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Abstract
Users are nowadays exposed to a large number of tracking techniques. An
emerging practice embeds inaudible beacons in sound and tracks them using
the microphone of mobile devices. This side channel allows an adversary to
identify a user’s current location, spy on her TV viewing habits or link together
her different mobile devices. A comprehensive user profile is the result.

In this paper, we explore the capabilities, the current prevalence and technical
limitations of this new tracking technique based on three commercial tracking
solutions. To this end, we develop detection approaches for ultrasonic beacons
and Android applications capable of processing these. Our findings confirm
our privacy concerns: We spot ultrasonic beacons in various web media content
and detect signals in 4 of 35 stores in two European cities that are used for
location tracking. While we do not find inaudible beacons in TV streams from
7 countries, we spot 223 Android applications that are constantly listening for
ultrasonic beacons in the background without the user’s knowledge.

1 Introduction
The tracking of desktop and mobile devices is an increasing threat to the privacy of
users. Devices are no longer only fingerprinted and monitored as users surf the web, but
also when they open applications on smartphones and other mobile devices [e.g., 14, 16,
18]. In consequence, it becomes possible to track the location of users and their activity
across different devices and applications. While such tracking may help in identifying
fraud, for example logins from unknown devices, its main purpose is targeted advertising
that often impacts the privacy of users. Various advertising platforms already provide
corresponding services to their customers, including Google’s Universal Analytics and
Facebook’s Conversion Pixel.

Recently, several companies have started to explore new ways to track user habits and
activities with ultrasonic beacons. In particular, they embed these beacons in the ultrasonic
frequency range between 18 and 20 kHz of audio content and detect them with regular
mobile applications using the device’s microphone. This side channel offers various
possibilities for tracking: The mobile application Shopkick, for instance, provides rewards
to users if they walk into stores that collaborate with the Shopkick company. In contrast
to GPS, loudspeakers at the entrance emit an audio beacon that lets Shopkick precisely
determine whether the user walked into a store. Furthermore, mobile applications like
Lisnr and Signal360 present location-specific content on mobile devices such as vouchers
for festivals and sport events via ultrasonic beacons. Once the user has installed these apps
on her phone, she neither knows when the microphone is activated to record audio nor is
she able to see which information is sent to the company servers.

Finally, the developers of Silverpush filed a patent which recently raised attention in the
media [21] due to its privacy threat: The patent proposes to mark TV commercials using
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ultrasonic beacons, thus allowing them to track users exact viewing habits. In contrast to
other tracking products, the number and the names of the mobile applications carrying
this functionality are unknown. Therefore, the user does not notice that her viewing habits
are constantly monitored and linked to the identity of her mobile devices.

No scientific work has so far systematically investigated the technical implementation,
prevalence, and privacy implications induced by ultrasonic user tracking. We gain detailed
insights into the current state of the art by examining the communication protocols and
signal processing of the three commercial solutions Shopkick, Lisnr and Silverpush. In
this way, we are able to develop methods for detecting ultrasonic beacons in audio as well
as the respective detection mechanisms in mobile applications. These detection methods
enable us to obtain an overview of the current prevalence of ultrasonic tracking in practice.

During our evaluation, we have analyzed more than 140 hours of media data captured
from different sources, including TV streams and various audio content. We find that
ultrasonic beacons are indeed present in everyday life without being noticed by most
people. In particular, we spot that 4 of 35 visited stores in two European cities use ultrasonic
beacons for location tracking. Although we could not detect any beacons in actual TV
audio, we observe that the number of apps embedding the Silverpush SDK constantly
increases. While in April 2015 only six instances have been known, we were able to identify
39 further instances in a dataset of about 1,3 million applications in December 2015, and
until now, a total of 223 samples containing SilverPush have been discovered. We conclude
that even if the tracking through TV content is possibly not actively used yet, it is already
deployed and might become a serious privacy threat in the near future.

Fortunately, we are able to identify various restrictions of the technique throughout
our empirical study with common mobile devices and human subjects that limit the
context in which audio beacons can appear. Amongst others, we show that the frequent
use of compression in common multimedia data significantly affects the feasibility of an
ultrasonic side-channel, thus making the distribution of these beacons through common
streaming websites rather unlikely.

In summary, we make the following contributions:

We reverse engineer the inner workings of three commercial tracking technologies
and provide detailed insights on how they are used in the wild.

We conduct an empirical study to show where ultrasonic audio beacons currently ap-
pear. To this end, we implement two detection methods which allow us to efficiently
scan audio data and mobile applications for indications of ultrasonic side channels.

Finally, we empirically evaluate the reliability of the technique under different condi-
tions and present limitations that help to determine how and which defenses should
be applied.

The remainder of this paper is organized as follows: We first discuss the privacy threats
introduced by ultrasonic side channels in Section 2. We then review the background of
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acoustic communication in Section 3 and introduce methods to detect ultrasonic commu-
nication in Section 4. We proceed with an analysis of three commercial implementations
in Section 5. Based on these insights and the detection methods from the prior section,
an empirical study reveals the current prevalence of ultrasonic side channels. Section 6
provides a discussion of the identified limitations and outlines countermeasures. Finally,
Section 7 provides related work and Section 8 concludes the paper.

2 Privacy Threats
Ultrasonic side channels on mobile devices can be a threat to the privacy of a user, as they
enable unnoticeably tracking locations, behavior and devices. For example, an adversary
can spy on the TV viewing habits of a user, locate its position if in range of an ultrasonic
signal or even weaken anonymization techniques. The user just needs to install a regular
mobile application that is listening to ultrasonic signals through the microphone in the
background. Figure 1 summarizes the resulting privacy threats:

Media Tracking An adversary marks digital media in TV, radio or the web with ultrasonic
beacons and tracks their perception with the user’s mobile device. The audio signal may
carry arbitrary information such as a content identifier, the current time or broadcast
location. As a result, it becomes possible to link the media consuming habits to an individ-
ual’s identity through her mobile device. Where traditional broadcasting via terrestrial,
satellite or cable signals previously provided anonymity to a recipient, her local media
selection becomes observable now. In consequence, an adversary can precisely link the
watching of even sensitive content such as adult movies or political documentations to a
single individual – even at varying locations. Advertisers can deduce what and how long
an individual is watching and obtain a detailed user profile to deliver highly customized
advertisements.

Cross-Device Tracking Ultrasonic signals also enable an adversary to derive what mobile
devices belong to the same individual. When receiving the same signal repeatedly, devices
are usually close to each other and probably belong to the same individual. Consequently,
an advertiser can track the user’s behavior and purchase habits across her devices. By
combining different information sources, the advertiser can show more tailored advertise-
ments. Similarly, an adversary can link together private and business devices of a user, if
they receive the same ultrasonic signal, thereby providing a potential infection vector for
targeted attacks.

Location Tracking An ultrasonic signal also enables an adversary to track the user’s move-
ment indoor without requiring GPS. A location, for example a drug store, emits an ul-
trasonic signal with a location identifier. This information reveals where and when an
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Figure 1: Examples of different privacy threats introduced by ultrasonic side channels. (a) Ultrasonic
beacons are embedded in TV audio to track the viewing habits of a user; (b) ultrasonic
beacons are used to track a user across multiple devices; (c) the user’s location is precisely
tracked inside a store using ultrasonic signals; (d) visitors of a website are de-anonymized
through ultrasonic beacons sent by the website.

individual usually stays. Furthermore, the adversary can learn when people are meeting or
are in close proximity to each other.

De-Anonymization The side channel through ultrasonic codes makes the de-pseudony-
mization of Bitcoin and de-anonymization of Tor users possible. As an example, a malicious
web service can disclose the relation between a Bitcoin address and a user’s real-world
identity. Whenever the service shows an uniquely generated address to which the user
has to pay, it also transmits an ultrasonic signal to the payer’s mobile device. This in turn
enables the service to link the user’s Bitcoin address to her mobile device. Similar attack
strategies are also effective against anonymization services, such as Tor.

In summary, an adversary is able to obtain a detailed, comprehensive user profile by
creating an ultrasonic side channel between the mobile device and an audio sender. Our
case study on three commercial ultrasonic tracking technologies reveals that the outlined
tracking mechanisms are not a theoretical threat, but actively deployed (e.g. Shopkick and
Lisnr) or at least in the process of being deployed (e.g. SilverPush).
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3 Technical Background
Before presenting the current state of the art on ultrasonic side channels, we briefly
introduce the basics of acoustic communication and corresponding information encoding.
A reader familiar with these topics can directly proceed to our methodology on detecting
ultrasonic implementations in Section 4.

3.1 Audible and Inaudible Sound
Sound can be formally described as a sum of waves with different frequency. While natural
sound is usually composed of a wide spectrum of these frequencies, humans are only able
to perceive a particular range, where frequencies outside of this range remain inaudible.
For designing an inaudible side channel it is thus essential to first pick an appropriate
frequency band for transmission:

Infrasound (≤ 20 Hz): Frequencies below 20 Hz can generally not be perceived by the
human ear. Due to the long wave length, however, infrasound is difficult to create
with small devices and moreover less efficient in transmission.

Audible sound (20 Hz–20 kHz): In general, humans are able to perceive frequencies
consciously between 20 Hz and 20 kHz. This upper bound decreases with age [12],
such that humans of 30 years and older often cannot recognize sound above 18 kHz.

Ultrasound (≥ 20 kHz): Frequencies above 20 kHz can also not be perceived by humans.
Moreover, the small wave length enables creating ultrasound from small devices and
also provides the ground for a quick transmission.

As a consequence, ultrasound is theoretically a perfect match for designing an inaudible
yet effective side channel between devices. However, most loudspeakers and microphones
deployed in commodity hardware are not designed to transmit inaudible sound. Instead
these devices exactly aim at the audible range of frequencies between 20 Hz and 20 kHz [13].
This problem is alleviated by the decreasing hearing performance of humans, leaving a
near-ultrasonic frequency range of 18 kHz to 20 kHz for transmission that is only perceived
by very young or sensitive humans.

Consequently, commodity and thus existing audio hardware can be leveraged for estab-
lishing a side channel. No additional hardware or technology is needed. An alternative to
sound, for example the iBeacon solution, requires a dedicated sender device that emits
the Bluetooth signal. Moreover, the receiving device needs to support the Bluetooth Low
Energy standard.

To visually present sound in this paper, we make use of the plots shown in Figure 2,
where (a) depicts the amplitude and (b) the spectrogram over time for an exemplary sound.
In the latter case, the individual frequencies of the sound are plotted over the y-axis and
their power is indicated by brightness. The sound corresponds to a music track and it is
visible that also inaudible frequencies above 18 kHz are part of the recording.
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Figure 2: (a) Audio wave of a music track, (b) spectrogram of the frequencies in the music track.

3.2 Encoding of Information
So far, we have identified the frequency band 18 kHz to 20 kHz as a promising channel for
designing inaudible communication. It thus remains to investigate how information can
be encoded on this channel. Fortunately, acoustic and electromagnetic waves share several
similarities and many basic concepts developed in telecommunication can also be applied
for acoustic communication, such as different variants of signal modulations.

However, when transmitting information using inaudible sound, we need to make sure
that no frequencies outside the selected band occur. This requirement renders the concept
of Frequency Shift Keying (FSK) attractive for this purposes since other concepts like Phase
Shift Keying (PSK) potentially introduce discontinuities in the signal. These discontinuities
may lead to high instantaneous frequencies and result in hearable clicks.

In FSK each bit or symbol is represented by a separate frequency within the specified
frequency band. An example is depicted in Figure 3 where a simple bit sequence is trans-
mitted using two different frequencies. Obviously, it is possible to generalize this binary
FSK and encode M symbols with M separate frequencies. This generalization is known as
M-FSK and a variant of it is used by SilverPush and Lisnr.

Although these implement a vanilla M-FSK, the changing frequencies within the given
band can also introduce minor discontinuities and thus audible clicks [13]. This effect
can be prevented using techniques like continuous-phase frequency shift keying or at
least mitigated when lowering the amplitude at frequency transitions as proposed by
Deshotel [5].

3.3 Sending and Receiving
Equipped with a frequency band and a simple encoding scheme, an attacker only needs to
construct a corresponding sender and a receiver. In the case of media- and cross-device
tracking, implementing a sender is rather straightforward, as the attacker just needs to
embed the prepared frequency signal into the audio stream broadcasted via TV, radio or a
web stream. Designing a receiver is a little bit more involved, as the corresponding device
needs continuously monitor the sound using a built-in microphone.

Without loss of generality, we focus on a receiver implemented for the Android platform,
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Figure 3: Information encoding using FSK modulation.

as the same concepts also apply to other mobile platforms. The Android platform provides
a dedicated class called AudioRecord for recording audio data from the microphone without
compression. Note that compression algorithms can foil the plan of an ultrasonic side
channel, as they may cut off inaudible sounds from the recording. This class is easy to
access and sufficient for our purposes, yet recording requires the RECORD_AUDIO permission
to be granted by the user. Unfortunately, users tend to blindly grant permissions to Android
applications, if they are interested in their functionality. As a consequence, the permission-
based security mechanism of Android does not really stop an application from listening
for inaudible beacons.

Furthermore, a continuous stealthy recording can be easily implemented on Android
using the concept of services that work in the background so that an user can even switch
to another application. In consequence, a covert transmission of an ultrasonic signal can
take place at any time, since it may not be clear when a viewer, for example, will watch a TV
program that contains the embedded audio beacon. To revive a service after a shutdown of
the device, techniques known from Android malware can be employed, such as triggering
the service on events like boot-up or finished phone calls.

4 Methodology
With these basics of communication in mind, we are ready to develop two tools for detecting
indicators for ultrasonic side channels: One detector spots the corresponding audio
beacons in an audio signal, while the other identifies the receiving implementation in an
Android application.

4.1 Detecting Ultrasonic Beacons
As ultrasonic beacons may vary between different techniques, we need a broad detection
approach to spot previously unknown beacons. Furthermore, the approach must be capable
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Figure 4: Plot (a) shows the frequency distribution of more than 1,500 songs whereas Figure (b)
depicts the frequency distribution of an audio sample containing a Lisnr audio beacon.

to analyze large amounts of data efficiently and we need to ensure that the algorithm
produces no or at least only few false positives which can later be manually verified.

Based on our insights from exploring current commercial tracking technologies (see Sec-
tion 5), we assume that the energy of the beacons in the frequency band between 18 kHz
and 20 kHz is higher than in other common signals. Thus, an anomaly detection in this
frequency band seems a promising candidate to identify arbitrary ultrasonic beacons. To
this end, we require a meaningful model of the energy distribution for each signal class of
interest. This includes audio files, TV streams and environmental sounds in a common
shopping mall.

We therefore first determine the frequency distributions of different signal types using an
FFT analysis. Figure 4 (a) depicts, for instance, the distribution of the maximum frequencies
of more than 1,500 songs from different genres. Comparing the frequency distribution
of an arbitrary audio sample with this distribution enables us to identify anomalies in
the examined frequency range. As an example, consider the frequency distribution of the
signal depicted in Figure 4 (b). The figure shows the distribution of a sample that contains
a beacon as used by the Lisnr SDK. It is visible that the distributions differ significantly in
the considered frequency band, thus allowing us to identify the presence of the beacon
by scanning for anomalies in the frequency spectrum. In particular, the detector reports
the presence of an ultrasonic signal if the energy in the near-ultrasonic frequency band
exceeds a previously chosen threshold. Lower frequencies are rather unlikely to be used for
audio beacons since the beacon would strongly overlap with other signals and perceivable
by most people (see Section 3).
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Figure 5: Schematic depiction of the detection method for mobile applications that employ inaudi-
ble sound.

4.2 Detecting Mobile Applications
To study the prevalence of mobile applications using inaudible sound to track user behavior,
we also require a detection tool capable of efficiently scanning a large amount of Android
applications for corresponding implementations.

Automatically identifying algorithms in program code, however, is a challenging task
that requires to abstract from concrete implementations. In the general case determining
whether an algorithm is present in a program is undecidable [19]. As a remedy, we thus use
a lightweight detection method which is capable to perform a fuzzy matching of interesting
code fragments on a large set of applications.

The design of our method is inspired from a detection technique developed in the context
of network intrusion detection [23, 24]. Figure 5 depicts the used detection method. In
the first step, we manually select methods from the available sample applications that are
known to be crucial for their functionality. This, for instance, includes the Goertzel algo-
rithm and the CRC checksum calculation present in samples of Silverpush and Shopkick,
respectively.

Our method identifies the code regions containing these methods and extracts all n-
grams with n = 2 from the corresponding byte sequences. To generalize different im-
plementations, we keep only shared n-grams, that is, byte sequences of length n that are
present in all methods of the same functionality. These shared n-grams are stored in a
Bloom filter [2], a classic data structure that allows to compactly describe a set of objects.
As a result of this learning phase, our method provides a set of Bloom filters, where each
filter represents one characteristic method indicative for inaudible tracking.
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Scanning an unknown Android application for occurrences of the learned patterns is
conducted similarly: Our method first identifies all Dalvik code regions in the application
and then extracts n-grams by moving a sliding window of 100 bytes over the code. The
extracted n-grams under the window are compared against the different Bloom filters
and a match occurs if a pre-defined amount of the n-grams is also present in the Bloom
filter. Ultimately, an application is flagged as being suspicious, if at least one characteristic
method is found in the code regions. Note, that this approach can be applied to spot
arbitrary code of interest.

5 Empirical Study
We proceed with an investigation of commercial ultrasonic tracking technologies, namely
SilverPush, Lisnr and Shopkick. These three applications use ultrasound to send messages
to the mobile device, but with different use cases: SilverPush targets media and cross-
device tracking while Lisnr and Shopkick perform location tracking (cf. Section 2). In
the following, we especially focus on the inner workings of SilverPush and Lisnr and
additionally discuss Shopkick where it differs to Lisnr or SilverPush.

To gain insight into their functionality, we make use of the reverse-engineering tools
Radare2 and Androguard. In particular, we use Radare2 to extract the Dalvik bytecode
of Android applications and employ Androguard to decompile Java code and to extract
XML files from the applications. We switch to Radare2 when an application uses native
implementations through the Android Native Development Kit (NDK) or Androguard
does not resolve a method’s control flow correctly. As no obfuscation has been used
in the SilverPush, Lisnr and Shopkick samples, this semi-automatic analysis proceeds
rather quickly and we gain detailed insights on their communication protocols and signal
processing.

5.1 Case Study Silverpush
We start our investigation of the SilverPush implementation with the GitHub repository
of Kevin Finisterre [10] who collected initial information about SilverPush after the media
coverage in November 2015. The repository contains 21 Android applications that we
examined for the functionality to retrieve ultrasonic beacons.

Communication protocol SilverPush uses the near-ultrasonic frequency range to transmit
audio beacons, as Section 3.1 generally motivates. These beacons consist of five letters from
the English alphabet where each letter is encoded using a separate frequency in the range
between 18 kHz and 20 kHz. The encoding scheme thus corresponds to an M-FSK with M
being the number of letters in the alphabet.

As the acoustic transmission can be subject to noise or other high-frequency sounds, the
implementation contains two simple mechanisms for error detection: (1) no letter must
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Figure 6: Example of transmission of ultrasonic beacons. The upper three panels depict the audio
wave of an audio signal, while the lower three panels show the corresponding Spectro-
gram. (a)-(b) show a music track, (c)-(d) a ultrasonic beacon, (e)-(f ) shows the result after
embedding the beacon into the original track.

appear twice in a transmitted beacon and (2) the letter ’A’ must be present in every beacon.
Obviously, these mechanisms limit the set of available beacons for transmission, but in
combination realize a naive but effective error detection. The audio snippet in Figure 6 (c)
and (d) contains a valid audio beacon of SilverPush, where Figure 6 (e) and (f ) depict the
same beacon exemplarily embedded into an audio signal.

Signal processing The SilverPush implementation records audio from an available mi-
crophone at a sampling rate of 44.1 kHz and directly analyses the recorded data in blocks of
4,096 audio samples. Due to the use of a sampling frequency of 44.1 kHz, the implementa-
tion is capable of detecting beacons up to 22 kHz—provided that the available loudspeakers
and microphones support such a high frequency. The developers seem to have been aware
of this problem and thus limited the FSK encoding of letters to 20 kHz.

To decode the beacons from the raw audio data, the implementation makes use of the
so called Goertzel algorithm, a classic signal processing algorithm that is widely used in
telecommunication systems, for example, for identifying DTMF tones in software. The
algorithm’s advantage compared to the more common Fast Fourier Transform (FFT) is its
ability to detect a single target frequency precisely with little computational effort. On
the contrary, the Fourier transform provides access to several frequencies at once and
thus is a more robust tool for spotting a signal. It is worth to note that we found one
seemingly older Android application of SilverPush during our empirical evaluation that
uses a Fourier transform. However, it seems that all current instances use the Goertzel
algorithm.
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Listing 1: Decompiled Goertzel algorithm.
1 public double getMagnitude()
2 {

3 a = new double[2];
4 b = 0;

5 while (b < this.n) {
6 this.processSample(this.data[b]);
7 b = (b + 1);

8 }

9 this.getRealImag(a);
10 c = this[0];
11 d = this[1];
12 e = Math.sqrt(((c * c) + (d * d)));

13 this.resetGoertzel();
14 return e;
15 }

Listing 1 shows the decompiled and characteristic Goertzel algorithm as found in the
implementation of SilverPush. The algorithm runs over all 4,096 audio samples, calculates
the real and imaginary part of a specified target frequency in lines 5–9, and finally returns
the magnitude obtained from line 12.

If more than one letter is detected in one block, the implementation discards this block
which emphasizes that just one tone per time is embedded. After collecting a valid beacon,
the implementation then sends the resolved audio beacon to a server in unencrypted
form, together with device information that are usable to identify the device, such as the
IMEI, the Android ID, the OS version and the device model. While this transmission of
personal data is already a privacy invasion, the fact that it is triggered from the audio of a
TV transmission makes this a frightening scenario.

5.2 Case Study Lisnr
We continue our investigation with Lisnr that realizes an ultrasonic side channel to display
location-specific content on the mobile device. For example, during a festival, participants
can receive notifications such as welcome messages or vouchers when they are near a
specific location.

Communication protocol Figure 7 shows a disclosed Lisnr audio beacon in the near-
ultrasonic frequency range that we spotted in a music song. The switching frequencies
reveal an FSK encoding scheme between 18.5 and 19.5 kHz. Moreover, the beacon is
continuously repeated, as the unique frequency block order in the figure also emphasizes.

Signal processing Lisnr records audio with 44.1 kHz and generally analyzes the data in
blocks of 4,410 samples. In contrast to SilverPush, its audio analysis is implemented in
native code using the Android NDK. In this way, the computationally demanding analysis
runs directly on the smartphone’s CPU without an intermediate virtual machine. We find
that the native code in Lisnr implements both, the Goertzel algorithm and an FFT, for
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Figure 7: Spectrogram of a disclosed Lisnr audio beacon. An FSK scheme encodes a repeating bit
sequence in the near-ultrasonic frequency range between 18.5 and 19.5 kHz.

decoding ultrasonic signals. After detecting a code, Lisnr shows location specific content
to the user.

Similarly, Shopkick implements an FFT in native code for detecting audio beacons in
collaborating shops. If a customer wants to earn a reward, she needs to start the audio
analysis manually and the applications then performs an analysis of the full frequency
spectrum which is computationally more demanding than the Goertzel algorithm. Thus,
it runs for a few seconds only in order to avoid that the battery drains too quickly.

In summary, SilverPush and Lisnr share essential similarities in their communication
protocols and signal processing. Both, for example, use an FSK near the ultrasonic range
and employ the Goertzel algorithm in the background. However, SilverPush does not
inform the user about the tracking whereas the user is aware of Lisnr’s and Shopkick’s
audio analysis. All these technologies show that the step between a legitimate use and
spying is rather small. The privacy threat posed by ultrasonic beacons hinges on the
notification of the user, who solely depends on this information: First, she cannot hear
the audio beacons when, for example, watching TV. Second, she may not know that their
mobile device is listening in the background, since there is no visible indication that an
application contains this form of tracking.

5.3 Evaluation
With our two tools to spot ultrasonic implementations from Section 4 and our insights
into the current state of the art in ultrasonic tracking from previous section, we are ready
to conduct an empirical evaluation and assess the impact of this privacy threat in practice.
We especially perform the following three groups of experiments:

1. Controlled experiment. We first examine the technical reliability and evaluate limi-
tations of ultrasonic beacons under realistic conditions with human subjects and
mobile devices (Section 5.3.1).

2. Audio beacons in the wild. To uncover the presence of ultrasonic beacons, we scan
different locations, TV channels and websites for indications of ultrasonic side
channels (Section 5.3.2).
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Figure 8: Results for the device experiment. Figure (a) presents the detection performance vs. signal-
to-noise ratio for different frequency bands and (b) the detection performance for different
frequency bands and mobile devices.

3. Applications in the wild. We finally investigate the presence of ultrasonic implementa-
tions by analyzing over 1,3 Million Android applications collected in December 2015
(Section 5.3.3).

5.3.1 Controlled Experiment

Although the companies behind SilverPush, Lisnr and Shopkick market their technique as
an effective approach for their respective tracking scenario, we have been skeptical about
the reliability of the underlying side channel in practice. In particular, it is questionable to
which extent the built-in microphones of common devices are capable to reliably perceive
high frequencies in presence of environmental noise since they are mainly intended to
work within the voice band. Moreover, the audio beacons might still get detected by some
people due to the varying frequency sensitivity of the human ear. Consequently, we first
conduct a proof-of-concept experiment consisting of two different scenarios: In the first
scenario we explore hardware limitations of common devices, while in the second scenario,
we answer the question whether ultrasonic beacons are undetectable by the human ear.

Experimental setup We create ultrasonic beacons that cover different frequencies, lengths
and sound levels. In particular, we choose frequencies between 18 and 20 kHz and vary
the signal length between 0.3 and 1 seconds, and the sound level between 0 and 18 dB.
The resulting audio beacons are then embedded in different video files that cover realistic
conditions such as speech, music or silence. The files are played through standard TV
loudspeakers at a common loudness level of 60 dBA. In both scenarios, the TV plays the
test sequences while users or devices listen to it in a fixed distance of about two meters.

Device experiment In the first scenario, we are interested in determining whether and
how effective mobile devices can spot the embedded beacons. To this end, we consider
five Android devices, namely an LG-P880, a Motorola Moto G 2, a Fairphone 1 and two
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Asus Nexus 7, which each run a frequency analysis to spot anomalies in the ultrasonic range.
The devices are exposed to the prepared video files, containing embedded beacons of
varying frequency ranges and sound levels, such that a detection rate can be measured over
multiple experimental runs.

The results of this experiment are presented in Figure 8(a), where the average detection
performance of all devices on 10 repetitions is plotted against different signal-to-noise
ratios (SNR). The SNR describes the sound level of the audio beacon compared to the sound
level of the commercial, that is, the SNR increases when amplifying the audio beacon. In
particular, an increase of the SNR by 6 dB corresponds to an amplification of the audio
beacon by a factor of 2.

We observe that the devices are able to reliably detect the audio beacons even at very
low SNRs. Starting from an SNR of -5 dB almost all beacons are correctly identified
on both frequency bands. However, we notice a variance in the success rate among the
different devices. Figure 8(b) presents the detection performance for each of the devices and
frequency bands. While some devices, such as the Fairphone, have problems in detecting
audio beacons close to the audible frequency range, the reverse holds true for one of the
Nexus 7 tablets which does not accurately detect audio beacons at 20 kHz.

As in the case of the two Nexus 7 devices, it is likely that frequency response patterns of
the built-in microphones vary depending on the particular model and device, thus having
an influence on the detection performance. Moreover, since our audio analysis runs as a
background process, the performance may also depend on the current load on the device
and timing of running processes. Nonetheless, all devices attain a detection rate of at least
60% which is sufficient to spot audio beacons if multiple repetitions are embedded in
sound.

User experiment In the second scenario, we ask 20 human subjects between the age of 20
and 54 to watch in total 10 minutes of videos. Some contain audio beacons at a frequency
of 18 kHz in order to cover the lower end of the near-ultrasonic range. The beacons are
embedded at various spots with different loudness levels ranging from 0 to 18 dB and the
participants are asked to note down when they perceive a beacon in the audio.

None of the human subjects is able to spot the embedded beacons reliably even at the
highest loudness level, although the frequency of 18 kHz lies within the age-dependent
audible range and the participants are aware of the presence of audio beacons in the
video clips. Two participants at the age of 23 and 27 are able to spot 17 and 6 beacons,
respectively, from a total of 26 embedded beacons. Moreover, six participants state that
they have perceived some anomalies in the signal. However, only few of these are indeed
audio beacons. On the contrary, all participants are able to identify the beacons at the
highest sound level without background sound. The reason for this discrepancy is that the
human ear masks the tone in the presence of nearby frequencies and sounds. This effect is
well-known and exploited in audio compression formats like MP3 and AAC which apply
psychoacoustic models to lower the used transmission rate.
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In summary, although our participants are aware of the audio beacons, they had consid-
erable problems to identify the audio beacons reliably. The beacons are mainly perceived
as an usual anomaly in sound. Hence, if not aware, an user might not even notice the
ultrasonic signals. At the same time, different mobile devices already successfully tracked
the signal at a SNR of -5 dB. In the end, our experiment confirms the technical feasibility
to transmit ultrasonic beacons to a mobile device covertly, but also spots the limitations of
this side channel.

5.3.2 Audio Beacons in the Wild

The previous experiment demonstrates that ultrasonic side channels are technically well
realizable. In the next step, we explore whether this new form of tracking is already
employed in practice.

Regarding Lisnr, we can spot audio beacons in recordings from the web that corresponds
to events where Lisnr also participated. It shows that this technology is actively deployed,
but rather at specific events, yet. We thus also investigate Shopkick that appears to be
more widespread. To this end, We record audio in 35 stores in two European cities and
detect an ultrasonic signal from Shopkick at four stores. Although we acknowledge that
the user starts the Shopkick application intentionally, our findings underline the active
distribution of ultrasonic tracking in the daily life.

The last question is whether TV streams contain ultrasonic beacons, especially from
SilverPush. In fact, we have no information when, how and where these beacons are
transmitted in TV. Our search is thus close to finding a needle in a haystack. Consequently,
we conduct a broad search across different countries and TV channels, rather than focusing
on a specific scenario.

In particular, we record TV streams retrieved over the Internet from 7 different countries,
where we focus on channels presenting a lot of commercials. Table 1 summarizes the
number of TV channels and the total duration of analyzed audio signals per country. We
need to note that the quality of the transmitted audio streams differs considerably between
the recorded channels. While we are generally able to retrieve audio with a sufficient
sampling rate between 40 and 48 kHz, the channels make use of different compression
settings that potentially filter out inaudible high frequencies (see Section 6).

We analyze the recorded data, comprising almost 6 days of audio, with our standalone
detection tool presented in Section 4.1. Although our tool is capable of detecting ultrasonic
beacons at arbitrary frequencies between 18 and 20 kHz, we do not find any indications
of such beacons in the recorded data, leaving us with a negative result. On the one hand,
it seems that ultrasonic device tracking is not used in the considered TV channels; on
the other hand, we cannot rule out that the beacons have been initially present but later
removed due to compression for Internet streaming. In addition, we also visited the global,
Indian and Philippine Top 500 Alexa websites and recorded their audio output to spot
ultrasound. Similar to TV streams, we do not find any indications of ultrasonic beacons.



5 Empirical Study 19

Country # TV channels Size

United States 7 25h
Germany 5 24h
Spain 6 23h
Austria 3 21h
United Kingdom 2 16h
Philippines 5 16h
India 10 15h

Table 1: Dataset from TV streaming analysis.

5.3.3 Applications in the Wild

Our Lisnr and Shopkick findings emphasize their active deployment, but we cannot
quantify their distribution on the receiving side yet. In consequence, we would like to
determine the distributions of Lisnr, Shopkick and Silverpush. To this end, we focus on
the landscape of Android applications and apply the method presented in Section 4.2 to
search for Lisnr, Shopkick and SilverPush implementations in the wild.

In particular, we retrieve all Android applications submitted to the VirusTotal service
in the third week of December 2015. In total, we obtain a dataset of 1,320,822 applications,
covering numerous benign as well as malicious samples and a total volume of over 8
Terabytes. We then apply our detection tool to scan for applications that contain code
fragments similar to our initial 21 SilverPush samples as well as 4 Lisnr samples we
identified during the research. Finally, we scan for similar code fragments from different
versions of the official Shopkick application.

Within the 1,320,822 Android applications, our scan yields 2 and 1 samples with function-
alities of Lisnr and Shopkick, respectively. These samples are either applications that have
been released by these companies themselves or by other companies officially collaborating
with Shopkick or Lisnr. The user is thus aware of the deployed technology and needs to
start the audio analysis manually.

On the other hand, our scan returns 39 unique SilverPush matches within our Android
application dataset. We manually verify that each of these matches is indeed an instance of
the SilverPush implementation embedded into applications from India and the Philippines.
Table 2 lists five representative applications from our dataset along with their developer
and number of downloads as reported by the Google Play Store.

The download numbers are considerable: Two applications have between 1 and 5 Million
downloads, while the other three have about 50,000 to 500,000 downloads. It becomes
evident that SilverPush is already deployed in real-world applications. While in April
2015 only six instances have been known, our experiment unveils another 39 installations.
Moreover, with the help of VirusTotal we have been able to identify further instances,
reaching a total of 223 samples in July 2016. These additional samples have been identified
by searching for virus labels containing the term “SilverPush” and then eliminating false
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Application Name Developer Version Downloads

100000+ SMS Messages Moziberg 2.4 1,000,000 – 5,000,000
McDo Philippines Golden Arches Dev. Corp. 1.4.27 100,000 – 500,000
Krispy Kreme Philippines Mobext 1.9 100,000 – 500,000
Pinoy Henyo Jayson Tamayo 4.0 1,000,000 – 5,000,000
Civil Service Reviewer Free Jayson Tamayo 1.1 50,000 – 100,000

Table 2: Third-party applications with SilverPush functionality.

positives using our detection tools. Based on this strategy we obtain 230 applications,
where 7 samples are false positives that do not contain actual functionality but just strings
related to the SilverPush implementation.

Our analysis provides us with two important insights regarding SilverPush: First, the
number of mobile applications using the library is constantly growing. Second, the appli-
cations reach a high coverage among people and are not only downloaded a few hundred
times. Even if the audio beacons are not embedded in actual TV commercials, our findings
indicate that SilverPush has launched its deployment on the receiver side.

6 Discussion
During the analysis and evaluation of the ultrasonic tracking technologies, we have gained
insights into their capabilities but also spotted some limitations. In this section we
therefore discuss requirements that have to be satisfied in order to allow the tracking to
work properly. Furthermore, we discuss countermeasures to alleviate this new privacy
threat.

6.1 Limits and Challenges
Although we are able to verify the feasibility of ultrasonic side-channel communication
under realistic conditions throughout our empirical study, we have experienced several
issues which may impede a successful communication. In particular, there exist a bunch
of challenges on the sender and the receiver side which have to be considered in order to
allow an inaudible communication between the devices.

Bandwidth restrictions When analyzing the frequency spectra of the TV channels recorded
for our analysis, we find that several of them are cut off at a frequency lower than 18 kHz and
can thus not contain any audio beacons. Figure 9 depicts, for instance, a typical TV signal
received via DVB-T. The spectrum of the signal clearly shows the absence of any frequencies
above 17 kHz. In principle, common video broadcasting standards like ASCT, DVB and
ISDB allow sampling rates of less than 40 kHz which would remove the desired frequency
band. However, since the sampling frequency has been high enough in the recorded data,
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Figure 9: Spectrogram of DVB-T recording. Note that audio frequencies above 17 kHz are cut off.

the low-pass filtering of the signal most probably results from the compression applied to
the audio signal.

Several audio compression algorithms are capable of removing frequencies that are
inaudible, such as MP3 and AAC. As both formats use a psychoacoustical model and offer
various options, it is difficult to state when the compression exactly cuts off a frequency.
Figure 10 gives a tendency for MP3 and AAC by using a fixed bitrate as indicator of quality. In
particular, we compressed a stereo music track with embedded high-frequency tones with
ffmpeg’s built-in MP3 and AAC encoder and tried to detect these tones after compression.
As an example, for MP3 a bitrate of 320 kb/s allows frequencies up to 20 kHz, while a
common bitrate of 128 kb/s removes ultrasonic frequencies entirely.

Furthermore, we have also uploaded videos with embedded audio beacons to YouTube
to test whether high-frequency tones are preserved. YouTube always encodes an uploaded
video to ensure that it can be played with different devices in different quality levels.
In our tests, the highest quality of a stereo signal reaches up to 18.5 kHz, while a mono
signal conveys audio beacons in the full frequency spectrum between 18 and 20 kHz. As a
consequence, ultrasonic side channels are currently only possible if a mono recording is
uploaded to YouTube.

Finally, a legitimate question arises why an adversary does not simply use the audible
frequency range. The device could perform sound or speech recognition to identify
the TV viewing habits or the location. The music recognition service Shazam already
provides additional information about a brand or product based on the identified sound [15].
There are, however, two problems. First, Shazam’s recognition algorithm requires a full
frequency analysis through a Fourier Transform [22]. This analysis is computationally
more demanding than the beacon detection through the simple Goertzel algorithm (see
Section 5). In consequence, a persistent background monitoring would quickly drain the
battery of mobile devices. Second, an audio beacon can carry additional information about
the location or the played media that in turn facilitates tracking (see Section 2).

Software restrictions Another restriction arises from the new permission model intro-
duced by Android 6 [6]. In contrast to previous Android versions, the new system differen-
tiates between normal and dangerous permissions and the user has to grant dangerous



22 6.2 Countermeasures

48 96 128 160 192 256 320
16

18

20

Bitrate kb/s

M
ax

im
um

fr
eq

ue
nc

y
[k

H
z]

MP3
AAC-LC

Figure 10: Frequency bandwidth of MP3 and AAC.

permissions at run-time. The set of dangerous permissions also comprises permissions
like RECORD_AUDIO and READ_PHONE_STATE which are crucial for Silverpush’s functionality.
It should thus raise doubts by the user when an application, for instance, unexpectedly
wants to record audio.

Although this new permission model increases security theoretically, there are two
practical problems: First, when an application targets an SDK smaller than 23, the old
permission model is used again where the user is only asked at installation time. Second,
famous applications can carry the ultrasonic tracking functionality. It is unclear if an user
questions a dangerous permission in this case. Therefore, the new permission model
might alleviate the risk, but can unfortunately not entirely prevent it.

Hardware limitations Finally, we notice that various limitations are introduced by the
built-in microphones and speakers in common hardware. As we have already discussed in
Section 5.3.1, the detection performance differs between several devices. Moreover, although
the SilverPush patent, for instance, also considers inaudible frequencies in the infrasound
range below 20 Hz, it is unlikely that such frequencies can actually be used, since they
require specialized hardware to send and receive sound. Consequently, only the considered
range of 18 to 20 kHz is a realistic and technically feasible range for transmission of
inaudible beacons.

6.2 Countermeasures
Based on the different challenges for transmission, we identify defenses to limit the
tracking via ultrasonic beacons. Obviously, a simple yet effective defense strategy is to filter
out frequencies above 18 kHz in the transmitted audio signal, e.g. in the radio or TV device.
However, manipulating either the hardware or software of these devices is not tractable
for a regular user. Moreover, the emitting sender is not always in the user’s control, for
example during the location tracking.

Therefore, practical countermeasures affect the mobile device. If the device is not listen-
ing secretly, a transmitted audio beacon is harmless. Hence, we consider the following
countermeasures for the Android platform:
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Detection of implementations An option is to scan for applications for known functional-
ity of ultrasonic side channels. Our detection tool presented in Section 4.2 might provide
a good start for the development of a corresponding defense. Similarly to a virus scanner,
such a detection can be applied locally on the device as well as globally on a market place di-
rectly. As our approach builds on static code analysis, however, detecting the corresponding
functionality can be hindered by obfuscating the respective implementations.

Notification Just as for Bluetooth or Wifi, a more fine-grained control of the audio record-
ing is likely the best strategy for limiting the impact of ultrasonic side channels. A combi-
nation of user notifications and a status in the pull down menu can inform the user when
a recording takes place and lets her detect unwanted activities.

6.3 Limitations
Our study deals with a real-world threat and underlying technical problems. It thus
naturally subject to certain limitations, which we briefly discuss in the following.

First, our study could not reveal any indications of ultrasonic sounds in TV streams.
However, whether this finding is to be interpreted as a negative or positive result is unclear.
While we designed our study with great care and as broad as possible, it is not unlikely
that we simply missed audio beacons due to monitoring TV channels at the wrong time
or place. Moreover, the beacons could have been obfuscated using code spread spectrum
techniques. In this case, our detection method from Section 4.1 would have missed these
signals. However, we could not find any indications throughout our analysis that Silverpush
uses this kind of technique. In addition, the detection of Lisnr or Shopkick beacons makes
it rather unlikely that we missed beacons in TV streams due to the high similarity of
SilverPush to Lisnr or Shopkick.

Second, although our detection tool provides an efficient way to identify the functionality
of SilverPush, Lisnr and Shopkick, it relies on the knowledge of currently used code.
Changing the code basis drastically would prevent a detection, but seems unrealistic due
to the permanent changes that are necessary after adapting our detector again (cat-and-
mouse game). Moreover, as our detector relies on concepts of static analysis, obfuscation
techniques represent a more sophisticated means of evading detection. We acknowledge
this limitation. However, as our study focuses on the underlying threat rather than a robust
detection, we leave possible extensions to circumvent obfuscation for future work.

7 Related Work
Ultrasonic cross-device tracking touches different areas of security and privacy. We review
related approaches and concepts in this section.
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Mobile device fingerprinting While classic web browser fingerprinting is characterized by
a vivid area of research in the last years [18], there is only a small number of works that
examine mobile devices. A straightforward adoption of browser fingerprinting methods
is not possible due the high standardized nature of mobile devices [14]. Nevertheless,
Hupperich et al. recently demonstrated the feasibility to fingerprint the mobile web browser
as well [14]. Furthermore, Kurtz et al. showed how personalized device information such as
the list of installed apps or the most-played music songs also provide an effective way to
fingerprint an iOS device without any user permission [16].

Another approach is to leverage unique physical characteristics from device sensors such
as the camera [11], the accelerometer [3] as well as the microphone and speakers [1, 3, 4, 25]
for fingerprinting. Although the resulting hardware fingerprints are highly unique due to
their random character, their computation is computationally demanding and requires
access to the sensor for a specific time interval.

While these works aim at fingerprinting one device, the studied ultrasonic side channel
enables an adversary to track an user across her multiple devices, her visited locations as
well as to obtain her media usage.

Android application analysis During our search for Android applications containing the
ultrasonic tracking functionality, we have applied static analysis to spot characteristic code
regions. Our approach is thus closely related to analysis methods used to find malicious
applications on Android, such as the popular methods Kirin [9] and Drebin [1]. While the
first approach completely concentrates on the detection of suspicious combinations of
permissions in order to identify malicious applications, the latter also analyzes the code of
an application. However, both methods suffer from high false-positive rates and are thus
not directly applicable for scanning large collections of applications.

All static analysis methods, including our own method, are vulnerable to obfuscation
techniques like encryption. In contrast, dynamic analysis approaches like TaintDroid [8] or
CopperDroid [20] allow the monitoring of an application during run-time. In particular,
TaintDroid employs taint tracking during the execution of an app, enabling it to detect
sensitive data leaks of third-party apps. However, these methods are computationally
expensive and thus need considerably more time for the analysis of applications than static
approaches.

Covert acoustic communication Different authors have demonstrated the feasibility to
communicate covertly in the ultrasonic range with just standard loudspeakers and micro-
phones [5, 7, 13, 17]. The considered scenarios, however, differ from our study. First, these
authors mainly focus on bypassing security mechanisms and bridging the “air gap” between
isolated computer systems. Second, the ultrasonic communication is usually conducted in
a quiet environment, whereas ultrasonic user tracking demands a high robustness that
can compensate different environmental noise.
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8 Conclusion
This paper marks a first step against the emerging privacy threat of ultrasonic tracking.
In particular, an adversary can monitor a user’s local TV viewing habits, track her visited
locations and deduce her other devices. Furthermore, a side channel attack to Bitcoin
or Tor users become even possible. In the end, an adversary is able to obtain a detailed,
comprehensive user profile with a regular mobile application and the device’s microphone
solely.

By analyzing prominent examples of commercial tracking technologies, we gained in-
sights about their current state of the art and the underlying communication concepts.
The case of SilverPush emphasizes that the step between spying and legitimately tracking
is rather small. SilverPush and Lisnr share essential similarities in their communication
protocol and signal processing. While the user is aware about Lisnr’s location tracking,
SilverPush does not reveal the application names with the tracking functionality.

Throughout our empirical study, we confirm that audio beacons can be embedded in
sound, such that mobile devices spot them with high accuracy while humans do not
perceive the ultrasonic signals consciously. Moreover, we spot ultrasonic beacons from
Lisnr in music and Shopkick beacons in 4 of 35 stores in two European cities. While we
do not find indication of ultrasonic tracking in TV media, the receiver side looks more
alarming in this case. At the time of writing, we are aware of 223 Silverpush Android
applications that are listening in the background for inaudible beacons in TV without the
user’s knowledge. Several among them have millions of downloads or are part of reputable
companies, such as McDonald’s and Krispy Kreme.

Our findings strengthen our concerns that the deployment of ultrasonic tracking in-
creases in the wild and therefore needs serious attention regarding its privacy consequences.
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