
Intelligent Defense against Malicious JavaScript Code
Tammo Krueger1 and Konrad Rieck2

1 Technische Universität Berlin, Germany
2 University of Göttingen, Germany

Abstract

JavaScript is a popular scripting language for creating dynamic
and interactive web pages. Unfortunately, JavaScript also pro-
vides the ground for web-based attacks that exploit vulnerabil-
ities in web browsers and unnoticeably infect users with mali-
cious software. Regular security tools, such as anti-virus scan-
ners, increasingly fail to fend off this threat, as they are unable to
cope with the rapidly evolving diversity and obfuscation of these
JavaScript attacks.

In this article, we present Cujo, a learning-based system for
detection and prevention of JavaScript attacks. Embedded in a
web proxy, Cujo transparently inspects web pages and blocks the
delivery of malicious JavaScript code. A lightweight static and dy-
namic analysis is performed, which enables learning and detect-
ing malicious patterns in the structure and behavior of JavaScript
code. To operate the system in practice we introduce an architec-
ture for automatically collecting and sanitizing data for retraining
Cujo. We demonstrate the efficacy of this architecture in an em-
pirical evaluation, where Cujo identifies 93% of real attacks with
few false alarms—even if the attacks are present in benign web
pages during training of the system.

1 Introduction

¿e JavaScript language is widely used for creating dynamic
and interactive web pages. ¿e vast majority of popular web
services, such as Google, Facebook and Twitter, make heavy
use of JavaScript for presenting dynamic content and inter-
acting with the user. In contrast to served-based scripting,
JavaScript code is interpreted in the web browser of the user
and allows for directly interfacing with the document object
model and the browser environment. For example, JavaScript
is regularly used for animation of objects, validation of user
input, and asynchronous communication.
¿e versatility of JavaScript, however, comes at a price.

JavaScript is increasingly used as part of web-based attacks that
exploit vulnerabilities in browsers and infect users with mali-
cious so ware. According to a recent study of Symantec [28],
the number of such attacks has almost doubled in the last year,
reaching peaks of over 35 million attacks per day. It is the tight
integration of JavaScript with the browser that enables web-
based attacks to easily probe and unnoticeably exploit vulner-
abilities during the visit of a web page. Due to the complexity
of browsers and their extensions, there exist numerous of such

vulnerabilities ranging from insecure interfaces of third-party
extensions to bu�er over�ows andmemory corruption vulner-
abilities [see 8, 10].
As a consequence of this development, the detection and

mitigation of malicious JavaScript code has gained a focus in
security research. Several approaches have been devised for
spotting malicious activity in web pages, for example, using
code emulation [11, 16, 22], sandboxing [9, 20], or web-based
honeypots [19, 27]. Most of these approaches rely on heuristics
and manually cra ed rules and thus lack the ability to adapt to
the rapidly changing threat of web-based attacks. ¿is short-
coming has recently been addressed by combining JavaScript
analysis with techniques from machine learning, which en-
ables learning detectors formalicious JavaScript code automat-
ically [5, 7, 13, 24].
In this article, we present one of the �rst of these learning-

based detectors: Cujo [24]. ¿e detector is embedded in a web
proxy, where it transparently inspects the JavaScript code of
web pages and blocks the delivery ofmalicious content. To this
end, a lightweight static and dynamic analysis is performed,
which enables learning and detectingmalicious patterns in the
structure and behavior of JavaScript code. To operate this sys-
tem in practice we introduce an architecture for automatic re-
training that collects and sanitizes training data automatically.
¿is architecture enables one to adapt the detectors to novel
attacks and provides a crucial component for keeping abreast
of attack development.
We demonstrate the e�cacy of Cujo and the training ar-

chitecture in an empirical evaluation with 200,000 web pages
and 600 real attacks. In this evaluation, Cujo outperforms re-
lated approaches and—with Zozzle [7]—provides the most
accurate detection of malicious JavaScript code. In particular,
Cujo identi�es 95% of the attacks with a false-positive rate of
0.002%, corresponding to 2 false alarms in 100,000 visited web
sites. Furthermore, the proposed architecture allows Cujo to
be trained on unclean data, where it still identi�es over 93% of
the attacks—although half of these are present in benign web
pages during training.
¿is article is organized as follows: We describe Cujo in Sec-

tion 2 and introduce the training architecture in Section 3. An
empirical evaluation is presented in Section 4. Related work is
discussed in Section 5 and Section 6 concludes.

0¿is is a preprint of an article published in Praxis der Informationsverar-
beitung und Kommunikation (PIK) Vol. 35(1), de Gruyter, 2012.

1

InternetInternet

Analysis component
Caching capability
Detection model

Detection

Detection

Forwarding
/ BlockingLoader

Web clientsWeb services JavaScript
Lexer

Feature
extraction

JavaScript
Sandbox

Feature
extraction

Lightweight static analysis

Lightweight dynamic analysis

Figure 1: A schematic depiction of the Cujo detector [24].

2 The Cujo Detector

JavaScript attacks can take almost arbitrary form and struc-
ture depending on the exploited vulnerability and the use of
obfuscation. For accurately detecting such attacks, a holistic
view on JavaScript is required that takes into account struc-
tural as well as behavioral aspects of the code. In this section
we provide a brief overview of the Cujo detector that combines
a lightweight static and dynamic analysis of JavaScript code for
detecting attacks. A detailed discussion of Cujo and its inner
working is given by Rieck et al. [24].

Cujo is designed to prevent the delivery of malicious
JavaScript code to a web client. Hence, Cujo is embedded in a
web proxy, where it transparently inspects every requestedweb
page and recursively downloads associated JavaScript code.
Before any data is transmitted to the user, the code is analyzed
and matched against static and dynamic detection models. If
this analysis reveals any suspicious structure or behavior, the
delivery of the web page is blocked. To avoid manually cra -
ing detection rules for this analysis Cujomakes use ofmachine
learning techniques, which enable generalizing from known
attacks and allow to automatically construct detection mod-
els. A schematic depiction of the resulting system is presented
in Figure 1.

2.1 JavaScript Analysis

¿e static analysis of Cujo relies on basic principles of com-
piler design [see 1]: Before source code written in a program-
ming language can be processed, its textual representation has
to be decomposed into tokens—a process referred to as lexi-
cal analysis. ¿e static analysis in Cujo takes advantage of this
process and parses the JavaScript code of a web page into lexi-
cal tokens. As a result, the code is represented as a sequence of
tokens that capture the syntax and structure of the code.
¿e static analysis is illustrated in Figure 2 and Figure 3,

where Figure 2 shows a snippet of obfuscated JavaScript code
and Figure 3 the extracted lexical tokens. Note that the static
analysis discards concrete identi�ers, such as variable and
function names. Instead only the syntax and structure of the
code, such as the string operations and the for-loop, are ex-
tracted for further analysis.

1 a = "";
2 b = "{@xqhvfdsh+%(x<3<3%,>zk"+
3 "loh+{1ohqjwk?4333,{.@{>";
4 for (i = 0; i < b.length; i++) {
5 c = b.charCodeAt(i) - 3;
6 a += String.fromCharCode(c);
7 }
8 eval(a);

Figure 2: Example of obfuscated JavaScript code.

1 ID = STR.000 ;
2 ID = STR.002 +
3 STR.002 ;
4 FOR (ID = NUM ; ID < ID . ID ; ID ++) {
5 ID = ID . ID (ID) - NUM ;
6 ID + = ID . ID (ID) ;
7 }
8 EVAL (ID) ;

Figure 3: Example of static analysis report.

Additionally to the static analysis, Cujo performs a dynamic
analysis of JavaScript code that allows for monitoring and in-
specting the behavior of a web page. To this end, Cujo uses an
enhanced version of ADSandbox, a highly e�cient JavaScript
sandbox developed byDewald et al. [9]. ¿is sandbox emulates
a virtual web browser and allows it to observe the behavior of
JavaScript code in a secure environments. All interactions of
the code with the virtual browser are recorded and a detailed
report of the code’s behavior is generated. In comparison to the
static analysis, this report describes the actual behavior of the
JavaScript code, irrespective of its structure and syntax.

As an example of the dynamic analysis, Figure 4 shows the
behavior report obtained for the code snippet from Figure 2.
¿e report includes all operations of the code that alter the en-
vironment of the virtual web browser, such as di�erent SET
andCALL events. ¿e �rst lines of the report cover the decryp-
tion of the obfuscated string, which is �nally revealed in lines
232–233. Starting with the call toeval, this string is evaluated
by the interpreter and results in the construction of a NOP sled
with 1024 bytes in line 246.

2

1 SET global.a TO ""
2 SET global.b TO "{@xqhvfdsh+%(x<3<3%,>zkloh
3 +{1ohqjwk?4333,{.@{>"
4 SET global.i TO "0"
5 CALL charCodeAt
6 SET global.c TO "120"
7 CALL fromCharCode
8 SET global.a TO "x"...

232 SET global.a TO "x=unescape("%u9090");
233 while(x.length<1024)x+=x;"
234 SET global.i TO "46"
235 CALL eval
236 CALL unescape
237 SET global.x TO "<90>"
238 SET global.x TO "<90><90>"

...
246 SET global.x TO "<90><90> ... 1024 bytes ... <90>"

Figure 4: Example of dynamic analysis report.

2.2 Feature Extraction

¿e static and dynamic analysis of JavaScript code provide a
wealth of information for identifying malicious activity. In
contrast to related methods, however, we do not manually de-
�ne features indicative for this activity, but instead apply a
generic approach for feature extraction. ¿is approach is in-
dependent of particular attack types and enables us to model
the analysis geometrically in a vector space.
¿e reports generated by the static and dynamic analysis can

be interpreted as sequences of words. While the lexical anal-
ysis naturally returns such a sequence, the behavior reports
obtained from ADSandbox can be partitioned into words us-
ing whitespace characters. For both analysis types, we move
a �xed-length window over the words of each sequence and
extract subsequences of q words at each position, so-called q-
grams. ¿e following example shows the extraction of q-grams
with q = 3 for a short snippet of the static analysis,

ID = ID + NUM

Ð→ {(ID = ID),(= ID +),(ID + NUM) }.

As a result of this extraction, each analysis report is repre-
sented by a set of q-grams, which re�ect short patterns of its
content. To establish a map from these patterns to a vector
space we associate each q-gramwith one dimension in the vec-
tor space. Formally, this vector space is de�ned using the set
S of all possible q-grams, where the mapping for an analysis
report x is given by ϕ ∶ x → (ϕs(x))s∈S with

ϕs(x) =
⎧⎪⎪⎨⎪⎪⎩

1 if x contains the q-gram s,
0 otherwise.

¿e function ϕmaps a report x to the vector spaceR∣S∣, such
that all dimensions associated with q-grams contained in x are
set to one and all others are zero. Note that although the in-
duced vector space is high-dimensional, its sparse structure
still allows for very e�cient computations [see 23].

2.3 Learning-based Detection

¿e geometric representation of the analysis reports enables us
to apply techniques from the domain of machine learning for
generating detection models, instead of manually cra ing de-
tection rules. In particular, Cujo exploits the power of Support
Vector Machines (SVM) [26] that are known for very e�ective
and robust learning in various applications.

w

φ(x)

+

−

Figure 5: Hyperplane
with maximal margin.

Given vectors of two classes as
training data, an SVM learns a hy-
perplane in the vector space that
separates the two classes with max-
imummargin. In the case of Cujo,
these classes correspond to analy-
sis reports of benign (−) and ma-
licious (+) JavaScript code, as de-
picted in Figure 5.
Formally, an SVM learns a detection model by determining

a vectorw and bias b, specifying the direction and o�set of the
maximum-margin hyperplane. ¿e detection function f of an
SVM is given by

f(x) = ⟨ϕ(x),w⟩ + b = ∑
s∈S
ϕs(x) ⋅ws + b.

and returns the orientation of ϕ(x) with respect to the hyper-
plane. ¿at is, f(x) > 0 indicatesmalicious activity in the anal-
ysis report x and f(x) ≤ 0 corresponds to benign data. In prac-
tice, this computation can be carried out very e�ciently with
a median run-time below 0.2 ms per report [24]. For large-
scale learning of detection models, Cujo makes use of Lib-
Linear [12], a fast SVM library that enables to train detection
models from 100,000 web pages in 120 seconds for dynamic
analysis and in 50 seconds for static analysis.
¿e learning-based detection completes the design of Cujo.

As illustrated in Figure 1, Cujo uses two independent process-
ing chains for static and dynamic code analysis, where an alert
is reported if one of the detection models indicates an attack.
¿is combined detection renders evasion of Cujo di�cult, as
it requires the attacker to cloak his attacks fromboth, static and
dynamic analysis.

3 Training Architecture

So far we have seen how a learning-based detector for mali-
cious JavaScript code can be constructed. To ensure a long-
term protection, however, a detector needs to be regularly up-
dated and trained on benign and malicious JavaScript code.
Previous work has largely ignored this need for retraining and
evaluated detectors “in vitro” using manually collected sam-
ples [e.g. 5, 13, 24]. In practice, retraining needs to be repeated
regularly “in vivo” and automaticmeans for collecting and san-
itizing training data are crucial for operating a learning-based
detector. As a remedy, we introduce an architecture for auto-
matically retraining Cujo and other learning-based detectors
in this article.

3

Emulation

Sanitization

Training

Crawlers

Sensors Malicious
JavaScript

Benign
JavaScript

Learned
DetectorInternet

Data verificationData aquisition Learning stage

Emulation

Sanitization

Training of
detector

Crawlers

Sensors Malicious
JavaScript

Benign
JavaScript

Detection
modelInternet

Figure 6: An architecture for retraining Cujo.

Figure 6 shows a schematic overview of our training archi-
tecture. ¿e architecture contains three layers of components,
which account for the acquisition of data, its veri�cation, and
the learning process. In particular, the veri�cation of collected
data is a critical issue for automatic retraining. First, malicious
code hidden in benign web pages needs to be identi�ed and
removed. Second, benign code accidentally added as attacks
needs to be �ltered from the malicious data.

3.1 Data Acquisition

¿e �rst layer of the architecture is designed for automatically
collecting potentially benign and malicious JavaScript code.
¿is task is accomplished using di�erent realizations of so-
called crawlers and sensors.
Crawlers are used to retrieve benignweb pages. For this pur-

pose, crawlers regularly query rankings and listings of popular
web pages and download large sets of corresponding JavaScript
code. In our current implementation we randomly sample
from the Alexa ranking1 which lists the top 1million web pages
according to daily visitors and page views. Popular web pages
are not guaranteed to be attack-free—in fact they are frequent
targets of web-based attacks. However, by visiting a large sam-
ple of popular web pages, say 20.000 per day, the fraction of
contained attacks can be constrained, such that the majority of
downloaded code is benign.
Sensors take on the opposite task and retrieve malicious

JavaScript code fromweb pages. To this end, sensors either ac-
tively seek for malicious activity using low-interaction honey-
clients [3, 14, 19] or passively acquire attacks using monitoring
techniques, such as spamtraps. Moreover, databases of mali-
cious URLs maintained by community projects, such as Har-
mur [17], also provide a valuable source for malicious code.
Similarly to crawlers, the code downloaded by sensors is not
guaranteed to be malicious and thus the veri�cation of all col-
lected data is a prerequisite for automatic retraining.

3.2 Data Verification

In the second layer of the architecture the collected data is ver-
i�ed using di�erent techniques. In particular, we build on re-
cent work from the areas of honeypots and intrusion detection

1Alexa Top Sites, http://www.alexa.com/topsites

systems to devise an automatic veri�cation of benign and ma-
licious JavaScript code.
To determine whether a collected code sample is malicious

we employ di�erent o�ine analysis techniques, which are ac-
curate in identifying malicious activity but too ine�cient for
directly protecting web clients. Common implementations for
o�ine analysis include honeypots that operate in a virtual ma-
chine, such as Capture-HPC [27] and Shelia [25], and so-
phisticated sandboxes, such as Jsand [5] and Rozzle [16]. By
combining diverse analysis techniques, we obtain a more ac-
curate prediction of whether a code sample is malicious. Al-
thoughwe cannot computationally verifymaliciousness in this
setting, we get a clear indication for unwanted JavaScript code
that should be kept away from web clients.
While there are several techniques for identifying malicious

patterns in code, there exist no tools for testing whether a code
snippet is benign—simply due to the sheer diversity and com-
plexity of JavaScript code in the Internet. As a remedy, we
implement the concept of sanitization, originally proposed for
network anomaly detection [6]. We proceed by partitioning
the benign data into several small blocks and train a detector
on each of these blocks. ¿e learned detectors are then applied
to the remaining blocks, such that each code sample is judged
by several detectors. Using a majority voting, we can identify
code that is not benign with high probability.
¿is sanitization succeeds in removing unknown attacks

from the collected data for two reasons: First, the majority of
acquired data is benign and most detectors still make correct
predictions. Second, the unknown attacks are not uniformly
distributed over all blocks and thus each detector is only in�u-
enced by a subset of malicious code [see 6].

3.3 Learning Stage

Once a data set of malicious and benign code is available, a
learning-based detector can be automatically trained using the
data collected in a �xed time period, such as a week. Similarly,
parameters of the detector, e.g. for feature extraction, can be
tuned using cross-validation on the collected data [2]. While
our architecture has been primarily devised for Cujo, its de-
sign is agnostic to the detector and, for example, also suitable
for training Zozzle and IceShield.

4

4 Empirical Evaluation

We proceed to study the ability of Cujo to detect malicious
JavaScript code in practice. So we compare Cujo with re-
lated approaches and analyze how the proposed architecture
for training enables learning in the presence of attacks. A com-
prehensive evaluation of Cujo, including a detailed study of its
run-time behavior, is provided by Rieck et al. [24].
For the evaluation, we consider a data set of 200,000 be-

nign web pages corresponding to the top sites listed by Alexa,
as detailed in Section 3.1. To ensure that our initial train-
ing data is not already contaminated with malicious code, we
scan the data for common attack strings and use the Google-
SafeBrowsing service to sort out potential attacks. As mali-
cious data set, we use a collection of 609 real JavaScript attacks
that has been gathered using the Wepawet services over a pe-
riod of two years [see 5, 24].

4.1 Detection Performance

In our �rst experiment we analyze the ability of Cujo to detect
unseen JavaScript attacks. Hence, we split our benign and ma-
licious data set into two parts, a training partition (75%) and a
testing partition (25%). Cujo is trained and calibrated on the
training partition, whereas the detection performance is mea-
sured on the testing partition. To get a statistically sound esti-
mate of the detection performance this procedure is repeated
10 times and average results are reported.

Cujo detector TP rate FP rate
static only 90.2% 0.001%
dynamic only 86.0% 0.001%
static & dynamic 94.4% 0.002%

Table 1: Detection performance of Cujo.

Table 1 presents the detection performance of Cujo in
terms of true-positive rate (ratio of detected attacks) and false-
positive rate (ratio of benign web pages �agged as malicious).
When looking at the static anddynamic analysis of Cujo alone,
we note that both already identify the majority of attacks. By
combining both analyses, the performance of Cujo is further
boosted, reaching a detection of 94%. Moreover, Cujo attains
a false-positive rate of 0.002%, corresponding to just 2 false
alarms in 100,000 visited web pages.

Anti-virus scanners TP rate FP rate
ClamAV 35.0% 0.000%
Avira AntiVir 70.0% 0.087%

Table 2: Detection performance of two anti-virus scanners.

For comparison, the detection performance of two regular
anti-virus scanners is shown in Table 2. Both scanners fail to
accurately identify the JavaScript attacks in our experiment, al-
though they have been equipped with the latest signatures.

Learning-based detectors TP rate FP rate
JSand [5] 99.8% 0.013%
Zozzle [7] 90.8% 0.000%
Prophiler [4] 99.2% 9.800%
IceShield [13] 98.0% 2.179%

Table 3: Detection performance of other learning-based detectors. The
results have been taken from the respective publications.

Results for the detection performance of other learning-
based detectors are shown in Table 3. ¿ese results have been
obtained on di�erent data sets and thus only larger di�er-
ences can be considered for comparison. ¿e best results are
achieved by Jsand, an anomaly detector intergrated in the
Wepawet service. However, Jsand is designed for o�line anal-
ysis and not capable of detecting attacks in real-time. From the
detectors suitable for on-line application, Cujo and Zozzle
perform on par and attain the best performance, where Zoz-
zle identi�es slightly less attacks with a lower false-positive
rate. In comparison, Cujo is among the best approaches for
identifying and stopping malicious JavaScript code in the In-
ternet.

4.2 Robustness

For a reliable day-to-day operation, learning-based detectors
need to be regularly retrained. In Section 3 we have introduced
an architecture capable of automatically collecting and verify-
ing training data. We now empirically evaluate the e�cacy of
this architecture and study how the presence of unknown at-
tacks impacts the detection performance of Cujo.
For this experiment, we add 50% of the JavaScript attacks

to the training data and label them as benign code, thereby
generating a contaminated data set. ¿is setup resembles al-
most a worst-case scenario, as some attacks from the testing
partition are now present in the training data as benign code.
For the evaluation, we either train Cujo directly on the con-
taminated data or apply the sanitization procedures outlined
in Section 3.2 before training. We then proceed as in the pre-
vious experiment.

Cujo detector TP rate FP rate
trained on clean data 94.4% 0.002%
trained on contaminated data 87.9% 0.001%
trained on sanitized data 93.2% 0.003%

Table 4: Impact of unknown attacks on detection performance.

Table 4 shows results of this experiment. ¿e unknown at-
tacks in the training data impact the true-positive rate indicat-
ing that Cujo is e�ected by the contaminated data. With the
sanitized training data, however, Cujo performs almost iden-
tical to the previous experiment, although half of the attacks
are labeled as benign data before sanitization. ¿is result con-
�rms that the proposed architecture enables accurate training
of detectors, even in presence of unknown attacks.

5

5 Related Work

Since the �rst discovery of web-based attacks, the detection
and mitigation of this threat has been a vivid area of security
research. Several approaches have been devised for observing,
analyzing, and detecting JavaScript attacks, for example, us-
ing high-interaction honeypots [21, 27, 29] and low-interaction
honeypots [3, 14, 19]. Similarly, di�erent systems have been
proposed for o�ine analysis of JavaScript code [4, 5, 15]. While
all these approaches are e�ective in detecting malicious code,
they require considerable analysis time and thus are inapplica-
ble for protecting users at run-time.
Concurrently to these o�ine approaches, other work has

studied the detection and prevention of certain attack types,
such as heap-spraying attacks [11, 22] and drive-by down-
loads [18]. ¿is work rests on identifying symptoms of particu-
lar attacks, for example, the presence of shellcode in JavaScript
strings. Although these approaches mitigate the threat of web-
based attacks to some extent, they are limited to speci�c attack
types and unable to cope with the evolving domain of mali-
cious JavaScript code.
As a consequence, recent work has studied combining

JavaScript analysis with techniques from machine learn-
ing for deriving automatic defenses. Most notably are the
learning-based detection systems Cujo [24], Zozzle [7], and
IceShield [13]. In this article, we have presented Cujo which
shares many similarities with the other two systems. However,
Cujodi�ers in two key aspects from relatedwork: First, it com-
bines static and dynamic analysis of JavaScript code, whereas,
for example, Zozzle builds on static inspection of code and
IceShield relies on run-timemonitoring only. Second, related
detectors operate from within a web browser and thereby gain
e�cient access to JavaScript code. Cujo is embedded in a web
proxy, which requires more e�ort for processing code, but in
turn enables transparently protecting multiple and heteroge-
neous web clients.

6 Conclusions

In this article we have presented a learning-based detector for
malicious JavaScript code, along with a corresponding train-
ing architecture. Our detector, Cujo, combines a lightweight
static and dynamic analysis for obtaining a holistic view on
JavaScript code. ¿is view enables us to identify malicious pat-
terns in the code as well as the behavior of web pages, such that
malicious content can blocked prior to its delivery to the user.
To operate the detector in practice and to update the underly-
ing detection models we propose a training architecture that
enables to automatically collect malicious and benign code for
training. ¿e architecture builds on recent concepts of honey-
pots and intrusion detection systems for verifying and sanitiz-
ing the collected code automatically.
In an empirical evaluation with 200,000 web pages and

several hundred JavaScript attacks, Cujo signi�cantly out-
performs regular anti-virus tools and enables a detection of

94% of the attacks with only 2 false alarms in 100,000 visited
web pages. ¿e capabilities of the proposed architecture are
demonstrated when attacks are inter-mixed with benign web
pages. In this setting Cujo still identi�es over 93% of the at-
tacks, even if most of these are mixed with benign web pages
during the training process.

Cujo and other learning-based detectors provide a valuable
tool for detecting and blocking malicious JavaScript code. To-
gether with other defenses, such as honeyclients and o�ine
analysis, they enable containing and ultimately stopping the
proliferation of web-based attacks. In line with this goal, we
are currently deploying Cujo and the proposed architecture in
di�erent settings to study its e�cacy in the wild.

References

[1] A. Aho, R. Sethi, and J. Ullman. Compilers Principles,
Techniques, and Tools. Addison-Wesley, 1985.

[2] S. Arlot, A. Celisse, and P. Painleve. A survey of cross-
validation procedures for model selection. Statistics Sur-
veys, 4:40–79, 2010.

[3] A. Büscher, M. Meier, and R. Benzmüller. ¿rowing a
monkeywrench intoweb attackers plans. InProc. of Com-
munications and Multimedia Security (CMS), pages 28–
39, 2010.

[4] D. Canali, M. Cova, G. Vigna, and C. Kruegel. Prophiler:
a fast �lter for the large-scale detection of malicious web
pages. In Proc. of the International WorldWideWeb Con-
ference (WWW), pages 197–206, Apr. 2011.

[5] M. Cova, C. Kruegel, and G. Vigna. Detection and
analysis of drive-by-download attacks and malicious
JavaScript code. In Proc. of the International World Wide
Web Conference (WWW), 2010.

[6] G. Cretu, A. Stavrou, M. Locasto, S. Stolfo, and
A. Keromytis. Casting out demons: Sanitizing training
data for anomaly sensors. In Proc. of IEEE Symposium on
Security and Privacy, pages 81–95, 2008.

[7] C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert. Zozzle:
Fast and precise in-browser javascriptmalware detection.
In Proc. of USENIX Security Symposium, 2011.

[8] M. Daniel, J. Honoro�, and C. Miller. Engineering heap
over�ow exploits with JavaScript. In Proc. of USENIX
Workshop on O�ensive Technologies (WOOT), 2008.

[9] A. Dewald, T. Holz, and F. Freiling. Adsandbox: Sand-
boxing JavaScript to �ght malicious websites. In Proc.
of ACM Symposium on Applied Computing (SAC), pages
1859–1864, 2010.

[10] M. Egele, E. Kirda, and C. Kruegel. Mitigating drive-
by download attacks: Challenges and open problems.

6

In Proc. of Open Research Problems in Network Security
Workshop (iNetSec), 2009.

[11] M. Egele, P. Wurzinger, C. Kruegel, and E. Kirda. De-
fending browsers against drive-by downloads: Mitigat-
ing heap-spraying code injection attacks. In Detection
of Intrusions and Malware & Vulnerability Assessment
(DIMVA), pages 88–106, 2009.

[12] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-
J. Lin. LIBLINEAR: A library for large linear classi�ca-
tion. Journal of Machine Learning Research (JMLR), 9:
1871–1874, 2008.

[13] M. Heiderich, T. Frosch, and T. Holz. IceShield: Detec-
tion and mitigiation of malicious websites with a frozen
dom. In Recent Adances in Intrusion Detection (RAID),
Sept. 2011.

[14] A. Ikinci, T. Holz, and F. Freiling. Monkey-spider: De-
tecting malicious websites with low-interaction honey-
clients. In Proc. of Conference “Sicherheit, Schutz und Zu-
verlässigkeit” (SICHERHEIT), pages 891–898, 2008.

[15] S. Karanth, S. Laxman, P. Naldurg, R. Venkatesan, J. Lam-
bert, and J. Shin. ZDVUE: Prioritization of javascript at-
tacks to surface newvulnerabilities. InProc. of CCSWork-
shop on Security and Arti�cial Intelligence (AISEC), Oct.
2011.

[16] C. Kolbitsch, B. Livshits, B. Zorn, and C. Seifert. Rozzle:
De-cloaking internet malware. Technical Report MSR-
TR-2011-94, Microso Research, Aug. 2011.

[17] C. Leita and M. Cova. HARMUR: Storing and analyzing
historic data onmalicious domains. In Proc. of Workshop
on Building Analysis Datasets and Gathering Experience
Returns for Security (BADGERS), Apr. 2011.

[18] L. Lu, V. Yegneswaran, P. A. Porras, andW. Lee. BLADE:
An attack-agnostic approach for preventing drive-by
malware infections. In Proc. of Conference on Com-
puter and Communications Security (CCS), pages 440–
450, Oct. 2010.

[19] J. Nazario. A virtual client honeypot. In Proc. of USENIX
Workshop on Large-Scale Exploits and Emergent ¿reats
(LEET), 2009.

[20] N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and
N.Modadugu.¿e ghost in the browser: Analysis of web-
based malware. In Proc. of USENIX Workshop on Hot
Topics in Understanding Botnets (HotBots), 2007.

[21] N. Provos, P.Mavrommatis, M. A. Rajab, and F.Monrose.
All Your iFRAMEs Point to Us. In Proc. of USENIX Secu-
rity Symposium, 2008.

[22] P. Ratanaworabhan, B. Livshits, and B. Zorn. Noz-
zle: A defense against heap-spraying code injection at-
tacks. Technical Report MSR-TR-2008-176, Microso
Research, 2008.

[23] K. Rieck and P. Laskov. Linear-time computation of sim-
ilarity measures for sequential data. Journal of Machine
Learning Research, 9(Jan):23–48, Jan. 2008.

[24] K. Rieck, T. Krueger, and A. Dewald. Cujo: E�cient de-
tection and prevention of drive-by-download attacks. In
26th Annual Computer Security Applications Conference
(ACSAC), pages 31–39, Dec. 2010.

[25] J. R. Roaspana. SHELIA: a client honeypot for client-side
attack detection. Master’s thesis, Vrije Universiteit Ams-
terdam, 2007.

[26] B. Schölkopf and A. Smola. Learning with Kernels. MIT
Press, Cambridge, MA, 2002.

[27] C. Seifert and R. Steenson. Capture – honeypot
client (Capture-HPC). Victoria University of Welling-
ton, NZ, https://projects.honeynet.org/
capture-hpc, 2006.

[28] Symantec. Symantec Internet Security ¿reat Report:
Trends for 2010. Vol. 16, Symantec, Inc., 2011.

[29] Y.-M.Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski,
S. Chen, and S. T. King. Automated web patrol with
strider honeymonkeys: Finding web sites that exploit
browser vulnerabilities. In Proc. of Network and Dis-
tributed System Security Symposium (NDSS), 2006.

7

