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Abstract

With our increasing reliance on the correct functioning of computer systems, identifying
and eliminating vulnerabilities in program code is gaining in importance. To date, the
vast majority of these flaws are found by tedious manual auditing of code conducted
by experienced security analysts. Unfortunately, a single missed flaw can suffice for an
attacker to fully compromise a system, and thus, the sheer amount of code plays into the
attacker’s cards. On the defender’s side, this creates a persistent demand for methods
that assist in the discovery of vulnerabilities at scale.

This thesis introduces pattern-based vulnerability discovery, a novel approach for identi-
fying vulnerabilities which combines techniques from static analysis, machine learning,
and graph mining to augment the analyst’s abilities rather than trying to replace her.
The main idea of this approach is to leverage patterns in the code to narrow in on po-
tential vulnerabilities, where these patterns may be formulated manually, derived from
the security history, or inferred from the code directly. We base our approach on a novel
architecture for robust analysis of source code that enables large amounts of code to be
mined for vulnerabilities via traversals in a code property graph, a joint representation
of a program’s syntax, control flow, and data flow. While useful to identify occurrences
of manually defined patterns in its own right, we proceed to show that the platform
offers a rich data source for automatically discovering and exposing patterns in code. To
this end, we develop different vectorial representations of source code based on symbols,
trees, and graphs, allowing it to be processed with machine learning algorithms. Ulti-
mately, this enables us to devise three unique pattern-based techniques for vulnerability
discovery, each of which address a different task encountered in day-to-day auditing by
exploiting a different of the three main capabilities of unsupervised learning methods.
In particular, we present a method to identify vulnerabilities similar to a known vul-
nerability, a method to uncover missing checks linked to security critical objects, and
finally, a method that closes the loop by automatically generating traversals for our code
analysis platform to explicitly express and store vulnerable programming patterns.

We empirically evaluate our methods on the source code of popular and widely-used open
source projects, both in controlled settings and in real world code audits. In controlled
settings, we find that all methods considerably reduce the amount of code that needs
to be inspected. In real world audits, our methods allow us to expose many previously
unknown and often critical vulnerabilities, including vulnerabilities in the VLC media
player, the instant messenger Pidgin, and the Linux kernel.
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1
Introduction

As we increasingly embrace the convenience of information technology, the security of
computer systems is becoming a growing concern. To provide it, secure network proto-
cols, architectures and cryptographic algorithms are crucial. Unfortunately, the success
of these efforts is repeatedly undermined by subtle flaws in implementations. A partic-
ular prominent and absurd example of such a flaw is the Heartbleed vulnerability [29]
found in the cryptographic library OpenSSL in April 2014. While the library provides
the basis for encrypted transmission of Web pages on a large number of systems, a single
missing sanity check in its code turned it into a gaping security hole. In effect, attackers
gained the ability to read sensitive information from an estimated 24%-55% of the most
popular one million websites serving encrypted pages [38], while ironically, servers not
offering encryption remained immune. This highlights the central role the quality of the
underlying program code plays for the security of computer systems.

In total, efforts for the discovery of these kinds of vulnerabilities result in the disclosure
of between 4600-6800 vulnerabilities per year, as measured over the last eight years [140].
While this number may seem high at first, these vulnerabilities are distributed over the
entire software landscape and are of varying severity. Attackers interested in compro-
mising specific targets therefore find a much smaller amount of vulnerabilities at their
disposal. For example, only 31 critical vulnerabilities were disclosed in the Firefox Web
browser in 2014 [see 99], some of which are relevant only for few versions of the program.
In effect, vulnerabilities have become a valuable good, leading to the establishment of
vulnerability markets in recent years, where previously unknown flaws and accompany-
ing exploits are sold for hundreds of thousands of dollars [47].

To date, the vast majority of critical vulnerabilities is found by manual analysis of code
by security experts. This includes recent high impact vulnerabilities such as Heart-
bleed [see 121], the Shellshock vulnerability in the GNU bash shell [see 23, 105], as well
as the recently discovered Stagefright vulnerabilities that allow attackers to remotely
control Android phones by sending crafted multimedia messages to victims. In fact,
the role professional security analysts play in the discovery of critical vulnerabilities by
manually reviewing code cannot be overstated. In all of its stages, vulnerability discov-
ery is a tedious task, requiring an intimate knowledge of the target software system to
be gained, possible attack scenarios to be devised, and finally, flaws that can be lever-
aged to bypass security measures to be identified. The difficulty of these tasks creates a
persistent demand for new methods to assist analysts in their daily work.

1



Introduction 2

In the spirit of theoretical computer science and its roots in mathematics, academic work
in the area has mostly focused on the development of formal and exact methods such as
model checking [see 11] and symbolic execution [see 18, 132], which allow properties of
the code to be verified in an automated deductive process in the flavor of a mathematical
proof. While demonstrated to be powerful in the lab environment [see 17, 20, 133, 155],
these approaches are both hard to scale to the large software projects we face today, and
equally hard to integrate into the code auditing process [58]. Moreover, their success
ultimately depends on exact modeling of programming language semantics, including
effects dependent on the execution environment and compiler. Considering the complex
composition of technologies and languages in today’s systems, this is a daunting task. In
addition, few methods developed in academic research strive to assist analysts in their
work, and rather aim for full automation, a considerably more difficult, and possibly
hopeless task. Overall, it may not come as a surprise that results of academic work in
the area play only a limited role in real-world vulnerability identification to date [58, 168].

This work presents pattern-based vulnerability discovery, a contrasting approach for the
identification of vulnerabilities that employs robust and inherently inexact pattern recog-
nition and machine learning techniques to augment the analyst’s abilities in day-to-day
auditing rather than trying to replace her. We thus deliberately depart from exact anal-
ysis and instead adopt an engineering perspective to view vulnerability identification
as a problem involving, metaphorically speaking, the discovery of a signal present in a
noisy data stream. This change in illumination is performed to find how computers can
assist analysts in settings where the sheer amount of code prohibit exact analysis due
to lack of time and resources. Arguably, these settings constitute the rule rather than
the exception. In this first chapter, we briefly introduce the reader to the problem of
vulnerability discovery, as well as the techniques offered by machine learning that we
leverage to assist analysts in this tedious process. With this background information at
hand, we proceed to introduce pattern-based vulnerability discovery, the approach pre-
sented in this thesis. Finally, we give an overview of the contributions made and take
the reader on a quick tour of the remaining chapters.

1.1 Vulnerability Discovery

We begin by introducing the reader to vulnerability discovery, the task that all work
presented in this thesis ultimately aims to simplify. To this end, we first briefly introduce
the concept of vulnerabilities and discuss their manifestation by example.

1.1.1 What are Vulnerabilities?

The Internet Security Glossary (IETF RFC 4949) [136, page 333] defines a vulnerability
to be a flaw or weakness in a system’s design, implementation, or operation and man-
agement that could be exploited to violate the system’s security policy, and goes on to
state that a system can have three types of vulnerabilities: (a) vulnerabilities in design or
specification; (b) vulnerabilities in implementation; (c) vulnerabilities in operation and
management.
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In this work, we focus on vulnerabilities in software, and hence, the systems considered
are software systems. In addition, we exclude vulnerabilities in operation and man-
agement from our analysis to concentrate entirely on those flaws visible and fixable in
program code, that is, vulnerabilities in a program’s design and implementation. With
these restrictions in mind, we note that vulnerabilities are defined to be a subset of
flaws, making clear that discovering flaws can be considered a first step in vulnerability
discovery. However, narrowing in on those flaws that violate security policies is equally
important. Therefore, in stark contrast to methods for the discovery of defects devel-
oped in software engineering [e.g., 17, 53, 84], the focus lies on identifying flaws that
are highly probable to provide the attacker with a certain gain, and that can in fact be
triggered by an attacker.

Finally, the definition given by the Internet Security Glossary relies on that of security
policies. The corresponding definition, however, is lengthy and abstract, making clear
in particular that whether a flaw qualifies as a vulnerability or not is highly dependent
on the program and its role in an organization. To focus on vulnerabilities typical for
many programs, we therefore adopt an attacker perspective, resisting the temptation
of defining security policies for our targets in detail, and instead, restricting ourselves
to security policies that are a reasonable minimum for most systems. In particular, we
consider the following policies.

• Code execution. An attacker capable of providing input data to be processed
by the target program should not gain the ability to execute arbitrary code in the
context of the program. For example, the client of a web server should not be
able to execute arbitrary code in the context of the web server, and the user of a
system call should not be able to execute code with kernel privileges.

• Information disclosure. Second, attackers should not gain the ability to read
information the system does not intend to expose to them. For example, the at-
tacker should not be able to read raw memory from a remote program or download
arbitrary files from the system.

• Denial of service. It should not be possible for an attacker to terminate the
execution of a system running on a remote host or serving multiple users. An ex-
ception is made for administrative users. As an example, it should not be possible
for the user of an instant messenger to shut down the messaging server, nor should
a non-privileged user of an operating system be able to crash the kernel.

While vulnerabilities constitute a non-trivial property of code, and thus, finding a gen-
eral and effective procedure to detect these flaws is not possible as expressed in Rice’s
Theorem [see 115], we can at least provide a model that captures important properties
of potentially vulnerable code, as we do in the following.

1.1.2 Characterizing Vulnerable Code

The vast majority of defects in code are not security relevant, and therefore, they are not
vulnerabilities. To design methods specifically to assist in the discovery of vulnerabilities
therefore requires us to identify those properties of code typical for these specific types
of defects. We identify the following key properties of code that apply to a large number
of vulnerabilities plaguing software today.
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• Sensitive operation. First, a vulnerability must enable an attacker to carry out
a sensitive operation with the potential of enabling her to violate a security policy,
whether explicitly given, or made apparent only by successful attack. For example,
reading a file from a system’s hard disk is a sensitive operation.

• Attacker control. Second, an attacker must be able to trigger a vulnerability,
that is, she needs to be able to provide input or influence the environment such
that the sensitive operation is executed. With respect to our example, this may
amount to the ability to control the file to read from the hard disk.

• Insufficient validation. Finally, the vulnerability must enable the attacker to
actually cause a violation of the security policy by failing to restrict how the
sensitive operation can be leveraged. In our example, a vulnerability may exist if
the file-read operation can be used to extract arbitrary files from the system, but
may not exist if only files from a certain folder can be read, designated to hold
only non-sensitive information.

This model is influenced by work on taint analysis [see 88, 104, 132], and is generic enough
to capture many types of vulnerabilities, including those typical for Web applications,
but also many types of memory corruption vulnerabilities found in system code.

1 // src/misc/update.c

2 static bool GetUpdateFile( update_t *p_update )

3 {

4 stream_t *p_stream = NULL;

5 char *psz_version_line = NULL;

6 char *psz_update_data = NULL;

7

8 p_stream = stream_UrlNew( p_update->p_libvlc, UPDATE_VLC_STATUS_URL );

9 if( !p_stream )

10 {

11 msg_Err( p_update->p_libvlc, "Failed to open %s for reading",

12 UPDATE_VLC_STATUS_URL );

13 goto error;

14 }

15

16 const int64_t i_read = stream_Size( p_stream );

17 psz_update_data = malloc( i_read + 1 ); /* terminating ’\0’ */

18 if( !psz_update_data )

19 goto error;

20

21 if( stream_Read( p_stream, psz_update_data, i_read ) != i_read )

22 {

23 msg_Err( p_update->p_libvlc, "Couldn’t download update file %s",

24 UPDATE_VLC_STATUS_URL );

25 goto error;

26 }

27 psz_update_data[i_read] = ’\0’;

28

29 stream_Delete( p_stream );

30 p_stream = NULL;

31

32 // [...]

33 }

Figure 1.1: Remote code execution vulnerability in the updater of the popular media
player VLC.

As an example, Figure 1.1 shows a memory corruption vulnerability in an excerpt of
the automatic updater of the popular VLC media player1 (version 2.1.5), uncovered by

1http://www.videolan.org/vlc/

http://www.videolan.org/vlc/
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the author as part of this research. The listing shows around 30 lines of code of a total
of around 556,000 lines of code in VLC. Within these 30 lines, the program reads the
alleged size of the attacker-controlled data stream into the 64 bit integer i read on line
16, and proceeds to call the allocation routine malloc with the argument i read + 1 on
the next line. As on line 21, attacker-controlled data of up to i read byte is copied into
the so allocated buffer, it must be able to hold at least i read bytes to not cause the
buffer to overflow, and it first sight, the code seems to ensure this.

However, it has not been considered that the argument passed to the allocation routine
malloc is of type size t, which is only 32 bit wide on 32 bit platforms. Thus, if i read

is set to be 232 − 1, i read + 1 will be 232, a number that cannot be stored in a 32 bit
integer. To handle this condition, a truncation is performed, such that the amount of
memory requested for allocation is in fact zero bytes. The result is a buffer overflow
that has been proven by the author to allow for arbitrary code execution even with
modern mitigation techniques enabled [see 96, 143]. In this example, attacker control is
established by allowing her to specify the alleged size of the input stream. The sensitive
operation is a copy-operation, and the validation of input is insufficient as more bytes
can be copied into the buffer than it is able to hold. In particular, this allows the attacker
to execute arbitrary code, a violation of a security policy.

As we show in this work, we can mine for vulnerabilities conforming to the abstract
description given thus far. In fact, we can even automatically extract descriptions for
common combinations of attacker-controlled sources, sensitive sinks, and the associated
validation. In addition, it is often possible to deal with cases where identifying both the
attacker-controlled source and the corresponding sink is difficult, but missing security
checks tied to the source or sink alone can be identified.

1.2 Machine Learning

Ultimately, we are interested in obtaining programs that help narrow in on potential
vulnerabilities by exploiting patterns in code. Machine learning methods [see 16, 37, 57]
provide a powerful tool in this setting. In fact, the fundamental idea connecting all
of these methods is that of automatically generating programs from data [34], making
them a natural fit for our problem. For example, one may wish to devise a program
capable of determining for an arbitrary fruit whether it is more likely to be a pear or
an apple. One possibility to achieve this is by writing a set of manual rules, e.g., if the
fruit is red and round, it is an apple. A more elegant solution is to induce such theories
automatically by examining a basket of examples, and subsequently creating a model
that encodes the properties of apples and pears. This model can be used to instantiate
a predictor that implements a generic decision rule as a function of the model. For
example, the predictor may compare the input fruit’s properties to those of apples and
pears as specified by the model, and decide in favor of the fruit type that shares the
larger number of properties. Figure 1.2 illustrates this process.

Applied to vulnerability discovery, we are interested in generating programs that deter-
mine for arbitrary constructs of code how likely it is that they are vulnerable. We do
this by inferring models for vulnerable code from code, and in particular, from samples
of vulnerable and non-vulnerable code.
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Data Learner : Predictor: Model

Figure 1.2: Conceptual view on machine learning

Formally, we can express the predictor we seek as a prediction function f : X → Y
where X is the set of program constructs and, Y is an output space. For example, for
x ∈ X , f(x) may quantify the likelihood that x implements a vulnerability as a real
number between 0 and 1, in which case the output space is [0, 1]. Alternatively, we can
also choose the output space to be a finite set of numbers, e.g., Y = {0, 1}, where 0 and
1 indicate non-vulnerable and vulnerable code respectively.

As previously mentioned, instead of finding the prediction function f directly, we ap-
proach this problem by generating a model θ that encodes the properties of vulnerable
code, and choosing f to be given by fθ, a member of a function family parametrized
by θ. In this formulation, machine learning is an optimization problem where we seek
a model θ from a (possibly infinite) model space Ω, with minimum cost according to a
cost function E : Ω→ R.

1.2.1 Settings in Machine Learning

While the concrete mechanics of finding an optimal model are dependent on the machine
learning method, in all cases, these procedures take into account sample data. At this
point, two settings can be roughly distinguished in terms of the available data: the
supervised and the unsupervised setting. In the supervised setting, we have access to
labeled data, that is, a set of data points from the input domain X along with the desired
output values from Y. In contrast, in the unsupervised setting, only samples from the
input domain X are available without corresponding labels.

Informally, supervised and unsupervised learning methods address two diverging ob-
jectives. On the one hand, supervised learning focuses on approximating the relation
between the input space and the output space. On the other, since in the unsupervised
setting, no knowledge of correct output values for given input values is available, unsu-
pervised learning instead focuses on uncovering structure in the input space, using the
output domain to express it.

For example, based on labeled apples and pears, a supervised algorithm may determine
that shape is a good indicator to distinguish the two categories. An unsupervised al-
gorithm does not have access to these labels, however, it can still determine that there
seem to be two groups of objects that can be distinguished by shape, and indicate this
structure by generating a predictor that maps objects of these groups to labels indicating
their group membership.

While the idea of teaching a computer program to distinguish vulnerable and non-
vulnerable code from labeled examples seems intriguing, it heavily relies on providing
good examples of vulnerable code. Clearly, creating these examples is labor-intense and
worse, many types of vulnerabilities are very program specific, relying on the concrete
programming environment, application programming interfaces, and finally, the pro-
gram’s exposure to attacker-controlled input. Particularly, when considering the limited
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time frame available for external security analysts when reviewing code for vulnerabil-
ities, a method relying on carefully labeled, application-specific samples of vulnerable
code is of little use in practice.

Therefore, our focus in this work is on methods, which are largely unsupervised, and
exploit the structure of the code as-is to narrow in on vulnerabilities while requiring
very little information from the analyst. These algorithms allow us to identify latent
patterns in the data, providing us with means to find compact representations, point
out anomalies, or group data points.

1.2.2 Unsupervised Methods

While there are a multitude of different unsupervised learning algorithms, most address
one or more of the following three core problems.

• Dimensionality Reduction. These techniques can be used to find expressive
features for a data set, denoise the data, and obtain a more compact represen-
tation of it. To this end, dependencies in the data are exploited to project it
into a lower dimensional space where some of the data’s properties are no longer
considered, while others are preserved. In the context of vulnerability discovery,
these techniques can be used to extract programming patterns and enable search-
ing for functions employing similar programming patterns (see Chapter 4), and as
a pre-processing step for subsequent anomaly detection and clustering.

• Anomaly Detection. Unsupervised algorithms for anomaly detection allow de-
viations from patterns in the data to be detected. This is achieved by calculating a
model of normality for the data, or a sub set of the data points, and subsequently
measuring the difference of individual data points to the model. In the context of
vulnerability discovery, this allows us to identify unusual fragments of code that
deviate considerably from an identified pattern. In particular, we review a success-
ful application of anomaly detection for the identification of missing an anomalous
checks in Chapter 5.

• Clustering. Finally, with clustering algorithms, data points can be grouped into
so-called clusters according to their similarity. This can be useful in code analysis
and vulnerability discovery in particular, to obtain summaries of the code base
contents, that is, to decompose the code base into sets of similar code, thereby
allowing entire groups of code to be excluded from analysis. Moreover, cluster-
ing is a first step towards signature generation. We highlight this application in
Chapter 6, where descriptions are generated from clusters of code fragments.

With the necessary background on machine learning algorithms and vulnerability dis-
covery, we are now ready to introduce the core idea that connects the methods proposed
in this thesis: pattern-based vulnerability discovery.
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Figure 1.3: Schematic depiction of the three main techniques of unsupervised learning:
dimensionality reduction (left), anomaly detection (middle), and clustering (right)

1.3 Pattern-Based Vulnerability Discovery

Precise methods of program analysis such as model checking and symbolic execution
provide us with means to reason about confined regions of code in great detail. How-
ever, given the sheer mass of code that requires analysis to ensure secure operation of
our computing infrastructure, and the vast amount of possible program properties to
check, this ability is arguably secondary, in comparison to that of identifying interesting
locations in the code for detailed inspection in the first place.

Taking on this perspective, vulnerability discovery becomes a search problem at scale,
requiring us to expose needles in a haystack, with the additional difficulty that we
cannot specify exactly what a needle looks like in advance. The idea of turning towards
techniques for exploratory data analysis as provided by pattern recognition and machine
learning, to assist in the discovery of vulnerabilities therefore arises naturally. Pattern-
based vulnerability discovery implements this idea. We use the term to collectively
describe methods that leverage patterns in code to narrow in on potential vulnerabilities.
These patterns may be formulated by the analyst based on domain knowledge, derived
from external data such as vulnerability histories, or inferred from the code directly.

Machine learning plays a crucial role for pattern-based vulnerability discovery. While
these methods lack a deeper understanding of program semantics, they easily outperform
the analyst when tasked with identifying patterns in large amounts of data, both in terms
of speed and precision. However, we do not strive to fully automate the discovery of
vulnerabilities using these methods, and instead employ them to augment the analyst’s
abilities rather than trying to replace her. We thus seek to optimally combine the
strengths of the analyst and the machine, and in particular, allow the analyst to guide
program exploration, and make final security critical decisions. Machine learning thereby
becomes an assistant technology useful in different phases of the analysis.

The challenges for the design of pattern-based techniques for vulnerability discovery are
threefold. First, tasks of the auditing process need to be identified that call for tedious
manual analysis, and would benefit from pattern recognition. Second, a suitable interface
needs to be provided to allow the analyst to interact easily with the tool. In particular,
this interface should make the identified patterns explicit, to allow the analyst to judge,
and possibly refine the results produced by the learner. Finally, efficient data structures
and storage mechanisms need to be identified to allow the learning-based methods to
execute in short time frames on commodity hardware, enabling the analyst to interact
with the system during the auditing process.
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1.4 Thesis Contribution

In this thesis, we explore how unsupervised machine learning techniques can assist in
vulnerability discovery. Driven by common scenarios encountered in day-to-day auditing
of source code, we propose different methods to augment the analyst’s abilities. These
methods not only share conceptual similarities but are also based on a common under-
lying framework for robust code analysis. In summary, the following key contributions
make this possible.

• An architecture for robust code analysis. We present a novel architecture
for robust code analysis, and pattern-based vulnerability discovery in particular.
This architecture combines a novel parsing strategy (refinement parsing), a joint
data structure of program syntax, control flow and data flow referred to as a code
property graph, and a storage mechanism based on graph databases. In addition to
allowing code to be mined for vulnerabilities using concise descriptions encoded as
graph database queries, it forms the technical basis for all methods of vulnerability
discovery presented in this thesis (Chapter 2).

• Embedding of source code in vector spaces. We proceed to develop several
different feature maps to embed source code in vector spaces and thus enable
it to be processed using machine learning algorithms. Moreover, we present a
generic procedure to embed source code represented by code property graphs.
This procedure plays a central role in all of the methods for vulnerability discovery
presented in this thesis and thus connects our methods conceptually (Chapter 3).

• Mining for instances of vulnerable programming patterns. Based on the
presented architecture for robust code analysis and the generic embedding pro-
cedure, we develop a method for discovering instances of programming patterns
related to a known vulnerability. To this end, we employ dimensionality reduction
to analyze code in terms of syntactical patterns, similar to the way latent semantic
analysis finds text documents dealing with similar topics (Chapter 4).

• Mining for deviations from inferred programming patterns. We proceed
to explore how our method for finding syntactically similar code can be extended
to narrow in on vulnerable code by pointing out deviations from programming
patterns via anomaly detection. Based on this idea, we derive a novel method for
the identification of missing checks in source code and demonstrate its ability to
assist in the discovery of missing security critical checks in particular (Chapter 5).

• Explicit representation of programming patterns. Finally, we show how
search patterns that describe taint-style vulnerabilities can be automatically ex-
tracted from source code using clustering techniques. In these special types of
missing check vulnerabilities, attacker controlled data is propagated to a sensitive
operation without undergoing prior validation, a description that matches many
high impact vulnerabilities as we show (Chapter 6).

Supporting source code for these contributions have been made available as open-source.
This is particularly true for the robust code analysis platform Joern developed during
this work, which has been made use of by security professionals in code auditing and
enabled further scientific research on decompilation [161] and authorship attribution [19].
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1.5 Thesis Organization

This thesis consists of seven chapters, six of which remain. The first two chapters
provide the technical and methodological basis for vulnerability discovery via pattern-
based techniques. It is therefore suggested to read these two chapters first. The following
three chapters present concrete methods for pattern-based vulnerability discovery, each
with a focus on one of the three primary problems addressed by unsupervised machine
learning. These chapters can be read in arbitrary order, however, they are ordered
such that the presented methods gradually increase in sophistication. Thus, if in doubt,
reading chapters one after another assures the safest journey. The last chapter concludes.

Chapter 2 introduces our platform for robust code analysis along with background
information on the techniques from compiler construction and graph mining this work is
based on. Moreover, it introduces the code property graph, the primary data structure
employed for robust code analysis in the remainder of this work.

Chapter 3 deals with the problem of embedding source code in vector spaces, a prereq-
uisite for the application of machine learning algorithms for code analysis. In particular,
we discuss a general procedure to embed code property graphs in vector spaces, which
is instantiated by all methods presented in the remaining chapters.

Chapter 4 This chapter deals with the application of dimensionality reduction tech-
niques to vulnerability discovery. In particular, we present a method to automatically
extract programming patterns from source code and identify vulnerabilities similar to
a known vulnerability. We implement this method based on the code analysis plat-
form presented in Chapter 2 and by employing the embedding procedure developed in
Chapter 3.

Chapter 5 We proceed to explore potential applications of anomaly detection to vul-
nerability discovery and present a method to uncover missing security critical checks in
source code automatically. This second method makes use of the method presented in
the previous Chapter but extends it to consider deviations from programming patterns.

Chapter 6 Finally, we present a method for learning explicit representations for vul-
nerabilities given in the form of database queries for our code analysis platform. This
method hinges on clustering algorithms, and thus, it presents an application for the last
of the three major types of unsupervised learning algorithms.

Chapter 7 In this final chapter, the presented work is summarized, its limitations
are discussed, and conclusions are drawn. We close by discussing possible directions for
future research in the area.



2
Graph Mining for Vulnerability Discovery

Discovering vulnerabilities in source code by exploiting meaningful patterns requires a
comprehensive and feature rich representation of code. We cannot expect a system to
learn these patterns automatically if its view on the code does not permit them to be
discovered in the first place. Before we can develop methods for vulnerability discovery
based on machine learning, we therefore need to devise a suitable representation of
code that at least allows us to manually express patterns linked to vulnerabilities. In
addition, we need to ensure that this representation can be robustly extracted from code,
and stored in a suitable way to make mining of large amounts of code possible even on
commodity hardware.

As a solution, this chapter presents our platform for robust source code analysis, which
serves as a foundation for our approach to pattern-based vulnerability discovery and all
the concrete methods proposed in this thesis. In essence, this platform enables large
amounts of code to be analyzed with respect to syntax, control flow and data flow,
and mined using an extensible query language. To this end, we combine classic ideas
from compiler construction, lesser known techniques for analyzing code robustly, and
the emerging technology of graph databases.

Ultimately, this system enables analysts to characterize vulnerabilities as traversals in
a code property graph, a joint representation of a program’s syntax, control flow, and
data flow. These traversals serve as search patterns and can be expressed as queries for
the graph database system. We show that this approach amounts to a powerful tool
for vulnerability discovery by manually crafting search patterns for different types of
vulnerabilities and uncovering 18 previously unknown vulnerabilities in the source code
of the Linux kernel, a mature and frequently audited code base. Moreover, it provides
a loosely defined, flexible language for encoding patterns in code, an idea we further
explore in Chapter 6, where search patterns are derived automatically from code.

We begin by providing a broad overview of our architecture (Section 2.1) and highlight
its key components as well as the way in which analysts can interact with the platform.
We will see that this requires us to adapt exact techniques from program analysis to
perform in a setting where we need to reason under uncertainty. In particular, we discuss
how source code can be parsed robustly and subsequently transformed into intermediate
graph-based program representations (Section 2.2). We continue to show how these rep-
resentations can be combined to create the core data structure for pattern recognition

11
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#include <stdio.h>
...
int foo(...)
{
  ...
}
...

Source Code

Fuzzy Parser

Auditor

Code Property Graph

Graph Database

Figure 2.1: Overview of our architecture for robust code analysis

in large code bases as discussed in this work (Section 2.3). Finally, we illustrate how
graph databases provide us with the machinery necessary to effectively store and pro-
cess programs given in our intermediate representation (Section 2.4). Ultimately, this
provides us with an environment for the development of the pattern-based approaches
discussed in the remainder of the thesis.

2.1 A Code Mining System

Figure 2.1 gives an overview of the resulting architecture. In summary, it combines the
following key techniques to augment the analyst’s abilities.

• Fuzzy Parsing. The first step to robust code analysis is robust, best-effort pars-
ing. We therefore perform approximate, fuzzy parsing of source code based on
the concept of refinement parsing in order to allow analysis of code even when a
working build environment cannot be configured, e.g., for incomplete code, legacy
code or even fragments of code such as software patches (Section 2.2).

• Code Property Graphs. To allow complex patterns in code to be expressed
that combine syntax, control flow and data flow properties, we employ a novel
program representation, the code property graph. This representation can be easily
constructed from the fuzzy parser output (Section 2.3).

• Graph Databases. Storing program representations of large software projects
to make them accessible for pattern mining is challenging. To this end, our archi-
tecture makes use of graph databases, thereby allowing code property graphs to
be queried interactively using expressive query languages (Section 2.4).

The analyst begins by passing source code to the fuzzy parser, which proceeds to generate
a versatile intermediate representation of the code, the code property graph. This graph
is then stored in a graph database, allowing the user to mine the code for vulnerabilities.
Moreover, machine learning techniques for pattern recognition are implemented on the
server side and can be leveraged by the analyst to support her analysis. In the following
sections, we discuss each of these components in greater detail and provide the necessary
background information where required.
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2.2 Fuzzy Parsing

Automatic analysis of source code hinges on the availability of intermediate code rep-
resentations that make program properties explicit. The compiler design and program
analysis literature offer a wealth of such representations, created for different purposes.
We ultimately seek to make as many of these representations accessible to the analyst
as possible, in order to allow vulnerable code to be characterized using expressive and
concise descriptions.

All of these representations are either directly or indirectly created from a program’s
parse tree, making the ability to properly parse source code beforehand a necessity. For
compiled languages such as C or C++ in particular, compiler frontends can often be
instrumented easily to achieve this. Unfortunately, while this approach is sufficient in the
lab environment, it has major shortcomings that prohibit its application for robust code
analysis. The main problem encountered is that compiler frontends are only capable
of generating parse trees if the program’s syntactical structure can be determined with
absolute certainty. Unfortunately, for languages such as C or C++, this is only possible
if it can be resolved whether identifiers refer to the name of a variable or that of a
type [see 60, 73]. This is a reasonable requirement for code compilation, as source code
can only be translated into machine code if it conforms to the language specification,
however, it stands in stark contrast to the notion of robust code analysis as a single
missing header file terminates the process.

The problem of parsing code with missing declarations has been previously studied by
several authors, particularly in the field of reverse engineering [e.g., 10, 73, 75]. In
contrast to the code compilation setting, in reverse engineering, one can assume that
the code is syntactically correct, that is, there exists at least a single language dialect
that the code conforms to. This assumption changes the role of the parser drastically.
It is no longer necessary to check the code for syntactical correctness, instead, we are
interested in determining as much of the code’s structure as possible given incomplete
information.

We solve this problem by developing a fuzzy parser based on a novel parsing called
refinement parsing (see Section 2.2.1). In contrast to exact parsers, the parse trees
generated by fuzzy parsers vary in the amount of detail they expose about program
constructs depending on the parser’s ability to recognize the code. However, as we will
see in the following sections, useful representations can be generated from code even if
not all details of the program are clear.

Figure 2.2 gives an overview of the representations we can generate based on the fuzzy
parser output, and highlights their dependencies. We begin by analyzing program syntax

CST

AST CFG DT

PDTPDG

Figure 2.2: Dependencies between program representations.



Graph Mining for Vulnerability Discovery 14

by constructing the concrete syntax tree (CST) or parse tree (bottom left), which is first
translated into an abstract syntax tree (AST) (upper left). To analyze the program’s
control flow, we generate a control flow graph (CFG) from the abstract syntax tree.
Based on the information it contains, we can determine control- and data dependencies
as expressed by the dominator tree (DT), the post-dominator tree (PDT), and finally,
the program dependence graph (PDG), which is constructed by combining information
from the control flow graph and the post dominator tree.

In the following, we discuss how syntax, control flow, and program dependencies are
expressed by these representations and how they can be created from the fuzzy parser’s
output. However, before we do so, the concept of refinement parsing needs to be intro-
duced in order to understand how parse trees can be generated even when code is only
understood partially.

2.2.1 Refinement Parsing

The main idea of refinement parsing is to parse code in multiple stages, where each stage
increases the level of detail considered. For example, in a first stage, only function and
class definitions may be identified without parsing contents in detail. A second stage
parser may then subsequently try to analyze function content in order to determine
statements. The advantage of this strategy when parsing incomplete code is clear: while
it may not always be possible to correctly parse every last detail of a function, we may
at least be able to recognize its coarse structure, and if we can, refinement parsing will.

The exact parsing stages implemented by the refinement parser are language dependent.
For the imperative languages C and C++, we implement the following three parsing
stages as island grammars for the ANTRLv4 parser generator [106].

• Module Level Parser. The first stage parser only recognizes the coarse struc-
ture of a module, that is, grouping constructs such as functions, namespaces, and
classes, as well as top-level variable declarations. Only little is demanded from
the grouped contents namely that it is correctly nested, meaning that for each
opening curly bracket, a corresponding closing curly bracket exists. To identify
functions nested in class definitions or namespaces, we pass the contents of classes
and namespaces to a new instance of the module-level parser, while function con-
tent is passed to the function parser.

• Function Parser. The function parser coarsely identifies program constructs
that influence control flow within a function, which, in C/C++ are given by pro-
gram statements. This includes jump statements such as goto, continue, and break,
selection statements such as if -statements, and switch-statements, as well as iter-
ation statements such as for-, while-, and do-loops. Analogously to the handling
of function content by the module parser, the function parser demands little from
statements, namely, that they are correctly terminated via semicolons or, in the
case of conditions, correctly nested inside brackets.

• Statement Parser. Finally, the statement parser analyzes statements to decom-
pose them into expressions, a prerequisite to reasoning about statement semantics
in subsequent analysis. For example, we thus determine function calls for inter-
procedural analysis, as well as assignment operations for data-flow tracking. In
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Code = [FunctionDef | Water ]*;

FunctionDef = ReturnType? FunctionName FunctionParamList CompoundStmt;

...

CompoundStmt = "{" Content* "}";

Content = ANY_TOKEN_BUT_CURLIES | CompoundStatement;

Water = ANY_TOKEN;

Figure 2.3: An excerpt of an island grammar for recognition of C functions

practice, we have merged the grammars of the function parser and the statement
parser, however, it is worth pointing out that control flow analysis can be per-
formed based on a function parser alone.

Fuzzy parsers based on island grammars as proposed by Moonen [98] offer a particu-
larly elegant solution to implementing parser stages. The main idea of his approach is
captured in the definition of island grammars:

“An island grammar is a grammar1 that consists of detailed productions describing cer-
tain constructs of interest (the islands) and liberal productions that catch the remainder
(the water)” [98].

This idea cannot be applied directly in our setting since we are actually interested in all
constructs we can possibly recognize in the input stream, and hence, the island grammar
degenerates into a full-fledged grammar in the limit. However, we can modify this idea
slightly and instead create a chain of parsers, each of which focus on certain aspects
of program constructs while being liberal with respect to all others. As an example,
consider an island grammar for recognizing function definitions. Figure 2.3 shows its
productions in Extended Backus-Nauer Form (EBNF), a standard notation for context
free grammars [137].

The first line of this sample grammar already highlights that island grammars are am-
biguous by definition. The production expresses that the designated start symbol Code
may be expanded into a sequence of arbitrary length where each element is either a func-
tion definition (symbol FunctionDef) or Water. Since Water matches an arbitrary token
(line 6), any production containing Water as one of its alternatives becomes ambiguous.
This ambiguity is inherent to the approach and must be addressed by introducing ex-
ternal information, namely, that the non-terminal Water may only be considered once
all other alternatives are known not to be applicable. Fortunately, the parser algorithm
implemented by the ANTLRv4 parser generator resolves such ambiguities naturally,
simply by matching non-terminals in the order, in which they are specified, and hence,
the Water non-terminal is considered only if all other non-terminals cannot be matched.
The production thereby implements a default “catch-all” rule.

Line 2 describes function definitions in detail, stating that it begins with an optional
return type, followed by a mandatory function name and function parameter list, fol-
lowed by a compound statement. However, in contrast to a complete grammar for C,
only the bare minimum of requirements for compound statements are formulated (line
4), their correct nesting. This is achieved by defining function content to be a sequence
of arbitrary length where each element is either an arbitrary non-curly token or another
compound statement, guaranteeing that each opening curly is eventually closed before
the final closing curly.

1The term grammar is used as a shorthand for context-free grammar here [see 1, chapter 2]
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The advantage of using such island grammars for fuzzy parsing as compared to hand-
written fuzzy parsers is (a) a clean and compact formulation of recognized language
constructs and (b) enforced separation of parsing from all other components of the
system2. A drawback is a possibly increased execution time when compared to hand-
written parsers as language-specific optimizations are not as easy to introduce.

2.2.2 Exposing Program Syntax

Narrowing in on vulnerabilities is often already possible based on program syntax alone.
In this context, syntax trees are a useful tool to characterize syntactical patterns, as
they faithfully model how language constructs are nested and chained to form programs.
Moreover, these trees are the direct output of the parser and hence, they form the basis
for the creation of all other representations considered in this work. We now briefly
illustrate how parse trees are generated by the parser and discuss their transformation
into abstract syntax trees, a simplified and normalized syntax tree better suited for
static analysis.

1 void foo()

2 {

3 int x = source();

4 if (x < MAX)

5 {

6 int y = 2 * x;

7 sink(y);

8 }

9 }

Figure 2.4: Running example of a code listing [162]

In the following, and throughout the rest of the chapter, let us consider the input
program shown in Figure 2.4. While chosen to be as simple as possible, this example
already allows the strengths and weaknesses of each representation to be made apparent.
In particular, the example shows a function named foo, which reads input into a variable
x by calling the function source (line 3). This variable is subsequently checked to be
smaller than a constant MAX (line 4) before being used in an arithmetic calculation (line
6) and passed to the function sink (line 7).

2.2.2.1 Parse Trees

Concrete syntax trees, typically referred to simply as parse trees, can be easily generated
as a by-product when parsing code according to a grammar, as for example, the grammar
shown in Figure 2.5. This is achieved by executing the productions of the grammar
to recognize the input, and creating a node for each encountered terminal and non-
terminal. Connecting each node to that of its parent production, we obtain the desired
tree structure.

As an example, Figure 2.6 shows the parse tree of the function foo obtained by applying
our illustrative island grammar from Figure 2.5. The example shows that inner nodes
and leaf nodes correspond to non-terminals and terminals respectively. Starting at

2This is a design in accordance with the principles of language-theoretic security [see 129], albeit the
security of the analysis system is not of central concern in our work.
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CompoundStatement = "{" Stmt* "}";

Stmt = CompoundStatement | Decl | IfBlock | ... | Water;

IfBlock = "(" Pred , ")" Stmt;

...

Decl = TypeName Expr;

Expr = AssignExpr ["," Expr];

Water = ANY_TOKEN;

Figure 2.5: Excerpt of an island grammar for parsing of C function contents (merged
function and statement parser)

the root node (Func), the tree encodes which productions are executed to match the
input program. In this case, a compound statement (CompoundStatement) consisting of
an opening curly bracket followed by a declaration (Decl) and an if-block (IfBlock),
followed by a closing curly bracket are matched. In particular, the example highlights
that the input program is shown with no details omitted, even punctuation characters
are preserved.

FUNC

CMPD

IFDECL

STMTSTMT{ }

TYPE EXPR PRED STMT

ASSIGNint

x =

...
...

...

Figure 2.6: Parse tree for the running example

Applying this concept to generate parse trees from refinement parsers (see Section 2.2.1)
is simple; each parser stage already generates a parse tree, which simply needs to be
combined correctly with that generated by the previous state. For example, the module
level parser generates a parse tree containing a designated node for function contents,
however, only non-terminal are stored beneath this node, that is, the function content is
not analyzed in detail. Upon executing the function parser, we can now simply replace
the content node by the parse tree generated by the function parser, thereby obtaining
a detailed representation of function content.

The parse tree is the only representation employed by our architecture that can be
directly calculated from the source text and thus, it forms the basis for the generation
of all other representations discussed throughout this section. However, the parse tree’s
verbosity and sensitivity to slight changes in program formulation are undesirable in the
context of pattern recognition. We therefore immediately transform the parse tree into
more robust representations of program syntax, the abstract syntax tree (AST).
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2.2.2.2 Abstract Syntax Trees

In contrast to parse trees, abstract syntax trees omit details of program formulation
that do not have an effect on the semantics of the program. For example, for program
semantics, it is typically not relevant whether two variables are declared in a declara-
tion list or using two consecutive declarations. While the concrete syntax trees differ,
the abstract syntax trees are designed to be the same for both cases. Additionally,
the abstract syntax tree usually does not contain punctuation symbols such as braces,
semicolons or parentheses, as these are already implicitly encoded in the tree structure.
Finally, the abstract syntax tree is often condensed by discarding inner nodes with a
single non-terminal child node, making it a considerably more compact representation
than the concrete syntax tree.

DECL

COND

IF

STMT

ARG

FUNC

int =

x

source

CALL

=

y *

2 x

int

DECL<

x MAX

CALL

sink

y

DECL

PRED

IF

STMT

ARG

FUNC

int =

x

source

CALL

=

y *

2 x

int

DECL<

x MAX

CALL

sink

y

Figure 2.7: Abstract syntax tree for the sample listing. [162].

As an example, Figure 2.7 shows an abstract syntax tree for the function foo. In partic-
ular, we see that brackets present in the parse tree are no longer visible in the abstract
syntax tree. Moreover, expressions have been collapsed as the call to source illustrates,
which is directly connected to the assignment expression (denoted by an equality sign)
as opposed to being connected to a chain of non-terminals that are traversed until the
non-terminal expr is finally found to be a call expression by expansion.

Abstract syntax trees can be directly created from parse trees, and many parser gener-
ators offer built-in capabilities to achieve this [see 106]. In essence, this is achieved by
defining translations of elementary parse trees into their corresponding abstract syntax
trees, and recursively walking the parse tree. This operation is unaffected by our re-
placement of exact parsers by a fuzzy parsers, and hence, we do not discuss it in detail.
It is noteworthy, however, that abstract syntax trees created by our fuzzy parser may
contain terminal-nodes for water tokens, that is, tokens, which have not been recognized
as parts of known language constructs.

2.2.3 Exposing Control Flow

The syntax tree allows all program statements to be easily located and examined, how-
ever, it is not well suited to study statement interplay. In particular, it does not allow
to easily determine statement execution order, a key requirement for modeling of vul-
nerabilities. Where the abstract syntax tree highlights the code’s syntactical structure,
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the control flow graph (CFG) [2] exposes its control flow, i.e., the possible order in which
statements may be executed and the conditions that must be met for this to happen. To
this end, the control flow graph contains a node for each statement (both control- and
non-control statements) as well as a designated entry and exit node. Transfer of control
is indicated by directed edges between these nodes.

Figure 2.8 shows the control flow graph for the sample function foo. As is true for all
control flow graphs, the graph contains an entry and an exit node denoted by ENTRY

and EXIT respectively. Moreover, a node for each statement exist. In this case, there
are three non-control statements, namely, the declarations of x and y and the call to
sink. In addition, one control statement exists given by if (x < MAX). Each non-control
statement is connected to exactly one other node via an outgoing edge labeled as ε,
while control statements have two outgoing edges labeled as true and false to indicate
under which condition control is transferred to the destination block.

ENTRY

EXIT

int x = source()

if (x < MAX)

y = 2 * x

sink(y)

false

true

ε 

ε 

ε 

ε 

ENTRY

EXIT

int x = source()

if (x < MAX)

sink(y)

int y = 2 * x

Figure 2.8: Control flow graph for the function foo [162].

Control flow graphs can be calculated directly from abstract syntax trees, however,
it is necessary to provide information about all keywords the language offers to allow
programmers to alter control flow, e.g., the keywords if, for or goto. Given this infor-
mation, the following two step procedure translates abstract syntax trees into control
flow graphs.

• Structured control flow. First, structured control flow statements such as if,
for or while are handled to generate an initial version of the control flow graph.
This can be easily achieved by defining for each structured control flow statement
how the corresponding abstract syntax tree is converted into a control flow graph
and recursively applying these rules to the complete abstract syntax tree.

• Unstructured control flow. Second, the control flow graph is corrected by
considering unstructured control flow introduced by jump statements. Handling
jump statements is easy after building the initial control flow graph as all loops,
and hence the targets of break and continue, as well as all labels referenced by
goto statements are now known. In effect, the second phase of the analysis simply
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introduces additional control flow edges from jump statements to their targets,
yielding the final control flow graph.

To calculate control flow graphs based on the abstract syntax trees generated by our
fuzzy parser, we only slightly adapt this procedure to account for water. We simply
create a statement node for each water token, which we connect via an incoming control
flow edge to the last known statement, and via an outgoing edge to the next known
statement. With control flow graphs at hand, we can now explore control- and data
dependencies among statements.

2.2.4 Exposing Statement Dependencies

The availability of control flow graphs is a prerequisite for the generation of more spe-
cialized representations such as dominator trees and program dependence graphs, both
of which play a key-role in our approaches to vulnerability discovery. Data-flow analysis
forms the algorithmic basis for the creation of these representations. In the following, we
briefly recapitulate essential data-flow analysis and proceed to discuss dominator trees,
post-dominator trees, and program dependence graphs. For a more in-depth discussion,
the reader is referred to Chapter 9 of the standard textbook on compiler design by Aho
et al. [1] known as the “Dragon Book”.

2.2.4.1 Data-Flow Analysis

Data-flow analysis offers a general framework for solving a number of related tasks in
program analysis. To this end, determining data flow is formulated as an abstract
problem, that, in essence, deals with finding data flow values for different points in the
program, given a set of constraints that account for the structure of the CFG and the
semantics of its statements. This abstract data flow problem is formulated as follows.

A program as represented by a control flow graph describes a (possibly unbounded) set
of paths, i.e., sequences of statements that may be executed in order. As the program is
executed, each statement finds the program to be in an input state, modifies this state
to generate an output state, and passes this new state to the next statement on the path.
This idea is expressed by modeling a statement as a program point before execution,
where the program is in the input state, a transfer function that maps the input state
to an output state, and finally, a program point after execution where the program has
transitioned into the output state.

Formally, we can describe the data flow problem as follows. Let p = [s1, . . . , sn] denote
a path in the control flow graph, i.e., a sequence of statements. Furthermore, for each
statement s, let In[s] and Out[s] denote the set of data-flow values before and after
statement execution respectively, following the notation in the classic Dragon Book on
compiler construction [1]. Then, the transfer function fs of s maps the input state to the
output state, i.e., Out[s] = fs(In[s]). This is true for all statements of the control flow
graph, and it expresses the constraints imposed on our solution by statement semantics.
Determining the data-flow value that reaches a statement sn after executing a path
to it can then simply be achieved by chaining the transfer functions of the individual
statements, i.e., In[sn] = Fp(In[s1]) where Fp = (fsn−1 ◦ fsn−2 ◦ . . . ◦ fs1).
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While this lays the foundation for reasoning about single paths in the control flow graph,
to consider the effect all possible paths may have on the data-flow value of a statement,
we need to find a suitable operation to combine the outgoing data-flow values of all
preceding statements. The choice of this operator defines our notion of the abstract
program state, and hence, it is problem-specific. In the abstract problem definition, we
therefore merely demand that it is a binary operation denoted by the binary operator
∪, the so called confluence operator. For each statement s, the incoming data flow value
is then defined to be equal to the combination of outgoing data-flow values produced by
all of the paths leading to s, or formally

In[s] =
⋃

p∈Ps

Fp(In[s1]) (2.1)

where Ps is the set of paths to s and s1 is the entry node. We thereby obtain additional
constraints that model the structure of the control flow graph. It is important to un-
derstand in this context, that this so called meet-over-all-paths solution is already an
approximation as it rests on the assumption that all paths in the control flow graph can
actually be taken. Whether this is true is undecidable in general.

We have now fully defined an abstract data-flow problem that can instantiated by provid-
ing a set of possible data-flow values and initial values for each program point, transfer
functions for each statement, and finally, a confluence operator. Unfortunately, the
problem formulation does not immediately suggest an algorithm to obtain a solution.
In particular, computing the left side of control flow constraints (Equation 2.1) from
the right side is not possible for control flow graphs containing cycles, as the number of
paths to consider is unbounded in this case.

In practice, the data-flow problem is usually solved by iterative approximation of data-
flow values at each program point until an equilibrium is reached. Algorithm 1 expresses
this idea in detail. In essence, this is the algorithm formulated by Aho et al. [1, Chp. 9]
as adapted to our definition of the control flow graph.

Algorithm 1 Iterative Algorithm for a forward data-flow problem [1]

1: procedure DataFlow
2: Initialize(Out[ENTRY])
3: for v ∈ VC \ {ENTRY} do
4: Out[s]← >
5: while (changes to any Out occur) do
6: for s ∈ VC \ {EXIT} do
7: In[s]← ⋃

P a predecessor of s Out[s]
8: Out[s]← fs(In[s])

The algorithm proceeds by initializing the output state of the entry node (denoted by
Out[ENTRY]) according to the problem definition. All other output states are initialized
to be empty by assigning the data-flow value >. Input values and output values are then
recalculated for all nodes until no further changes in output values are observed. This
algorithm is known to calculate the meet-over-all-path solution for the transfer functions
and confluence operators used in many standard data flow problems [see 1, Chp. 9].
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2.2.4.2 Dominator and Post-Dominator Trees

Many vulnerabilities arise from insufficient sanitization of user input, and thus the ques-
tion naturally arises whether a sanitization routine is always executed before a sensitive
operation. While this question involves analyzing control flow, the control flow graph is
not immediately applicable to answer this question. The main problem is that the con-
trol flow graph tells us whether a statement may but not whether it must be executed
before another. Fortunately, another representation can be calculated from the control
flow graph that is well suited in this scenario without requiring additional semantics of
the language to be clarified, the dominator tree.

As is true for control flow graphs, the dominator trees contain a node for each pro-
gram statement. A directed edge connects one node to another if the source node
dominates3 the destination node in the control flow graph. A node s2 dominates a
node s1 if all paths from the entry node to s1 contain s2. Similarly, a node s2 post-
dominates a node s1 if all paths from s1 to the exit node contain s2. Finally, a node s2

strictly dominates/post-dominates another node s1 if the two nodes are unequal and s2

dominates/post-dominates s1.

While for a given node s1, more than one dominator can exist, there is only one domi-
nator s2 that strictly dominates s1 but does not strictly dominate any other dominator
of s1. This node is referred to as s1’s immediate dominator. Immediate post-dominance
can be defined accordingly.

int x = source()

ENTRY

if (x < MAX)

sink(y)

int y = 2 * x EXIT

Figure 2.9: Dominator tree for the function foo

The definition of immediate dominance gives rise to the dominance tree, a hierarchical
representation where each node is connected to its immediate dominator. As an example,
consider Figure 2.9 showing the dominator tree for the function foo. We see that a node
exists in the dominator tree for each of the control flow graph’s nodes (see Figure 2.8),
and that these are connected to form a tree rooted in the entry node. This is true for
all dominator trees as the function entry is by definition not dominated by any other
statement. While for the first three statements, the post dominator tree resembles the
control flow graph, the outgoing edges of the if-statement differ. In particular, execution
of the exit node need not be preceded by a call to sink. Instead, the last statement
that must be executed before reaching the exit node is the if statement, and thus, the
exit node is connected to the if statement to express this dominance relation.

3The notion of dominance was introduced in 1959 by Prosser [111]
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Different algorithms for calculation of dominators have been proposed in the past [e.g.,
25, 83]. In particular, determining dominators has been cast as a data-flow problem (see
Section 2.2.4.1), allowing it to be solved using simple iterative schemes with a runtime
quadratic in the number of control flow graph nodes. While Lengauer and Tarjan [83]
show that lower asymptotic complexity can be achieved at the cost of a considerably more
complicated algorithm, Cooper et al. [25] show empirically that, despite the theoretical
disadvantage, careful choice of data structures allows simple data-flow approaches to
perform favorably over Lengauer and Tarjan [83]’s algorithm in practice.

A simple algorithm to determine dominators using the data-flow approach (see Sec-
tion 2.2.4.1) can be obtained by instantiating the data-flow problem as follows.

• Data-flow values are sets of nodes that dominate a program point, i.e., the domain
of data-set values is given by the power-set of set of nodes VC of the control flow
graph. Moreover, Out[s] is initialized to be VC for all s ∈ Vc, i.e., we begin by
assuming that a node is dominated by every other node, including itself.

• A successor may be dominated by any of a nodes dominators and by the node
itself. Therefore, the transfer function is given by fs(x) = x ∪ s.

• A node s is dominated by a node d 6= n if and only if d dominates all its predeces-
sors. Choosing set-intersection as a confluence operator implements this rule.

As a result, we obtain the set of dominators Out[s] for each statement s. While this
highlights the core idea followed by all data-flow approaches to dominator calculation,
several optimizations specific to dominator calculation can be implemented to achieve
better performance in practice. For an in-depth discussion, we would like to refer the
reader to the paper by Cooper et al. [25].

Once constructed, the dominator tree can be used to determine whether the execution
of a statement s2 is definitely preceded by the execution of another statement s1. This
is the case if s1 dominates s2. In particular, it can therefore be used to assure that a
sanitization routine is always executed before a sensitive sink is reached.

2.2.4.3 Program Dependence Graphs

Finally, modeling data flow is vital to track how attacker-controlled data is propagated
within the program. To this end, we employ the program dependence graph as intro-
duced by Ferrante et al. [41]. While initially conceived to allow simple algorithms for
program slicing [157] to be formulated, it has become a general purpose tool for the anal-
ysis of data flow and the effect of predicates on statement execution. Just like control
flow graphs, program dependence graphs contain nodes for each statement and predicate
and connect them to express their interplay. However, instead of making control flow
explicit in its most basic form, two types of dependencies derivable from control flow are
modeled, data and control dependencies.

• Data dependencies. Each program statement can use or define (i.e., modify)
variables. Data dependencies indicate where values defined by a statement are
used. This is the case if the destination statement uses a variable defined by
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the source, and a path exists in the control flow graph from the source to the
destination where none of the nodes on the path redefine the propagated variable.
Determining these dependencies is a canonical problem of data-flow analysis known
as reaching definition analysis [see 1, Chp. 9.2].

• Control dependencies. The execution of a statement may depend on the value
of a predicate, for example, the call to sink in our example is only performed
if x < MAX is true. Control dependencies indicate these kinds of dependencies.
These dependencies can be calculated based on the control flow graph and the
post-dominator tree.

As an example, Figure 2.10 shows the program dependence graph for the function foo.
We see that it, just like the control flow graph, it contains a node for each program
statement, however, from the program dependence graph, the exact order of statement
execution can no longer be derived. Instead, we see edges from statements defining
variables to users of these variables. For example, the variable x is defined by the top-
most statement, and its values are used in the definition of y as well as the predicate.
This predicate is itself connected to the sink-call by a control-dependence edge, indicating
that the sink-call is only made if the predicate evaluates to true.

int x = source()

if (x < MAX) y = 2 * x

sink(y)

DxDx

Ctrue

Ctrue

Dy

int x = source()

if (x < MAX) int y = 2 * x

sink(y)

Figure 2.10: Program Dependence Graph of the sample function foo [162].

Both of these edges can be calculated from the control flow graph, and, in the case of
control dependencies, the post-dominator tree.

Calculation of data dependencies. Calculating data dependencies can be achieved
using the data-flow analysis framework discussed in Section 2.2.4.1. To this end, the
abstract data-flow problem is instantiated as follows.

• Data-flow values represent the set definitions that reach the associated program
point. The domain of data-flow values is thus given by the power set of all defini-
tions. All data-flow-values are initialized to be the empty set.

• For each statement s, the transfer function fs is given by fs = gen[s]∪(In[s]\kill[s])
where gen[s] is the set of definitions generated by the statement, and kill[s] is the
set of definitions killed by the statement. For example, if a statement defines the
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variable x, it generates a definition for x and kills all definitions of x except for
the generated definition.

• Set-union is used as a confluence operator, meaning that the definitions at a pro-
gram point are equal to the union of the definitions of its predecessors. In effect,
it is sufficient for a definition to reach a statement on one of the incoming control
flow edges for it to be propagated.

As a result, we obtain a set of definitions for each program-point. In particular, for each
statement, this gives us an approximation of the set of definitions that reach it.

Calculation of control dependencies. As shown by Cytron et al. [30], for a given
node v, the nodes it is control dependent on are given by the so called dominator frontier
of v in the reverse control flow graph. Intuitively, the dominance frontier of a node v is
the set of nodes where v’s dominance ends, that is, while these nodes are not dominated
by v themselves, they are immediate successors of nodes dominated by v. Determining
dominance frontiers requires a control flow graph and its corresponding dominator tree.
As the dominator tree of the reverse control flow graph corresponds to the post dominator
tree of the control flow graph, the calculation of control dependencies thus ultimately
hinges on the availability of the post dominator tree.

While control dependencies can be calculated without introducing additional information
about language semantics, data dependencies require for us to describe when a variable is
defined and when it is used. For our robust code analysis platform, we simply consider
a variable to be defined if it occurs on the left hand side of an assignment or as an
argument to a function that is known to define its arguments. We consider it to be used
if it appears in any other context.

2.3 Code Property Graphs

As the previous section shows, useful classic program representations can be generated
from the output of a fuzzy parser, which opens up the possibility to leverage the infor-
mation these structures contain for robust discovery of vulnerabilities. Unfortunately,
it also becomes clear that none of these representations are suited to express all types
of patterns in code equally well. While each representation highlights different aspects
of the program, none can fully replace the others.

One cannot help but wonder whether it may be possible to merge these representations in
order to obtain a single general structure that combines the strengths of its components.
Not only would such a structure allow patterns to be analyzed that rely on combinations
of syntax, control- and data flow, but it could also give rise to a general procedure for
pattern recognition in static code representations, that is not tied to any particular
representation (see Chapter 3).

We approach this problem by developing the code property graph [162, 165], a joint
representation of syntax, control flow and data flow. Moreover, as an instance of a
so-called property graph, this structure is ideally suited for storage and querying using
graph database technology (see Section 2.4). In effect, the code property graph gradually
advanced to become the core data structure of our platform for robust code analysis over
the course of our work.
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In this section, we first provide a definition of property graphs as an abstract data type,
including basic operations important for the construction of code property graphs, and
continue to discuss the notion of traversals, the primary tool for querying these graphs.
In addition, we define transformations as a generalization of traversals that allow for
modifications of the property graph as opposed to providing search functionality only.
Finally, we show how the classic program representations introduced in the previous
section can be formulated as instances of property graphs, and carefully merged to
construct the code property graph.

2.3.1 Property Graphs

Graphs provide an intuitive tool to model data from a variety of different domains,
including social networks, chemical compounds, or even, the structure of computer pro-
grams as we consider in this work. While in mathematical graph theory, the exact
data represented by the graph is typically irrelevant, when considering graphs as a data
structure for storage of information, encoding the actual meaning of nodes and the
relationships edges represent becomes crucial.

In graph theory, a directed graph is typically defined to be a pair G = (V,E), where
V is a set of nodes and E ⊆ (V × V ) is a set of edges, that is edges, are ordered pairs
of nodes that represent the source and destination node respectively. This definition
captures the notion of relationships between entities, however, it deliberately abstracts
from the actual objects and types of relationships encoded by the graph to strip away
unnecessary detail when reasoning about graph structure.

The definition of property graph extends the traditional graph definition to make the
data stored in nodes and edges explicit as is required to store graphs in graph databases
(see Section 2.4). This is achieved by (a) allowing key-value pairs to be attached to
nodes and edges, and (b) allowing different types of relationships to be encoded in a
single graph.

A

C B

A

C B

a

b

a b

k:ε

k:x

k:w

BD
a

k:ε

Figure 2.11: Example of a property graph [162]

Figure 2.11 shows an example of a property graph, highlighting its merits. The graph
consists of four nodes connected by edges labeled as a and b, showing that the property
graph can encode relationships of different type in a single graph. Moreover, the property
graph is a multigraph, meaning that two nodes can be connected by more than a single
edge, as is the case for the nodes A and B. Finally, nodes can store data. In the example,
a value for the key k is stored in each of the nodes. This value may, however, also be
empty as is the case for node C, which we denote by the symbol ε. These empty key-
value pairs do not need to be stored in practice and merely simplify formal treatment,
allowing us to express property graphs as follows.
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Definition 2.1. A property graph g = (V,E, λ, µ, s, d) is a directed, edge-labeled, at-
tributed multigraph where V is a set of nodes, and E is a set of directed edges where
s : E 7→ V and d : E 7→ V assign source and destination nodes to edges respectively.
Moreover, λ : E → Σ is an edge labeling function assigning a label from the alpha-
bet Σ to each edge. Properties can be assigned to edges and nodes by the function
µ : (V ∪E)×K → S where K is a set of property keys and S the set of property values.

By describing classical program representations in terms of property graphs, we allow
them to be processed using graph database systems, a key idea implemented by our
robust code analysis architecture.

2.3.2 Traversals for Property Graphs

Creating and storing property graphs is but a means to an end, and only becomes
useful if methods to effectively retrieve data are provided alongside. The notion of
traversals on property graphs provides this missing puzzle piece. Originally popularized
by the query language Gremlin4, and first formally defined by Rodriguez and Neubauer
[124], they have become a fundamental tool for querying graph databases. We make
heavy use of this formalism to obtain a framework for machine learning on static code
representations that all methods for vulnerability discovery discussed in this work are
based on (see Chapter 3).

Conceptually, a traversal is a program, which walks the property graph in order to test
for the existence of sub structures of interest. Beginning with a set of start nodes or
edges, the traversal sweeps over the property graph, taking into account the properties
and labels to eventually terminate at a set of result nodes and edges. Formally, we can
capture this idea in the following definition.

Definition 2.2. A traversal is a function T : P(V ∪ E) → P(V ∪ E) that maps a set
of nodes and edges to another set of nodes and edges according to a property graph g,
where V and E are the node and edge sets of g respectively, and P denote the power
set operation.

An important aspect of this definition is that the domain of traversals corresponds to
its co-domain, and hence, traversals can be chained arbitrarily to yield new traversals.
This makes it possibly to construct complex traversals that, for example, extract features
from property graphs for machine learning tasks, by combining simpler traversals. To
this end, we define a number of elementary traversals used throughout this work. We
begin by defining the following traversal to filter graphs based on a predicate.

Filterp(X) = {x ∈ X : p(x)}

This traversal returns all nodes and edges in the set X that match p, where p is a Boolean
function. For example, p may be true for all nodes with a certain property and false for
edges and all other nodes. For the special case of selecting all nodes with a property of a
given key and value, we define the function Lookup as Lookup(k, a,X) = Filterp(X)
where p(x) is true if µ(x, k) = a, and false otherwise. While the definition suggests that
this lookup operation requires time linear in the number of nodes, in practice, graph

4https://github.com/tinkerpop/gremlin/

https://github.com/tinkerpop/gremlin/
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databases can create indices over node properties to allow these kinds of lookups to be
carried out in constant time.

Upon selection of start nodes using a lookup operation, we can now move to the edges
connecting them to their neighbors. To this end, we define the traversals

OutE(X) =
⋃

x∈X
{e : e ∈ E and s(e) = x}

OutEl(X) =
⋃

x∈X
{e : e ∈ E and s(e) = x and λ(e) = l}

OutEk,al (X) =
⋃

x∈X
{e : e ∈ E and s(e) = x and λ(e) = l and µ(e, k) = a}

to determine outgoing edges of all nodes in a set X, where the first traversal returns all
edges, the second returns only those edges carrying the label l, and the third additionally
requires the edge property k to be a. Analogously, to determine incoming edges, we define
the three traversals

InE(X) =
⋃

x∈X
{e : e ∈ E and d(e) = x}

InEl(X) =
⋃

x∈X

{
e : e ∈ E and d(e) = x and λ(e) = l

}

InEk,al (X) =
⋃

x∈X

{
e : e ∈ E and d(e) = x and λ(e) = l and µ((e, k) = a

}

We refer to these elementary traversals that map nodes to a sub set of their edges
as expansions. For each of these, we can define corresponding traversals that return
neighboring nodes reachable via these edges. To this end, we introduce the traversals

VSrc(X) = {s(e) : e ∈ X},
VDst(X) = {d(e) : e ∈ X}

to obtain source nodes for a set of edges, and destination nodes respectively. These can be
chained with expansions. For example, Out = VDst◦OutE obtains all nodes reachable
via all outgoing edges by first determining outgoing edges and subsequently extracting
their destination nodes. In general, for an expansion E , the traversal that returns the
corresponding set of reachable nodes Ê is given by Ê(X) =

⋃
x∈X

⋃
e∈E(x) r(e, x) where

r(e, x) =

{
s(e) if d(e) = x

d(e) otherwise

that is, we simply expand each node x ∈ X using E and return source nodes for edges
where x is the destination node, and destination nodes for edges where x is the source
node5. Finally, Not(T ) is given by the set of nodes in V that are not in T , and we
define the traversals

Or(T1, . . . , TN )(X) = T1(X) ∪ . . . ∪ TN (X)

And(T1, . . . , TN )(X) = T1(X) ∩ . . . ∩ TN (X)

5In the case where an edge connects v to itself, this function returns v.
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to logically combine the output of the traversals T1 to TN . With operations on property
graphs and elementary traversals at hand, we now turn to the construction of the code
property graph.

2.3.3 Constructing Code Property Graphs

Property graphs are a versatile data structure, which can be used to obtain intuitive
representations of many types of data, and source code in particular. In the following,
we define abstract syntax trees, control flow graphs and program dependence graphs as
instances of property graphs, to finally merge them into a joint representation of syntax,
control flow and data flow, the code property graph.

2.3.3.1 Transforming Classical Representations

We now proceed to formally define these representations as instances of property graphs,
making it possibly to process them using graph database technology. We begin with the
abstract syntax tree, the first of the representations to be generated from the parse tree.
In terms of property graphs, we can define abstract syntax trees as follows.

Definition 2.3. An abstract syntax tree gA = (VA, EA, λA µA, sA, dA) is a property
graph where VA is a set of nodes, EA is a set of edges, and the labeling function λA
labels all of these edges with the symbol A to indicate AST edges. Moreover, µA
assigns the properties code and order to each node, such that the property value is the
operator/operand and the child-number respectively [162]. Finally, we demand that the
set S of property values contains at least the values PRED and STMT to denote control
statements (predicates) and non-control statements respectively.

In contrast to typical definitions of the abstract syntax tree, our definition as a property
graph binds nodes to the program text that they represent using the function µA and
the key code. Moreover, we do not define syntax trees to be ordered trees as is typically
done, and instead, account for order by annotating nodes with a child-number. Finally,
the constraint imposed on S introduces the concept of statements at the syntax tree
level, allowing us to make the relation to the control flow graph apparent.

Definition 2.4. A control flow graph is a property graph gC = (VC , EC , λC , · , sC , dC),
where the nodes VC correspond to statements of the corresponding abstract syntax tree,
that is, all nodes v ∈ VA where µ(v, code) is STMT or PRED. Additionally, VC contains
a designated entry- and exit-node. EC is a set of control flow edges, and finally, the edge
labeling function λC assigns a label from the set ΣC = {true, false, ε} to all edges of the
property graph.

As is true for our definition of abstract syntax trees, this definition of control flow graphs
deviates from standard definitions [e.g., 1, Chp. 8.4]. In contrast to standard definitions,
our definition links control flow graphs to the abstract syntax trees they are generated
from by highlighting that the set of nodes of the control flow graph is actually a subset
of the nodes of the abstract syntax tree. This is essential for the construction of code
property graphs, as we see in Section 2.3.3.2.

Finally, we can define the third data structure we base the code property graph on, the
program dependence graph.
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Definition 2.5. A program dependence graph of a function is a property graph gP =
(VP , EP , λP , µP , sP , dP ) where the nodes VP are the nodes of the corresponding CFG,
EP is a set of edges, and the edge labeling function λP : Ep → ΣP assigns a value
from the alphabet ΣP = {C,D} to each edge, where C and D denote control and
data dependencies respectively. Additionally, the property symbol is assigned to each
data dependence edge to indicate the propagated symbol, and the property condition
is assigned to each control dependence edge to indicate the state of the originating
predicate as true or false [162].

The crux of these definitions is that we define the three graph representations incremen-
tally, thereby logically connecting the three representations. This ultimately makes it
possible to merge the three representations as we explore in the following.

2.3.3.2 Merging Representations

The key observation that allows for the construction of code property graphs is that
all classical program representations presented thus far are inherently linked, as they
describe the same source code, albeit from different angles. It is therefore unsurprising
that a language construct exists for which a corresponding node can be found in each
of the representations, namely, the program statement. Realizing this correspondence,
and by virtue of the definitions of classical program representations as property graphs
given in the previous section, we obtain a joint representation by simply overlaying
graphs. This is possible without causing confusion as each edge is labeled to indicate
the relationship it expresses.

Figure 2.126 illustrates this idea. It shows the code property graph for the sample
function foo, containing sub trees of the abstract syntax tree for each statement (green
edges). Nodes of each statement are also present in the control flow graph (Figure 2.8)
and the program dependence graph (Figure 2.10). We connect syntax trees by control
flow edges (red) and dependence edges (blue) to indicate these relationships.

Formally, we can express the construction of code property graphs as follows. The code
property graph contains all nodes of the corresponding abstract syntax tree as well as a
designated entry and exit node. We define V := VA ∪ {ENTRY, EXIT} to denote this set.
Furthermore, we know that for each node in the control flow graph, there exists exactly
one corresponding node in V , namely the node that represents the same statement, i.e.,
there exists an injection f : VC → V with

• f(ENTRYC) := ENTRY

• f(EXITC) := EXIT

• f(vc) = v for all vc ∈ VC \ {ENTRY, EXIT}, where v is the syntax-tree node for the
statement associated with vc.

Defining a corresponding function for nodes of the program dependence graph is not
necessary, as, by Definition 2.5, the set of nodes of the program dependence graph VP is
equal to the set of nodes VC of the control flow graph. In effect, f also fully illustrates
the relationship between nodes of the program dependence graph and the code property
graph.

6Syntax-tree edges above the statement level are omitted to improve presentation
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Figure 2.12: Code Property Graph for the function foo [162].

We proceed with the construction of edges for the code property graph. To this end,
we can simply define the set of edges E to be given by E := EA ∪ EC ∪ EP . This does
not cause trouble even if two representations contain edges with the same endpoints, as
E is the edge-set of a multigraph. These sets are best imagined as sets of identifiers or
references, as opposed to sub-sets of all node-pairs typical for edge-sets in classical graph
definitions. On the downside, we need to transfer sources, destinations and labels to
edges of the code property graph by defining suitable functions s, d and λ. Fortunately,
given the mapping f between CFG nodes and CPG nodes, this becomes easy. For
example, we define s to be given by s = sA ∪ sCFG ∪ sPDG where

sCFG(e) :=f(sC(e)) for all e ∈ EC , and

sPDG(e) :=f(sP (e)) for all e ∈ EP .

In other words, we employ f to map the start nodes of CFG and PDG edges to their
corresponding nodes in the code property graph. This is not necessary for syntax edges
as syntax nodes are fully contained in the set of CPG nodes. Similarly, we can define d,
which associates endpoints with each edge, and the edge-labeling function λ.

Finally, the same procedure is employed transfer properties from the program depen-
dence graph to the code property graph by defining µ to be given by µ := muA ∪ µPDG

where µPDG(x, k) := f(µP (x, k)) for all x ∈ (VP ∪ EP ) and all k ∈ KP .

In summary, this leads to the following definition of the code property graph.

Definition 2.6. A code property graph is a property graph g = (V,E, λ, µ, s, d) con-
structed from the AST, CFG and PDG of a function, where V = VA ∪ {ENTRY, EXIT},
E = EA ∪EC ∪EP , λ = λA ∪ λCFG ∪ λPDG, µ = µA ∪ µPDG, s = sA ∪ sCFG ∪ sPDG, and
finally, d = dA ∪ dCFG ∪ dPDG.

The property graph thus combines abstract syntax trees, control flow graphs and pro-
gram dependence graphs to make them available in a joint representation that encodes,
syntax, control flow and data flow. Additionally, as the code property graph is a property
graph, it can be directly stored in a graph database without modification.

The idea of merging representations at program statements is not limited to the three
representations chosen for the code property graph and additional representations can
be overlaid to extend the CPG’s capabilities. However, unless otherwise noted, we are
referring to this particular combination of structures when using the term code property
graph throughout this thesis.
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2.3.4 Extension for Interprocedural Analysis

The code property graph presented thus far only describes functions independently but
fails to model their interplay. While this local view on the code is often already sufficient
to discover critical vulnerabilities as we see in Section 2.5, interprocedural analysis allows
us to uncover both patterns and vulnerabilities otherwise inaccessible. To conclude our
discussion of code property graphs, we therefore discuss how our data structure can
be extended for interprocedural analysis, an extension we make extensive use of in
Chapter 6 for the generation of vulnerability descriptions for taint-style vulnerabilities
(see Section 1.1.1).

To extend code property graphs for interprocedural analysis, we carry out a two-step
procedure. We begin by introducing edges from arguments to parameters of their callees,
and from return statements back to call sites, making data flow between call sites and
callees explicit. The resulting preliminary graph already expresses call relations between
functions. Unfortunately, it remains needlessly inexact as it does not account for modi-
fications made by functions to their arguments, nor the effects these have as data flows
back along call chains. We can therefore proceed to improve the preliminary graph by
detecting argument modifications using post-dominator trees (see Section 2.2.4.2) and
propagating this information through the graph to obtain the final interprocedural ver-
sion of the code property graph. In the following, we describe this correction of data
flow in greater detail.

2.3.4.1 Detecting Argument Modification

Data flow correction is bootstrapped by determining function calls that result in modi-
fications of their arguments, that is, calls, which result in definitions of their arguments
as picked up by reaching definition analysis (see Section 2.2.4.3). While for commonly
used library functions such as recv and read from the POSIX standard, detection may
not be necessary as these can be annotated to express argument modifications, this is
not true for internal API functions such as the n2s macro that serves as a data source
in the Heartbleed vulnerability.

For an arbitrary call to a library function, we therefore do not know whether it causes
its arguments to be defined, and in effect, for all direct and indirect callers of library
functions, the respective data flow edges in the code property graph may be incorrect.
As an example, we consider the library functions read and write from the POSIX library:
both receive a pointer to a memory buffer as their second argument. From the function
signature alone, it is not possible to derive that read modifies the contents of the buffer
while write does not, a vital difference that directly affects the data-flow edges of the
code property graph.

We address this problem as follows. For each callee we cannot resolve, that is, each
function called that comes without source code, we calculate a simple statistic based for
each of its argument. We base this statistic on the following two checks.

1. First, we check whether a local variable declaration reaches the argument via data
flow without passing through a easily recognizable initialization, e.g., a call to a
constructor or an assignment.
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2. Second, we ensure that the path from the function call to the local variable dec-
laration in the post dominator tree does not contain another statement directly
connected to the variable declaration via data flow.

We proceed to calculate the fraction of call sites that fulfill both conditions, and assume
that the argument is defined by call to the function if this fraction is above a threshold.
We fix this threshold to 10% in our experiments, a rather low value that expresses our
preference of false positives over false negatives. Employing this simple heuristic, we
recalculate the data flow edges of all affected functions.

int bar(int x, int y) { 1
int z; 2
boo(&z); 3
if (y < 10) 4

foo(x,y,&z); 5
} 6

7
int boo(int *z) { 8

*z = get(); 9
} 10

Figure 2.13: Sample listing for argument definition [165]

The sample code shown in Figure 2.13 illustrates our heuristic for the detection of
argument definition: the local variable z is declared on line 2 in the function bar without
obvious initialization. A reference to z is subsequently passed as an argument to the
functions boo on line 3 and foo on line 5. While it is reasonable to assume that the call
to boo results in the definition of z, this is not true for the call to foo as it is called after
boo that has already initialized z.

2.3.4.2 Propagation of Data-Flow Information

Argument detection as discussed in the previous section allows us to fix the code property
graph of the library function’s immediate caller, but corrections are not propagated along
call chains to affect indirect callers. As an example, we reconsider the running example
given in Figure 2.13. In this example, the argument z passed to the function foo is first
defined on line 2 but redefined on line 9 inside the function boo. This results in a data
flow from the source get to the function foo.

We take indirect argument definitions as seen in the example into account by propagating
data-flow information along call chains. We achieve this by analyzing the source code of
each available function to determine whether argument definition takes place by checking
for each of its parameters whether (a) they are defined inside the function, and (b)
the definition reaches the exit statement via control flow. However, this rests on the
assumption that the data-flow edges of the function already take into account argument
definitions performed by any of its callees. Therefore, before we analyze the function
itself, we analyze all of its callees, and in particular, apply the heuristic for library
function detection presented in the previous section.

The procedure FixDataFlowEdges shown in Algorithm 2 illustrates this idea. As an
argument, it receives the set of function nodes of the code property graph. For each
of these, it keeps a Boolean variable fv that indicates whether the function has been
fixed already. The procedure begins by initializing each fv to false, and subsequently
calls the recursive procedure FixNodes for all function nodes. This procedure descends
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Algorithm 2 Data flow recalculation

1: procedure FixDataFlowEdges(V )
2: for v ∈ V do
3: fv ← false . Mark nodes as not fixed

4: for v ∈ V do
5: FixNode(v)

6: procedure FixNode(v)
7: if fv = true then
8: return false

9: fv ← true, u← false

10: for c ∈ Callees(v) do . Fix all callees
11: u← u ∨ FixNode(c)

12: if u = true then . v needs to be updated
13: UpdateDataFlow(v)
14: return true

15: return false

into the graph using a pre-order traversal, meaning that all callees are updated (line 11)
before the current function is processed (line 13). Once completed, the resulting graph
accounts for observable argument definitions as well as the resulting indirect data flows.

stmts

func: qux=

stmtsparams

ret x * yparam: y

call: quxint s

arg: 7arg: 3 param: x

Function baz

Function qux

func: baz

(a) Interprocedural code property graph.

1 void baz(void) {

2 int s = qux(3, 7);

3 }

int qux(int x , int y) { 4

return x * y; 5

} 6

(b) Code snippet of caller and callee

Figure 2.14: Interprocedural code property graph for the functions baz and qux.
Syntax edges are shown as dotted lines and data-flow edges as solid lines [165].

As an example, Figure 2.14 shows a code snippet on the left and the resulting interpro-
cedural version of the code property graph on the right. In particular, data flow edges
between arguments and parameters, and from return statements back to variables of the
caller are depicted in red. Control-flow edges are omitted to improve presentation.
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2.4 Graph Databases

Code property graphs, as introduced in the previous section, offer a versatile and easily
extensible representation of source code, however, it remains unclear how this data
structure can be leveraged for vulnerability mining in practice. A key question in this
context is how these large graphs can be efficiently stored and finally, exposed to the
analyst via a flexible interface. The emerging storage technology of graph databases offers
an elegant solution to this problem. Like document databases, object databases and key-
value stores, these database systems depart from the one-fits-all paradigm of traditional
relational database systems, and offer novel interfaces optimized for specific types of
data. Graph databases, in particular, are designed with highly connected graph data in
mind, and are a natural fit for graph-based program representations. However, stable
and mature implementations of graph databases have just recently become available,
and their use for program analysis has received little attention. In the following, we
briefly introduce graph databases with a focus on program analysis and compare them
to relational databases where necessary.

2.4.1 Graph Data-Models

Robinson et al. [123] define a graph database to be an online database management
system with Create, Read, Update, and Delete methods that expose a graph data-model,
that is, it is a system offering the basic operations expected from a database management
system, however, to expose a graph data-model as opposed to e.g., a relational or object-
oriented data model.

This definition is liberal in two ways. First, it does not dictate the format in which data
must be stored, as long as it offers an interface that exposes a graph. In contrast, native
graph databases additionally employ graphs as a primary storage format, implementing
index-free adjacency, that is, nodes are directly connected to their neighbors making it
possible to traverse to direct neighbors without requiring index lookups. Second, the
definition allows any existing or future graph data-model to be used as the basis for
graph databases. While in academic research, many different graph data-models have
been developed in the 1980’s and 1990’s [see 5], the vast majority of modern graph
databases are based on one of two data models unrelated to these efforts, RDF triples
and property graphs.

• RDF Graphs. Resource Description Framework (RDF) Graphs are a represen-
tation of graph data designed for information interchange, and standardized by
the World Wide Web Consortium (W3C) in a family of specifications [152]. More-
over, W3C provides a specification for an accompanying query language named
SPARQL [153] for retrieval and manipulation of RDF graphs. RDF graphs are
given by sets of triplets, where each triple consists of a subject, an object, and
a predicate that links the subject to the object. To support interchange of these
graphs, subject and object identifiers are typically not local to the graph, but
are given by Internationalized Resource Identifiers (IRIs), which uniquely iden-
tify objects on the Web. Examples of graph databases based on RDF graphs are
AllegroGraph, Bigdata, and Stardog.
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• Property Graphs. In contrast to RDF graphs, Property graphs have not been
standardized to date despite their appearance as a common data structure for
a number of different graph database implementations. Property graphs are di-
rected, attributed, edge-labeled multigraphs (see Section 2.3.1), a versatile data
structure for storing graph data. This is the underlying graph data-model for
many popular graph databases, including Neo4j, Titan, and OrientDB. While each
of these introduce their own custom query language, the query language Gremlin
can be employed for all of these databases via the Blueprints API [147], a common
interface for databases implementing the property-graph model.

Hartig [55] points out that RDF graphs are more expressive than property graphs, as
triples can be nested up to an arbitrary depth. For example, this allows properties to be
assigned to entire graphs as opposed to single nodes and edges only. A clear advantage of
Property graphs over RDF graphs is a much cleaner separation between node attributes
and relationships as in RDF graphs, both attributes and relationships are expressed
as subject-predicate-object triples. Moreover, formulating edge properties is clumsy in
RDF, a problem, which has only recently been addressed by a proposed extension of
RDF known as RDF? [56]. Finally, on a practical note, it is worth pointing out that
converting between the two representations is often possible as outlined by Hartig [55].
We base our code analysis platform on the Neo4j graph database, a mature, open-
source graph database developed by Neo Technologies. In the following, we therefore
focus discussion on the property graph model.

2.4.2 Properties of Graph Databases

To date, relational database management systems in combination with the Structured
Query Language (SQL) remain the predominant choice for most database applications.
These systems allow efficient operations to be carried out on relations, that is tables
containing data records. Moreover, they rest on solid theoretical foundations given by
the relational data model [see 24]. Despite these merits, we found graph databases to
be a better match for code analysis. The prime benefits are the following.

• Match between conceptual view and storage format. While it is possible
to store graphs as tables in a relational database, it requires a suitable mapping
from graphs to tables to be designed. This introduces a disconnect between the
conceptual representation and the concrete structure in which it is stored, making
it necessary to translate between the two representations efficiently or force the
analyst into formulating queries with respect to the storage format. In contrast,
when using graph databases the graph-based program representation can be stored
as-is, keeping the conceptual view of the data aligned with the storage format.

• Index-free adjacency. Most implementation vulnerabilities are local properties
of code, that manifest themselves in concrete programming errors located in a
limited part of the program. Identifying these problems requires to locally explore
the surroundings of candidate locations in the code, making efficient retrieval of
neighboring nodes essential. In this setting, graph databases are at a concep-
tual advantage, as they have been specifically designed with this requirement in
mind. While in relational databases, traversing to graph neighbors requires index-
lookups proportional in runtime to the number of nodes of the graph, native graph
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databases implement index-free adjacency, meaning that nodes are linked directly
to their neighbors and can be reached in time independent of the total number of
nodes. While performance evaluations of current implementations are rare and do
not yet consistently highlight this advantage [see 12, 49, 150, 158], the conceptual
advantage is clear.

• Variety of query languages. In theory, the relational model is not tied to
any specific query language, however, in practical implementations available to
researchers, it goes hand in hand with the Structured Query Language. Unfortu-
nately, expressing even simple patterns in graphs using SQL can already lead to
lengthy and complex queries. On the contrary, graph databases offer a variety of
different query languages specifically designed for compactly expressing patterns
in graphs (see Section 2.4.3).

The current state of flux query languages for graph databases are in plays into our
cards, as it enables us to explore a variety of options for describing patterns in code. We
now give a brief overview of the landscape of query languages and proceed to describe
Gremlin, the query language of our choice.

2.4.3 Querying Graph Databases

Two competing approaches exist for querying modern graph databases. Declarative
languages such as Neo4j’s Cypher [144] and ArangoDB’s AQL [31] are designed to closely
resemble SQL in order to provide an intuitive way to interact with graph databases,
particularly for users acquainted with typical relational database management systems.
Like SQL, these languages are declarative in the sense that they only describe what to
retrieve, but not how, leaving the latter to be decided by the database engine. In effect,
the user is freed from the burden of designing a strategy to traverse the graph database,
making these languages particularly suited for novice users. To additionally simplify
querying, these languages focus on providing only a minimal set of language elements
that allow simple patterns in property graphs to be described.

On the downside, whether a query can be executed efficiently or not depends highly
on the concrete database engine, making it necessary to gain intimate knowledge of its
implementation details to answer this question. Moreover, extending these declarative
languages with user-provided language features is not trivial7, as each new language
element needs to be supported by the database engine, and it needs to be specified how
it is executed when combined with existing language features. Finally, current declara-
tive languages follow ad-hoc designs, based on no particular formalism or programming
model. In consequence, no declarative query language supported across more than a
single graph database system exists to date.

The largely imperative query language Gremlin is the most notable alternative to declar-
ative languages for graph querying. In principle, Gremlin provides raw access to the
property graph via the Blueprints API, a common interface implemented by all major
open-source graph databases. This not only puts the user in full control over what

7While Cypher currently does not allow user-defined language extensions, AQL provides limited
support for user-defined language elements by allowing so called functions written in Javascript to be
provided. These are simply executed as-is when encountered by the database engine, thereby breaking
out of the declarative paradigm.
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to retrieve, but also how to retrieve it, making it possible to craft queries that easily
outperform corresponding declarative queries by an order of magnitude [62]. Moreover,
while arbitrary code written in the programming language Groovy can be used to re-
trieve data, Gremlin also provides a programming model to express traversals along with
useful shorthands for common operations on property graphs. Finally, it allows users
to create their own shorthands, making it possible to construct domain specific query
languages.

On the downside, Gremlin is perceived by many users as more difficult to learn than
declarative languages. Moreover, as Gremlin queries express both what to retrieve and
how to retrieve it, they are often more lengthy than corresponding declarative queries.

Overall, we found the flexibility offered by Gremlin to be an important building block to
enable mining for vulnerabilities using graph databases. Not only does it allow highly
complex queries to be expressed elegantly, it also introduces an abstract programming
model to do so. The main idea it follows is to express traversals in graphs as chains of
function evaluations (see Section 2.3.2) that subsequently limit the parts of the graph
that remains to be explored. In effect, we can express traversals for vulnerability dis-
covery in terms of functions in the mathematical sense, and thus obtain a clean formal
description inspired by, but independent of Gremlin.

2.5 Mining for Vulnerabilities

In this work, the code property graph is primarily used as a data source for machine-
learning based methods for vulnerability discovery. However, unless it is possible to man-
ually specify meaningful patterns for vulnerabilities by means of code property graphs, it
will not enable us to learn these patterns automatically either. In this section, we there-
fore evaluate whether traversals can be manually crafted for real-world vulnerabilities
to assess the expressive power of code property graphs.

We evaluate the capabilities of code property graphs in two consecutive experiments.
First, we review all vulnerabilities reported for the Linux kernel in 2012 to determine
which types of common vulnerabilities we can model using traversals. Second, we assess
the code property graph’s merits in uncovering previously unknown vulnerabilities by
crafting different traversals and reviewing the retrieved code for vulnerabilities.

2.5.1 Coverage Analysis

We begin our analysis by importing the source code of the Linux kernel (version 3.10-
rc1) into the Neo4J 1.9.5 graph database. The kernel spans approximately 1.3 million
lines of code, resulting in a code property graph with approximately 52 million nodes
and 87 million edges. On a laptop computer with a 2.5 Ghz Intel core i5 CPU and 8
GB of main memory, this process takes 110 minutes, producing a database of 14 GB for
nodes and edges, and another 14 GB for efficient indexing.

We proceed to retrieve all CVE identifiers for vulnerabilities allocated for the Linux
kernel in 2012 by the MITRE organization. In total, this amounts to 69 CVE identifiers,
which address 88 unique vulnerabilities. We manually inspect the patches for each of
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the 88 vulnerabilities to find their root cause and make use of this information to place
each vulnerability into one of twelve types, which we describe in detail in Appendix B.

For each of the twelve groups, we determine (a) whether they can be modeled using the
code property graph, and (b) which parts of the code property graph are needed to do
so 8 In particular, we evaluate the ability to model the twelve types of vulnerabilities us-
ing the abstract syntax tree (AST) alone, the combination of syntax tree and dependence
information (AST+PDG), the combination of syntax tree and control flow information
(AST+CFG), and finally, the complete code property graph (AST+CFG+PDG). Ta-
ble 2.1 shows the results of our analysis.

Vulnerability types Code representations

AST AST+PDG AST+CFG AST+CFG+PDG

Memory Disclosure X
Buffer Overflow (X) X
Resource Leaks X X
Design Errors
Null Pointer Dereference X
Missing Permission Checks X X
Race Conditions
Integer Overflows X
Division by Zero X X
Use After Free (X) (X)
Integer Type Issues X
Insecure Arguments X X X X

Table 2.1: Coverage of different code representation for modeling vulnerability
types [162].

The abstract syntax tree alone offers little information for modeling of vulnerabilities,
allowing only some forms of insecure arguments to be identified such as incorrect type
casts. By additionally making available dependence information, we can model data
flow, and can thus track attacker-controlled values. This makes some instances of buffer
overflows, missing permission checks, and division by zero errors accessible. However, the
statement execution order is not captured by this representation, making it insufficient
to model vulnerabilities where exact locations of checks matter. Combining syntax trees
with control flow graphs allows statement execution order to be modeled but fails to
capture the majority of the twelve vulnerability types as missing data flow information
prevents attacker control to be modeled. Still, some use-after-free vulnerabilities and
resource leaks can be identified using this representation.

Using the code property graph, that is, by combining syntax, control flow and de-
pendencies among statements, we are finally able to model ten of the twelve types of
vulnerabilities. However, it also needs to be pointed out that it is hard to model race
conditions and design errors using traversals. In the first case, graph traversals in their
current form lack means to model concurrency. In the second, details of the desired
design are necessary. In addition, the use-after-free vulnerabilities in the data set are
often rather contrived cases that are difficult to describe without runtime information.
A more thorough discussion of the limitations of modeling vulnerabilities using graph
traversals is given in Section 7.2.

8The interested reader finds traversals for common types of vulnerabilities in our paper on modeling
and discovering vulnerabilities with code property graphs [162].
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2.5.2 Discovering Unknown Vulnerabilities

We proceed to craft traversals to uncover previously unknown vulnerabilities in the
Linux kernel. To begin with, we create traversals for instances of the most common
types of vulnerabilities encountered in the kernel in 2012, namely, buffer overflows due
to missing bounds checks, and memory disclosures caused by incompletely initialized
structures. In addition, we create traversals for memory mapping vulnerabilities, and
zero-byte allocations, two types of vulnerabilities specific to the kernel, and thus hard to
identify using conventional methods.

Type Location Identifier

Buffer Overflow arch/um/kernel/exitcode.c CVE-2013-4512
Buffer Overflow drivers/staging/ozwpan/ozcdev.c CVE-2013-4513
Buffer Overflow drivers/s390/net/qeth core main.c CVE-2013-6381
Buffer Overflow drivers/staging/wlags49 h2/wl priv.c CVE-2013-4514
Buffer Overflow drivers/scsi/megaraid/megaraid mm.c -
Buffer Overflow drivers/infiniband/hw/ipath/ipath diag.c -
Buffer Overflow drivers/infiniband/hw/qib/qib diag.c -
Memory Disclosure drivers/staging/bcm/Bcmchar.c CVE-2013-4515
Memory Disclosure drivers/staging/sb105x/sb pci mp.c CVE-2013-4516
Memory Mapping drivers/video/au1200fb.c CVE-2013-4511
Memory Mapping drivers/video/au1100fb.c CVE-2013-4511
Memory Mapping drivers/uio/uio.c CVE-2013-4511
Memory Mapping drivers/staging/.../drv interface.c -
Memory Mapping drivers/gpu/drm/i810/i810 dma.c -
Zero-byte Allocation fs/xfs/xfs ioctl.c CVE-2013-6382
Zero-byte Allocation fs/xfs/xfs ioctl32.c CVE-2013-6382
Zero-byte Allocation drivers/net/wireless/libertas/debugfs.c CVE-2013-6378
Zero-byte Allocation drivers/scsi/aacraid/commctrl.c CVE-2013-6380

Table 2.2: Zero-day vulnerabilities discovered in the Linux kernel using our four
graph traversals [162]

Running these four traversals, we identify 18 previously unknown vulnerabilities, all of
which were acknowledged by the developers. Table 2.2 summarizes these findings along
with the CVE identifiers assigned to these findings by the MITRE organization. From
the perspective of the practitioner, it is also noteworthy that none of the four traversals
took longer than 40 seconds to complete on a cold database. Moreover, once nodes and
edges are loaded into memory, only 30 seconds were required at maximum, making it
possible to iterative refine queries during the code auditing process.

2.6 Related Work

The platform for robust code analysis combines techniques and ideas from several fields of
research, which we discuss in detail in the following. While our platform is specifically
designed as the basis for vulnerability discovery via machine learning, we postpone
discussion of related work on machine learning techniques for vulnerability discovery for
now and focus on robust parsing and mining for vulnerabilities.

Robust Parsing of Source Code. The difficulty of creating suitable parsers for code
scanning and reverse engineering methods has been recognized by several researchers.
For example, refinement parsing as introduced in this chapter directly extends the work
by Moonen [98] on island grammars, a formalism specifically designed in light of this
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challenge. Similarly, Koppler [75] present a systematic approach to the design of fuzzy
parsers, however, both of these approaches consider a setting where only limited parts
of a language need to be recognized, while all other constructs can be ignored. This
differs from the setting refinement parsing is designed for, where we strive to design a
full-fledged but error-resilient grammar capable of dealing with incomplete code.

The difficulties in dealing with incomplete C++ code in particular, due to grammar
ambiguities have been pointed out by Knapen et al. [73]. They additionally propose a
set of heuristics and type inference to deal with incomplete C++ code gracefully. Closely
related, Aycock and Horspool [10] argue for an approach in which the token remains
ambiguous throughout the parsing process, a concept they refer to as Schroedinger’s
Token. Finally, Synytskyy et al. [141] point out that source files often mix several
different languages, and present a multilingual robust parser based on Moonen [98]’s
concept of island grammars.

Graph representations of code. The idea of performing program analysis by solv-
ing graph reachability problems was pioneered by Reps [114], who shows that many
data-flow problems can be solved by traversing interprocedural graph-representations of
data flow. Moreover, the creation of new graph-based program representations specif-
ically with the discovery of defects in mind has previously been considered by Kinloch
and Munro [71]. They present the Combined C Graph (CCG), which, in essence, is a
system-wide program dependence graph. A similar representation is presented by Krinke
and Snelting [79], who present a fine-grained system dependence graph that combines
syntactical as well as control and data flow information similar to the code property
graph. However, these approaches do not deal with efficient storage and retrieval from
these data structures, nor are the merits of such representations for the discovery of
defects and vulnerabilities explored.

Mining Source Code for Vulnerabilities. Mining large amounts of source code
has been an ongoing field of research for many years. In particular, several approaches
for lightweight scanning of source code have been proposed, including the well known
scanners Flawfinder [159, 160], RATS [112], ITS4 [151], PScan [33], and Microsoft PRE-
fast [82]. These tools are the result of efforts to discourage the use of certain problematic
APIs and thus are particularly suited for educational purposes. Unfortunately, their suc-
cess ultimately depends on their database of known offending APIs, and thus, they are
incapable of identifying vulnerabilities related to program-specific APIs. This focus on
common and well-understood error patterns makes these tools useful during the de-
velopment process but means that code bases that have received scrutiny by security
researchers in the past are typically out of scope, simply because these well known types
of vulnerabilities have already been discovered. Finally, the parsers used by these ap-
proaches are kept simple, making it impossible for these approaches to take into account
statement execution order. In effect, false positive rates are often prohibitively high.

To allow application-specific vulnerabilities to be identified, several researchers have con-
sidered to leverage expert knowledge to enhance automated approaches. For example,
Hackett et al. [50] as well as Evans and Larochelle [40] leverage user-provided anno-
tations to discover buffer overflow vulnerabilities. Similarly, Vanegue and Lahiri [149]
introduce HAVOC-lite, a lightweight extensible checker shown to be capable of iden-
tifying vulnerabilities in Microsoft COM components. In addition, several approaches
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based on security type systems have been proposed to identify information-flow vulner-
abilities [see 59, 126, 134]. In particular, the Jif compiler [100, 101] allows annotated
Java code to be checked for conformance to security policies. In addition, Jif performs
type inference in order to reduce the required amount of user-specified annotations.

Several researchers have considered describing defects using query languages [e.g., 46, 51,
81, 94, 107]. In particular, Livshits and Lam [88] introduce the high level language PQL
to describe typical instances of SQL injection and cross site scripting vulnerabilities in
Java code. Moreover, Reps [114] shows that program properties can be determined by
solving reachability problems in graphs, and additionally, Kinloch and Munro [71] as well
as Krinke and Snelting [79] have proposed joint graph representations of code. However,
to the best of our knowledge, the use of graph traversal languages to expose intermediate
graph representations of code for scalable and extensible vulnerability discovery has not
been considered to date.



3
Feature Spaces for Vulnerability Discovery

The previous chapter demonstrates that many types of vulnerabilities can be expressed
as traversals in a code property graph, a joint representation of a program’s syntax,
control flow and data flow. However, these traversals are manually specified by an
expert, and we have yet to explore possibilities to automatically infer them from code.
In this chapter, we take a fundamental step into this direction by embedding source code
in feature spaces, that is, we represent code by numerical vectors in order to make it
accessible for machine learning algorithms. To this end, we define several different maps
from source code to vectors, for example, to represent source files, functions, and even
program slices [see 63, 157] by a wide range of different properties. We present these
maps in a unified framework based on the well known bag-of-words embedding that
finds applications in many fields, including information retrieval [see 92, 128], natural
language processing [see 91], and computer vision [see 26]. On an implementation level,
we find that the code property graph provides a versatile data source when implementing
these embeddings, making it possible to recognize patterns in code on a large scale. In
fact, we can formulate a general procedure for embedding of source code based on code
property graphs, which we employ throughout this thesis to implement method’s for
pattern-based vulnerability discovery.

We begin this chapter by providing a brief overview of how objects can be made accessible
to machine learning using feature maps (Section 3.1). In preparation for embedding
of source code, we proceed to provide a slightly generalized formal description of the
classical bag-of-words embedding that exposes the right set of parameters to allow all
embeddings employed in this thesis to be formulated as instances of it (Section 3.2).
We continue to describe feature hashing for the bag-of-words embedding to allow our
methods to operate on large code bases such as the operating system kernel Linux
(Section 3.3). Finally, we describe different embeddings for source code in particular
(Section 3.4) and provide our method to generate these embeddings from code property
graphs, the main data structure offered by our code analysis platform (Section 3.5). We
conclude by discussing related work (Section 3.6).

43
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3.1 Feature Maps

Machine learning algorithms are a powerful tool used in a wide range of research areas,
including natural language processing, bioinformatics and chemistry. Their ability to
recognize patterns in many different types of data rests on their abstract formulation:
instead of accounting for the semantics of the data they process, they solve optimization
problems involving numerical vectors, and thus, if the objects we seek to process can be
represented in this way, machine learning becomes accessible immediately.

While the large number of problems that can be addressed using machine learning is
intriguing, applying it is not foolproof. For example, a well known anecdote tells the
story of United States Army researchers who built a classifier to distinguish camouflaged
tanks from plain forests based on sample imagery [167]. While the predictor based on
pixel values functioned well for the recorded images, it failed in practice. They found
that the predictor had learned to distinguish cloudy from sunny days as the photos of
tanks had been recorded on the former, while those of plain forest on the later.

This example illustrates that while machine learning may produce results for a data set,
these results may not be meaningful for the task at hand. Their success in applications
thus ultimately depends on the choice of meaningful features by which to characterize
objects of interest. We define features as follows.

Definition 3.1. In machine learning, a feature is a measurable property of an object
that is used to characterize the object. For each object, its value is uniquely defined.

heightfruit

width

Figure 3.1: Example of a feature map

As an example, we consider the task of characterizing a basket of fruit. Possible features
are the height of the fruit, and its width. However, one feature alone may not be sufficient
to determine a fruit type, making it beneficial to record several features of the object
in a joint feature vector. Figure 3.1 illustrates this feature extraction process, where we
represent each fruit in a two dimensional space with one dimension to represent width,
and another representing height. This measuring process can be captured by the notion
of feature maps, which we define as follows.

Definition 3.2. A feature map is a function φ : X → Rn that assigns a real-valued
vector to each object of an input space X . For any x ∈ X, φ(x) = (φ1(x), . . . , φn(x)) is
referred to as a feature vector, and φ’s co-domain is referred to as a feature space.
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Feature maps can be defined for many different types of objects, including sequences,
hierarchies, and even graphs, making it possible to represent them as vectors in a feature
space. Once in this space, distances between vectors can be measured geometrically as
an indicator for object similarity.

3.2 Bag of Words

The bag-of-words embedding is a technique popularized in particular by the vector space
model developed in information retrieval [128], where text documents are represented
as feature vectors. In the original setting, we consider the set of text documents as an
input space X , and assume that each of these documents x ∈ X can be represented as
a sequence of words of a so-called embedding language L [see 120]. To map a document
to a corresponding vector, we then simply associate each word w ∈ L with a dimension
of the feature space and store the number of times the word occurs in the document as
a coordinate. Formally, we achieve this by defining a feature map

φ : X → R|L|

from documents to a vector space spanned by the words of the language L. The values
of coordinates are calculated independently for each word, that is we define a function
φw for each w ∈ L. To count the number of occurrences, we set

φw(x) := #w(x) · vw

where #w(x) denotes the number of occurrences of the word w in x, and vw is an optional
weighting term to increase the importance of certain words over others. The vectorial
representation of x is then simply given by

φ(x) = (φw(x))w∈L .

There are a number of variations of the definition of φw(x). In particular, φw(x) can
also be chosen to express whether the word w occurs in the document at all. To achieve
this, we can define an indicator function Iw : X → {0, 1} where

Iw(x) =

{
1 if x contains w

0 otherwise

and choose φw(x) to be given by φw(x) := Iw(x)·vw, that is, if the word w is contained in
the document x, the weight vw is stored in the corresponding coordinate, and otherwise,
the coordinate is zero. Whether we choose φw to account the number of occurrences or
indicate the existence of a word in the document is not relevant in the remainder of the
chapter, and thus, we stick only to the first definition of φw to simplify discussion.

By slightly generalizing this idea, we obtain a template for an embedding that can be
instantiated in different ways to obtain the embeddings for source code presented in this
thesis. To this end, we assume that X is an arbitrary input space, and that each x ∈ X
can be decomposed into a set of substructures. For each object x, we denote this set
by Tx, and the set of all substructures by T . Like addresses in memory or nodes of a
graph, substructures can be thought of as unique locations, which exists independent of
the contents they store. We attach contents, that is, words of the language L, to these
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substructures using a function s : T → L, where several substructures may be mapped
to the same word. The number of times the word w ∈ L occurs in x is then given by
#w(x) = |{t ∈ Tx, s(t) = w}|, that is, we determine the number of substructures that
are mapped to the word w. The coordinate associated with the word w is thus given by

φw(x) = #w(x) · vw = |{t ∈ Tx, s(t) = w}| · vw

where, again, the number of occurrences is multiplied by a weighting term vw. In
summary, our slightly generalized bag-of-word embedding is carried out in the following
three steps.

1. Object extraction. We begin by choosing an input space X and thus decide
which objects we wish to compare.

2. Sub structure enumeration. Objects are subsequently decomposed into the
substructures by which we want to represent them. We denote the set of all
substructures by T .

3. Mapping objects to vectors. Finally, we map sub structures to words, and
subsequently represent each object by a vector that encodes the number of occur-
rences of each word. This steps rests on the definition of an embedding language
L and a function s : T → L that maps substructures to words.

It may seem troubling at first that the bag-of-words feature map associates each word
with a unique dimension, thereby creating possibly very high dimensional vectors. In
fact, the language L is not necessarily finite, and thus, the resulting feature space may
even be infinite dimensional. However, particularly in the setting of unsupervised learn-
ing, we can limit L to those words that actually occur in the data set, and thus obtain
a vector space with a finite number of dimensions. Moreover, the resulting vectors are
typically sparse as each document contains only a small subset of the words of the lan-
guage. This sparsity can be exploited to efficiently store and process these vectors using
data structures such as hash maps and sorted arrays [120].

3.3 Feature Hashing

A practical problem when implementing the bag of words embedding illustrated in the
previous section is that libraries for machine learning and linear algebra typically require
each dimension of the feature space to correspond to a numerical index, however, asso-
ciating words with indices is not possible until all words of the data set are enumerated.
Unfortunately, this means that objects cannot be mapped to vectors independently, and
that all words contained in the data set need to be kept in memory at one point in time.
In effect, applying the mapping to large data sets is prohibitive in practice.

A well known trick to deal with this problem is feature hashing [see 135]. Instead of
striving to ensure that no two words are ever associated with the same dimension, we
simply attempt to reduce the probability of this event. We achieve this by using a
hash function to map words to dimensions, as hash functions aim to distribute input
values uniformly over their co-domain. As the hash function is only calculated over the
word, we can thus map objects to vectors independently without the need for exhaustive
enumeration of words in the data set.
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An interesting aspect of this approach is that the cardinality of the hash function’s
co-domain already defines the dimensionality of the resulting vector space. On the
one hand, this is desirable as it gives control over the amount of required memory for
operations on the full data matrix, at least if an upper bound on the size of the data set
can be given. On the other, it is problematic as the chosen cardinality may be too low
to avoid frequent hash collisions, and thus many false dependencies among data points
are introduced.

Formally, feature hashing for the bag of words embedding can be implemented by defin-
ing a hash function h : L → {1, . . . , N} from words to the natural numbers between
and including 1 and N . The desired feature map φ̄ : X → RN maps objects onto N
dimensional vectors, where N is the number of different hash values. As is the case
for the classic bag of words embedding, each of the coordinates of the vector can be
calculated independently, that is, φ̄(x) can be expressed as

φ̄(x) = (φ̄j(x))j∈{1,...N}

where for each dimension j ∈ {1, . . . , N}, the function φ̄j : X → R maps objects to
real-valued coordinates. In each coordinate, we store the number of substructures that
are eventually mapped to the hash value j, multiplied by a weighting term vw. In
correspondence with the formulation of feature hashing given by Shi et al. [135], we thus
define the j’th coordinate by

φ̄j(x) =
∑

w∈L,h(w)=j

#w(x) · vw =
∑

w∈L,h(w)=j

|{t ∈ Tx, s(t) = w}| · vw

where, in the final step, we make use of the definition of #w given in the previ-
ous section. The implementation of feature hashing therefore merely requires a (non-
cryptographic) hash function to be specified. In practice, we use hash functions from
the MurmurHash [7] family, an efficient family of hash functions with implementations
available as public domain software.

3.4 Feature Maps for Source Code

We now present four different types of embeddings for source code based on bag-of-words.
These are presented in an order that corresponds to the amount of pre-processing re-
quired to be performed on the code. We begin with an embedding that can be generated
based on lexical analysis of code alone, i.e., without requiring parsing of source code,
and point out its inherent weaknesses. We continue to present embeddings based on
specific symbols of interest that can be constructed using fuzzy parsers with a limited
knowledge of the program syntax, and continue to discuss embeddings based on com-
plete syntax trees. These embeddings play a vital role for our methods for vulnerability
extrapolation and missing check detection presented in Chapters 4 and 5. Finally, we
present an embedding based on hashing of graphs to represent arbitrary patterns in
code property graphs, as well as multi-stage feature maps, which in combination enable
learning of traversals for vulnerability discovery as presented in Chapter 6.
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3.4.1 Token-based Feature Maps

Similar to the decomposition of text documents into streams of words in natural language
processing, source files can be lexically analyzed to decompose them into streams of
tokens. Continuing along this analogy, text documents logically group the sentences and
words they contain, while source files group logically related code. Applying the bag-
of-words idea to source code, we can therefore represent source files by the tokens they
contain, as has been explored in the context of vulnerability discovery in a supervised
setting by Scandariato et al. [130] to determine possibly vulnerable files, and by Perl
et al. [108] to determine commits that introduce vulnerabilities.

...
int foo(...)
{
  int ...
}
...

foo

int

Lexer (int,foo,int)

Figure 3.2: Token-based feature maps

Figure 3.2 illustrates this idea. The source file is simply tokenized by a lexer to yield a
sequence of tokens, where each of these tokens is associated with a word of an embedding
language. The bag-of-words embedding is subsequently carried out to represent source
files in terms of the number of occurrences of its tokens. Following this idea, we can define
token-based feature maps as an instance of a bag of words feature map (Section 3.2).

Definition 3.3. A token-based feature map is a bag-of-words feature map where the
input space X corresponds to a set of source files, and, for each source file x ∈ X , its set
of substructures Tx corresponds to the tokens it contains according to a lexer.

Like the nodes of a graph, tokens have a unique identity, meaning that no two tokens
are the same across the entire data set. However, tokens carry content in the form of
words, and several tokens may store the same word. We assign content to tokens via the
function s : T → L. In the simplest case, s simply maps a token to the string it stores,
however, s can also introduce normalizations, e.g., all numbers or all arithmetic operators
can be mapped to the same word. In correspondence with the generic definition of bag
of words given in Section 3.2, the feature map φ is then given by

φ : X → R|L|, with φ(x) = (φw(x))w∈L

where φw(x) = |{t ∈ Tx, s(t) = w}| · vw, that is, we store the number of times a token
contains the word w in the source file x in each coordinate, corrected by a weighting
factor vw that expresses the words importance over others.

This embedding is simple to implement and can be carried out even if a full-fledged parser
is unavailable as it only relies on the definition of delimiters that make it possible to
split source code into tokens. However, this simplicity does not come without drawbacks
that make it of little use for vulnerability discovery in practice.

First, a predictor that suggests to the analyst that a vulnerability exists within thousands
of lines of code may be right, however, it also leaves the analyst with thousands of lines
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to review, making this information rather useless in practice. Second, tokenization does
not expose higher level programming constructs such as statements, assignments, or
calls. In effect, the learner can compare occurrences of textual tokens but attaches little
meaning to these. For example, it cannot differentiate between the volatile names of
local variables, and calls to API functions, and it does not see whether a variable is used
on the left-hand or right-hand side of an assignment, or whether a statement is executed
before or after another. In the following, we discuss symbol-based feature maps, which
address some but not all of these concerns.

3.4.2 Symbol-based Feature Maps

Feature maps based on tokens leave two primary problems to address. On the one hand,
we want to increase the granularity of the analysis to narrow in more effectively on
vulnerable code. On the other, the quality of features used for object characterization
requires improvement. In this section, we introduce symbol-based feature maps, an
extension of token-based feature maps, to address these problems. These rely on limited
parsing of source code as can be achieved using a fuzzy parser that extracts only certain
program constructs of interest, e.g., function definitions, calls, or variable declarations.
To this end, we can employ a two-level refinement parser (see Section 2.2.1) to obtain a
corresponding abstract syntax tree.

...
int foo(...)
{
  struct bar *
  ...
}
...

First-Level
Parser

Second-Level
Parser

int foo(){ ... }

struct bar *

(...,struct bar *,...)

Figure 3.3: Symbol-based feature maps

Figure 3.3 illustrates how a symbol-based feature map is carried out. A first-level parser
extracts the objects to compare. While in the token-based approach, these objects are
source files where boundaries are known without parsing, any attempt to choose objects
located inside these files relies on parsing to identify where the object begins and where
it ends. For example, we may want to select all namespaces, or all functions as objects.

The second-level parser extracts features from objects to characterize them. For exam-
ple, we may extract all calls or types used in parameter and local variable declarations.
In contrast to tokens, these features are higher level programming constructs, possibly
composed of several tokens. For example, the type name struct myClass * consists
of the three tokens struct, myClass, and the star-operator. Programming constructs
correspond to symbols of the grammar, that is, terminals as well as non-terminals (see
Section 2.2.1), and hence we refer to these embeddings as symbol-based. Formally, we
define symbol-based feature maps as follows.

Definition 3.4. A symbol-based feature map is a bag-of-words feature map where the
input space X is given by a set of compounds obtained by a first-level parser, and the
set of substructures Tx of x ∈ X is given by the set of symbols contained in x according
to a second-level parser.
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It is noteworthy that symbol-based embeddings generalize token-based embeddings. For
example, by choosing objects to be source files and providing a second-level parser
that simply identifies all tokens, we obtain a symbol-based embedding equivalent to the
token-based embedding presented in the previous section.

Example. As an example of this type of embedding, we represent functions by the API
symbols they contain, that is, its callees and types used in declarations of parameters
and local variables. Figure 3.3 illustrates this embedding. The first-level parser begins
by identifying function definitions inside source files and passes it on to the second-level
parser. This parser, then identifies API symbols inside the function, and finally, the
bag-of-words embedding is performed.

Formally, this feature map can again be specified as an instance of the bag of words
embedding (Section 3.2), that is, it is of the form

φ : X → R|L|, with φ(x) = (φw(x))w∈L

where again, φw(x) expresses the number of occurrences of the word w in x. The input
space X is now given by the set of functions. The set of substructures T is the set of API
nodes in the syntax tree, that is, all nodes of the syntax tree that represent types, and
those that represent callees. The words of the language L are the textual representations
of API symbols, and again, the function s : T → L assigns words to each token.

Symbol-based embeddings are not limited to embedding of functions but can be created
to characterize namespaces, blocks within loops, or even statements. They cannot how-
ever, be used to characterize program constructs that can only be extracted when data
or control flow information is available, as for example, program slices.

In principle, symbols corresponds to nodes in abstract syntax trees, and thus, we rep-
resent functions by subtrees of its syntax tree. However, symbol-based embeddings do
not make use of the decomposition offered by syntax trees, but rather treat them as flat
objects by mapping trees to their string representations using the function s. In the
following section, we show how embeddings based on syntax trees can be created that
exploit this decomposition.

3.4.3 Tree-based Feature Maps

Symbol-based feature maps are already an improvement over token-based feature maps
as they enable us to represent code by high level programming constructs. In principle,
these symbols correspond to subtrees in the abstract syntax tree, however, the symbol-
based embedding ignores this tree structure and represents the tree by a flat string. For
symbols such as callees and types, that are likely to reoccur in exactly the same form
in other parts of the code base, this is not problematic. However, this flattening is not
suited for larger trees such as those corresponding to statements or loop bodies. While
these may occur in other locations of the code in a similar form, finding the exact same
string of code is unlikely.

This limitation can be addressed using tree-based feature maps. Again, we assume
that we have access to a two-level refinement parser, where the first- and second-level
parser extract objects of interest (e.g., functions) and program constructs for object
characterization respectively. However, the second-level parser is now assumed to extract
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more complex program constructs, e.g., entire statements or compound statements, as
opposed to trees representing types, callees, or identifiers. In the extreme case, the
second-level parser simply returns an entire abstract syntax tree for each function. The
idea we now follow is to represent objects by the subtrees contained in its program
constructs.

...
int foo(...)
{
  struct bar *
  ...
}
...

First-Level
Parser

Second-Level
Parser

Syntax
TreeEnumerator

int foo(){ ... }

Figure 3.4: Tree-based feature maps

Example. As an example, we represent the functions of a code base by subtrees of their
entire syntax tree (Figure 3.4). Again, a first-level parser is used to extract function
boundaries, just like in the symbol-based embedding presented in the previous Section.
However, the second level parser now creates a complete syntax tree. We then enumerate
subtrees of the syntax tree, which are mapped to strings. Finally, objects are mapped
to vectors following the remainder of the bag-of-words procedure.

Formally, this embedding is again an instance of the bag-of-words embedding. With a
two-level refinement parser and an enumerator at hand, we can define tree-based feature
maps as follows.

Definition 3.5. A tree-based feature map is a bag-of-words feature map where the
input space X is a set of objects obtained by a first-level parser, each represented by a
corresponding syntax tree obtained by a second-level parser, and for each x ∈ X, the
set of substructures Tx of x is given by the set of subtrees of its syntax tree according
to an enumerator.

In principle, this fully describes tree-based mappings, however, two practical problems
remain: (a) how exactly do we choose subtrees of the syntax tree, and (b) how do we
compare subtrees to determine equality?

Enumerating subtrees. First, syntax trees representing functions in real world code
can easily span several thousands of nodes, and therefore, using all possible subtrees to
characterize objects is computationally prohibitive in practice. We account for this by
specifying an enumerator, that extracts only certain types of subtrees from the syntax
tree. Let A denote the set of syntax trees for objects in X . Then, an enumerator is a
function

E : A → P(T )

that maps syntax trees to sets of subtrees1. As an example, E may enumerate all subtrees
of a given depth, or all subtrees up to that depth. Alternatively, it may enumerate only
subtrees rooted in certain types of nodes as proposed by Rieck et al. [118] in the context
of parse tree embedding. With an enumerator in place, the set Tx of subtrees contained
in x is simply obtained by evaluation E on the syntax tree of x.

1P(T ) denotes the power set of T
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Mapping subtrees to words. Once subtrees are enumerated, we need to decide when
two of these trees should be considered the same, as these should be mapped to the
same dimension of the feature space. While for graphs in general, this is a difficult
problem, requiring us to determine whether the graphs are isomorphic, for ordered,
attributed trees such as the abstract syntax tree, the problem is much easier to solve.
As ordered, labeled trees can be serialized into a unique textual representation, we
can simply compare the textual representations of trees to identify whether they are
the same. To this end, we represent subtrees by S-Expressions [see 122], a common
string representation of trees popularized by the Lisp programming language. Formally,
we choose the language L to be the set of S-Expressions, while the function s that
maps substructures to words is now defined to be a function that maps trees to their
corresponding S-Expressions.

The capabilities of tree-based feature maps, and symbol-based feature maps in particular,
are explored in Chapter 4 in detail, where we evaluate the applicability of different
variations of these feature maps for the detection of similar functions.

3.4.4 Graph-based Feature Maps

The embedding presented on the previous section is well suited to compare graphs
where the ordering of edges is relevant. However, there are features where robustness to
variations in neighbor order is desirable. For example, the additive expression a + b has
the same semantics as the expression b + a as addition is commutative. Unfortunately,
the mapping from substructures to words presented in the previous section produces the
S-Expressions (+a b) and (+b a), which are not the same, and thus, the two expressions
are mapped to different dimensions.

Graph-based embeddings offer a more robust type of embedding for trees and graphs
in general. The main idea is to calculate hash values for substructures and use these
as dimensions of the feature space, that is, the embedding language is now a set of
hash values. In particular, we present a method of this type that calculates so-called
neighborhood hashes [61], a hash for nodes of a graph that takes into account the node
itself as well as its neighbors.

Example. As an example, we consider the task of representing a function by the
subgraphs of its control flow graph, a process illustrated in Figure 3.5. As in the previous
two examples, the input space X is the set of functions, and again, we proceed to present
each of these functions by its corresponding control flow graph via a second-level parser.
Finally, we extract subgraphs of the control flow graph via an enumerator, and employ
a hash function to map these subgraphs to words of an embedding language.

...
int foo(...)
{
  struct bar *
  ...
}
...

First-Level
Parser

Second-Level
Parser

GraphEnumerator

int foo(){ ... }

h(      )

h(      )

Figure 3.5: Graph-based feature maps
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Graph-based feature maps are a generalization of tree-based feature maps and an in-
stance of the generic bag of words feature map, which we define as follows.

Definition 3.6. A graph-based feature map is a bag-of-words feature map where the
input space X is a set of objects obtained by a first-level parser, each represented by a
graph obtained by a second-level parser, and for each x ∈ X, the set of substructures Tx
of x is given by the set of subgraphs according to an enumerator. Finally, the mapping
s from substructures to words is given by a hash function h.

Neighborhood hashing. With substructures at hand, the core question is how they
can be mapped to hash values, the dimensions of our feature space. To this end, we
perform neighborhood hashing, a procedure devised by Hido and Kashima [61]. The
procedure begins by assigning an initial hash value to each node of the substructure
using a function l. For inner nodes of the tree, we calculate this value from its node
type while for leaf nodes, we calculate it from its value. With initial hash values for each
node of the substructure, we now want to incorporate the hash values of child nodes
into those of its parents to jointly represent both the parent node and its children by a
single hash value. To this end, we employ the hash function h : V → L from nodes to
hash values given by

h(v) = r(l(t)) ⊕
(⊕

z∈Cv

l(z)

)

where r denotes a bitwise rotation, and Cv are the child nodes of v [see 44, 61, 165]. We
proceed to update the labels of the substructure by calculating h(v) for each node and
using this hash value as its new hash value. This process is carried out several times to
incorporate information from child nodes, that are only indirectly connected to v. The
function s : T → L from substructures to hash values then simply assigns the hash value
of t’s root node to t.

Neighborhood hashing is a technique that can be employed for arbitrary graphs. In this
thesis, we make extensive use of this technique in Chapter 6 to represent expressions
that sanitize attacker-controlled data.

3.4.5 Multi-Stage Feature Maps

Graph-based feature maps already allow substructures to be mapped to the same di-
mension even if the order of child nodes differs. However, the embedding cannot account
for any other similarities between substructures, and map them onto the same dimen-
sion. For example, if we represent a function by the API symbols it contains, the API
symbol malloc and calloc are mapped to two orthogonal directions despite their textual
similarity. This leads us to the idea of multi-staged feature maps. Instead of directly
representing objects by their substructures, we instead embed substructures first and
cluster them to obtain groups of similar substructures (see Section 1.2.2 and 6.2). We
then represent objects by the groups their substructures are contained in.

Example. Let us reconsider representing functions by their API symbols as discussed
already in Section 3.4.2. However, instead of performing a symbol-based embedding,
we first cluster API symbols. In effect, we obtain a set of n clusters. As we want to
represent functions by the clusters their API symbols are contained in, the embedding
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int...
int foo(...)
{
  int ...
  malloc ...
}
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int bar(...)
{
  calloc ...
  char * ...
}
...
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char *
int malloc
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{malloc, calloc}
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Figure 3.6: Multi-stage feature maps

language contains a dimension for each cluster (Figure 3.6). In detail, this embedding
works as follows.

Clustering substructures. We again extract functions using the first-level parser and
employ a second-level parser to uncover API-symbol nodes. API-symbol nodes are then
mapped to API symbols using a function s as described in Section 3.4.2, and thus we
obtain a set L of API symbols contained in the code base. We now form groups of
similar words in L, either by calculating string distances for all pairs, or by embedding
the words of L in a vector space themselves, and employing a clustering algorithm on
these data points. As a result, we obtain a set of clusters C, where each of these clusters
is a set of words.

Representation by clusters. We continue to represent functions by the clusters their
API symbols are contained in. The embedding language L is thus given by the natural
numbers from 1 to |C|, that is, there is a dimension for each cluster, and the feature
map is given by

φ : X → R|C|, φ(x) = (φc(x))c∈C

that is, x is mapped to a |C| dimensional vector space and each coordinate is calculated
independently as φc(x) = #c(x) where #c(x) denotes the number of occurrences of the
cluster c in x. As the words of the feature space are now cluster indices as opposed
to words, however, the definition of #c differs from that of the counting functions we
discussed so far. The number of times the cluster occurs in x should be equal to the
number of substructures that, when mapped to words, correspond to a cluster member
of c, that is

#c(x) = |{t ∈ Tx, s(t) ∈ c}|
where, in contrast to definitions of counting functions in the bag of words embeddings
discussed so far, we do not demand that s(t) is equal to c, but instead, s(t) is in c.
Alternatively, we can also replace the counting function #c by an indicator function Ic
defined as

Ic(x) =

{
1 if |{t ∈ Tx, s(t) ∈ c}| ≥ 1

0 otherwise

to merely indicate whether at least one of the substructures is mapped to a word con-
tained in the cluster c.

Formally, multi-stage feature maps are yet again an instance of the bag of words feature
map, and they can be defined as follows.
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Definition 3.7. A multi-stage feature map is a bag-of-words feature map where the
input space X is given by a set of objects, and the substructures are clusters of words of
an embedding language L associated with a first-stage feature map φ̂. For each x ∈ X ,
the set of substructures Tx are the clusters containing the words associated with its
first-stage substructures, where the first-stage substructures of x are the substructures
of x according to φ̂.

Multi-stage feature maps play an important role in Chapter 6 where they are employed
to represent program slices by sets of strings that describe the initialization of variables.
In particular, associating dimensions of the feature space with sets of strings allows us to
represent initializers by corresponding string patterns expressed as regular expressions.

3.5 Feature Maps on Code Property Graphs

The previous section presents bag-of-words embeddings for source code based on dif-
ferent objects and substructures. However, it is not yet clear how these objects and
substructures can be extracted in the first place. In this section, we address this prob-
lem by providing a general procedure for the creation of bag-of-words embeddings from
code property graphs.

Recalling our description of the bag-of-words embedding given in Section 3.2, we need to
define several parameters to obtain a concrete bag-of-words embedding. First, we need to
choose an input space X containing the objects we wish to compare. Second, we need to
decide what kind of substructures we want to extract from objects to characterize them.
This amounts to the definition of a set of substructures T along with an enumerator E
that maps each object to the set of substructures it contains. Finally, we need to define
an embedding language L and a function s : T → L that maps each substructure to a
word.

By limiting ourselves to objects that correspond to subgraphs of the code property
graph, and representations of these in terms of their subgraphs, we arrive at the following
procedure to implement the three steps of a bag-of-words embedding (see Section 3.2).

• Object extraction. We begin extracting objects from the code property graph
and thereby implicitly defining the input space X . We achieve this by selecting a
seed node in the code property graph for each object, and subsequently expanding
it to obtain the object’s graph representation (Section 3.5.1).

• Substructure Enumeration. For each graph, we proceed to label its nodes and
edges, and enumerate it subgraphs, thereby specifying the set of substructures
T and the enumerator E. This enables us to represent objects in terms of the
subgraphs they contain (Section 3.5.2).

• Mapping objects to vectors. With objects and substructures at hand, we
finally map each object to a vector that represents the substructures it contains.
To this end, we employ hashing as a simple strategy to enable processing of objects
independently. Implementing this step implicitly defines the language L, along
with the map s from substructures to words (Section 3.5.3).
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(1) Object Extraction (2) Substructure Enumeration (3) Mapping

Figure 3.7: Embedding procedure based on code property graphs

Figure 3.7 illustrates this process. In the following, we discuss how each of these steps
can be implemented in terms of operations on the code property graph, and provide the
parameters of the embedding procedure, which concrete embeddings must implement.

3.5.1 Object Extraction

As discussed in Section 3.1, the first step for embedding source code in feature spaces
is to select a suitable input space X , that is, we need to choose objects of interest. Our
embedding procedure assumes that these objects correspond to subgraphs of the code
property graph. For example, if our task is to determine similar functions based on
syntax, these objects may be syntax trees of functions. In another setting, we may want
to compare calls to a specific API function. In this case, we can choose backward slices
of invocations as objects.

Object extraction can be implemented as a two step procedure. First, we determine a set
of seed nodes for each object, and second, we expand seed nodes recursively to uncover
corresponding objects. For example, to extract syntax trees of functions, we select all
function nodes as seed nodes, and recursively expand all syntax edges to uncover the
respective syntax trees.

We can describe this process in terms of operations on the code property graph. Given
a code property graph and its nodes V , we first execute a function S for seed-node
selection that preserves seed nodes while discarding all other nodes. For each object,
S returns a set of seed nodes. Each seed node is subsequently expanded according to
the expansion E (see Section 2.3.2) and up to a maximum depth of D. For example,
to extract syntax trees of functions, we choose S to be a function that returns single-
elemented sets of function nodes, and E to be given by OutEA, that is, the expansion
that assigns outgoing syntax edges to each node. Finally, the maximum depth D is
chosen to be infinite, enabling us to uncover complete syntax trees. For tree structures,
the depth parameter is rather dispensable, however, for graphs in general, this parameter
is important to ensure termination.

We denote the function that expands seed nodes into objects as ObjectDE (X). This
function can be defined as a restriction (see Appendix A) of the code property graph g
and is given by

ObjectDE (X) = g|UDE (X),DDE (X)

where UDE and DDE are traversals to uncover the node and edge set of the subgraph

respectively. Recalling that Ê(X) is the set of nodes reached by the expansion E (see
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Section 2.3.2), the traversal for uncovering the node set is given by

UdE (X) =

{
∅ if d = 0

X ∪ Ud−1
E (Ê(X)) otherwise

that is, the node set of a set of input nodes X is given by these input nodes, along with
the node set of all nodes reachable via nodes in X using the expansion. Analogously,
the edge set is given by

Dd
E(X) =

{
∅ if d = 1

E(X) ∪Dd−1
E (Ê(X)) otherwise

.

where the definitions of the two traversals differ only in the depth at which the recursion
terminates, and in the fact that one returns nodes, while the other returns edges2.

Putting these pieces together, for a seed node selector S, an expansion E and the nodes
V of a property graph, the set of objects O is given by

O := {ObjectDE (X), X ∈ S(V )}

meaning that we simply evaluate the function ObjectDE on each set of seed nodes to
obtain a set holding the resulting graphs (see Section 4.4.1).

3.5.2 Substructure Enumeration

After extracting objects in the form of graphs, we determine their subgraphs in two steps.
First, we label their nodes, where the labeling determines which information our mapping
from substructures to words of the embedding language takes into account. Second, we
enumerate subgraphs such that for each object, a corresponding set of subgraphs is
available.

Node labeling. While the nodes and edges of the code property graph are already
attributed, these attributes often contain information irrelevant for the learning task,
which introduces additional noise and hinders similarity assessment. Therefore, our first
task is to leverage existing attributes to attach a single label to each node, which is
the only node content the embedding will take into account. For example, we may seek
an embedding where nodes are considered the same if they both represent a variable,
regardless of the lines they appear on, or the name of the variable. We achieve this by
labeling nodes by their types and discarding all other attributes.

The property graph’s ability to carry attributes can be leveraged to label code property
graphs. To this end, we simply replace the existing attribute function µ by a new
attribute function µl that assigns values for the key label to all nodes of the code property
graph. Formally, the labeled graph Labeledl(g) is given by (V,E, λ, µl, s, d) where µl
is an attribute function using the single attribute key label, and defined as

µl(x, k) =

{
l(x) if k = label

ε otherwise

2If expanding D times is not possible, this function gives back the full subgraph reachable from the
seed node using the expansion function.
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for all nodes x of the code property graph, l is a labeling function that maps nodes to
property values, and ε is an empty word. For example, l(x) can simply correspond to
the type or code attribute of the node.

Subgraph enumeration. With a labeled graph for each object at hand, we can now
enumerate the subgraphs it contains. As we have already made use of when extracting
objects, for a graph g, the subgraph seeded in the node x obtained according to an
expansion E ′ up to a depth d is obtained as the restriction

SubgraphdE ′(x) = g|Ud
E′ ({x}),D

d
E′ ({x})

where again, UdE ′ and Dd
E ′ are traversals to uncover the node set and edge set respectively.

In principle, the expansion E ′ does not need to be equal to the expansion E used in
object extraction, however, for the embeddings implemented in our work, E is equal
to E ′, meaning that the same expansion is used to uncover objects from seed nodes as
is used to determine its substructures, albeit, with different start nodes and different
expansion depths.

We can now enumerate all subgraphs by simply calculating this expression for all nodes
of the graph, that is, object, and all values of d up to a chosen depth, that is, the set of
subgraphs up to depth d contained in g is given by

SubgraphsdE ′(g) =
d⋃

i=1

⋃

v∈V
SubgraphiE ′(v)

where V is the node set of g and, as before, E ′ is an expansion. As a final result of this
step, we obtain the set of subgraphs Tx given by Tx := SubgraphsdE ′(x) for each object
x ∈ O, where the set of objects O is extracted as described in the previous Section.

3.5.3 Mapping objects to vectors

We now have access to the set of objects, as well as the set of substructures contained in
each object, which is all that is required to finally map objects to vectors. In particular,
no further information needs to be retrieved from the code property graph at this point
as all subgraphs relevant for our embedding are available.

sub structures hash buckets

......

Figure 3.8: Feature hashing for sub structures
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The task which remains is to choose an embedding language L and a mapping s from
labeled substructures to words of the language. To this end, any of the definitions
of L and s provided in the previous Section can be employed, provided that they are
applicable to the enumerated substructures. For example, if the substructures are simply
single nodes labeled by a string value, we can employ the definitions of L and s given
for token- or symbol-based feature maps (see Sections 3.4.1 and 3.4.2) are applicable,
while for trees, the corresponding definitions in Section 3.4.3 can be used. In cases where
these mappings rely on labeled graphs, they can make use of the labels introduced in
the process described in the previous Section.

While throughout the remainder of the thesis, we use different embedding languages and
associated mappings from substructures to words, a truly generic embedding procedure
can be obtained by employing a hash-based embedding as introduced in Section 3.4.4.
This generality is achieved as hashes can be calculated for arbitrary labeled graphs, re-
gardless of whether they consist of multiple or a single node or whether their edges are
ordered or not. An additional advantage is that we can thus embed objects indepen-
dently.

Recalling neighborhood hashing, the words of L are simply the numbers from 1 to N ,
where each number corresponds to a hash bucket of a hash function h such as the
neighborhood hash introduced in Section 3.4.4. The function s that maps substructures
to words then simply assigns the hash value of a substructure’s designated root node to
the structure, where the root node is identified by its label. Figure 3.8 illustrates this.

3.6 Related Work

Applying machine learning techniques to increase computer security has been considered
by many authors in the past [see 67, 90], in particular for intrusion detection [e.g., 80, 116,
154], as well as malware detection [8, 70, 117]. However, most of these approaches deal
with processing of network communication or binary code, as source code is typically not
available in these settings. An exception is the work by Rieck et al. [119] for the detection
of drive-by-download attacks where a token-based feature map (see Section 3.4.1) is
employed to map Javascript code to a vector space.

In contrast, applications of machine learning for statically identifying vulnerabilities are
rare, and are currently limited to supervised approaches. For example, Neuhaus et al.
[102] train a support vector machine to rank components of the Web browser Firefox
by their likelihood of being vulnerable, where a component consists of a C++ source
file along with headers of the same name. Their representing employs is based on ex-
pert features such as imports and outgoing function calls, detected by scanning code
for the pattern identifier ( ...) in lack of a fuzzy parser. Similarly, [130] train
a classifier based on a bag-of-words representation obtained by tokenizing components.
Moreover, Perl et al. [108] tokenize commits and train a support vector machine to iden-
tify commits that potentially introduce a vulnerability. [170] whether software metrics
can be used for vulnerability prediction, where entire programs are classified. There are
two main drawbacks to these approaches. First, they rely on the availability of a large
number of labeled examples, and therefore, they can only be applied to code where a
security history can be automatically queried. Second, and more importantly, analyzing
entire components or commits is rather coarse-grained, possibly leaving the analyst with
thousands of lines of code to review for each prediction.





4
Discovering Vulnerabilities using Dimensionality Reduction

With our platform for robust code analysis at hand, and a generic procedure for embed-
ding code property graphs (see Chapters 2 and Chapter 3), we are now ready to develop
concrete methods for pattern-based vulnerability discovery. In the following three chap-
ters, we present three of these methods, each dedicated to showing the merits of one
of the three major approaches to unsupervised learning in the context of vulnerability
discovery, namely, dimensionality reduction, anomaly detection, and clustering. To this
end, we formulate concrete problems encountered by analysts when reviewing code for
vulnerabilities, and provide methods to address them.

In this chapter, we present a method for finding vulnerabilities similar to a known vul-
nerability, which is primarily based on dimensionality reduction. Our method extracts
structural patterns from the code base and represents functions as compositions of these
patterns. This allows us to decompose a known vulnerable function into its program-
ming patterns and thereby identify functions employing similar programming patterns
— potentially suffering from the same flaw. In particular, this method enables us to find
several previously unknown vulnerabilities similar to a known vulnerability in popular
open source projects.

We begin by discussing the setting addressed by our method and introduce the concept
of vulnerability extrapolation in Section 4.1. We proceed to outline the capabilities
of dimensionality reduction techniques with a focus on possible applications in code
analysis in Section 4.2. Section 4.3 subsequently introduces the reader to a well known
technique from natural language processing known as latent semantic analysis, which
employs dimensionality reduction at its core. This method forms the algorithmic basis
for our approach to vulnerability extrapolation, which we present in Section 4.4. Finally,
the practical merits of our method are demonstrated empirically in Section 4.5, and we
conclude by discussing related work in Section 4.6.

4.1 Task: Vulnerability Extrapolation

For our first method, we consider the initial phase of a code audit where the analyst
knows only very little about the target code base. In this situation, it is often helpful
and educating to review the program’s security history by studying flaws identified by

61
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others in the past, e.g., by browsing vulnerability databases or revision histories. The
rational behind this is that vulnerabilities are often linked to specific programming errors,
and that a given programming error is often made more than once throughout a code
base. In the simplest case, vulnerable code is copied as-is throughout the development
process, creating a vulnerable code clone [see 13, 14, 74], however, copied code can also
be modified, raising the problem difficulty. In the most difficult case, code is not copied
at all, and similar vulnerabilities are instances of an incorrect programming pattern based
on false programmer assumptions. For example, a programmer may assume that an API
function is able to deal with malformed data, while in fact, it is not, resulting in several
instances of the same vulnerability.

This setting calls for a method that, given a known vulnerability, automatically identifies
locations in the code employing the same programming patterns—possibly containing
the same flaw. We refer to this strategy of vulnerability discovery as vulnerability ex-
trapolation (see [163, 164]) as existing knowledge of problematic programming patterns
concentrated in a vulnerability is extrapolated to find vulnerabilities in the rest of the
code base. This approach is attractive because it is not specific to any particular type of
vulnerability, and does not rely on advanced machinery, requiring only a robust parser
and an initial vulnerability.

In many cases, vulnerability extrapolation can be performed manually by specifying
rules that capture the vulnerable properties as explored in Chapter 2. However, this
requires an expert to study the vulnerability in order to understand its core properties
before a suitable rule can be formulated. The amount of manual work this requires calls
for an automated approach.

Assuming that no information is available apart from the vulnerability itself, extrap-
olation the vulnerability poses two primary challenges. First, programming patterns
existent in the code base need to be extracted automatically, and second, functions
employing similar programming patterns to the known vulnerable function need to be
determined. To address these challenges, our method for vulnerability extrapolation
adapts latent semantic analysis, a well understood technique originally developed in
natural language processing for the discovery of similar text documents.

4.2 Dimensionality Reduction

A primary challenge in applied machine learning is to choose features that are well suited
to express those properties of the data relevant for the task at hand. This is true for
numeric features, but even more so for the bag-of-words-like representations we employ
for code analysis (see Chapter 3). In these spaces, the dimensionality of the feature
space is equal to the number of different words in the data, making the resulting feature
vectors high dimensional and sparse. This has the following three severe consequences.

First, and less problematic for sparse feature spaces, dealing with large feature spaces can
easily become prohibitive due to time and memory constraints. Second, many features
are possibly irrelevant, and thus, they only introduce extra noise. And third, the amount
of data required to generate a prediction function that expresses statistically significant
properties of the data typically grows with the dimensionality of the feature space, and
therefore, a feature space with fewer dimensions is desirable.
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These problems can be alleviated by dimensionality reduction. Given data in a high
dimensional feature space, dimensionality reduction techniques seek another space with a
lower dimensionality where the data can be represented with comparative expressiveness,
however, with fewer features.

There are two main strategies for dimensionality reduction, feature selection and feature
extraction. While in the former case, we restrict ourselves to selecting a sub set of the
existing features, in the latter, we construct new features from the existing. As the
solutions obtainable via feature extraction include sub sets of features, feature extraction
can be considered the more general of the two strategies. However, in situations where
newly constructed features do not lend themselves to simple interpretation and the
interpretation of features is vital, feature selection can be the better choice [27]. As newly
constructed features created from feature spaces considered in this work are designed to
be interpreted easily, we focus our discussion on feature extraction.

There are a large variety of feature extraction methods, both limited to exploiting linear
dependencies (e.g., Principal Component Analysis, Non-negative Matrix Factorization,
Linear Discriminant Analysis), and algorithms capable of dealing with non-linear de-
pendencies (e.g., Kernel PCA [131], Isomap [145], and Locally Linear Embedding [125]).
With respect to our description of machine learning (Section 1.2), these algorithms each
implement the same action. For a given input space X , the methods extract features,
which are the sole parameters for the creation of a model θ. Using this model, we can
instantiate a prediction function fθ that projects a data point x ∈ X into the newly
created feature space of reduced dimensionality Y.

As we discuss in more detail in the following Sections, Principal Component Analysis is
a technique for dimensionality reduction particularly interesting in the setting of code
analysis. To construct a feature space of reduced dimensionality, Principal component
analysis extracts directions in the feature space where the data varies most, that is,
directions that represent strong correlations between features of the original space. Ap-
plied to code analysis and with the embeddings described in Chapter 3 in mind, this
enables us to determine common compositions of program constructs. With these fea-
tures at hand, we can easily identify code sharing the same common compositions of
program constructs. Moreover, we can represents objects of the program in light of the
overall code base, making it possible to take into account which of an object’s features
constitute a pattern, and which are merely noise. These merits of dimensionality reduc-
tion have been successfully exploited in natural language processing to identify patterns
in textual data. In particular, a method named latent semantic analysis has evolved to
become a standard technique. This method forms the basis for our approach, and thus,
we describe it in the following.

4.3 Latent Semantic Analysis

Latent semantic analysis, also commonly referred to as latent semantic indexing [32], is
a technique based on dimensionality reduction, developed to identify topics of discussion
in sets of text document, as well as documents similar to a given document in terms of
topics. To this end, text documents are represented in a vector space and dimensionality
reduction is performed to find a lower dimensional representation of text documents in
terms of the most common topics discussed in the corpus. This is achieved in the
following three steps.
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• Embedding. Documents are first embedded in a vector space using a bag-of-
words embedding (see Section 3.2), where the weight vw for each word w cor-
responds to the TF-IDF weighting. This classic weighting scheme from natural
language processing removes the bias towards longer documents, and ensures that
words frequent in the corpus have very little effect on document representation.
A detailed description of the TF-IDF weighting scheme is given by Salton and
McGill [127].

• Dimensionality Reduction. Second, common topics of discussion are deter-
mined from the corpus via dimensionality reduction. To this end, we identify
dominant directions in feature space, that is, combinations of words that com-
monly occur together, by calculating a truncated singular value decomposition of
the data matrix. Projecting document vectors onto these directions provides us
with a representation of documents in terms of the topics they contain.

• Similarity Assessment. Finally, we can determine the similarity between two
documents geometrically by calculating the distance between the corresponding
vectors using a suitable distance function. Latent semantic analysis employs the
cosine distance

cos(x, y) = 1− x · y
‖x‖ · ‖y‖

for this purpose, where x and y are the d-dimensional representations of the two
documents and ‖·‖ denotes the L2 norm. While technically, the cosine distance
is not a metric as the triangle inequality does not hold, it is a popular choice for
document comparison nonetheless due to the fact that it normalizes documents by
their length, thereby removing the bias towards longer documents.

At heart of this procedure, dimensionality reduction is employed to denoise the data
set, that is, to obtain a representation less susceptible to artifacts.

4.4 Extrapolation using Syntax Trees

Latent semantic analysis provides us with a method to extract prominent topics from
a corpus of text documents, and additionally allows us to identify documents that are
similar with respect to these topics. The problem we need to address when extrapolating
vulnerabilities is similar: we want to extract prominent programming patterns presents
in a code base, and identify functions similar in terms of these programming patterns. In
analogy to the representation of topics by combinations of words in text documents, we
therefore propose to describe programming patterns as combinations of AST sub trees.

(1) Extraction of  
ASTs

Code base of
functions

(2) Embedding in 
vector space

(3) Identification of
structural patterns

char a(uint b) {
  func1((int) b);
  func2(); ...

1

1

(4) Vulnerability
extrapolation

char a(uint b) {
  func1((int) b);
  func2(); ...

char a(uint b) {
  func1((int) b);
  func2(); ...

Known vulnerability

Candidates
GETuint b

GETstmts

GETfunc1

GETchar a

GETparams

GET...
GETstmts

GETchar a

GETparams

GETuint b

GETparams

Figure 4.1: Overview of our method for vulnerability extrapolation [164]
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Based on this idea, we can formulate our method for vulnerability extrapolation as a
four step procedure in close resemblance to latent semantic analysis. This procedure is
illustrated in Figure 4.1 and outlined in the following.

1. Extraction of syntax trees. We begin by extracting abstract syntax trees for all
functions of the code base using a suitable graph-database lookup (Section 4.4.1).

2. Embedding of syntax trees. Abstract syntax trees are subsequently embedded
in a vector space to allow for applications of machine learning techniques. To this
end, we employ concrete implementations of our embedding procedure for property
graphs (Section 4.4.2).

3. Identification of structural patterns. We proceed to identify the most domi-
nant structural patterns in the code base by performing the same dimensionality
reduction technique to the vectorial representations of functions as employed by
latent semantic analysis to text documents (Section 4.4.3).

4. Vulnerability extrapolation. Finally, functions of the code base are repre-
sented as linear-combinations of the most dominant structural patterns they con-
tain, allowing us to identify functions similar to a vulnerable function in terms of
structural patterns (Section 4.4.4).

In the following, we describe each of these steps in greater detail and discuss how they
are implemented with respect to our robust code analysis platform (see Chapter 2).

4.4.1 Extraction of Syntax Trees

We implement our method for vulnerability extrapolation on top of the architecture for
robust code analysis presented in Chapter 2. In particular, we thus have access to code
property graphs for each function and can employ the general embedding procedure for
code property graphs introduced in Chapter 3.

The first step of the embedding procedure is to define and extract the objects to process,
that is, we need to define an input space X (see Section 3.5). For example, this can be
the space of all source files, all functions, or all statements. This choice is crucial for
the success of our method as it decides upon the granularity of the analysis. On the
one hand, we want to narrow in on vulnerable code as much as possible, making small
objects preferable. On the other, we want an object to capture all aspects relevant for
the vulnerability as well as the context it appears in, an argument for larger objects.

Functions offer a good compromise between these two objectives. Like source files,
they are explicitly named grouping constructs that enclose logically related code. In
addition, they are the most fine-grained, named grouping construct available in the C
programming language, and thus better support our desire for small grouping constructs
than entire source files.

We characterize functions by their abstract syntax trees as these trees are the most fine-
grained code representation made available to us by the code property graph. These
trees faithfully encode program syntax by providing a hierarchical decomposition of
functions into their language elements. Moreover, with our embedding procedure on
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code property graphs at hand, extracting these trees can be achieved easily by (a)
defining a seed node selector S that retrieves all function nodes, and (b) defining an
expansion E that recursively expands these nodes into syntax trees. Seed node selection
thus boils down to the evaluation of the function

S(X) = {{x}, x ∈ Lookup(type, function, X)}.

On an implementation level, this corresponds to a simple index lookup that retrieves all
nodes where the type is function. As the Neo4j graph database keeps an index of nodes
by property, this operation executes in constant time.

The nodes returned by the seed node selector now serve as seed nodes to uncover their
corresponding abstract syntax trees. We achieve this by instantiating the function
ObjectDE (see Section 3.5.1) with the expansion E := OutEA and D := ∞, that is,
we walk along syntax edges until expansion is no longer possible.

4.4.2 Embedding Syntax Trees

Upon extracting syntax trees for all functions of the code base, we proceed to map each
syntax tree to a corresponding vector encoding the sub trees contained in the function.

The design of this mapping is crucial for the success of vulnerability extrapolation, and
since it is not clear beforehand which mapping produces good results in practice, we
consider three competing mappings, which differ in the types of AST sub trees they
employ to model functions. In particular, we consider the following mappings in this
work, where T denotes the set of sub trees.

• API nodes. We represent each function by the API symbols it contains, i.e.,
by the names of types and callees. This corresponds to the embedding presented
in the original paper on vulnerability extrapolation [163]. The set of sub trees T
corresponds to the set of API nodes present in the code base.

• API subtrees. Each function is represented by its sub trees up to a depth D,
however, only the contents of API symbol nodes is preserved. The set of sub trees
T is thus given by all AST sub trees of the code base up to a depth D that contain
at least one API symbol, where ASTs are preprocessed to replace all non-API
nodes with empty nodes.

• API/S subtrees. We represent each function by its sub trees up to a depth D
and preserve the contents of all nodes, that is, API symbols, as well as syntactical
elements such as arithmetic and assignment operators. The set of sub trees T thus
corresponds to that of all AST sub trees up to a depth D containing at least one
API or syntax node, where again, ASTs are preprocessed to purge the contents of
all other types of nodes.

Defining the set of sub trees T is sufficient to directly employ a tree-based feature map
(see Section 3.4.3) in order to represent all functions of the code base by the sub trees
of their syntax tree. To this end, sub trees are simply mapped to string representations
using a function s : T → L, that is, the embedding language L is given by the set of
string representations of ASTs. The desired feature map is then given by a function
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φ : X → R‖L‖ from functions, represented by their syntax trees, to |L| dimensional
vectors, where |L| corresponds to the number of words in the embedding language. As
is true for all bag-of-words embeddings, this function is defined as

φ(x) =
(
#w(x) · vw

)
w∈L

where #w(x, s) corresponds to the number of sub trees of x that are mapped to the
word w, and vw is the TF-IDF weighting term (see Section 4.3).

We can implement this embedding on code property graphs based on the generic em-
bedding procedure described in Section 3.5. This is achieved by first labeling the nodes
of the AST using a labeling function, extracting its sub trees using a suitable sub graph
enumerator, and finally, hashing each sub graph to associate it with a dimension of the
feature space.

For the first two embeddings, the labeling function must preserve the code attribute of
API nodes while purging the information in all other nodes. This can be achieved using
the labeling function

lAPI(x) =

{
µ(x, code) if µ(x, type) ∈ A
ε otherwise

where A is the set of all node types that correspond to API nodes. Labeling for the
third embedding is simpler as each node is simply labeled by its code attribute, that is
we apply the labeling function lAPI/S(x) = µ(x, code).

Once syntax trees are labeled, we define a sub graph enumerator to extract the sub
graphs they contain. To this end, we instantiate the function SubGraphsdE (see Sec-
tion 3.5.2) using an expansion that follows syntax tree edges only, that is, we set
E := OutEA and d := 1 for the first embedding, and d := 3 for the second and
third embedding. Finally, objects are mapped to vectors by mapping sub structures to
words using the function s, where we ignore any sub trees that are mapped to the empty
string by s.

Each of the presented embeddings provides a different view on the functions of the
code base. While API nodes alone only provide information about the interfacing of
functions, API sub trees additionally describe the structural context these nodes occur
in, and finally, API/S subtrees augment this representation with the syntactical elements
employed by functions.

1 int foo(int y)

2 {

3 int n = bar(y);

4

5 if (n == 0)

6 return 1;

7

8 return (n + y);

9 }

Figure 4.2: Sample code of a function foo [164]

To illustrate the embedding procedure, let us consider an API node embedding and the
sample code provided in Figure 4.2 along with a simplified illustration of its abstract
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syntax tree in Figure 4.3. The syntax tree contains three API nodes, namely, the pa-
rameter of type int, the declaration of type int and the call to the function bar. The
resulting sparse vector therefore contains only three non-zero dimensions while all other
dimensions are set to zero. While the vector space has a high dimensionality, its sparsity
allows these vectors to be efficiently represented and compared in linear time using data
structures such as sorted arrays and hash maps [see 120].

GET==

GET+

return

param: int

GETcall: bar

GETdecl: int

GETfunc

GETparams

GETreturnGETif

GETstmts

=

GETcond GETstmts

Figure 4.3: Abstract syntax tree for the function foo [164]

As a result of this step, we obtain a sparse M by N data matrix X, where M corresponds
to the size of the hash function’s co-domain and N is equal to the number of functions of
the code base. Following latent semantic analysis, we finally apply the TF-IDF weighting
scheme to this matrix (see Section 4.3) to remove the bias towards longer functions and
reduce the effect of very common sub trees.

4.4.3 Identification of Structural Patterns

The representation of functions introduced in the previous section describes functions
in terms of sub trees of their abstract syntax trees, a representation created in direct
analogy to the representation of text documents by the words they contain. We pro-
ceed further along the path set by latent semantic analysis and calculate the truncated
singular value decomposition of the data matrix X as X ≈ UΣV T . Just like in the
text mining setting, we thus obtain directions in the feature space where the data varies
most, as well as a representation of functions in terms of these directions. However,
the interpretation of these directions differ from those in text mining setting. While
in text mining, these directions correspond to common combinations of words, that is,
topics of discussion, in our setting, these are common combinations of sub trees, that is,
structural patterns.

Formally, we seek the d orthogonal dimensions in feature space that capture most of the
data’s variance. For a term-by-document matrix X, this can be achieved by calculating
its truncated singular value decomposition, given by:

X ≈ UΣV T =




← u1 →
← u2 →

...
← u|S| →







σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σd







← v1 →
← v2 →

...
← v|X | →




T

.

These three matrices in combination allow the similarity of functions to be assessed and
the most prominent structural patterns to be determined. In particular, the matrices
contain the following information.
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• The unitary matrix U contains the d most dominant directions of the feature space
in its columns, that is, the vectorial representation of the structural patterns.

• The diagonal of Σ gives access to the corresponding singular values, which are a
measure for the importance of each of the d structural patterns stored in U .

• Finally, V contains the d-dimensional representations of functions in its rows, that
is, each function is represented as a mixture of the d most dominant directions in
feature space.

In the context of latent semantic analysis, this decomposition is typically calculated using
the Lancsoz algorithm, an iterative procedure implemented by both classic libraries for
linear algebra such as SVDPACK [15] as well as modern machine learning frameworks
such as Apache Mahout [42].

4.4.4 Extrapolation of Vulnerabilities

Upon calculating the truncated singular value decomposition as outlined in the previous
section, the analyst can make use of the resulting matrices U , Σ and V for vulnerability
discovery and vulnerability extrapolation in particular.

The matrix V plays the key role in vulnerability extrapolation. In its rows, it holds a
vector for each of the program’s functions, describing the function as a linear combination
of the most prominent structural patterns present in the code base. The analyst can
make use of these vectors to compare functions in terms of the structural patterns they
employ. In particular, to extrapolate a vulnerability, the analyst simply chooses the
vector corresponding to the vulnerable function and compares it with each of the other
row vectors in V using a suitable distance metric. Choosing those vectors with the
smallest distance, the analyst obtains those functions of the code base most similar to
the vulnerable function in terms of structural patterns, and thus prime candidates for
functions suffering from the same flaw. To achieve this, we use the cosine distance as in
the original algorithm for latent semantic analysis (see Section 4.3).

While extrapolation can be performed using the matrix V alone, the matrix U can
also be of use to the analyst. In its columns, it stores the most prominent structural
patterns, allowing insights into the structure of the code base to be gained. For example,
this information can be used to uncover major clusters of similar functions that employ
similar programming patterns, making it possible for the analyst to focus on interested
parts of the code base early in the analysis.

Finally, the vector space of reduced dimensionality spanned by structural patterns can
serve as an input space for subsequent anomaly detection techniques. This application
is discussed in detail in Chapter 5 where we see that certain deviations from common
programming patterns constitute vulnerabilities and that they can often be determined
automatically.

4.5 Evaluation

In the following, we evaluate our method for vulnerability extrapolation on the source
code of four well known open source projects from different areas of application. In
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particular, we assess our method’s ability to identify similar functions and find vulner-
abilities in practice. To this end, we carry out an evaluation in two steps. First, a
controlled experiment is conducted based on ground truth, and second, the merits of
our method for real world vulnerability discovery are demonstrated in two case studies,
where we identify several previously unknown vulnerabilities.

For our evaluation, we consider the code bases of the image processing library LibTIFF,
the video and audio decoding library FFmpeg, the instant messenger Pidgin, and the
Voice-over-IP framework Asterisk. In each case, a known vulnerability is chosen and
we manually label candidate functions which should be reviewed for the same type of
vulnerability. In the following, we describe our data set in detail.

1. LibTIFF (http://www.libtiff.org) is an image processing library for the Tagged
Image File Format, consisting of 1,292 functions and 52,650 lines of code. In
Version 3.8.1., the library contains an exploitable stack-based buffer overflow in
the parsing of TLV elements (CVE-2006-3459). As candidate functions, we select
all parsers of TLV elements.

2. FFmpeg (http://www.ffmpeg.org) is a library for audio and video decoding that
spans 6,941 functions and a total of 298,723 lines of code. Version 0.6 contains,
an incorrect calculation of indices during video frame decoding allows attackers
to execute arbitrary code (CVE-2010-3429). As candidate functions, we select all
video decoding routines that write decoded video frames to a pixel buffer.

3. Pidgin (http://www.pidgin.im) is an instant messenger consisting of 11,505 func-
tions and 272,866 lines of code. In version 2.10.0, the program contains a remote
denial-of-service vulnerability in the implementation of the AOL instant messag-
ing protocol (CVE-2011-4601). Candidate functions are all AIM protocol handlers
that convert incoming binary messages to strings.

4. Asterisk (http://www.asterisk.org) is a platform for Voice-over-IP telephony,
covering a total of 8,155 functions and 283,883 lines of code. Version 1.6.1.0 con-
tains a memory corruption vulnerability allowing attackers to remotely crash the
Asterisk server and possibly execute arbitrary code (CVE-2011-2529). We select
all functions that read incoming packets from UDP/TCP sockets as candidates.

4.5.1 Controlled Experiment

We begin with a controlled experiment based on ground truth data. To obtain this data,
we thoroughly inspect code bases for candidate functions manually, that is, for a given
vulnerability, we identify functions that should be checked for the same vulnerability
by manually inspecting the code. It should be noted that this manual process does not
offer a realistic alternative for vulnerability extrapolation, as it required several weeks
of manual work.

Upon collecting ground truth data, we execute our method to rank all functions of the
code base with respect to their similarity to the known vulnerable function. Assuming
that the analyst examines functions by strictly following the generated ranking, this
allows us to assess the number of functions the analyst must audit before finding all
candidates. We carry out this experiment for all three embeddings described in Sec-
tion 4.4.2, making it possible to compare their effectiveness.

http://www.libtiff.org
http://www.ffmpeg.org
http://www.pidgin.im
http://www.asterisk.org
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Figure 4.4: Performance of vulnerability extrapolation in a controlled experi-
ment [164].

Figure 4.4 shows the amount of code requiring review before all candidates are found,
plotted against the number of structural patterns chosen to represent the code base.
The corresponding plots for the remaining two code bases are similar and have thus
been omitted. As the Figure shows, the embedding based on API subtrees clearly
outperforms the other two representations as it allows all candidate functions to be
discovered by auditing only 8.7% of the code on average, as compared to 11.1% for flat
API symbols and 25% for API/S subtrees. Moreover, the results show that the optimal
choice of the number of structural patterns depends on the code base, however, choosing
it within a band between 50 to 100 dimensions yields good results for all the the code
bases studied despite their different sizes. Therefore, the number of dimensions is not
a critical parameter and is fixed to 70 for the real world experiments described in the
following sections.

Table 4.1 offers a more fine-grained analysis of our method, showing the percentage of
code to review to uncover 75%, 90% and 100% of the candidates for each code base and
each embedding. Again, the API subtrees show the best performance, allowing 75% of
the candidates to be discovered by reading only 3% of the code on average. For Pidgin
and Asterisk, reading less than 1% suffices to achieve these results. However, there is
also room for improvement, particularly when all candidates need to be identified, where
the amount of code to read reaches 16% in the worst case.

API nodes API subtrees API/S subtrees
75% 90% 100% 75% 90% 100% 75% 90% 100%

Pidgin 0.1 0.36 2.00 0.35 0.22 0.98 0.22 0.67 25.98
LibTIFF 6.35 6.97 7.58 5.65 6.66 7.27 6.49 9.36 17.32
FFmpeg 6.17 8.10 19.61 5.00 8.66 11.09 7.71 15.21 28.35
Asterisk 0.06 10.64 15.29 0.24 10.23 15.54 1.19 16.50 28.45
Average 3.17 6.52 11.12 2.81 6.44 8.72 3.90 10.44 25.03

Table 4.1: Performance of vulnerability extrapolation in a controlled experiment. The
performance is given as amount of code (%) to be audited to find 75%, 90% and 100%
of the potentially vulnerable functions [164].

Overall, these results indicate that the task of finding functions possibly containing a
flaw similar to that in a known vulnerable function can be accelerated significantly by our
method for vulnerability extrapolation when compared to manual auditing. However, a
controlled experiment cannot provide insights on the practical merits of the approach.
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In the following, we therefore perform several case studies showing that our method
plays the key role in uncovering several previously unknown vulnerabilities.

4.5.2 Case Studies

We proceed to evaluate the practical merits of our method by applying it to the source
code of FFmpeg and Pidgin, allowing us to uncover eight previously unknown vulnera-
bilities by extrapolation two known vulnerabilities.

4.5.2.1 Case Study: FFmpeg

Memory corruption vulnerabilities are a common problem among libraries that parse and
decode media formats in memory-unsafe languages such as C or C++. In particular,
unchecked array indices used in write operations can allow attackers to write arbitrary
data to arbitrary locations in memory, a powerful exploit primitive that can often be
leveraged for code execution. This case study considers a bug of this kind in the video
decoder for FLIC media files implemented as part of FFmpeg (CVE-2010-3429). As this
exact vulnerability is also considered as a case study in our original paper on vulnerability
extrapolation [163], it allows us to directly compare our original method to the improved
method based on structural patterns.

static int flic_decode_frame_8BPP(AVCodecContext *avctx,

void *data, int *data_size,

const uint8_t *buf,

int buf_size)

{ [...]

signed short line_packets; int y_ptr;

[...]

pixels = s->frame.data[0];

pixel_limit = s->avctx->height * s->frame.linesize[0];

frame_size = AV_RL32(&buf[stream_ptr]); [...]

frame_size -= 16;

/* iterate through the chunks */

while ((frame_size > 0) && (num_chunks > 0)) { [...]

chunk_type = AV_RL16(&buf[stream_ptr]);

stream_ptr += 2;

switch (chunk_type) { [...]

case FLI_DELTA:

y_ptr = 0;

compressed_lines = AV_RL16(&buf[stream_ptr]);

stream_ptr += 2;

while (compressed_lines > 0) {

line_packets = AV_RL16(&buf[stream_ptr]);

stream_ptr += 2;

if ((line_packets & 0xC000) == 0xC000) {

// line skip opcode

line_packets = -line_packets;

y_ptr += line_packets * s->frame.linesize[0];

} else if ((line_packets & 0xC000) == 0x4000) {

[...]

} else if ((line_packets & 0xC000) == 0x8000) {

// "last byte" opcode

pixels[y_ptr + s->frame.linesize[0] - 1] =

line_packets & 0xff;

} else { [...]

y_ptr += s->frame.linesize[0];

}

}

break; [...]

}

[...]

} [...]

return buf_size;

}

static void vmd_decode(VmdVideoContext *s) 1
{ 2

[...] int frame_x, frame_y; 3
int frame_width, frame_height; 4
int dp_size; 5

6
frame_x = AV_RL16(&s->buf[6]); 7
frame_y = AV_RL16(&s->buf[8]); 8
frame_width = AV_RL16(&s->buf[10]) - frame_x + 1; 9
frame_height = AV_RL16(&s->buf[12]) - frame_y + 1; 10

11
if ((frame_width == s->avctx->width && 12

frame_height == s->avctx->height) && 13
(frame_x || frame_y)) { 14

s->x_off = frame_x; 15
s->y_off = frame_y; 16

} 17
frame_x -= s->x_off; 18
frame_y -= s->y_off; [...] 19
if (frame_x || frame_y || (frame_width != s->avctx->width) 20

|| (frame_height != s->avctx->height)) { 21
memcpy(s->frame.data[0], s->prev_frame.data[0], 22

s->avctx->height * s->frame.linesize[0]); 23
} [...] 24
if (s->size >= 0) { 25

pb = p; 26
meth = *pb++; [...] 27
dp = &s->frame.data[0][frame_y * s->frame.linesize[0] 28

+ frame_x]; 29
dp_size = s->frame.linesize[0] * s->avctx->height; 30
pp = &s->prev_frame.data[0][frame_y * 31

s->prev_frame.linesize[0] + frame_x]; 32
switch (meth) { [...] 33
case 2: 34

for (i = 0; i < frame_height; i++) { 35
memcpy(dp, pb, frame_width); 36
pb += frame_width; 37
dp += s->frame.linesize[0]; 38
pp += s->prev_frame.linesize[0]; 39

} break; [...] 40
} 41

} 42
} 43

Figure 4.5: Original vulnerability in flic decode frame 8BPP (left) and zero-day
vulnerability found in vmd decode (right) [164].

Original vulnerability. Figure 4.5 shows the original vulnerability located in the
function flic decode frame 8BPP, a decoding function for FLIC videos. The function
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operates on video frames containing encoded image data and meta information such as
the image dimensions and offsets. Ultimately, the decoder’s task is to create a buffer
containing the decoded pixel data. To this end, it proceeds to allocate the buffer in
accordance with the frame dimensions, index the array using the frame offsets, and
finally, write decoded pixels to the buffer. Before performing the write operation, it is
crucial to verify that the location referred to by the frame offsets is within the boundaries
of the buffer. Unfortunately, the vulnerable functions does not verify frame offsets at
all, enabling attackers to corrupt memory.

The function implements a taint-style vulnerability (see Section 1.1.2), where data prop-
agates from an attacker controlled source to a sensitive operation without undergoing
prior verification. In this case, the critical operation is the write operation on line 32
where the least significant byte of the attacker-controlled integer line packets is writ-
ten to a location relative to the pixel buffer pixels. The location to which the data is
written depends on the integer y ptr. This integer stems from the attacker-controlled
source AV RL16 that reads a 16 bit integer from the media file, and, as is defining for a
taint-style vulnerability, it is not checked before it reaches the sensitive sink.

Sim. Function name

0.98 flic decode frame 15 16BPP

0.92 decode frame

0.92 decode frame

0.91 flac decode frame

0.90 decode format80

0.89 decode frame

0.89 tgv decode frame

0.89 vmd decode

0.89 wavpack decode frame

0.88 adpcm decode frame

0.88 decode frame

0.88 aasc decode frame

0.88 vqa decode chunk

0.87 cmv process header

0.87 msrle decode 8 16 24 32

Sim. Function name

0.87 wmavoice decode init

0.85 decode frame

0.84 smc decode stream

0.84 rl2 decode init

0.84 xvid encode init

0.84 vmdvideo decode init

0.83 mjpega dump header

0.82 ff flac is . valid

0.82 decode init

0.82 ws snd decode frame

0.81 bmp decode frame

0.81 sbr make f master

0.80 ff h264 decode ref pic .

0.80 decode frame

0.79 vqa decode init

Table 4.2: Top 30 most similar functions to a known vulnerability in FFmpeg [164].

Extrapolation. Executing our method with the vulnerable function as input, we obtain
the ranking shown in Table 4.2. This ranking shows the 30 functions most similar to
the vulnerable function selected from a total of 6,941 functions, where light shading
and dark shading indicate candidates and vulnerabilities respectively. Reviewing these
results, we find the following.

• Of the 30 most similar functions, 20 are candidate functions, meaning that they
are, too, decoders writing data to a pixel buffer. In addition, all of the first 13
functions are candidates.

• The function flic decode frame 15 16BPP is found to be most similar to the vul-
nerable function.Indeed, this function also processes FLIC video frames and was
fixed along with the original flaw.
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• The function vmd decode shown in Figure 4.5 likewise contains a taint-style vulner-
ability very similar to the previous two. Like in the original vulnerability, a frame
offset is retrieved from the attacker-controlled source AV RL16 on line 8 and used
as an index into a pixel buffer on line 28. Finally, a write operation is performed
at the designated offset without prior validation of the frame offset. Our method
reports a similarity of 89%, leading us almost directly to this vulnerability. As
demonstrated in our prior work [163], this vulnerability can be found based on
API information alone.

• Finally, the function vqa decode chunk contains another vulnerability, which also
was not identified by the method proposed in our prior work [163]. This vulner-
ability is difficult to identify based on API information alone as reading from the
attacker-controlled source using the characteristic API is not performed inside the
vulnerable function but by the initialization routine vqa decode init on 21 and
22. However, we can compensate the missing API information in the vulnerable
function by additionally taking into account its structure, and in particular, the
nested loop iterating over the pixel buffer on line 6 and 8, a typical pattern for
frame decoding routines.

1 static void vqa_decode_chunk(VqaContext *s)

2 {

3 [...]

4 int lobytes = 0;

5 int hibytes = s->decode_buffer_size / 2; [...]

6 for (y = 0; y < s->frame.linesize[0] * s->height;

7 y += s->frame.linesize[0] * s->vector_height){

8 for (x = y; x < y + s->width; x += 4,lobytes++,hibytes++)

9 {

10 pixel_ptr = x;

11 /* get the vector index, the method for

12 which varies according to

13 * VQA file version */

14 switch (s->vqa_version) {

15 case 1: [...]

16 case 2:

17 lobyte = s->decode_buffer[lobytes];

18 hibyte = s->decode_buffer[hibytes];

19 vector_index = (hibyte << 8) | lobyte;

20 vector_index <<= index_shift;

21 lines = s->vector_height;

22 break;

23 case 3: [...]

24 }

25 while (lines--) {

26 s->frame.data[0][pixel_ptr + 0] =

27 s->codebook[vector_index++];

28 s->frame.data[0][pixel_ptr + 1] =

29 s->codebook[vector_index++];

s->frame.data[0][pixel_ptr + 2] =

s->codebook[vector_index++];

s->frame.data[0][pixel_ptr + 3] =

s->codebook[vector_index++];

pixel_ptr += s->frame.linesize[0];

}

}

}

}

static av_cold int vqa_decode_init(AVCodecContext *avctx)

{

VqaContext *s = avctx->priv_data;

unsigned char *vqa_header;

int i, j, codebook_index;

s->avctx = avctx;

avctx->pix_fmt = PIX_FMT_PAL8; [...]

/* load up the VQA parameters from the header */

vqa_header = (unsigned char *)s->avctx->extradata;

s->vqa_version = vqa_header[0];

s->width = AV_RL16(&vqa_header[6]);

s->height = AV_RL16(&vqa_header[8]); [...]

/* allocate decode buffer */

s->decode_buffer_size = (s->width / s->vector_width) *

(s->height / s->vector_height) * 2;

s->decode_buffer = av_malloc(s->decode_buffer_size);

s->frame.data[0] = NULL;

return 0;

}

Figure 4.6: The second zero-day vulnerability found by extrapolation of CVE-2010-
3429 in vqa decode chunk [164].

This case study illustrates that our method is capable of assisting an analyst in iden-
tifying vulnerabilities similar to known vulnerabilities in real world code. Moreover, it
demonstrates that augmented structural information can be valuable in cases where API
information is lacking.

4.5.2.2 Case Study: Pidgin

To ensure that our approach does not rely on any properties specific to FFmpeg or
the vulnerability, we perform a second case study on a different vulnerability located
in the packet handling code of the instant messenger Pidgin. Moreover, the fraction
of candidate functions with respect to the total number of functions is considerable
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static int

receiveauthgrant(OscarData *od,

FlapConnection *conn,

aim_module_t *mod,

FlapFrame *frame,

aim_modsnac_t *snac,

ByteStream *bs)

{

int ret = 0;

aim_rxcallback_t userfunc;

guint16 tmp;

char *bn, *msg;

/* Read buddy name */

if ((tmp = byte_stream_get8(bs)))

bn = byte_stream_getstr(bs, tmp);

else

bn = NULL;

/* Read message (null terminated) */

if ((tmp = byte_stream_get16(bs)))

msg = byte_stream_getstr(bs, tmp);

else

msg = NULL;

/* Unknown */

tmp = byte_stream_get16(bs);

if ((userfunc =

aim_callhandler(od, snac->family, snac->subtype)))

ret = userfunc(od, conn, frame, bn, msg);

g_free(bn);

g_free(msg);

return ret;

}

static int 1
parseicon(OscarData *od, 2

FlapConnection *conn, 3
aim_module_t *mod, 4
FlapFrame *frame, 5
aim_modsnac_t *snac, 6
ByteStream *bs) 7

{ 8
9

int ret = 0; 10
aim_rxcallback_t userfunc; 11
char *bn; 12
guint16 flags, iconlen; 13
guint8 iconcsumtype, iconcsumlen, *iconcsum, *icon; 14

15
bn = byte_stream_getstr(bs, byte_stream_get8(bs)); 16
flags = byte_stream_get16(bs); 17
iconcsumtype = byte_stream_get8(bs); 18
iconcsumlen = byte_stream_get8(bs); 19
iconcsum = byte_stream_getraw(bs, iconcsumlen); 20
iconlen = byte_stream_get16(bs); 21
icon = byte_stream_getraw(bs, iconlen); 22
if ((userfunc = 23

aim_callhandler(od, snac->family, snac->subtype))) 24
ret = userfunc(od, conn, frame, bn, iconcsumtype, 25

iconcsum, iconcsumlen, icon, iconlen); 26
g_free(bn); 27
g_free(iconcsum); 28
g_free(icon); 29
return ret; 30

} 31

Figure 4.7: Original vulnerability (CVE-2011-4601) in receiveauthgrant (left), zero-
day vulnerability in parseicon (right) [164].

lower in this case, where only 67 of 11,505 functions are candidates. Regardless of this
increased difficulty, extrapolation of the vulnerable function allows us to uncover nine
similar vulnerabilities within the top 30 most similar functions, and in particular, six
previously unknown vulnerabilities.

Original Vulnerability. The vulnerability resides in the function receiveauthgrant

shown in Figure 4.7, where attacker-controlled strings are read from a network packet
using the function byte stream getstr on line 15. The value thus read is then passed to
a suitable packet handler on line 27 without verifying that it is a valid UTF-8 string,
allowing an attacker to cause a denial of service at least, and possibly even execute
arbitrary code.

Extrapolation. Applying our method to obtain the 30 most similar functions, we ob-
tain the ranking shown in Table 4.3. Of the 30 functions, 28 are candidate functions,
selected from a total of 11,505 functions. Moreover, nine of the functions contain are
instances of the same vulnerable programming practice as found in the original vulner-
ability. As an example, Figure 4.7 shows the function parseicon, which reads a string
from a network packet on line 16 and passes it to a packet handler on line 25 without
verifying whether it is a valid UTF-8 string. It has been verified that this flaw can
indeed be triggered to cause a denial of service.

The second case study shows that extrapolation is possible even when the fraction of
candidate functions is small compared to the total number of functions. Moreover, it
demonstrates that the method is not limited to finding vulnerabilities in media decoding
libraries. However, it is worth pointing out that the vulnerabilities considered in the
case studies are both taint-style vulnerabilities.
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Sim. Function name

1.00 receiveauthgrant

1.00 receiveauthreply

1.00 parsepopup

1.00 parseicon

1.00 generror

0.99 incoming .. buddylist

0.99 motd

0.99 receiveadded

0.99 mtn receive

0.99 msgack

0.99 keyparse

0.99 hostversions

0.98 userlistchange

0.98 migrate

0.98 error

Sim. Function name

0.98 incomingim ch4

0.98 parse flap ch4

0.98 infoupdate

0.98 parserights

0.98 incomingim

0.98 parseadd

0.97 userinfo

0.97 parsemod

0.97 parsedata

0.97 rights

0.97 rights

0.97 uploadack

0.96 incomingim ch2 sendfile

0.96 rights

0.96 parseinfo create

Table 4.3: Top 30 most similar functions to a known vulnerability in Pidgin [164].

4.6 Related Work

The method presented in this chapter provides analysts with a tool to accelerate manual
vulnerability discovery. To this end, we extend work on the extrapolation of vulnerabil-
ities, a problem, which is itself closely related to code clone detection. In the following,
we thus discuss related work in these three areas in detail.

Extrapolation of vulnerabilities. The notion of vulnerability extrapolation was
first introduced in prior work primarily conducted by the author of this thesis [163]. The
work describes the simplest of the embeddings considered in this work, the API node
embedding, and provides first empirical evidence for the success of vulnerability extrap-
olation in real world code auditing. The work presented in this chapter significantly
extends prior work by showing how structural and syntactical information provided by
the abstract syntax tree can be incorporated into the analysis. As a result, we are able
to model programming patterns beyond API symbols, represented by arbitrary patterns
in the abstract syntax tree. In particular, this enables us to compare different embed-
dings in a controlled experiment, showing that embeddings focusing on API symbols are
indeed superior to those which do not. Moreover, we demonstrate the merits of vulner-
ability extrapolation on a significantly larger body of source code. Finally, Pewny et al.
[110] extend our work on vulnerability extrapolation for the analysis of binaries, and
even provide an approach that allows semantically similar code to be identified across
architectures [109].

Code clone detection. A related strain of research deals with code clone detec-
tion [see 14], that is, the discovery of code that has been copied and possibly slightly
modified. While code clones share the same programming patterns, not all functions
sharing the same programming patterns are also code clones. We can thus consider code
clone detection to deal with a special case of the problem considered by our work.
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Early approaches to code clone detection employ simple numerical features. For example,
Kontogiannis et al. [74] use features such as the number of called functions and the
McCabe cyclomatic complexity [95] to identify code clones. Baxter et al. [13] provide a
more fine-grained approach based on comparing abstract syntax trees, and thus closely
related to our work from a methodological point of view. Kamiya et al. [69] strike a
balance between these two approaches by presenting a token-based method for code
clone detection. Moreover, both Li et al. [84] and Jang et al. [65] have presented
methods to scan entire operating system distributions for code clones, uncovering many
bugs in the process.

From an algorithmic point of view, the work by Marcus and Maletic [93] on the discovery
of high-level concept clones most closely resembles ours as it also employs latent semantic
analysis. However, in stark contrast to our work, their representation of code is based
on comments and identifiers while API symbols are discarded. This highlights a key
difference in the requirements for code clone detection when compared to vulnerability
extrapolation: while for copied code, it can be assumed that comments are preserved,
this is not true for code that merely shares programming patterns with the original code.

Manual code review. The literature on strategies for manual discovery of vulnera-
bilities is rather scarce. Dowd et al. [35] provides a comprehensive overview of strategies
for manual vulnerability discovery. Similarly, Koziol et al. [76] discuss vulnerability dis-
covery with a focus on bug classes specific for system code, while Stuttard and Pinto
[138] focus on the discovery of vulnerabilities in Web applications. In the same series
of books, Miller et al. [97] discuss vulnerability discovery on the Apple iOS platform,
while Drake et al. [36] deal with vulnerabilities on Android systems. Finally, Klein [72]
provides an introduction to the topic based on a series of case studies with real world
applications. Our work is related in that the method we propose implicitly suggests
an auditing strategy, namely, the reviewing of known vulnerabilities and subsequent
identification of similar code fragments likely to be vulnerable as well.





5
Discovering Vulnerabilities using Anomaly Detection

The previous chapter shows how dimensionality reduction can be leveraged to identify
similar code. A situation is addressed where an analyst has access to a known flaw and is
interesting in retrieving more functions sharing its programming patterns. The success
of this approach hinges on the assumption that reoccurring programming patterns exist
in the code base, and enables the analyst to spot these repetitions.

The method presented in the previous chapter is successful if the programming pattern
itself constitutes a vulnerability. If this is the case, then by finding additional instances
of the pattern, we find additional vulnerabilities. However, there are also vulnerabilities
where the programming pattern is used correctly in many places and incorrectly only in
a few. This is particularly often the case for mature and well-audited code where vul-
nerabilities are an exception rather than the rule. In these cases, the method presented
in the previous chapter allows to focus on instances of the patterns, but offers no assis-
tance in determining instances more suspicious than others. Particularly for large code
bases where the sheer mass of code prohibits examining all functions employing the same
programming pattern, we are interesting in further narrowing in on vulnerabilities. In
theory, exact methods such as constraint solving, model checking, or symbolic execution
can be used for this purpose, however, the difficulties in adapting these techniques to
the specifics of a code base and vulnerability type, as well as the required computational
effort, encourage to explore alternatives.

In this chapter, we examine how the method presented in the previous chapter can be
extended and adapted to narrow in on vulnerable code by pointing out particularly
pronounced deviations from programming patterns. Based on the assumption that, for
mature software projects, programming patterns are used correctly in the majority of
cases, we extend our analysis by an anomaly detection step. The intuition we follow is
that if a check occurs in 9 out of 10 functions in a program, the single function missing
the check is an anomaly that deserves the analyst’s attention. With this idea in mind, we
select functions that are similar with respect to the programming patterns they employ
but different in the constraints they impose on user input. We focus on missing or
unusual constraints (“checks”), as failure to correctly restrict user input is a common
source of vulnerabilities (see Section 5.1).

As a result, we obtain a method for finding missing checks or anomalous checks based on
an attacker-controlled source or sensitive sink. To this end, our method first identifies

79
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functions employing similar programming patterns by employing the method presented
in the previous chapter, and subsequently analyzes the data flow in these functions.
Finally, anomaly detection is employed to highlight anomalous or missing checks.

In the following, we begin by discussing the setting in which an immediate demand for
missing check detection arises and the information the analyst needs to supply to operate
our method in Section 5.1. We proceed to provide a brief discussion of anomaly detec-
tion in Section 5.2, the unsupervised machine learning technique our approach is based
on. The resulting approach for missing check detection is subsequently presented in Sec-
tion 5.3 along with an empirical evaluation in Section 5.4. We conclude by discussing
related work in Section 5.5.

5.1 Task: Missing Check Detection

Many vulnerabilities can be directly linked to the omission of security critical checks
as suggested by the results discussed thus far (Section 4.5) and strikingly illustrated by
severe vulnerabilities discovered in the past years. For example, a missing check in the
access control logic of the Java 7 runtime discovered in January 2013 enabled attackers to
install malware on millions of hosts via drive-by-download attacks (see CVE-2013-0422).

1 int foo(char *user, char *str, size_t n)

2 {

3 char buf[BUF_SIZE], *ar;

4 size_t len = strlen(str);

5

6 if(!is_privileged(user))

7 return ERROR;

8

9 if(len >= BUF_SIZE) return ERROR;

10 memcpy(buf, str, len);

11

12 ar = malloc(n);

13 if(!ar) return ERROR;

14

15 return process(ar, buf, len);

16 }

Figure 5.1: Exemplary security checks in a C function: a check implementing security
logic (line 6) and two checks ensuring secure API usage (line 9 and 13) [166].

As examples for security critical checks, consider the three checks in the listing shown
in Figure 5.1, each of which fall into one of the following two categories.

• Checks ensuring secure API usage. Securely operating functions provided
by application programming interfaces often requires pre- or post-conditions to
be met. For example, when calling the function malloc, the return value should
always be checked to be non-null to catch cases where allocation fails. The listing
shown in Figure 5.1 contains two of these types of checks, namely the check for the
return value of malloc (line 13) and the check on the amount of data to copy (line 9)
via memcpy. In both cases, performing the check amounts to good programming
practices but becomes crucial when the processed value is attacker-controlled.

• Checks implementing security logic. Other checks ensure that access control
is implemented correctly, allowing security critical operations to be executed only
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when certain conditions are met. These types of checks are commonly found in
Web applications but also in system software such as operating system kernels. In
our sample listing shown in Figure 5.1, the first of the three checks (line 6) is of
this type. It ensures that the operation offered by the function foo can only be
carried out if the user is privileged to do so.

This leads us to the following definition for missing check vulnerabilities that captures
both checks related to secure API usage, as well as checks that implement security logic.

Definition 5.1. A missing-check vulnerability is a vulnerability caused by a failure to
restrict data that (a) originates from an attacker-controlled source, or (b) reaches a
security sensitive operation.

In this chapter, we consider the task of exposing these types of missing checks to the
analyst by only making use of the available code. Hence, we consider an unsupervised
setting where no examples of vulnerable and non-vulnerable code are available, nor are
annotations accessible as for example used by the security checker Splint [40]. Instead,
we make use of the fact that sources and sinks are typically executed several times
throughout a code base. Assuming that they are operated correctly in most cases,
we can employ anomaly detection to determine incorrect usage automatically. In this
context, we consider the following two settings encountered by analysts in practice.

• Initial code browsing. In the first setting, the analyst sees the code for the first
time and is not acquainted with the application programming interfaces it makes
use of. As she browses a function, we want to highlight invocations of APIs that are
missing their respective typical checks. This allows the analyst to spot potential
vulnerabilities despite lack of existing knowledge about correct API usage.

• Scanning based on known source or sink. The second setting considers the
situation where the analyst knows of a source she controls or an operation that
requires protection, and she would like to scan the code for instances where these
sources or sinks are used without their respective typical checks. This setting
occurs throughout the auditing process as the analyst understands the attack
surface.

The primitive to implement in both settings is that of identifying for a given function
and a symbol of interest (e.g., a source or sink) whether it is invoked with the typical
check pattern in place or not. However, before we discuss how this primitive can be
implemented in detail using a suitable method, we now briefly discuss anomaly detection,
our method’s core ingredient.

5.2 Anomaly Detection

The main building block for our approach to missing check detection is anomaly detec-
tion, a family of unsupervised machine learning algorithms that deal with the identifi-
cation of anomalous data points. To this end, a model of normality is inferred from the
data, making it possible to compare data points to this model to uncover anomalies.
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This comparison is implemented by a prediction function fθ : X → R that maps each
x ∈ X to a numerical value referred to as an anomaly score y ∈ R (see Section 1.2).

In the machine learning literature, anomaly detection methods are commonly classified
into global and local methods, where global methods calculate models of normality over
the entire data set, while local methods consider only data points nearby in the fea-
ture space [see 54]. Chandola et al. [21, Sec. 2.2] additionally introduce the concept of
contextual anomalies, a notion they see implemented particularly as researchers apply
anomaly detection to time series. They define contextual anomalies to be data points
that can be considered anomalous within a context, but not otherwise. What is inter-
esting about this idea is that, in contrast to local anomalies, data points in the same
context need not be nearby in feature space, and can instead be established via proper-
ties unencoded in the vectorial representation. For example, in code analysis, we may
consider only functions written by the same author to be in the same context, or only
functions written within a specific time frame.

One of the simplest approaches to global anomaly detection is to choose the data’s center
of mass as a model [see 116]. For a data set X ⊂ Rn of n-dimensional vectors, the model
is then simply given by the vector

µ =
1

|X|
∑

x∈X
x.

where |X| denotes the number of elements in X. The anomaly score for an x0 ∈ X is
then calculated as

f(x0) = ||µ− x0||
where ‖ · ‖ is a suitable metric, that is, we simply calculate a distance from x0 to the
center of mass. This simple approach can be easily extended to determine contextual
anomalies, as we make use of in our approach for missing check detection. To achieve
this, we simply restrict the set X to those data points in the same context as x0 when
calculating its anomaly score.

5.3 Discovering Missing Checks

To identify missing checks in source code, we combine the method for finding similar
functions presented in the previous chapter with anomaly detection based on center of
mass as outlined in the previous section. Conceptually, our method proceeds in two
consecutive steps. First, we discover neighborhoods of similar functions based on API
symbols. Second, we determine anomalies in the way user input is checked for each of
these neighborhoods separately. We implement this procedure in the following five steps
that can be executed for any given function of interest (see Figure 5.2).

• Source and sink identification. For the function of interest, we begin by
determining all sources and sinks. For each of these, we also determine all other
functions employing the same source or sink (Section 5.3.1).

• Neighborhood Discovery. Whether a check is required may depend on the
context it is used in. We therefore employ the machinery introduced in Chapter 4
to first identify functions operating in a similar context (Section 5.3.2).
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(1) Identification of 
sinks and sources

(2) Neighborhood 
discovery

void foo(int n) {
    ...
    x = malloc(n);
    if (x && n > 0)
        process(x, n);
    ...
}

void woo(int n) {
    ...
    malloc(...);
    ...
    process(...);
    ...
}

void boo(int n) {
    ...
    malloc(...);
    ...
    process(...);
    ...
}

void bar(int n) {
    ...
    malloc(...);
    ...
    process(...);
    ...
}

(4) Embedding of 
functions

(n > 0)

(x)

bar()

foo()
woo()

boo()

(5) Anomaly 
detection

(n > 0)

(x)

Missing check

Normality

Input source

void foo(int n) {
    ...
    x = malloc(n);
    if (x && n > 0)
        process(x, n);
    ...
}

(3) Lightweight
tainting

Figure 5.2: Overview of our method for missing check detection: (1) sources and sinks
are identified, (2) functions with similar context are grouped, (3) variables depending on
the sources/sinks are tainted, (4) functions are embedded in a vector space using tainted
conditions, and (5) functions with anomalous or missing conditions are detected [165].

• Lightweight Tainting. We proceed to identify the sub set of checks that are
relevant for the given source or sink by following data flow edges in the program
dependence graph (Section 5.3.3).

• Embedding of functions. Functions of the neighborhood are subsequently rep-
resented as vectors encoding the checks they perform, allowing for subsequent
analyze using machine learning methods (Section 5.3.4).

• Anomaly Detection. Finally, we compute a model of normality over the func-
tions of the neighborhood and perform anomaly detection to determine those func-
tions where a check is likely to be missing (Section 5.3.5).

We now describe each of these steps in greater detail and highlight connections to the
concepts and methods presented in the previous chapters.

5.3.1 Source and sink identification

The method presented in this section is entirely based on syntax trees, and hence, can be
implemented on top of our platform for robust code analysis. In particular, we extract
the following information from the database for each of function of the code base.

• Sources and sinks. We extract all function parameters, function calls, as well as
global and local variables and consider them potential sources and sinks of infor-
mation. Each of these symbols may be tied to their own unique set of conditions
that must hold in order for it to be operated securely. We further increase the
granularity of the analysis by considering fields of structures as separate symbols.

• API symbols. As a prerequisite for neighborhood discovery, we additionally
extract all nodes for types used in parameter and local variable declarations as
well as all callees. We refer to these as API symbols in correspondence with the
API nodes used in Section 4.4.2.

• Assignments. To develop a lightweight form of taint analysis that can be per-
formed on the syntax tree alone (see Section 5.3.3), we additionally extract as-
signment nodes from functions, as they describe the flow of information between
variables.
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• Conditions. Finally, condition nodes are extracted as we ultimately seek to
compare functions in terms of the conditions they impose on input originating in
or propagating two a source or sink respectively.

This exhaustively enumerates the information required to carry out our method for
missing check detection, which we proceed to describe in the following sections.

5.3.2 Neighborhood Discovery

Whether a missing check results in a vulnerability is dependent on the context code op-
erates in. For example, failure to check the sizes of strings when processing configuration
files may be acceptable, while omitting the same check when parsing attacker-controlled
network packets can have devastating effects. To identify relevant anomalies in the way
a function checks its input, the function should only be compared to other functions
operating in a similar context, as opposed to all functions of the code base. To this
end, our method begins by identifying a neighborhood of functions for the function of
interest.

We identify a function’s neighborhood by employing the method for similar function
identification presented in the previous chapter, and in particular, API nodes embedding
(see Section 4.4.2). The rational behind this choice is that the combination of interfaces
used by a function is characteristic for the subsystem it operates in and the tasks it
fulfills.

In conformance with the notation in Section 4.4.2, we denote the set of functions by X
and the set of all API symbols in the code base by L. Then, following our method for
similar function detection, we can map functions to a vector space using the function

φ : X 7−→ R|L|, φ(x) =
(
#w(x) · vw

)
w∈L

where, again, #w(x) denotes the number of API nodes in the function x that are mapped
to the API symbol s, and vw corresponds to a TF-IDF weighting term1.

We can now identify the k most similar functions employing the symbol of interest geo-
metrically N ⊂ X , where, sticking to the method presented earlier, the cosine distance is
used as a measure of dissimilarity. As we show in the empirical evaluation (Section 5.4.1,
our method is not very sensitive to the choice of k, and values between 10 and 30 provide
good performance.

5.3.3 Lightweight Tainting

Functions can contain many checks, only few of which are related to a particular source
or sink of interest. Focusing our analysis on a specific source or sink therefore requires
a procedure to discard unrelated checks.

To address this problem, we perform lightweight tainting for a given function and symbol
of interest in the following two stages.

1Optionally, a truncated singular value decomposition can be performed to reduce the dimensionality
of the feature space, however, a study succeeding our work shows that this has little effect on the results
of this particular method [89].
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• Dependency modeling. We model the dependencies between variables in a de-
pendency graph, a directed graph where the nodes represent the function’s identi-
fiers, that is, possible sources and sinks, and the edges correspond to assignments
between identifiers. We additionally add edges from arguments to the functions
which receive them.

• Taint propagation. To discover identifiers related to a source or sink, we start
at the symbol of interest and traverse the graph in a top-down as well as bottom-
up direction. Propagation terminates at function boundaries, that is, we do not
expand edges from arguments to functions.

As an example, Figure 5.3 shows the dependency graph for the function foo from Fig-
ure 5.1 and the symbol memcpy. Taint propagation marks three identifiers tainted as
depicted by gray shading, two of which are directly connected nodes (len and buf), and
one of which is only indirectly connected (strlen).

user

is_privileged

str

strlen

len bufmemcpy

ar

malloc n

process

arg

arg

arg

arg

arg

assign

arg arg

arg

arg

assign

Figure 5.3: Dependency graph for function foo. Nodes reachable from memcpy are
shaded, where the taint propagation stops at function boundaries. Isolated nodes are
omitted [166].

Upon determining tainted identifiers in the dependency graph, we finally select relevant
conditions by choosing only those conditions that reference at least one of the tainted
identifiers. For a function represented by its function node x, we refer to the correspond-
ing set of condition nodes as Cx.

Another possibility to identify only those checks related to the source or sink is to perform
program slicing based on program dependence graphs as explored in the context of our
method by Maier [89]. This is a useful practical addition to our original technique,
in particular because it allows a symbol to be analyzed as a source or sink only, as
opposed to a possible source and sink. However, this is shown by Maier [89] to perform
very similar to the method based on lightweight tainting in the controlled setting (see
Section 5.4.1).

5.3.4 Embedding of Functions

Upon execution of the previous two steps, a neighborhood for the function of interest as
well as conditions relevant in these functions for the symbol of interest are available. We
can now leverage this information to identify deviations from typical checks via anomaly
detection techniques. To this end, we map functions of the neighborhood to a vector
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space once more, however, we now represent them by the checks they contain as opposed
to their usage of API symbols. We implement this embedding via the following two step
procedure.

len >= BUF_SIZE

>=

foo

BUF_SIZElen

!is_privileged 
(user)

! ar

! ar
is_privileged 

(user)
!

user

$ARG $CMP BUF_SIZE

BUF_SIZE

$ARG

0
BBBB@

· · ·
1
1
1

· · ·

1
CCCCA

$ARG $CMP BUF SIZE

$ARG

BUF SIZE

Figure 5.4: Schematic depiction of embedding. Conditions related to the specified
source/sink are extracted from the abstract syntax tree and mapped to a vector space
using their expressions [166].

Normalization. As our method does not evaluate expressions to identify whether they
need to be true or false in order to be relevant for execution of a sink or termination after
reading from a source, we perform a number of normalizations to account for variations
in check formulation we do not recognize as such. We begin by removing negations and
replacing relational and equality operators by the symbol $CMP. We additionally replace
numbers by $NUM as, for example, a function checking whether a symbol x is smaller than
9 while all functions in the neighborhood check whether x is smaller than 10 should not
be punished for being more restrictive. Similarly, to allow arguments and return values
of the source or sink of interest to be compared irrespective of their specific names, we
replace return values with the symbol $RET and arguments with the symbol $ARG.

Bag-of-subtrees. We proceed to extract all expressions from normalized conditions,
that is, all sub trees they contain. Denoting the set of all of these expressions in all
functions of the neighborhood as T , we can again implement a tree-based feature map
(see Section 3.4.3) to represent functions by their expressions. This map is given by

ϕ : X → R|L|, ϕ(x) =
(
Iw(x)

)
w∈L

where L is the set of expressions in textual representation, and Iw is simply an indicator
function given by

Iw(x) =

{
1 if x contains an expression e with s(e) = w

0 otherwise.

where w ∈ L is a string, and s : T → L maps sub trees to their textual representations.

This procedure is illustrated in Figure 5.4 for the example function foo from Figure 5.1,
where the single condition relevant for the sink memcpy is first determined and its sub-
expressions are subsequently normalized and extracted. Finally, we obtain the bag-of-
subtrees representation of foo by applying the mapping ϕ.

As is true for all feature maps presented thus far, we can implement ϕ using the general
embedding procedure presented in Section 3.5 in the following two steps.

Object extraction. As an input space, we consider the set of all functions. However,
in contrast to the feature maps presented thus far, these are not represented by their
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complete syntax trees, but only by sub trees rooted in condition nodes and relevant for
the symbol of interest. We implement object extraction using the seed node selector

S(X) = {Cx : x ∈ Lookup(type, function, X)},

that is, for each function node, we determine the set of relevant condition nodes. We
proceed to extract full sub trees starting in these condition nodes using the function
ObjectDE with E := OutEA and D := ∞, the same function already employed in
Section 4.4.1 for the extraction of the complete syntax tree from the root node.

Sub structure enumeration. To enumerate sub structures, we use the attribute code
of each node as its label. Following the generic embedding procedure, we simply define
the labeling function to be l(x) = µ(x, code) to achieve this. The set of substructures Tx
for the object x corresponds to the nodes of the syntax trees of its relevant conditions,
that is, the set Cx. The set of all substructures T is then given by the union of all sets
Tx over all objects. Following the embedding procedure, we can simply instantiate the
function SubgraphdE ′ with E ′ = E , and d = 1, meaning that for each node of the object,
we return the node itself.

Mapping objects to vectors. Finally, we need to define an embedding language L
and a function s : T → L from substructures to words of the embedding language to fully
define the parameters of the embedding procedure. We define the embedding language
L to be given by the set of labels assigned to nodes, and the function s as a function
that maps each node to its label.

5.3.5 Anomaly Detection

With vectorial representations of all neighboring functions at hand, we can now identify
missing and anomalous checks in the function of interest automatically. We achieve this
by calculating a model of normality, which encodes those expressions common among
functions of the neighborhood, and determining the deviation of the target function
from this model. In particular, this allows us to identify checks present in the majority
of functions of the neighborhood that are missing in the target function. In addition,
we obtain an anomaly score that allows functions to be ranked in terms of the available
evidence for a missing check. Conceptually, we thus expose contextual anomalies, as the
checks absent from a function are only flagged as anomalies in comparison to functions
operating in a similar context.

For a function x and a symbol of interest, we implement this step based on its neighbor-
hood N and the mapping ϕ that represents functions in terms of the expressions in its
conditions, however, limited to those expressions relevant for the symbol of interest. As
a model of normality, we choose the center of mass of all functions in the neighborhood,
given by

µ =
1

|N |
∑

n∈N
ϕ(n).

As each of the dimensions of the feature space are associated with an expression, each
coordinate of µ encodes the fraction of neighborhood functions that contain a particular
expression, where in the case of a value of one, all functions contain the expression, while
in the case of zero, none do.
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To calculate missing checks, we can now simply determine the distance vector d ∈ R|E|
given by d = µ − ϕ(x), where each coordinate is a value between −1 and +1. As we
subtract the function of interest from the model of normality, a positive number denotes
a missing check, that is, an expression that is checked by a fraction of the neighborhood
but not in the function of interest. In contrast, a negative value indicates an expression
checked in the function but not checked by any of its neighbors.

While the coefficients of d already allow us to point out the exact missing expression to
the analyst, we can additionally calculate an anomaly score to rank functions according
to their deviation from normality. To this end, we define the anomaly score as

f(x) = ||µ− ϕ(x)||∞ = max
e∈E

(
µe − I(x, e)

)
.

The anomaly score is thus given by the largest coordinate of d, that is, the maximum
deviation observed from any of the expressions used in the neighborhood. We choose the
maximum norm as functions deviating in a single expressions while containing all other
checks typical for the neighborhood are usually at least as interesting as those differing
in their conditions entirely.

5.4 Evaluation

Following the same methodology as for the evaluation of our method for vulnerability
extrapolation, our evaluation is two-fold. First, we perform a quantitative evaluation in
a controlled setting to measure the method’s detection performance (Section 5.4.1), and
second, we put our method to work in a real world audit to explore its practical value
in a series of case studies (Section 5.4.2).

5.4.1 Controlled Experiment

We perform a controlled experiment on the source code of five popular open-source
projects, namely Firefox, Linux, LibPNG, LibTIFF, and Pidgin. To this end, we review
the security history of each of these projects to uncover cases where a security-relevant
check is present in several functions but missing in a few, thus causing vulnerabilities.
In all but one case, the vulnerabilities chosen are critical, allowing for full system com-
promise. Moreover, we make sure to choose different types of missing security checks,
that is, checks involving security logic, function return values, and function arguments.
Table 5.1 summarizes our data set. The following description of this data set is taken
verbatim from [166].

Project Component Vulnerability LOC # functions # with check
Firefox 4.0 JavaScript engine CVE-2010-3183 372450 5649 10
Linux 2.6.34.13 Filesystem code CVE-2010-2071 955943 19178 8
LibPNG 1.2.44 Entire library CVE-2011-2692 40255 473 19
LibTIFF 3.9.4 Entire library CVE-2010-2067 33335 609 9
Pidgin 2.7.3 Messaging CVE-2010-3711 332762 7390 18

Table 5.1: Overview of our dataset. For each project the missing-check vulnerability,
the lines of code (LOC), the number of functions and the number of functions involving
the check is listed [166].
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• Firefox. The JavaScript engine of the popular Web browser Firefox (version 4.0)
contains 5,649 functions and 372,450 lines of code. A failure to check the number
of arguments passed to native code implementations of JavaScript functions (i.e.,
the parameter argc) leads to a use-after-free vulnerability (CVE-2010-3183). Ten
utility functions implementing array operations perform the same security check
to avoid this.

• Linux. The filesystem code of the Linux operating system kernel (version 2.6.34.13)
contains 19,178 functions and 955,943 lines of code. A missing check before set-
ting an ACL allows to bypass file system permissions (CVE-2010-2071). The check
involves the parameter dentry and its structure field dentry->d inode. Eight func-
tions of different filesystems implement a corresponding security check correctly.

• LibPNG. The image processing library LibPNG (version 1.2.44) contains 437
functions and 40,255 lines of code. A missing check of the PNG chunk’s size (i.e.,
the parameter length) results in a memory corruption (CVE-2011-2692). Nineteen
functions processing PNG chunks perform the same critical check to avoid this.

• LibTIFF. The image processing library LibTIFF (version 3.9.4) contains 609
functions and 33,335 lines of code. Missing checks of the length field of TIFF
directory entries (i.e., the parameter dir and its field dir->tdir count) lead to two
independent stack-based buffer-overflows (CVE-2006-3459 and CVE-2010-2067).
Nine functions processing TIFF directory entries perform a security check to avoid
this problem.

• Pidgin. The instant messaging library of the popular instant messenger Pidgin
(version 2.7.3) contains 7,390 functions and 332,762 lines of code. A missing check
of the return value of the internal base64-decoding routine purple base64 decode

leads to a denial-of-service vulnerability (CVE-2010-3711). Eighteen functions
parsing network data in Pidgin perform a corresponding security check correctly
to avoid this.

This data set comprises known vulnerabilities caused by missing checks, but also non-
vulnerable functions, which contain a corresponding check. This allows us to assess
whether our method is capable of correctly distinguish the vulnerable from the non-
vulnerable functions. However, we can also go a step further: by patching the known
vulnerabilities and removing them in a previously non-vulnerable function, we can eval-
uate our method’s ability to find the missing check, had it been contained in one of the
other functions. In sum, this allows us to perform 64 different experiments (see the last
column of Table 5.1) where one function omits the necessary check while the remaining
examples do not.

For several known non-vulnerable and one vulnerable function, we execute our method to
rank these functions according to their usage of the source or sink requiring validation.
While we rank only those functions known to be vulnerable on non-vulnerable, it is
noteworthy that the method considers all functions of the code base for neighborhood
selection. In effect, the experiment resembles the situation encountered in practice where
a source or sink of interest is given and the analyst scans the source code for anomalies
(see Section 5.1).

Figure 5.5a shows the Receiver Operation Characteristics (ROC) for our method av-
eraged over all projects and for different values of k , that is, the detection rate as a
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Figure 5.5: Detection performance for the five projects with neighborhoods of different
size [166].

function of the false positive rate. In particular, we see that for k = 5, we can already
identify 50% of the vulnerabilities with few false positives. As k is increases, a growing
number of missing checks is found at zero false positives, until finally, at k = 20, 96% of
the missing checks are identified.

We explore the effect of the parameter k in greater detail by plotting the area under
the ROC curve (AUC) as a function of k for the different code bases (Figure 5.5b). For
k = 25, we obtain perfect results across all code bases, showing that for the given data
set, choosing around 25 neighbors to calculate the model of normality is a good choice
for all code bases. While this does not allow us to conclude that choosing exactly 25
neighbors is optimal for arbitrary code bases, it shows that a good value can be found
across code bases, and thus, we fix k to 25 in the following practical experiments.

Finally, for we can see that for the cases where an API is used insecurely (Firefox,
LibPNG, LibTIFF, and Pidgin), the maximum performance is reached once k passes a
threshold. In this case, neighborhood discovery becomes dispensable as the check seems
to be performed by functions using the symbol regardless of context.

In contrast, for missing checks implementing security logic in the Linux file system code,
the performance reaches a peak at around 20 neighbors and subsequently declines. We
find that the symbol dentry is used in many different context and a check is required
only in a few, making neighborhood discovery essential for the success of our method.

5.4.2 Case Studies

In the following, we proceed to evaluate the practical merits of our method in a series
of case studies on the source code of the image processing library LibTIFF and the
instant messenger Pidgin, where our method plays a vital role in uncovering 7 previously
unknown vulnerabilities. While we found another 5 vulnerabilities during our evaluation,
we omit their discussion for brevity.

5.4.2.1 Case Study: LibTIFF

Libraries processing multimedia content are a common target for attack as the corre-
sponding file formats can be hard to parse securely (see Section 4.5.2.1). Moreover,
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they are an attractive target as vulnerabilities in libraries affect callers of the vulnerable
code, thereby making them relevant for a wider range of applications. In this first case
study, we focus on LibTIFF, a library and suite of tools for the Tagged Image File For-
mat (TIFF). This library is well known among vulnerability researchers for an infamous
buffer overflow on the stack that enabled attackers to run third party code on early
versions of Apple’s iPhone [see 28].

Failure account for the limited range of integers in arithmetic operations is a particularly
common source common source for vulnerabilities in the context of image processing.
In particular, integer overflows when multiplying image dimensions and bit depths are
common, as prominent examples in libpng (CAN-2004-0599), the BMP decoder of Fire-
fox (CVE-2004-0904), the corresponding decoder in Microsoft GDI+ (CVE-2008-3015),
and the vector graphic library Cairo (CVE-2007-5503) show. With these flaws in mind,
we use our method to rank all functions of the code base with respect to anomalous use
of any parameters or local variables named with, height, w, or h.

Of the 74 functions dealing with these variables, only a single function with an anomaly
score of 100% is reported, namely, the function tiffcvt. Examining this function (Fig-
ure 5.6a), we find that the values for the variables width and height are (a) directly
obtained from the image file on lines 11 and 12, and are thus attacker controlled, and
(b) not checked before subsequently calling the function cvt by tile. In contrast, all
neighbors of the function perform a check on the variable height, while 79% additionally
check the variable width.

1
2
3 static int

4 tiffcvt(TIFF* in, TIFF* out)

5 {

6 uint32 width, height; /* image width & height */

7 uint16 shortv;

8 float floatv;

9 char *stringv;

10 uint32 longv;

11 uint16 v[1];

12
13 TIFFGetField(in, TIFFTAG_IMAGEWIDTH, &width);

14 TIFFGetField(in, TIFFTAG_IMAGELENGTH, &height);

15
16 CopyField(TIFFTAG_SUBFILETYPE, longv);

17 [...]

18 if( process_by_block && TIFFIsTiled( in ) )

19 return( cvt_by_tile( in, out ) );

20 else if( process_by_block )

21 return( cvt_by_strip( in, out ) );

22 else

23 return( cvt_whole_image( in, out ) );

24 }

25
26
27

(a)

static int 1
cvt_by_strip( TIFF *in, TIFF *out ) 2

3
{ 4

uint32* raster; /* retrieve RGBA image */ 5
uint32 width, height; /* image width & height */ 6
[...] 7
TIFFGetField(in, TIFFTAG_IMAGEWIDTH, &width); 8
TIFFGetField(in, TIFFTAG_IMAGELENGTH, &height); 9
/* Allocate strip buffer */ 10
raster = (uint32*) 11
_TIFFmalloc(width*rowsperstrip*sizeof (uint32)); 12

if (raster == 0) { 13
TIFFError(TIFFFileName(in), 14

"No space for raster buffer"); 15
return (0); 16

} [...] 17
for(row=0;ok&&row<height;row+=rowsperstrip ) 18

{ [...] 19
/* Read the strip into an RGBA array */ 20
if (!TIFFReadRGBAStrip(in,row,raster)) { 21

[...] 22
} [...] 23

} 24
_TIFFfree( raster ); [...] 25
return ok; 26

} 27

(b)

Figure 5.6: Missing checks of the variables width and height in the function tiffcvt

(left). The resulting integer overflow in the function cvt by strip triggers a buffer
overflow when calling TIFFReadRGBAStrip (right) [166].

The missing check indeed results in a vulnerability when calling the function cvt by strip

on line 19, which itself is suggested to check the field width by 50% of its neighbors. The
vulnerable function is shown in Figure 5.6b where, upon triggering the integer overflow,
a buffer smaller than expected can be allocated on line 11, which is subsequently used
as a target of a copy operation (TIFFReadRGBAStrip) on line 21, resulting in a heap-based
buffer overflow.
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As a second example, we employ our method to uncover NULL pointer dereferenciations.
To this end, we rank all functions of the code base according to anomalous use of the
symbol TIFFMalloc, a simple wrapper for the function malloc from the C standard
library libc.

Score Source File Function Name
0.92 tools/thumbnail.c initScale
0.88, tools/rgb2ycbcr.c cvtRaster
0.88 tools/rgb2ycbcr.c setupLuma
0.88 tools/ycbcr.c setupLuma
0.84 tools/pal2rgb.c main
0.84 tools/tiff2bw.c main
0.80 libtiff/tif print.c TIFFPrintDirectory
0.80 tools/raw2tiff.c guessSize
0.76 tools/sgisv.c svRGBContig
0.76 tools/sgisv.c svRGBSeparate

Table 5.2: Top ten functions returned for the sink TIFFmalloc. All 10 functions fail
to check the return value of the sink. Vulnerabilities are indicated by dark shading [166].

Overall, a total of 237 functions call TIFFMalloc, where Table 5.2 shows the top ten
functions of the resulting ranking. In each of the ten cases, our method reports a missing
check for the return value, that is, the expression $RET, as confirmed in all ten cases. In
four cases, the missing check allows attackers to cause a denial of service condition via
specifically crafted input, while in the other six cases, only a software defect results.

1 cvtRaster(TIFF* tif, uint32* raster,

2 uint32 width, uint32 height)

3 {

4 uint32 y;

5 tstrip_t strip = 0;

6 tsize_t cc, acc;

7 unsigned char* buf;

8 uint32 rwidth = roundup(width, horizSubSampling);

9 uint32 rheight = roundup(height, vertSubSampling);

10 uint32 nrows = (rowsperstrip > rheight ?

11 rheight : rowsperstrip);

12 uint32 rnrows = roundup(nrows,vertSubSampling);

13
14 cc = rnrows*rwidth + 2*((rnrows*rwidth) /

15 (horizSubSampling*vertSubSampling));

16 buf = (unsigned char*)_TIFFmalloc(cc);

17 // FIXME unchecked malloc

18 for (y = height; (int32) y > 0; y -= nrows){

19 uint32 nr = (y > nrows ? nrows : y);

20 cvtStrip(buf, raster + (y-1)*width, nr, width);

21 nr = roundup(nr, vertSubSampling);

22 acc = nr*rwidth + 2*((nr*rwidth)/

23 (horizSubSampling*vertSubSampling));

24 if(!TIFFWriteEncodedStrip(tif,strip++,

25 buf,acc)){

26 _TIFFfree(buf); return (0);

27 }

28 }

29 _TIFFfree(buf); return (1);

30 }

Figure 5.7: A missing check detected in the function cvtRaster of the library
LibTIFF [166].

The function cvtRaster (Figure 5.7) provides an illustrative example for a missing check
of TIFFMalloc’s return value identified by our method. In fact, a comment placed
by the programmer on line 17 confirms that the return value of TIFFMalloc requires
validation. In this particular case, the check is suggested by 85% of the function’s
neighbors. Moreover, 40% suggest to compare against the constant NULL. Furthermore,
it is noteworthy that no other Boolean expression is found to consistently occur across
all neighbors in more than 30% of the cases, and that, compared to deviations from all
other symbols, that in the coordinate of TIFFMalloc is most pronounced. In fact, the
function is among the top 15% anomalous functions in the global ranking, and thus, our
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method directs the analyst towards this function even if an interest in TIFFMalloc is
not expressed.

5.4.2.2 Case Study: Pidgin

In our second case study, we use our method to analyze the source code of the popular
instant messenger Pidgin, allowing us to uncover two denial-of-service vulnerabilities
in its implementation of the Microsoft Instant Messaging Protocol. In particular, we
identify a vulnerability that allows users to remotely crash Pidgin instances of other
uses without requiring cooperation from the victim.

To bootstrap the analysis, we review the C standard library libc for functions that
crash when a NULL pointer is passed to them as an argument. As an example, we choose
the sink atoi and strchr and employ our method to rank all functions with respect to
missing or anomalous checks associated with these sinks.

Score Source File Function Name
0.84 msn.c msn normalize
0.76 oim.c msn oim report to user
0.72 oim.c msn parse oim xml
0.72 msnutils.c msn import html
0.64 switchboard.c msn switchboard add user
0.64 slpcall.c msn slp sip recv
0.60 msnutils.c msn parse socket
0.60 contact.c msn parse addr... contacts
0.60 contact.c msn parse each member
0.60 command.c msn command from string
0.56 msg.c msn message parse payload

Table 5.3: Top ten functions returned for the sinks atoi and strchr in Pidgin’s im-
plementation of the Microsoft Instant Messenger Protocol. Vulnerabilities are indicated
by dark shading [166].

Table 5.3 shows the resulting ranking, where only functions with an anomaly score
greater than 50% are preserved, that is, cases where more than half our the function’s
neighbors suggest a check to be introduced. In all of these cases, our methods suggest
that the argument ($ARG) should be checked, allowing us to discover two cases among
the top ten missing checks that allow an attacker to remotely crash the application.

First Example. For the function msn parse oim xml shown in Figure 5.8a, our method
reports that it does not validate an argument passed to atoi while 72% of its neighbors
perform a check of this kind. Line 19 confirms this claim, showing a call to atoi, where
its firth argument unread is unchecked. In addition, our method reports that 75% of the
function’s neighbors check the return value of calls to xmlnode get data. In combination,
the two missing checks allow an attacker to crash Pidgin by sending an XML-message
with an empty E/UI node, causing the call to xml node get data to return NULL on line
13, eventually causing a crash on line 19.

Second Example. Our method reports a missing check for the argument passed to
the sink strchr with an anomaly score of 56% for the function msn message parse payload

shown in Figure 5.8b. Line 15 shows the vulnerable call that can be triggered by sending
a message containing the string Content-Type immediately followed by two successive
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1 //

2 static void

3 msn_parse_oim_xml(MsnOim *oim, xmlnode *node)

4 {

5 xmlnode *mNode;

6 xmlnode *iu_node;

7 MsnSession *session = oim->session;

8 [...]

9 iu_node = xmlnode_get_child(node, "E/IU");

10
11 if(iu_node != NULL &&

12 purple_account_get_check_mail(session->account))

13 {

14 char *unread = xmlnode_get_data(iu_node);

15 const char *passports[2] =

16 { msn_user_get_passport(session->user) };

17 const char *urls[2] =

18 { session->passport_info.mail_url };

19
20 int count = atoi(unread);

21
22 /* XXX/khc: pretty sure this is wrong */

23 if (count > 0)

24 purple_notify_emails(session->account->gc,

25 count, FALSE, NULL,

26 NULL, passports,

27 urls, NULL, NULL);

28 g_free(unread);

29 }

30 [...]

31 }

32 //

(a)

void 1
msn_message_parse_payload(MsnMessage *msg, [...]) 2
{ 3

[...] 4
for (cur = elems; *cur != NULL; cur++) 5

{ 6
const char *key, *value; [...] 7
tokens = g_strsplit(*cur, ": ", 2); 8
key = tokens[0]; 9
value = tokens[1]; 10
[...] 11
if (!strcmp(key, "Content-Type")) 12

{ 13
char *charset, *c; 14
if ((c = strchr(value, ’;’)) != NULL) 15

{ 16
[...] 17

} 18
msn_message_set_content_type(msg, value); 19

} 20
else 21

{ 22
msn_message_set_attr(msg, key, value); 23

} 24
g_strfreev(tokens); 25

} 26
g_strfreev(elems); 27
/* Proceed to the end of the "\r\n\r\n" */ 28
tmp = end + strlen(body_dem); 29
[...] 30
g_free(tmp_base); 31

} 32

(b)

Figure 5.8: Missing checks in the functions msn parse oim xml (left) and
msn message parse payload (right) of the instant messenger Pidgin [166].

carriage return line feed sequences. As a result, the variable value is set to NULL on line
10, a value, which is subsequently propagated to strchr on line called on line 15. It
has been confirmed that this vulnerability allows users to crash Pidgin instances of over
users.

5.5 Related Work

In the following, we provide an overview of prior work related to our method for missing
check detection. In particular, related approaches to uncover missing checks via data
mining techniques are outlined. Moreover, we discuss fuzz testing, a dynamic approach
that can be used to uncover certain types of missing checks, as well as taint tracking,
the technique that serves as the main inspiration for our lightweight tainting procedure.

Detecting missing checks using data mining techniques. While the merits of
machine learning techniques for the discovery of defects and vulnerabilities have received
little attention, several authors have explored the use of classical data mining techniques
in this setting [e.g., 22, 48, 85, 87, 142, 169]. Among these, the work most closely
related to the method presented in this Chapter is the method presented by Chang
et al. [22] for determining missing checks using frequent item set mining. To this end,
they construct program dependence graphs and identify their common graph minors as
a model of normality. In particular, these graph minors contain conditions, allowing
instances where these conditions are missing to be determined. The main weakness of
their approach in comparison to ours is that similarities of conditions are not taken into
account: while slight normalization is performed similar to that found in our method,
conditions are subsequently treated as flat strings in the data mining framework. In
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contrast, the tree-based embedding employed by our approach allows the similarity of
conditions to be recognized via matching sub trees.

Tan et al. [142] present AutoISES, a method to automatically infer security specifications
from code. Given a manually specified list of functions known to perform security
critical checks, the method automatically infers the security critical operations they
protect. Designed with kernel code in mind, these may be read and write operations on
variables, including the fields of structures. Similarly, [156] provide a method to detect
common sequences of method calls and their violations. The main limitation of these
approaches is that checks are required to be calls to functions. In contrast, the checks
derived by our method may be arbitrary conditions associated with the source or sinks
of the code base. This is a prerequisite for the identifying of missing bounds checks,
which are commonly associated with buffer overflows.

Finally, Thummalapenta and Xie [146] observe that many API functions are associated
with multiple different patterns, resulting in high false positive rates for these functions
as particular instances may conform only to some of the patterns, but not to all of them.
As a remedy, they combine the different patterns of an API function into an alternative
pattern that matches, whenever at least one of the original patterns matches. In addition,
their approach differs from the data-mining based approaches discussed thus far as it
can deal with checks unrelated to function calls. This is achieved by analyzing checks to
partially recover their semantics. In contrast to the method presented in this chapter,
this procedure is technically involved and language-dependent, and yet, it cannot account
for check similarities.

Fuzz testing. Fuzz testing or fuzzing is a popular dynamic approach for vulnerability
discovery, where the main idea is to provide possibly unexpected input to the target
application and monitor it for crashes or other behavior beneficial for attackers. In par-
ticular, fuzzing is well suited to uncover missing checks leading to memory corruption
vulnerabilities such as buffer overflows, as these are often made apparent by program
crashes. A difference is typically made between black-box fuzzing on the one hand [e.g.,
113, 139], where the target program is tested without access to its code, and whitebox
fuzzing [e.g., 45, 52], where access to code is leveraged to guide fuzzing. In particular,
Godefroid et al. [45] employ symbolic execution for whitebox fuzz testing. As implied
by its name, the main idea of symbolic execution is to execute the target program with
symbolic rather than concrete values, in order to explore a large number of possible
executions at once. This technique can be employed to guide fuzzers by inverting con-
straints attached to paths of observed executions and employing a constraint solver [see
148] to determine corresponding inputs, allowing previously unseen code blocks to be
reached. This procedure helps to account for one of the two main drawbacks of fuzzing,
namely, that only paths observed at runtime can be analyzed for vulnerabilities, a deficit
that is inherent to dynamic analysis. The second main drawback of these methods is
that vulnerabilities can only be detected in this way if they either result in crashes or
other program behavior that can be easily monitored.

Taint Tracking. A closely related strain of research considers dynamic taint tracking
or dynamic taint analysis, where data controlled by attackers is tracked as it propagates
through the system, and a vulnerability is reported if a sensitive sink is encountered
without prior validation [e.g., 104, 155]. In contrast to fuzzing, this allows missing
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checks to be detected even if they do not result in crashes. Finally, taint tracking can
also be performed statically, a technique leveraged by researchers in the past to uncover
specific types of vulnerabilities such as format string bugs [133], as well as SQL injection
and cross site scripting vulnerabilities [68, 88]. Taint tracking offers a useful approach
for monitoring data flows, however, it does not itself suggest which data flows to track or
highlight in the first place. Our approach attempts to address this problem by suggesting
particularly interesting data flows to the analyst.



6
Discovering Vulnerabilities using Clustering

This chapter presents the last and most evolved technique for pattern-based vulnerability
discovery developed in this thesis. This final method combines ideas from all approaches
presented thus far, and additionally explores the merits of clustering for vulnerability
discovery, the last of the three themes of unsupervised learning to explore.

On the one hand, we saw in Chapter 2 that large amounts of code can be mined for
vulnerabilities using manually crafted search patterns, and that we can even create
templates for commonly reoccurring types of bugs. On the other, Chapters 4 and 5 show
that we can automatically infer patterns from code using machine learning algorithms.
In this chapter, we combine these two ideas by presenting a method to automatically
extract search patterns from source code, that is, we derive a model of normality from the
code similar to the method presented in the previous chapter, but additionally generate a
query that can be used to mine for its deviations. The primary advantage this offers over
the learning-based methods presented thus far is that an explicit, editable representation
of the inferred patterns is created. This makes it possible to (a) expose and enumerate
the patterns available in the code base in a form understandable by the analyst, and
(b) create robust signatures for known vulnerabilities that allow for their extrapolation.
Finally, the analyst thus gains the ability to tune the generated queries to introduce
additional knowledge that cannot be derived from the statistics of the code base alone.

Clustering plays a key role in our approach as it allows us to create groups of statements
similar enough to describe them using a common regular expression for all of the cluster’s
members. This idea has previously been successfully employed for signature generation
in the context of malware detection [see 103], and thus our approach naturally extends
this idea to vulnerability discovery.

The remainder of this chapter is structured as follows. We begin by introducing the task
of learning search patterns for taint-style vulnerabilities in Section 6.1. In Section 6.2, we
review clustering, the primary machine learning technique employed by our approach.
We proceed to introduce our method for automatic extraction of search patterns in
Section 6.3, and provide an empirical evaluation of our method in Section 6.4. We
conclude by discussing related work in Section 6.5.

97
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6.1 Task: Search Pattern Inference

Source code contains a wealth of patterns, few of which are linked to vulnerabilities.
In effect, a common theme among the methods presented so far is that they rely on
analysts to bootstrap the analysis by providing information on what they deem to be
security relevant. Mining for vulnerabilities as presented in Chapter 2 is not possible
without specifying a search pattern that describes a vulnerable programming practice,
and extrapolating vulnerabilities is not possible without providing a known vulnerability
first. Finally, missing checks can be discovered in abundance, but they only become
security critical when they protect a security sensitive sink or restrict attacker-controlled
data.

/* ssl/d1_both.c */ 1

// [...] 2

int dtls1_process_heartbeat(SSL *s) 3

{ 4

unsigned char *p = &s->s3->rrec.data[0], *pl; 5

unsigned short hbtype; 6

unsigned int payload; 7

unsigned int padding = 16; /* Use minimum padding */ 8

/* Read type and payload length first */ 9

hbtype = *p++; 10

n2s(p, payload); 11

if (1 + 2 + payload + 16 > s->s3->rrec.length) 12

return 0; /* silently discard per RFC 6520 sec.4*/ 13

pl = p; 14

// [...] 15

if (hbtype == TLS1_HB_REQUEST){ 16

unsigned char *buffer, *bp; 17

int r; 18

// [...] 19

buffer = OPENSSL_malloc(1 + 2 + payload + padding); 20

bp = buffer; 21

/* Enter response type, length and copy payload */ 22

*bp++ = TLS1_HB_RESPONSE; 23

s2n(payload, bp); 24

memcpy(bp, pl, payload); 25

bp += payload; 26

/* Random padding */ 27

RAND_pseudo_bytes(bp, padding); 28

r = dtls1_write_bytes(s, TLS1_RT_HEARTBEAT,buffer, 29

3 + payload + padding); 30

// [...] 31

if (r < 0) return r; 32

} 33

// [...] 34

return 0; 35

} 36

Figure 6.1: The “Heartbleed” vulnerability in OpenSSL [165].

What we are missing for now, is a method to assist an analyst in discovering which
patterns to look for in the first place, while reducing the amount of information required
to bootstrap the method to a bare minimum. In particular, we seek to enumerate only
a small number of patterns in the code that are likely to be interesting for vulnerability
discovery. For this enumeration to work, the method cannot be expected to know
specifics of a code base. However, it can implement an abstract template for the type of
vulnerable programming pattern it attempts to uncover and expose its instances. The
research presented in this chapter shows that this is indeed possibly by implementing
a method to uncover search patterns for taint-style vulnerabilities, an abstraction that
captures different types of buffer overflows, buffer overreads, and injection vulnerabilities.
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The Heartbleed Bug [29] in the cryptographic library OpenSSL is one of the most promi-
nent recent examples of a taint-style vulnerability. Figure 6.1 shows the vulnerable code:
on line 11, the macro n2s is employed to read a sixteen bit integer from a network stream
and store it in the local variable payload. This integer is subsequently passed to the
function memcpy as a third argument on line 25 without undergoing prior validation. In
particular, it is not checked whether payload is smaller or equal to the size of the source
buffer pl, allowing heap memory beyond this buffer’s right boundary to be copied to
the memory location pointed to by bp. The data thus stored is finally send out to the
network on line 29 via a call to the function dtls1 write bytes. With this example in
mind, we define taint-style vulnerabilities as follows.

Definition 6.1. A taint-style vulnerability is a vulnerability caused by failure to restrict
attacker-controlled data that reaches a security sensitive operation.

While this definition seems very similar to that of missing check vulnerabilities, and
in fact, some taint-style vulnerabilities coincide with missing check vulnerabilities, their
detection is considerably more evolved: while for missing check vulnerabilities, checks are
tied to sources or sinks alone, and typically occur in their close proximity, checks in taint-
style vulnerabilities are tied to the combination of a source and sink. This considerably
complicates the detection of taint-style vulnerabilities as the corresponding source for
a sink is often located several in a different function, making interprocedural analysis
indispensable. However, by definition, there are also far fewer common combinations of
sources and sinks in a code base than single sources and sinks, enabling us to considerably
reduce the number of extracted patterns over the method described in the previous
chapter. Once this method is in place, we can address the following two tasks in practice.

• Enumeration of taint-style systems. At the beginning of an audit, the ana-
lyst not only lacks knowledge about the APIs employed in a code base, but also
does not know how API functions interact. We want to provide a method for
the analyst to enumerate taint-style systems, i.e., common pairs of sources and
sinks along with their typical checks. This allows an overview of the sources of
data for sensitive operations to be gained, which quickly guides the analyst to-
wards security-relevant taint-style systems. Moreover, if the system is inherently
insecure, the corresponding search patterns can be directly employed to mine for
vulnerabilities as we see in Section 6.4.2.2.

• Signature generation for known bugs. The generated search patterns can
also be used to automatically characterize a taint-style vulnerability once it is
known, in order to create a database of typical flaws to mine for in the future.
This offers a form of vulnerability extrapolation (see Section 4.1) limited to taint-
style vulnerabilities but also more powerful in this special case as it creates explicit
representations of patterns.

These two tasks are addressed using the same procedure and merely differ in the input
provided by the analyst. For enumeration, the analyst can optionally provide a sink
of interest such as memcpy, while for signature generation, the location of a vulnerable
call-site is specified. Before describing this procedure, we briefly review clustering, the
key ingredient of our approach.
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6.2 Cluster Analysis

The previous two chapters highlight the merits of unsupervised learning for vulnerability
discovery, showing that both dimensionality reduction and anomaly detection can be
employed to assist in the discovery of vulnerabilities, even in production-grade software.
In this chapter, we show that clustering the third of the primary types of unsupervised
algorithms (see Section 1.2) is equally useful in this setting. Clustering is employed to
group objects according to their similarity. Given a finite set of objects X ⊆ X from an
input space X , along with a method to compare objects of the input space, clustering
algorithms learn a model θ. This model can then be used to instantiate a prediction
function fθ : X → I that associates each object with a cluster, denoted by an index
from a set I = {1, . . . , k} of natural numbers.

There are many different clustering algorithms, which differ mainly in the types of
clusters they produce, runtime and memory requirements, and the parameters they
require. Partitioning and hierarchical algorithms are two of the most well-understood
classical clustering techniques [see 64]. Partition-based algorithms such as K-Means and
K-Medoid divide the input space into k partitions, where the number of partitions k
must be specified in advance. This is achieved by iteratively refining the partitioning
using schemes such as expectation maximization [see 16, Chp. 9] until the process
converges. These algorithms are well suited for data where the number of clusters can
be approximated beforehand, and difficult to employ if this is not the case.

Hierarchical algorithms offer an alternative to partitioning algorithms in situations where
choosing the number of clusters in advance is difficult. These algorithms operate either
by (a) first placing all objects into the same cluster and recursively splitting clusters until
each object is located in a separate cluster, or (b) first placing each object into a separate
cluster and joining clusters until all objects are in the same cluster. These strategies are
referred to as divisive and agglomerative clustering respectively. Both approaches lead
to the construction of a hierarchy of clusters, without requiring the number of clusters
to be known in advance. However, the hierarchy by itself does not provide a clustering,
that is, it does not unambiguously assign a cluster to each object. To obtain flat clusters
from a hierarchy, we can for example choose a minimum number of clusters for a given
maximum distance of objects inside clusters. Hierarchical clustering therefore does not
free us from the burden of specifying the granularity of the clustering, but merely enables
us to express it via different parameters.

The method for automated generation of search patterns presented in this chapter re-
lies heavily on linkage clustering, a well-understood implementation of agglomerative
clustering. The reason for this choice is that in the settings we consider, a maximum
inter-cluster distance can be chosen intuitively, while this is not the case for the num-
ber of clusters. Linkage clustering as employed in our work requires two parameters
to be specified: the maximum inter-cluster distance c, and a so-called linkage function
D : C × C → R that enables measuring of distances between clusters.

With these parameters at hand, the method proceeds by placing each object into a
unique cluster. Iterating over clusters, each cluster is subsequently linked with the most
other cluster, according to the linkage function D. Linked clusters are then interpreted
as new clusters themselves. In our work, we choose the linkage function to be given by

D(X,Y ) = max
x∈X,y∈Y

d(x, y),
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foo(a, b) foo(a, b) foo(a, b)
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* = get() 
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→ 

foo(a, *)
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get() ... get() ... get() ... get() ...get() ...

Figure 6.2: Our method for inferring search patterns for taint-style vulnerabili-
ties [165]

where d : X × X → R is a function that measures the distance between two objects. In
other words, the value of the linkage function for two clusters X and Y is given by the
maximum distance among all distances of pairs (x, y) with x ∈ X and y ∈ Y . Linkage
clustering with this particular choice of D is known as complete-linkage clustering, a
method known to create compact groups of objects while being easy to calibrate [see 4].

6.3 Inferring Search Patterns

We are now ready to discuss our method for inferring search patterns for taint-style
vulnerabilities. Starting from a security sensitive sink such as memcpy, the method gen-
erates search patterns in the form of graph traversals that encode common sources of
arguments along with their respective checks. In order to uncover vulnerabilities, these
traversals return calls to the sink where source descriptions match, but no match can
be found for at least one of the checks, thereby leading the analyst to sink invocations
where typical checks are not in place. To be useful, these traversals need to encode pat-
terns in the code as opposed to specific invocations. In addition, they need to capture
data flow precisely across functions to allow definitions of individual arguments to be
correctly tracked. Finally, traversals should be easy to understand and amendable by
the analyst to allow additional domain knowledge to be incorporated.

In order to generate search patterns with these qualities, we combine code property
graphs extended for interprocedural analysis (see Section 2.3.4), our embedding proce-
dure (see Section 3.5), and clustering in a four-step procedure illustrated by Figure 6.2
and described in the following.

• Generation of definition graphs. We begin by determining all calls to the
selected sink and generate corresponding definition graphs, a representation akin
to interprocedural program slices [see 63, 78, 157]. These graphs compactly encode
how the sink’s arguments are sanitized and initialized in a two-level structure that
allows to easily enumerate feasible invocations (Section 6.3.1).

• Decompression and Clustering. Definition graphs are subsequently decom-
pressed to enumerate individual invocations. Invocations are then clustered to
determine sets of invocations with similar argument initializers (Section 6.3.2).

• Creation of sanitization overlays. For each cluster of invocations, we subse-
quently determine potential sanitizers for arguments, that is, conditions executed
in between initialization and sink invocation (Section 6.3.3).
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• Generation of graph traversals. Finally, we generate search patterns from
clusters in the form of graph database traversals for our robust code analysis
platform (Section 6.3.4).

In the following, we describe each of these steps in detail, and make use of the running
example shown in Figure 6.3 for illustration.

int bar(int x, int y) { 1

int z; 2

boo(&z); 3

if (y < 10) 4

foo(x,y,&z); 5

} 6

7

int boo(int *z) { 8

*z = get(); 9

} 10

11

int moo() { 12

int a = get(); 13

int b = 1; 14

bar(a, b); 15

} 16

17

int woo() { 18

int a = 1; 19

int b = get(); 20

bar(a, b); 21

} 22

Figure 6.3: Running example for inference of search patterns [165]

The respective code shows a call to the sink foo with three arguments (line 5), where
the arguments can be initialized in two different ways: on the one hand, the function
bar enclosing the call to foo may be called by the function moo, on the other, it may be
called by woo, resulting in different initializations of the variables x and y. Finally, the
variable z is initialized by the function boo that is called by bar before calling foo.

6.3.1 Generation of Definition Graphs

Both methods for learning-based vulnerability discovery presented in the previous two
chapters rest on the comparison of program functions. In contrast, the method presented
in this chapter compares sink invocations, that is, function calls. A key challenge to
address is therefore to choose a suitable representation for function calls that encodes
the initialization of all arguments passed to the sink, as well as their respective validation.
This is not trivial as the statements providing this information are often spread across
several functions and buried in unrelated code.

We choose definition graphs to represent function calls, a graph-based representation
that contains all necessary information for the generating of search patterns for taint-
style vulnerabilities. These graphs contain a carefully chosen subset of the nodes of the
corresponding interprocedural program slice [see 63, 157], nodes that can be easily ex-
tracted from the code property graph, so long as it has been extended for interprocedural
analysis as described in Section 2.3.4.
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Definition graphs are constructed by first modeling functions locally, and then combining
these graphs in a second step to model function interaction. We proceed to describe these
steps in detail.

6.3.1.1 Local Function Modeling

Determining for a statement which other statements affect it is a classical problem in
program analysis that is addressed by program slicing techniques [see 63, 78, 157]. With
a program dependence graph at hand (see Section 2.2.4.3), program slicing amounts
to following incoming data-flow and control-dependence edges recursively. In the spirit
of these techniques, we create a hierarchical representation that captures all definition
statements involving variables used in the call as well as all conditions that control the
execution of the call site. As an example for the construction of this representation,
the call to the function foo (line 5) in Figure 2.13 is considered as a sink of interest.
Starting at its corresponding node in the code property graph, we create this hierarchical
representation by passing over the code property graph according to the following rules.

• For the selected sink, we begin by following outgoing syntax edges to its arguments.
In the example, the sink foo is expanded to reach the arguments x, y, and z.

• For arguments and the statements they are defined by, we proceed to follow data-
flow and control-dependence edges to determine further definition statements and
conditions that control whether the call site is executed or not. In our example,
the definition int z and the condition y < 10 are uncovered in this way.

• Finally, interprocedural edges are followed from calls that define any of our vari-
ables to their function bodies, allowing us to identify further defining statements
affecting the arguments of the selected sink. From there, we immediately traverse
to definition statements that reach the exit node of the function via data flow
edges. This leads us to definition statements inside callees that affect arguments
and the return value of the call. In our example, we thus uncover the call to boo,
which leads us to the definition statement *z = get().

If by application of these three rules, we reach a parameter, we consider all respective
call sites as sinks as well and locally model functions of these call sites by applying the
same three rules. For each function, we thus obtain a tree that can be easily constructed
from the code property graph via a depth first traversal with an expansion function that
implements the three rules.

6.3.1.2 Definition Graphs

The tree representations of functions already allow argument definitions and their saniti-
zation to be analyzed locally, however, function callers remain unexplored. With respect
to our example, we can therefore uncover the local variable definition of z, however, the
we do not trace the definitions of the parameters x and y past the function boundary.
Unfortunately, simply expanding interprocedural data flow edges connecting these pa-
rameters to their arguments leads to infeasible combinations of definitions as discussed
in detail by Reps [114]. Our example makes this clear: following this simple strategy, we
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Figure 6.4: Definition graph for the call to foo [165]

uncover the combination {int a = get(), int b = get()} in particular. Unfortunately,
this combination is invalid as the first definition only occurs for the caller moo, and the
second occurs for the caller woo, however, these definitions never occur in combination.

This classic problem of interprocedural program analysis can, for example, be solved bu
formulating a corresponding context-free-language reachability problem [114]. A simpler
solution is to ensure that the parameter nodes of a function are always expanded together
as the graph is traversed.

The definition graph implements this idea by simply tying parameter together, modeling
the interplay of entire functions as opposed to parameters and their arguments. To this
end, the nodes of the definition graph correspond to the trees that locally model func-
tions, and we connect these trees by edges expressing their calling relations. Definition
graphs are therefore a two-level structure that connect entire trees via edges to form a
graph of trees. As an example, Figure 6.4 shows the definition graph for the sink foo of
the sample code from Figure 6.3. We define definition graphs formally as follows.

Definition 6.2. A definition graph G = (V,E) for a call site c is a graph where V
consists of the trees that model functions locally for c and those trees of all of its direct
and indirect callers. For each a, b ∈ V , an edge from a to b exists in E if the function
represented by a calls that represented by b [165].

6.3.2 Decompression and Clustering

At this point, definition graphs are available for all call sites of the selected sink, and
we proceed to decompress these graphs to enumerate individual invocations. Upon
decompression, our method determines groups invocations containing invocations similar
in the way they initialize their arguments. As the reader may have guessed by now, we
determine these groups by embedding invocations in a vector space and subsequently
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clustering them, and as it true for the methods proposed in the previous chapters, the key
to the success of this approach lies in the choice of a suitable feature map. In particular,
the vectors obtained using the feature map should allow invocations to be compared in
the way each of their arguments are initialized, being robust against variations in the
formulation of initializing statements.

To meet these demands, we implement a multi-stage feature map (see Section 3.4.5)
that represents invocations by the clusters of API symbols their initializers occur in.
We achieve this by first clustering API symbols according to a string metric, and then
determining for each initializer of each invocation which clusters their API symbols occur
in. Each argument of an invocation can subsequently be represented by a bag of cluster
identifiers. Concatenating the resulting vectors obtained for individual arguments, we
thus obtain a representation of invocations that encodes the initialization of all of its
arguments, finally allowing us to cluster invocations. We now describe decompression,
clustering of API symbols, and finally, clustering of invocations in detail.

6.3.2.1 Decompression of Definition Graphs

Each definition graph describes a single call site, however, it possibly encodes several
combinations of argument definitions. For example, the definition graph shown in Fig-
ure 6.4 for the invocation of foo contains both the combination {int z, a = get(), b =

1} and the combination {int z, a = 1, b = get()} in a compressed form. Fortunately,
individual combinations can be easily enumerated from the definition graph using the
simple recursive procedure shown by Algorithm 3. In this algorithm, [v0] denotes a list
containing only the node v0 and the operator + denotes list concatenation.

Algorithm 3 Decompression of definition graphs [165]

1: procedure decompress(G)
2: return rdecompress(G, r(V ))

3: procedure rdecompress(G := (V,E), v0)
4: R = ∅
5: D ← ParentTrees(v0)
6: if D = ∅ then
7: return {[v0]}
8: for d ∈ D do
9: for L ∈ rdecompress(G, d) do

10: R← R ∪ ([v0] + L)

11: return R

We recall that the nodes of the definition graph are trees that model functions locally.
Starting from the root node r(V ), the algorithm recursively combines the current tree
with all possible call chains, that is, all lists of trees in the code base that lead to this
tree. As a result, we obtain the set X of all observed invocations, represented by their
combination of argument initializers.

6.3.2.2 Clustering of API Symbols

API symbols with a similar name often implement similar functionality. For example,
the functions malloc and realloc are both concerned with memory allocation, while the
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functions strpcy and strcat deal with string processing. As we want to be able to detect
similar initializers even if the API symbols they employ do not match exactly, we first
create clusters of similar API symbols, where members of a cluster are all eventually
mapped to the same dimension of our final feature space.

To cluster API symbols, we perform complete-linkage clustering. As discussed in Sec-
tion 6.2, this requires a distance function to be specified that allows the similarity of
API symbols to be assessed. While many string metrics exist that can be employed in
this setting, we choose the Jaro distance [66] for this task, a string metric specifically
designed with short strings in mind. For any two strings, the Jaro distance quantifies
their similarity by a value between 0 and 1, where a value of 1 indicates that the strings
are exactly the same, while a value of 0 indicates that they do not match at all.

We can now perform linkage clustering on API symbols simply by choosing a minimum
similarity of strings inside clusters. This parameter can be employed by the analyst to
control the granularity of the clustering, however, we found values of the Jaro distance
between 0.7 and 0.9 to produce a relatively stable clustering, and thus we fixed the value
to 0.8 for all experiments.

The clustering is applied to the API symbols of each argument separately, thereby
keeping the number of strings to compare small. As a final result of this step, we obtain
a set C of API-symbol clusters for each argument. With respect to our description of
multi-stage feature maps, this step corresponds to the clustering of sub structures, and
we can now proceed to represent objects by their clusters.

6.3.2.3 Clustering Invocations

We proceed to represent invocations by the clusters the API symbols of their initial-
izers occur in, and determine groups of similar invocations by clustering. To simplify
discussion, let us assume a sink with a single argument. We recall that X is the set
of all invocations represented by their combinations of argument initializers, and C is
the set of API-symbol clusters. Then, for each invocation x ∈ X , we can determine the
set of clusters Cx ⊆ C its definitions are contained in. This is sufficient to implement
a multi-stage feature maps as discussed in Section 3.4.5. A multi-stage feature maps is
given by a function φ : X → R|C|, φ(x) = (φc(x))c∈C maps objects to |C|-dimensional
vectors, that is, it is a bag-of-words embedding where the embedding language is given
by the natural numbers from 1 to |C|. To encode in each coordinate of φ(x) whether x
is associated with a cluster or not, we define φc as

φc(x) =

{
1 if c ∈ Cx
0 otherwise

that is, φc(x) indicates whether the cluster c occurs in any of the API-symbol clusters
Cx associated with the invocation x.

For sinks with multiple arguments, this operation is performed for each sink indepen-
dently and the resulting vectors are simply concatenated. As an example, we consider
an invocation x where the first argument is initialized by a call to malloc, and the second
is defined as a local variable of type size t. Then, the corresponding vector may have
the following form.
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φ(x) 7→




· · ·
0
1
· · ·
1
0
· · ·




· · · }
Arg. 1

{char[52], uchar[32], . . .}
{malloc, xmalloc, . . .}
· · · }

Arg. 2
{size t, ssize t, . . .}
{int, uint32 t, . . .}

· · ·

Upon mapping all invocations to a feature space, we employ linkage clustering to deter-
mine groups of similar invocations. In this case, we choose the city-block distance as a
measure of similarity as it provides an intuitive way to measure the number of matching
API-symbol clusters of two vectors. Throughout our experiments, we fix the maximum
distance of members in a cluster to 3, meaning that up to 3 clusters may be different
for members of the same cluster,

The final result of this step is a set of clusters, each consisting of sets of similar invoca-
tions, constituting patterns in the code base. Moreover, the size of these clusters allows
to rank clusters according to their strength, that is, the number of individual invocations
that support the pattern.

6.3.3 Creation of Sanitization Overlays

The clusters uncovered in the previous step correspond to argument definition models
that provide the necessary information to generate search patterns indicating common
combinations of arguments for the sink of interest. However, they do not contain infor-
mation about argument sanitization. We address this limitation by creating overlays for
argument definition models that express typical sanitizations for each argument. To this
end, we analyze each argument separately, combing the information contained in asso-
ciated conditions spread over all of the definition graphs associated with the argument
definition model.

Our goal is to determine conditions commonly associated with the argument. However,
as is true for the detection of common argument sources, we aim to be robust against
slight changes in the way conditions are formulated, as finding the exact same condition
in source code multiple times is rather unlikely. We achieve this by following the same
idea already followed for finding common sources: we cluster conditions and count cluster
occurrences as opposed to occurrences of individual conditions. To this end, we embed
and cluster conditions as follows.

Embedding conditions. For our set of objects X , we choose the set of conditions
associated with the argument of interest, represented by their syntax trees. As condi-
tions commonly contain commutative logical operators, e.g., the logical and operator, we
choose a graph-based feature map (see Section 3.4.4) as these maps are robust against
changes in child-node order. Recalling graph-based embeddings, we need to choose a
labeling function l that assigns initial labels to all nodes. We choose l such that it as-
signs a hash value calculated from the type attribute and the code attribute for inner
nodes and leaf nodes respectively. With initial labels assigned to nodes, the feature map
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calculates neighborhood hashes for each node, and finally, represents each condition by
the number of occurrences of these hash values.

Clustering conditions. Upon mapping conditions to a feature space, we employ
linkage clustering yet again using the city-block distance with a fixed parameter of
2. This yields clusters of conditions. We store the number of times each cluster occurs
along with the argument definition model, allowing us account for this information when
generating search patterns.

6.3.4 Generation of Graph Traversals

Clusters of source-to-sink systems enhanced with sanitization overlays fully express
search patterns that we can now finally express as traversals for our code mining system
(see Section 2.1. We achieve this by filling out a generic template for the description
of taint-style vulnerabilities that can be instantiated using the information contained in
our clusters.

6.3.4.1 Traversal Template

Figure 6.5 shows our template for the discovery of taint-style vulnerabilities formulated in
the traversal language Gremlin (Section 2.4.3). Instantiating this template requires the
name of the sink to be specified along with descriptions for all arguments and their san-
itization. These are referred to as argiSource and argiSanitizer in the template where
i denotes the argument number. The traversal uncovers all call sites of the specified
sink and proceeds to independently process each sink using the traversals taintedArgs,
followed by the traversal unchecked.

getCallsTo(sink)

.taintedArgs(

[arg1Source,..., argnSource]

)

.unchecked(

[arg1Sanitizer, ... argnSanitizer]

)

Figure 6.5: Template for taint-style vulnerability as a graph traversal in the query
language Gremlin [165].

The traversal taintedArgs allows to check whether the sources of arguments passed
to the sink match the provided source descriptions (argiSource). It achieves this by
generating the corresponding definition graph for the sink’s call site (see Section 6.3.1).
For each source description, it proceeds to determine whether the call site can possibly
fulfill it. This can be achieved without decompressing the definition graph by simply
checking whether for each source description, at least one matching statement exists in
the definition graph.

While this step drastically decreases the number of call sites to examine in detail, we do
not know with certainty that the definition graphs thus uncovered matches the source
descriptions. For example, the particular combination of source descriptions we seek
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may be present in the definition graph but invalid (see Section 6.3.1.2). To analyze only
valid combinations of argument definitions, the traversal proceeds to decompress the
definition graph using Algorithm 3. With definition combinations at hand, it is now
trivial to check whether argument descriptions are matched. As a result, the traversal
now returns all definition combinations matching the source descriptions to pass them
on to the traversal unchecked.

Finally, the traversal unchecked determines all call sites with at least one missing san-
itizer according to the sanitizer descriptions. To this end, the traversal proceeds by
checking each of the conditions in the definition graphs against the respective sanitizer
descriptions.

6.3.4.2 Template Instantiation

To instantiate the template presented in the previous section, source-to-sink clusters
simply need to be translated into source and sanitizer descriptions. We recall that
for each argument, a source-to-sink cluster contains (a) a set of API-symbol clusters
for sources, and (b) a set of clusters containing normalized expressions for conditions.
These clusters merely need to be summarized in a format suitable to be understood
and adapted by analysts. We achieve this by generating regular expressions from these
clusters by determining longest common subsequences as often performed in signature
generation [see 103]. Finally, we can employ the resulting graph traversals to mine code
for taint-style vulnerabilities.

6.4 Evaluation

Remaining consistent with the evaluation methodology of the previous two chapters, our
evaluation is two-fold. First, we explore our method’s ability to generate search patterns
for known vulnerabilities in a controlled setting, where we measure its ability to reduce
the amount of code to review (Section 6.4.1). Second, we assess the practical merits
of our approach by using it as the primary method for uncovering previously unknown
vulnerabilities in a real code audit (Section 6.4.2).

6.4.1 Controlled Experiment

To evaluate our method’s ability to generate traversals for real vulnerabilities, we begin
by reviewing the security history of five popular open-source projects for taint-style
vulnerabilities: the cryptographic library OpenSSL, the media player VLC, the rendering
library Poppler as used in the document viewers Evince and Xpdf, and again, the instant
messenger Pidgin, and the Linux kernel. We determine a recent taint-style vulnerability
and the corresponding sink for each of these code bases. Table 6.1 summarizes our data
set. For each vulnerability, it contains the project name and its version, the component
the vulnerability appears in, its CVE identifier, the corresponding sensitive sink, and
the number of callers of the sink present in the code base. The following description of
this data set is taken verbatim from [165].
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• CVE-2013-4513 (Linux). An attacker-controlled variable named count of type
size t is passed as a third argument to the sink copy from user without being
sanitized, thereby triggering a buffer overflow.

• CVE-2014-0160 (OpenSSL “Heartbleed”). The variable payload of type
unsigned int as defined by the source n2s is passed as a third argument to memcpy

without being checked, causing a buffer overread.

• CVE-2013-6482 (Pidgin). The string unread is read from the attacker-controlled
source xmlnode get data and passed to the sink atoi without undergoing sanitiza-
tion, thereby possibly causing a NULL pointer to be dereferenced.

• CVE-2012-3377 (VLC). The length of the data buffer p stream->p headers

is dependent on an attacker-controlled allocation via the function realloc and
reaches a call to memcpy without verifying the available buffer size, leading to a
buffer overflow.

• CVE-2013-4473 (Poppler). The attacker-controlled string destFileName is
copied into the local stack buffer pathName of type char [1024] using the func-
tion sprintf without checking its length, leading to a stack-based buffer overflow.

For all of these sinks, we generate traversals as summarized by Table 6.2. The table shows
the number of traversals generated for each vulnerability, and whether our method is
able to generate a traversal that expresses the correct source and sanitizer. Moreover,
it shows the time required for traversals generation and execution in seconds. Finally,
the last column of the table shows the reduction percentage, that is, the percentage of
call sites that do not have to be inspected as they are not returned by the traversal.

In all cases, our method generates correct descriptions for the respective argument
sources. Correct descriptions for sanitizers are generated for all vulnerabilities except
CVE-2013-4473. In this case, no sanitizer description is generated at all, as only 22
call sites are available, making the inference of a sanitizer description difficult using sta-
tistical methods. Nevertheless, the reduction percentage is high for all vulnerabilities,
making it possible to locate all vulnerabilities while skipping inspection of 94.9% of the
call sites on average.

Project Version Component LOC CVE Sensitive sink # Sites

Linux 3.11.4 Drivers 6,723,955 2013-4513 copy from user 1715
OpenSSL 1.0.1f All 378,691 2014-0160 memcpy 738
Pidgin 2.10.7 All 363,746 2013-6482 atoi 255
VLC 2.0.1 All 555,773 2012-3377 memcpy 879
Poppler 0.24.1 All 227,837 2013-4473 sprintf 22

Table 6.1: Data set of five open-source projects with known taint-style vulnerabilities.
The table additionally lists the sensitive sinks of each vulnerability and the number of
traversals inferred by our method [165].

Finally, Table 6.3 shows the sink, along with the inferred regular expressions for sources
and sanitizers, where for arguments with multiple sanitizers, only one is shown. The
regular expressions describe the correct sources, and the sanitizer descriptions match
those necessary to ensure secure operation of the source-sink system. Moreover, addi-
tional sanitizers are inferred in some cases. For example, it is determined that the first
argument to memcpy from the source n2s is often compared to NULL, ensuring that it is
not a NULL pointer.
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Correct Source/Sanitizer # Traversals Generation
Time

Execution
Time

Reduction[%]

CVE-2013-4513 XX 37 142.10 s 10.25 s 96.50
CVE-2014-0160 XX 38 110.42 s 8.24 s 99.19
CVE-2013-6482 XX 3 20.76 s 3.80 s 92.16
CVE-2012-3377 XX 60 229.66 s 20.42 s 91.13
CVE-2013-4473 X 1 12.32 s 2.55 s 95.46

Average 94.90

Table 6.2: Reduction of code to audit for discovering the five taint-style vulnerabili-
ties. For the last vulnerability no correct sanitizer is inferred due to the low number of
call sites [165].

CVE-2013-4513 CVE-2014-0160 CVE-2013-6482 CVE-2012-3377 CVE-2013-4473
Sink copy from user memcpy atoi memcpy sprintf

Argument 1 .* .* .*xmlnode get .* .*alloc.* .*char \[ .* \].*
Argument 2 .*const .*cha.*r *.* .* .* .* .*

Argument 3 .*size t.* .*n2s.* .* .* .*

Sanitizer 1 - .*sym ( ==|!=) NULL.* .*sym.* .*sym.* -

Sanitizer 2 - - - - -

Sanitizer 3 .*sym .*(\d+).* .*sym.*\+(\d+).* - - -

Table 6.3: Regular expressions contained in the search patterns for the five taint-style
vulnerabilities, where sym is replaced by the tracked symbol at runtime. For the last
vulnerability, no sanitizers are inferred [165].

6.4.2 Case Studies

In the following, we present two case studies, one for the generation of signatures from
known bugs, and another where we enumerate taint-style systems. First, we use our
method to generate a signature for the Heartbleed vulnerability, showing that it captures
both of its instances robustly. Second, we employ the method to enumerate all taint-
style systems associated with the sink memcpy in the popular open-source media player,
showing that we immediately uncover previously unknown vulnerabilities by choosing
particularly interesting patterns alone.

6.4.2.1 Case Study: The Heartbleed Vulnerability

In this case study, we show that our method is capable of successfully generating a
search pattern for the “Heartbleed” vulnerability in OpenSSL, our motivating example
introduced in Section 6.1. To this end, we import the code of OpenSSL version 1.0.1f,
the last version of the library that contains the vulnerability. We proceed to employ
our method to generate patterns for the security-sensitive sink memcpy, a sink from the
C standard library commonly associated with buffer overflow vulnerabilities, similar to
the functions strcpy, sprintf, or strcat [see 6, 35].

First, the heuristic for the discovery of library functions that taint their arguments is
employed (see Section 2.3.4.1). The results of this analysis are shown in Table 6.4. We
manually verify these results and find that, with the exception of one, all are inferred
correctly. The falsely identified tainted third argument of the function memset results
from the fact that this argument is often of the form sizeof(buffer), where buffer is a
variable that reaches memset without prior definition. This problem can be easily fixed
by slightly adapting our heuristic to suppress arguments of sizeof, leaving us with no
false positives in this particular case.
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Function Defining

fgets 1. argument
sprintf 1. argument
memset 1. argument
write 3. argument
memcpy 1. argument
memset∗ 3. argument
n2s 2. argument
n2l 2. argument
c2l 2. argument

Table 6.4: Inferred argu-
ment definitions [165]

Regular expression

.*n2s.*
.*memset.*
.*strlen.*

.*int .*len.*
.*int arg.*
.*size t.*

.*unsigned.*
.*int.*

.*long.*

Table 6.5: Inferred third ar-
guments of memcpy [165]

We proceed to generate queries for the sink memcpy, resulting in 38 queries, 14 of which
specify a source for memcpy’s third argument. As the third argument specifies the amount
of data to copy, cases where this argument is attacker-controlled are particularly inter-
esting when searching for buffer overflows and overreads. The third arguments to memcpy

inferred by our method are shown in Table 6.5. In particular, it contains the source n2s.
As this is the only source that is attacker-controlled with certainty, only the traversal
shown in Figure 6.6 needs to be executed.

arg3Source = sourceMatches(’.*n2s.*’); 1

2

arg2Sanitizer = { it, symbol -> 3

conditionMatches(".*%s (==|!=) NULL.*", symbol) 4

}; 5

6

arg3Sanitizer = { it, symbol -> 7

conditionMatches(".*%s.*\+(\d+).*", symbol) 8

}; 9

10

getCallsTo("memcpy") 11

.taintedArgs([ANY, ANY, arg3Source]) 12

.unchecked([ANY_OR_NONE, arg2Sanitizer, arg3Sanitizer]) 13

14

Figure 6.6: Generated traversal encoding the vulnerable programming pattern lead-
ing to the Heartbleed vulnerability [165].

Reviewing the generated query, we see that it specifies the desired sink memcpy on line
11, and describes the data flow from the attacker-controlled source n2s to the third
argument of this sink on line 1. In addition, it enforces two sanitization rules. On line
4, it is ensured that second arguments to memcpy are checked against NULL, as the source
buffer for the copy operation may not be a NULL pointer. Second, line 8 ensures that
the third argument to memcpy, i.e., the amount of data to copy should be checked in an
expression containing an integer. The automatically generated thus already expresses the
vital validation of the third argument to the copy-operation along with an additional
rule that is less important. Of course, an analyst can easily edit this query, e.g., to
exclude the less important rule, however, for the purpose of this evaluation, we leave the
query as is to assess the methods ability without the analyst intervention. In fact, even
without the analyst’s modifications, the traversal returns only 7 call sites of 738, that
is, only 0.81%. Table 6.6 shows the returned functions, among which two correspond
to the “Heartbleed” vulnerability. Finally, Figure 6.7 shows the code property graph
that the two vulnerable functions have in common, including the check placed between
source and sink to patch the vulnerability. As this graph shows, the traversal returns
the function if this check is removed, and does not return it, if the check is in place.
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Filename Function

ssl/d1 both.c dtls1 process heartbeat
ssl/s3 clnt.c ssl3 get key exchange
ssl/s3 clnt.c ssl3 get new session ticket
ssl/s3 srvr.c ssl3 get client key exchange
ssl/t1 lib.c ssl parse clienthello tlsext
ssl/t1 lib.c tls1 process heartbeat
crypto/buffer/buf str.c BUF memdup

Table 6.6: The seven hits returned by the generated traversal. Vulnerable call sites
are shaded [165].

call: n2s

argarg

p payload

entry pred

>
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Figure 6.7: Excerpt of the code property graph for the Heartbleed vulnerability [165]

6.4.2.2 Case Study: The VLC Media Player

We now employ our method to uncover five previously unknown vulnerabilities in the
popular open-source media player VLC. To this end, we again generate queries for the
sink memcpy, and select two queries that look particularly interesting, as they encode
dangerous programming practices. Figure 6.8 shows the first of the two queries, which
describes calls to memcpy where the destination buffer, that is, the first argument, is
defined as a local stack buffer of type char. In addition, the size of this buffer is dynam-
ically calculated as part of its declaration. This way of declaring a local buffer already
constitutes a dangerous programming practice in itself as it is not possible to verify
whether at runtime, the available stack memory is sufficient to allocate the buffer. In
particular, if the amount of memory requested is attacker-controlled, this can possibly
be leveraged to corrupt memory in a subsequent call to memcpy.

arg1Src = sourceMatches(’.*char \[ .*len \+ .* \].*’) 1

arg3Src = { sourceMatches(’.*size_t.*’)(it) || 2

sourceMatches(’.*str.*len.*’)(it)} 3

4

getCallsTo("memcpy") 5

.taintedArgs([arg1Src, ANY_SOURCE, arg3Src]) 6

Figure 6.8: Traversal for dynamic allocations of stack buffers passed as first argu-
ments of memcpy [165].

We run this query and obtain three call sites, all of which are problematic (Table 6.7). As
an example, Figure 6.9 shows the vulnerable function rtp packetize xiph config where
the variable len is equal to the length of an attacker controlled string (line 14). This
value is subsequently used to allocate the buffer b64 on the stack (line 14). Finally, len
bytes are copied into the buffer on line 16. We have successfully verified the existence
of this vulnerability by triggering an invalid memory access on a 64 bit Linux system.

The second interesting traversal is shown in Figure 6.10, where the third argument of
memcpy stems from a source matching the regular expression .*Get.*, a family of macros
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Traversal Filename Function Line CVE Identifier

Traversal 1 modules/services discovery/sap.c ParseSDP 1187 CVE-2014-9630
Traversal 1 modules/stream out/rtpfmt.c rtp packetize xiph config 544 CVE-2014-9630
Traversal 1 modules/access/ftp.c ftp SendCommand 122 CVE-2015-1203
Traversal 2 modules/codec/dirac.c Encode 926 CVE-2014-9629
Traversal 2 modules/codec/schroedinger.c Encode 1554 CVE-2014-9629

Table 6.7: The call sites extracted by our traversals. All call sites are vulnerable [165].

int rtp_packetize_xiph_config( sout_stream_id_t *id, const char *fmtp, 1

int64_t i_pts ) 2

{ 3

if (fmtp == NULL) 4

return VLC_EGENERIC; 5

6

/* extract base64 configuration from fmtp */ 7

char *start = strstr(fmtp, "configuration="); 8

assert(start != NULL); 9

start += sizeof("configuration=") - 1; 10

char *end = strchr(start, ’;’); 11

assert(end != NULL); 12

size_t len = end - start; 13

char b64[len + 1]; 14

memcpy(b64, start, len); 15

b64[len] = ’\0’; // [...] 16

} 17

Figure 6.9: Previously unknown vulnerability found using the first traversal [165].

in VLC that read data directly from media files possibly under the attacker’s control.
This amount of control over a copy-operation is a common source for buffer overflows,
and thus, the query catches our attention.

The two functions returned by the query are shown in Table 6.6. Both functions are
vulnerable to a buffer overflow. In particular, Figure 6.11 shows the identified buffer
overflow in the source file modules/codec/dirac.c where the 32 bit variable len is initial-
ized by GetDWBE on line 5, and thus possibly attacker-controlled. This variable in sub-
sequently used to allocate the buffer p extra on line 7, however, not before adding the
fixed value of sizeof(eos) to it. Unfortunately, when choosing len to be large enough,
this causes an integer overflow in the allocation and a subsequent buffer overflow when
data is copied into the buffer on line 10.

arg20Source = sourceMatches(’.*Get.*’); 1

arg21Source = sourceMatches(’.*uint.*_t.*’); 2

3

getCallsTo("memcpy") 4

.taintedArgs([ANY_SOURCE,ANY_SOURCE, 5

{arg20Source(it) && arg21Source(it)}]) 6

Figure 6.10: Traversal to identify third arguments of memcpy defined by
.*Get.* [165].

In total, our method played the key role in uncovering 5 previously unknown vulnera-
bilities that can possibly be exploited to execute arbitrary code. This was achieved by
selecting only two promising automatically generated queries, showing that our tool is
useful for security analysts reviewing code in practice.
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static block_t *Encode(encoder_t *p_enc, picture_t *p_pic) 1

{ 2

if( !p_enc->fmt_out.p_extra ) { 3

// [...] 4

uint32_t len = GetDWBE( p_block->p_buffer + 5 ); 5

// [...] 6

p_enc->fmt_out.p_extra = malloc( len + sizeof(eos) ); 7

if( !p_enc->fmt_out.p_extra ) 8

return NULL; 9

memcpy( p_enc->fmt_out.p_extra, p_block->p_buffer, len); 10

// [...] 11

} 12

} 13

Figure 6.11: Previously unknown vulnerability found using the second traversal [165].

6.5 Related Work

The idea of instantiating static code checkers using information scattered across a code
base can be traced back to the seminal paper by Engler et al. [39]. They show that
templates expressing programming rules can be automatically tailored to a target code
base. For example, a template may express that a call to A must always be followed by a
call to B, where A and B are the template parameters that their approach automatically
infers. This allows them to uncover different types of bugs, including security vulnera-
bilities such as certain types of use-after-free vulnerabilities, double-free vulnerabilities,
and immediate dereferenciations of user-space pointers in kernel code. However, in con-
trast to the queries generated by our approach, none of the presented rule templates
is able to model checks in source-to-sink systems, and thus, taint-style vulnerabilities
remain out of reach.

Kremenek et al. [77] provide a method that combines different sources of information
in a factor graph to automatically infer functions that allocate or deallocate resources.
More recently, Livshits et al. [86] present Merlin, a method also based on factor graphs
that allows information flow specifications to be inferred for Web applications written for
the Microsoft .NET framework. Unfortunately, Merlin is limited to modeling the flow
of information between functions, and hence, sources, sinks, and sanitizers are required
to be calls to functions. This assumption holds for many important incarnations of Web
application vulnerabilities such as SQL injection, and cross site scripting vulnerabilities,
however, missing bounds checks for vulnerabilities such as buffer overflows or null pointer
checks typical for system code cannot be detected in this way. In contrast, our method
allows us to derive sanitizers from arbitrary statements, making it possible to encode a
wider range of checks, and missing bound checks in particular.





7
Conclusion and Outlook

Providing analysts with practical methods to assist in the discovery of vulnerabilities is
crucial for securing computer systems. Even with improvements of programming lan-
guages in sight that can eventually eliminate certain types of vulnerabilities completely,
the systems created today and in the past will remain important for the security of our
communication infrastructure for years to come. Reviewing recent history and the ad-
vent of Web applications also suggests, that new types of vulnerabilities specific to these
technologies will surface, based on attacker-control, sensitive operations, and failure to
restrict the attacker’s capabilities.

This thesis has introduced pattern-based vulnerability discovery, a family of methods
based on machine learning and graph mining which assist analysts in day-to-day au-
diting. Rooted in pragmatism, our methods are specifically designed to be operated
interactively by an analyst, allowing her to benefit from the machine’s pattern recogni-
tion capabilities without surrendering the ability to guide the analysis and make final
security critical decisions. Moreover, our methods trade the precision offered by meth-
ods such as symbolic execution for the speed and scalability of lightweight analysis, and
simplicity in operation.

First and foremost, these approaches highlight the merits of learning techniques for
vulnerability discovery, allowing us to reduce the necessary effort to uncover severe
vulnerabilities in mature real world code bases. In addition, their realization has lead to
the development of several new techniques for robust code analysis such as refinement
parsing, the code property graph, and in particular, feature maps for source code that
enable machine learning algorithms to uncover complex patterns in programs. These
techniques are interesting for code analysis in general and have already been applied by
other researchers for identifying code reuse [3], de-anonymization programmers [19], and
decompiling binary code [161].

In the following, we discuss the results of this thesis in greater detail and proceed to
point out limitations of our pattern-based approaches. Finally, we outline ideas for
future work based on the results presented in this thesis.

117
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7.1 Summary of Results

The results of this thesis are twofold. On the one hand, we have presented a novel plat-
form for robust code analysis that can be used to mine for vulnerabilities using graph
database queries. On the other, we have studied the ability of unsupervised machine
learning algorithms to assist in the discovery of vulnerabilities, and have provided a
practical method for real world audits for each of the three main capabilities of unsuper-
vised learning. Finally, the last of the three approaches closes the loop by showing that
graph database queries for our code analysis platform can in fact be inferred from the
code using learning techniques, allowing us to express patterns identified by the learner
in an explicit and editable form. Zooming in on the concrete methods, the following
main contributions have been made.

Mining for vulnerabilities with Graph Databases. We have presented a platform
for robust source code analysis that combines ideas from fuzzy parsing, classic compiler
design, and the emerging field of graph databases. In particular, we have introduced
refinement parsing as a practical approach for parsing possibly incomplete code robustly,
and the code property graph, a joint representation of a program’s syntax, control flow
and data flow. Storing code property graphs in graph databases has allowed us to
effectively mine source code for vulnerabilities using manually crafted search patterns.
We have showed in an empirical evaluation that these search patterns are expressive
enough to create queries for the majority of vulnerabilities reported in the Linux kernel
in 2012. Moreover, we have conducted a real world audit employing our method where
we uncover 18 previously unknown vulnerabilities in the Linux kernel (Chapter 2).

Feature maps for source code. We have proceeded to introduce different ways for
embedding source code in a vector space, a prerequisite for the application of many
machine learning algorithms. These maps provide the bridge between our code analysis
platform on the one hand, and machine learning on the other, making it possible to
determine patterns in code associated with its syntax, control flow, and data flow. In
addition to defining these feature maps abstractly, we have discussed how they can
be realized at scale via feature hashing, and have provided a generic procedure for
implementing these embeddings based on the code property graphs. This makes it
possible to implement all techniques for pattern-based vulnerability discovery presented
in this thesis directly for our architecture (Chapter 3).

A method for vulnerability extrapolation. We consider the scenario where an
analyst is interested in finding vulnerabilities similar to a known vulnerability. To this
end, we have presented a method that identifies similar functions to a known function
based on dimensionality reduction, and a representation of code in terms of the subtrees
of its syntax tree. Comparing several variants of this representation, we find empirically
that limiting ourselves to subtrees of API symbols allows to narrow the set of functions
to inspect down to 8.7% on average. Moreover, we have shown that we are able to
leverage this method in practice to identify previously unknown vulnerabilities in the
media decoding library FFmpeg, and the instant messenger Pidgin (Chapter 4).
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A method for missing-check detection. We have proceeded to present a method
that points out particularly pronounced deviations from programming patterns by ex-
tending our method for extrapolation by contextual anomaly detection (see Section 5.2).
The main idea is to identify functions that deviate notably in the way they handle input
when compared to functions operating in a similar context. The method thus focuses
on the detection of missing checks by automatically determining the checks typically
associated with a source or sink via lightweight data flow analysis. We have also shown
in an empirical analysis on known vulnerabilities that our method is capable of detecting
missing checks accurately with few false alarms, albeit these may not be security critical.
In addition, we have again employed the resulting method in practice, allowing us to
uncover previously unknown vulnerabilities in Pidgin and LibTIFF (Chapter 5).

A method for inference of search patterns. Finally, we have presented a method
to automatically extract common source-to-sink systems from source code and the checks
associated with their parameters to generate graph database queries. These queries allow
source-sink-systems to be identified with insufficient validation of input. Moreover, they
express the identified patterns in an explicit form, allowing the analyst to understand
which patterns were identified, and to augment these search patterns with information
that cannot be derived from the statistics of the code base. In a controlled setting, we
find that this method allows us to create accurate signatures for taint-style methods
that reduce the amount of code to inspect for these particular flaws by 94.9%. More-
over, we have shown that our method allows us to uncover eight previously unknown
vulnerabilities in the VLC media player by enumerating problematic taint-style systems
(Charpter 6).

7.2 Limitations

The results presented in the previous chapters demonstrate the merits of pattern-based
techniques for the discovery of vulnerabilities in real world applications. Nonetheless,
there are several limitations of our approach, both of inherent and of technical nature.

First of all, it needs to be pointed out that the problem of vulnerability discovery is
undecidable in the general case [115], meaning that we cannot devise an automated
method that determines all vulnerabilities in a program without any false positives.
Moreover, it is equally unrealistic to prevent vulnerable code to be created in the first
place: vulnerabilities are the result of oversights, misjudgment of the attacker’s control
over the program, and unfortunate design decisions. While improvements introduced by
programming languages and environments may alleviate the possibility of introducing
severe vulnerabilities, it will not be possible to entirely eliminate human error.

Second, our work builds on machine learning techniques such as embedding of code in
a feature space, dimensionality reduction, anomaly detection, and clustering. These
approaches are useful to narrow in on potentially vulnerable code, but provide no guar-
anties for the existence of a vulnerability. This is an inherent problem of machine
learning techniques as they focus mainly on the code’s statistics as opposed to its se-
mantics. Nonetheless, finding interesting starting points for more precise analysis in the
large amounts of code contemporary systems are composed of, is a useful feature, as our
experiments show.
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Third, our techniques do not account for the situation where a programmer purposely
introduces a vulnerability to place a backdoor inside the code. In this scenario, the
programmer may make a significant effort to hide the vulnerability, for example, by
obfuscating code or dynamically generating it. To improve upon this situation, it may
be possible to combine techniques from malware analysis with our approaches in the
future.

Fourth, the applicability of our methods has been shown for different programs, but not
for different programming languages. It is an open question whether our method can
for example be applied to dynamic programming languages such as PHP or Javascript.
Moreover, it is also unclear whether they can be operated on binary code.

Finally, our techniques focus on vulnerabilities that manifest in few functions, and can
be localized. However, different types of design flaws may arise due to the interplay of
system components, and it may not be possible to pinpoint exact locations in the code
that can be associated with the vulnerability. These types of flaws cannot be identified
using our methods, albeit they may be helpful in gaining the necessary understanding
of the code base to uncover them.

7.3 Future Work

It is the authors hope that pattern-based vulnerability discovery as introduced in this
thesis will provide a fruitful ground for further research. In particular, starting from
the work presented, the following directions seem interesting for the development of
improved systems to assist in vulnerability discovery.

Combination with precise techniques. Precise techniques of program analysis such
as symbolic execution provide a useful tool to check code for specific properties, but they
are also hard to scale to today’s systems. In the future, it may be interesting to com-
bine our approaches with these precise techniques, for example, by using pattern-based
techniques to select interesting code, which is subsequently analyzed using symbolic ex-
ecution. This could drastically reduce the amount of false positives produced by inexact
methods, and possibly even provide the analyst with information necessary to determine
whether a defect is exploitable.

Exploiting new data sources. A strength of the property graph in the setting of
code analysis is that it allows us to combine different aspects of the code in a single
data structure, at scale. However, the approaches presented so far rest entirely on the
results of static analysis of the code in question. In the future, overlaying additional
information obtained by other sources, such as traces of program executions, revision
histories, or even documents found on the Web may provide further hints towards the
existence of vulnerabilities.

Extension to other forms of code. The presented approaches have been evaluated
entirely on C/C++ code. While this allows many security critical code bases to be
analyzed, it is currently unknown whether our approaches can be employed as-is for the
analysis of code written in dynamic languages such as PHP or Javascript. Exploring this
would allow our approaches to be applied in a much wider setting, making it possible to
identify vulnerabilities in Web applications in particular. Finally, Pewny et al. [109, 110]
provide evidence that our concept for vulnerability extrapolation is indeed also applicable
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to binary code. Whether the remaining methods proposed in our work can be equally
well applied in this setting is an open question.

Semi-supervised approaches for long-term settings. The machine learning ap-
proaches employed in our work are all unsupervised, that is, we assume that the analyst
does not have time to provide any sorts of labels. This is a reasonable assumption when
considering a third-party analyst task with finding many vulnerabilities in a program
in a short amount of time. In contrast, for manufacturers who maintain software over
a longer period of time, it may be possible to provide at least some labels. Employing
semi-supervised approaches that allow this information to be taken into account may
therefore be an interesting direction for future research.

Scaling to entire systems. Finally, while our evaluation considers large code bases
such as the Linux kernel, we have not yet explored whether our techniques scale to
entire OS distributions, that is, the source code of programs along with all libraries
they employ. This is a particularly interesting question as programmers using a library
typically do not possess an intimate knowledge of its implementation, and therefore,
they may not be aware of those subtleties relevant for its secure operation.





A
Operations on Property Graphs

In the following, we define basic and intuitive operations on property graphs, which are
made use of in the thesis. In particular, the construction of code property graphs requires
an operation to merge property graphs to be defined. While for traditional graphs, this
can be achieved easily by merging node sets and edge sets, for property graphs, we need
to additionally take care of preserving edge labeling, and endpoint functions. To this
end, we define the union of endpoint functions as follows.

Definition A.1. (Union of endpoint functions.) For s1 : E1 7→ X1, s2 : E2 7→ X2 and
E1 ∩ E2 = ∅, we define the union of s1 and s2 as s = (s1 ∪ s2) : (E1 ∪ E2) 7→ X1 ∪X2

where s(e) := s1(e) if e ∈ E1, and s(e) := s2(e) otherwise.

In this definition, we demand that the two node sets as well as the two edge sets are
disjoint to ensure that the union of endpoint functions is actually a function as well.
Analogously. we can define the union for attribute functions as follows.

Definition A.2. (Union of attribute functions.) For µ1 : (V1 ×K1) 7→ S1, µ2 : (V2 ×
K2) 7→ S2, and V1 ∩ V2 = ∅, we define the union of µ1 and µ2 as µ = (µ1 ∪ µ2) :
((V1 ∪ V2) × (K1 ∪ K2)) 7→ (S1 ∪ S2) where for all k ∈ K1 ∪ K2, µ(x, k) = µ1(x, k) if
x ∈ V1 and µ(x, k) = µ2(x, k) otherwise.

With these two definitions at hand, we can now define the union of property graphs.

Definition A.3. (Union of property graphs.) Let g1 = (V1, E1, λ1, µ1, s1, d1) and g2 =
(V2, E2, λ2, µ2, s2, d2) be property graphs with V1 ∩ V2 = ∅ and E1 ∩ E2 = ∅, then the
union g1 ∪ g2 is obtained by element-wise application of the union operator.

The union of property graphs can be employed in particular to add nodes, edges, and
labels to graphs. For removal, we define the difference of property graphs as follows.

Definition A.4. (Difference of functions.) Let f : Xf → Yf and g : Xg → Yg be two
functions. Then we define the difference f \ g to be given by the function corresponding
to the set of pairs {(x, f(x)) : x ∈ Xf and x 6∈ Xg}.

Definition A.5. (Difference of property graphs.) Let g1 = (V1, E1, λ1, µ1, s1, d1) be a
property graph and g2 = (V2, E2, λ2, µ2, s2, d2) is a sub graph for g1, then the difference
g1 \ g2 is obtained by element-wise application of the set-minus operator.
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Closely related, we often need to restrict a property graph to a sub set of its nodes
while preserving attributes and edges between these nodes. To this end, we define the
restriction as follows.

Definition A.6. (Restriction.) Let g = (V,E, λ, µ, s, d) be a property graph and let
U ⊆ V be a subset of its nodes, and D ⊆ E be a subset of its edges. Then the restriction
g|U,D is defined as the property graph containing all nodes of U and all edges of D, that
is, g|U,D = (U,D, λ|D, µ|(U∪D, s|D, d|D).

With the restriction at hand, we denote the restriction of a property graph to the single
node x as N (x). Finally, to simplify notation, we define the node set V(g) and edge set
E(g) of a property graph g = (V,E, λ, µ, s, d) to be given by V and E respectively.



B
Linux Kernel Vulnerabilities - 2012

Vulnerability types Description #
Memory Disclosure A structure is copied to user space and not all fields or padding bytes are

properly initialized resulting in memory disclosure.
21

Buffer Overflows A length field involved in a copy operation is not checked resulting in
buffer overflows.

16

Resource Leaks A function creates a resource, but it is not destroyed on all error paths. 10
Design Errors Program design does not sufficiently implement security policies. 10
Null Pointer Dereference A pointer controlled by an attacker is dereferenced without checking

whether it is null.
8

Missing Permission Checks A security sensitive operation can be accessed without undergoing a prior
permission check.

6

Race Conditions Concurrently running processes cause various types of vulnerabilities. 6
Integer Overflows A length field involved in a copy operation is checked, but the check is

insufficient as integer overflows are not accounted for.
3

Division by Zero An attacker-controlled value is a denominator in a division and it is al-
lowed to be zero.

3

Use After Free An allocated block of memory is used after being freed by the allocator. 3
Integer Type Vulnerabilities A length field involved in a copy operation is checked, but the check is

insufficient as the length field is a signed integer.
1

Insecure Arguments Passing arguments to a function results in an implicit, insecure type cast. 1

Total vulnerabilities 88

Table B.1: Vulnerabilities discovered in the Linux kernel in 2012 sorted by vulnera-
bility type [162].
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