for nat-
ural language processing (Joachims, 1999, Lodhi et al.,
2002) and bioinformatics (Zien et al., 2000, Leslie et al.,
2002). The presented all-substring kernel has been pro-
posed by Vishwanathan and Smola (2004). The challenge

1), = d(2)) |

now consider a match at position 7 of M :
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Edit distance Bag of words | All-substring kernel
Rirtime complesity | ORI ORI+ D) Gl
Implementation dynamic progamming | sparse vectors suffix trees
Granularity characters words substrings
Comparison constructive descriptive descriptive
Dypical applications spell checking text classification DNA analysis

Table 1: Comparison of similarity measures for sequential data.

of uncovering structure in DNA has influenced further ad-
vancement of string kernels by incorporating mismatches,
gaps and wild cards (Leslie et al., 2003, Leslie and Kuang,
2004). Additionally, string kernels based on generative
models (Jaakkola et al., 2000, Tsuda et al., 2002), position-
dependent matching (Ritsch et al., 2005, Sonnenburg et al.,
2006) and sequence alignments (Vert et al., 2004, Cuturi
et al., 2007) have been devised in bioinformatics. An exten-
sive discussion of several string kernels and applications is
provided by Shawe-Taylor and Cristianini (2004) and Son-
nenburg et al. (2007).

COMPARISON OF SIMILARITY MEASURES

As we have seen in the previous sections, there exist dif-
ferent approaches for assessing the similarity of strings.
Each of the presented similarity measures compares strings
differently and emphasizes other aspects of the sequential
data. Consequently, the choice of a similarity measure in
practice depends on the contents of the strings as well as
the underlying application. As a first guide for the practi-
tioner, Table 1 compares the presented similarity measures
and summarizes relevant properties.

The edir distance is the similarity measure of choice, if
the sequential data exhibits minor perturbations, such as
spelling mistakes or typographical errors. As the compar-
ison is constructive, the edit distance does not only assess
similarity, but also provides a trace of operations to trans-
form one string into the other. Hence, the edit distance
is often applied for comparing and correcting text strings,
for example, in applications of spell checking and optical
character recognition (Sankoff and Kruskal, 1983). The
constructive comparison, however, comes at a price. The
run-time complexity of the edit distance is not linear in the
length of the strings, such that the comparison of longer
strings is often intractable.

The bag-of-words model comes particularly handy when
analysing natural language text and structured data. The
comparison of strings can be controlled using the set of
considered words, which allows for adapting the model to
the particular context of an application. As a result, bag-
of-words models are prevalent in information retrieval and
respective applications, such as searching of web pages, clas-

sification of text documents or analysis of log files (Salton
and McGill, 1986). Moreover, the bag-of-words model en-
ables a linear-time comparison of strings where its imple-
mentation using sparse vectors is straightforward (Rieck
and Laskov, 2008).

The ability to efficiently operate in complex feature
spaces finally renders string kernels preferable when learn-
ing with sequential data of involved structure. String
kernels can be specifically designed for a learning task
and equipped with various extensions, such as position-
dependent comparison, inexact matching and wild-card
symbols (Shawe-Taylor and Cristianini, 2004, Sonnenburg
et al., 2007). Due to this flexibility the majority of string
kernels has been designed for analysis of DNA and protein
sequences, which possess highly complex and largely un-
known structure. String kernels are the method of choice,
if simpler similarity measures fail to capture the structure
of strings sufficiently.

CONCLUSIONS

In this article we have studied the comparison of strings
and corresponding similarity measures for sequential data.
We have reviewed three major classes of such measures,
with each modeling similarity differently and emphasizing
particular aspects of strings. Starting with the edit distance
and reaching over to bag-of-words models and string ker-
nels, we have derived different concepts for assessing the
similarity of strings along with their implementations, pe-
culiarities and advantages in practice.

The abstraction realized by analysing pairwise relation-
ships provides a generic interface to structured data beyond
strings and sequences. While we have explored different
ways for integrating strings into data mining and machine
learning, there exists several related approaches modeling
similarity and dissimilarity of other non-vectorial data.
For example, kernels and distances for trees (Collins and
Duffy, 2002, Rieck et al., 2010) and graphs (Girtner et al.,
2004, Vishwanathan et al., 2009) are one strain of develop-
ment in this field. This divergence of research ultimately
provides the basis for tackling challenging problems and
designing novel methods that benefit from both worlds:
machine learning and comparison of structured data.
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