
Static Exploration of Taint-Style Vulnerabilities Found by Fuzzing

Bhargava Shastry1, Federico Maggi2, Fabian Yamaguchi3, Konrad Rieck3 and Jean-Pierre Seifert1

1TU Berlin, Berlin, Germany
2FTR, Trend Micro, Inc., Milan, Italy

3TU Braunschweig, Braunschweig, Germany

Abstract
Taint-style vulnerabilities comprise a majority of fuzzer
discovered program faults. These vulnerabilities usually
manifest as memory access violations caused by tainted
program input. Although fuzzers have helped uncover a
majority of taint-style vulnerabilities in software to date,
they are limited by (i) extent of test coverage; and (ii)
the availability of fuzzable test cases. Therefore, fuzzing
alone cannot provide a high assurance that all taint-style
vulnerabilities have been uncovered.

In this paper, we use static template matching to
find recurrences of fuzzer-discovered vulnerabilities. To
compensate for the inherent incompleteness of template
matching, we implement a simple yet effective match-
ranking algorithm that uses test coverage data to focus
attention on those matches that comprise untested code.
We prototype our approach using the Clang/LLVM com-
piler toolchain and use it in conjunction with afl-fuzz, a
modern coverage-guided fuzzer. Using a case study car-
ried out on the Open vSwitch codebase, we show that our
prototype uncovers corner cases in modules that lack a
fuzzable test harness. Our work demonstrates that static
analysis can effectively complement fuzz testing, and is
a useful addition to the security assessment tool-set. Fur-
thermore, our techniques hold promise for increasing the
effectiveness of program analysis and testing, and serve
as a building block for a hybrid vulnerability discovery
framework.

1 Introduction

Software exploitation is asymmetric, requiring only a
single flaw to compromise a system, and at times a net-
work of systems. The complexity inherent to contem-
porary software increases their attack surface, and plays
into the hands of attackers. Consequently, it is imperative
that each and every software module is well analyzed and
tested before a release. This is especially true for appli-
cations that routinely handle untrusted user input such as

network and data parsers. Fuzz testing has been the tool
of choice for conducting security assessments of these
classes of applications.

Although fuzz testing is effective at uncovering soft-
ware vulnerabilities, it has two practical limitations.
First, fuzzing may encounter coverage bottlenecks such
as cryptographic code, and non-atomic comparison oper-
ations that limit the test coverage achieved, and impede
the discovery of latent vulnerabilities. Second, several
code bases do not contain test harnesses for security-
critical program APIs, making thorough testing depen-
dent on writing new test cases. Writing test cases is a
manual process that requires domain-specific knowledge
pertaining to the software under analysis. Even well-
written unit tests do not necessarily permit a thorough
systems evaluation. For example, networking stacks con-
tain asynchronous, and stateful API calls that are invoked
in an event-driven fashion. Without a practical set-up
that injects the right sequence of messages, it becomes
difficult to test these APIs. Having said that, simple pre-
existing test cases can provide a starting point for a wider
exploration of the codebase.

In this paper, we build on the idea that static analysis
can perform a broader search for vulnerable code pat-
terns, starting from a handful of fuzzer-discovered pro-
gram failures. Our working hypothesis is that any read-
ily available fuzzable test harness can be used to boot-
strap our analysis, reducing the burden of test writing.
Therefore, we begin by fuzzing an existing test harness
packaged with a codebase and expect to find a handful of
program crashes. Subsequently, our analysis proceeds
in three steps. First, we narrow down the root cause
of the uncovered crashes using a memory error detector
such as AddressSanitizer, falling back to execution slice
based fault localization when the fault is not memory-
based. Fault localization not only narrows the search for
vulnerable code patterns, but also provides syntactic and
semantic information about the underlying fault. Sec-
ond, we automatically generate vulnerability templates

1



Program (ii) Template MatchFuzzer (iv) Review

fuzzer
int main() {
  read();
  process(in);
  if (crypto()) {
    process(in);
  }
}

CALL

process

hasArgument

(i) Localize

int main() {
  read();
  process(in);
  if (crypto()) {
    process(in);
  }
}

if (crypto()) {
  process(in);
}

Vulnerability Exploration
Crash

read()
process(in);

Rank

in
hasName

(iii) Rank

Figure 1: Work-flow of static vulnerability exploration. Templates generated from fault localized code are used to
find recurring instances of a fuzzer-discovered vulnerability. The resulting matches are ranked to focus attention on
potential recurring vulnerabilities in untested code.

using localized faulty code. Vulnerability templates en-
code both syntactic, as well as semantic features of the
faulty code, making our approach superior to naı̈ve text-
based pattern matchers such as grep. Third, we rank
matching code snippets (returned by template matching)
by using fuzzer test coverage data: Matches compris-
ing untested code is ranked higher than those that do
not. Such a ranking system helps prioritize manual au-
dit of untested code over code that has already under-
gone fuzz testing. We use afl-fuzz, a contemporary
coverage-guided fuzzer, and Clang/LLVM instrumenta-
tion and static analysis framework for prototyping our
approach.

We evaluate our prototype using a case study of Open
vSwitch (OvS), an open-source virtual switch implemen-
tation used in data centers. We chose Open vSwitch be-
cause (i) it routinely handles untrusted input, and (ii)
its existing fuzzable test cases achieve a test coverage
of less than 5% providing a low assurance on software
security. Results from our case study are promising.
Our prototype has uncovered a potential recurring vul-
nerability in a portion of OvS that lacked a test har-
ness. Moreover, in one instance, template matching has
proved to be helpful in flagging a recurring vulnerability
that originated in an older release of OvS. This shows
that static analysis can not only complement fuzzing,
but enable security assessments to be made during soft-
ware development. To facilitate independent evaluation,
we have open-sourced our prototype, that is available at
https://www.github.com/test-pipeline.
Contributions:

• We present an approach to improve the effective-
ness of source code security audit that benefits from
both the precise diagnostics of a fuzzer, and the
breadth of analysis of a static analyzer.

• We prototype our approach using afl-fuzz, a
contemporary coverage-guided fuzzer, and the

Clang/LLVM compiler toolchain. Our proto-
type automatically generates vulnerability tem-
plates from a fuzzer corpus, ranking the matches
returned by template matching based on novelty.

• We evaluate our prototype using a case study of
Open vSwitch codebase. Our approached has (i)
helped discover one potential vulnerability in a
portion of Open vSwitch that lacked a test har-
ness; (ii) facilitated vulnerability checks at an early
stage; and (iii) reduced false alarms by 50-100%
in most cases demonstrating that coverage-based
match ranking is effective in combating false pos-
itives.

2 Static Exploration of Vulnerabilities

Contemporary fuzzers and dynamic memory analysis
tools have greatly advanced vulnerability detection and
re-mediation, owing to their ease-of-use and public avail-
ability. Since fuzzers and memory analyzers are invoked
at runtime, they require a test harness that accepts user
input (usually read from a file or standard input), and in-
vokes program APIs against this input. Therefore, the
effectiveness of fuzzing and dynamic memory analysis
depends on the availability of test cases that exercise a
wide array of program APIs.

In practice, code bases contain test harnesses for only
a limited number of program APIs. This means that, even
if fuzzing were to achieve 100% test coverage for the set
of existing test harnesses, it does not lead to 100% pro-
gram API coverage. Furthermore, for networking soft-
ware, an elaborate test setup is required for thorough test-
ing. Our work seeks to counter practical limitations of
fuzz testing using a complementary approach. It builds
on the idea that the reciprocal nature of static analysis
and fuzzing may be leveraged to increase the effective-
ness of source-code security audits. Our key insight is

2

https://www.github.com/test-pipeline


Listing 1: A representative fuzzer test harness in
which two synthetic denial of service vulnerabili-
ties have been introduced by calling the abort()

function. Fault localized code is shown in red.
1 #include <string.h>
2 #include <crypt.h>
3 #include <stdlib.h>
4 #include <unistd.h>
5 #define CUSTOM () abort()
6 void fuzzable(const char *input) {
7 // Fuzzer finds this bug
8 if (! strcmp(input , "doom"))
9 abort();

10 }
11
12 void cov_bottleneck(const char *input) {
13 char *hash = crypt(input , "salt");
14
15 // Fuzzer is unlikely to find this bug
16 if (! strcmp(hash , "hash_val"))
17 CUSTOM (); // grep misses this
18 }
19
20 // Fuzzer test harness
21 // INPUT: stdin
22 int main() {
23 char buf [256];
24 memset(buf , 0, 256);
25 read(0, buf , 255);
26 fuzzable(buf);
27 cov_bottleneck(buf);
28 return 0;
29 }

Listing 2: Template derived from fault localized code
(green text) is matched against the test harness source
code. Match #2 lists the line of code containing a sim-
ilar fault pattern that is likely untested by a fuzzer.

Template matching:
clang -query > match
declRefExpr(

to(
functionDecl(

hasName("abort")
)

)
).bind("crash")

Match #1:

test.c:9:6: note: "crash" binds here
abort ();
^~~~~

test.c:8:5: note: "root" binds here
if (! strcmp(input , "doom"))
^~~~~~~~~~~~~~~~~~~~~~~~~~~

Match #2:

test.c:17:6: note: "crash" binds here
abort();
^~~~~

test.c:16:5: note: "root" binds here
if (! strcmp(hash , "hash_val"))
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

2 matches.

that vulnerabilities discovered using a fuzzer can be lo-
calized to a small portion of application code from which
vulnerability templates may be derived. These templates
may then be used to find recurring vulnerabilities that
may have been either missed by the fuzzer, or are present
in code portions that lack a fuzzable test harness.

Motivating Example We motivate our research using
the example code shown in Listing 1. The example
contains two synthetic vulnerabilities that are identical:
program aborts while parsing (i) the input string literal
doom; (ii) the input whose cryptographic hash equals
the string hash val. The abort call following the
cryptographic comparison is invoked via an alias called
CUSTOM. We assume that the fuzzer is able to quickly find
the crash due to the string literal comparison (doom), but
is unlikely to generate the input that satisfies the cryp-
tographic operation. This is a reasonable assumption
since hash collisions are highly unlikely. Faced with such
a coverage bottleneck, we use the crash discovered by
the fuzzer as a starting point for our vulnerability ex-
ploration, and proceed in three steps. We first localize
the fault underlying the observed crash by computing the
set difference of program coverage traces for the crash-
ing and non-crashing runs respectively. Let us assume
that the fuzzer corpus contains the crashing input doom
and it’s parent mutation, say doo. Using basic block

(line) coverage tracing which is fast to obtain, we com-
pute the set difference of the faulty and non-faulty exe-
cutions to be line 9 (i.e., the abort call). Using the lo-
calized fault together with the crash stack trace, we then
search for similar call sites using an automatically gener-
ated AST template. Listing 2 shows the template derived
from the line of code containing a call to abort, and
two matches resulting from template matching. Tem-
plate matching results in two matches, one of which is
the fuzzer-discovered vulnerability, and the other is a re-
curring instance hiding below cryptographic code. Al-
though textual pattern matching for vulnerable code pat-
terns is possible, it breaks down when code properties
are crucial to finding a match e.g., call to abort() via an
alias (line 5 of Listing 1). Finally, we partially rank tem-
plate matches by checking if the lines of code compris-
ing a match have not been executed by a fuzzer (ranked
high), or not (ranked low). In our example, such a rank-
ing would place the undiscovered bug on line 17 of List-
ing 1 above the bug on line 9 that has been found by the
fuzzer.

Leveraging static analysis to complement fuzzing is
appealing for two reasons. First, static analysis does not
require a test harness, making it well-suited for our prob-
lem setting. Second, by taking a program-centric view,
static analysis provides a greater overall assurance on
software quality or lack thereof. Moreover, since we

3



leverage concrete test cases to bootstrap our analysis,
our vulnerability templates focus on a specific fault pat-
tern that has occurred at least once with a demonstrable
test input. This begets greater confidence in the returned
matches and a higher tolerance for false positives, from
an analyst’s point of view.

The proposed vulnerability exploration framework re-
quires a coupling between dynamic and static analysis.
We begin by fuzzing a readily available program test
case. Subsequently, the following steps are taken to
enable static exploration of fuzzer-determined program
crashes.

• Fault localization: We localize vulnerabilities
(faults) reported by the fuzzer to a small portion of
the code base using either a dynamic memory error
detector such as AddressSanitizer [23], or using dif-
ferential execution slices. Fault localization serves
as an interface for coupling dynamic and static anal-
yses, and facilitates automatic generation of vulner-
ability templates.

• Vulnerability Templates: Using lines of code re-
turned by the fault localization module, together
with the crash stack trace, we automatically gener-
ate vulnerability templates. The templates are en-
coded using code properties based on a program
abstraction such as the abstract syntax tree (AST).
Template matching is used to for finding potentially
recurring vulnerabilities.

• Ranking Matches: We rank matches returned by
template matching before it is made available for
human review. Matches comprising lines of code
not covered by fuzzing are ranked higher than those
that have already been fuzzed.

• Validation: Finally, we manually audit the results
returned by our analysis framework to ascertain if
they can manifest as vulnerabilities in practice.

2.1 Fault Localization

Although a program stack trace indicates where a crash
happened, it does not necessarily pin-point the root-
cause of the failure. This is because, a failure (e.g., mem-
ory access violation) manifests much after the trail of the
faulty program instructions has been erased from the ac-
tive program stack. Therefore, fault localization is cru-
cial for templating the root-cause of a vulnerability.

We localize a fuzzer-discovered program failure us-
ing a memory detector such as AddressSanitizer [23].
AddressSanitizer is a dynamic analysis tool that keeps
track of the state of use of program memory at run time,

Algorithm 1 Pseudocode for execution slice based fault
localization.
1: function OBTAIN-SLICE(Input, Program)
2: . Slice generated using coverage tracer
3: Return lines executed by Program(Input)
4:
5: function OBTAIN-DICE(Slice1, Slice2)
6: dice = Slice1 - Slice2
7: return dice
8:
9: function LOCALIZE-FAILURE(Fault − Input, Program, Fuzz−Corpus)

10: fault-slice = obtain-slice(Fault − Input, Program)
11: nonfault-input = obtain-parent-mutation(Fault − Input, Fuzz−Corpus)
12: nonfault-slice = obtain-slice(non f ault − input, Program)
13: fault-dice = obtain-dice(fault-slice, nonfault-slice)
14: return fault-dice

flagging out-of-bounds reads/writes at the time of occur-
rence. However, AddressSanitizer cannot localize fail-
ures not caused by memory access violations. For this
reason, we additionally employ a differential execution
slicing 1 algorithm to localize general-purpose defects.

Agrawal et al. [11] first proposed the use of differen-
tial execution slices (that the authors named execution
dices) to localize a general-purpose program fault. Algo-
rithm 1 shows an overview of our implementation of this
technique. First, the execution slice for a faulty input is
obtained ( f ault−slice, line 10 of Algorithm 1). Second,
the fuzzer mutation that preceded the faulty input and did
not lead to a failure is determined (line 11), and the exe-
cution slice for this input obtained (line 12). Finally, the
set difference of the faulty and the non-faulty execution
slices is obtained (line 13). This set difference is called
the fault dice for the observed failure. We obtain exe-
cution slices of a program using the SanitizerCoverage
tool [3].

In summary, fault localization helps us localize a
fuzzer-discovered vulnerability to a small portion of the
codebase. Faulty code may then be used to automatically
generate vulnerability templates.

2.2 Vulnerability Templates

Faulty code snippets contain syntactic and semantic in-
formation pertaining to a program failure. For exam-
ple, the fact that dereference of the len field from a
pointer to struct udp leads to an out-of-bounds mem-
ory access contains (i) the syntactic information that len
field dereference of a data-type struct udp are poten-
tially error-prone; and (ii) the semantic information that
tainted input flows into the struct udp type record,
and that appropriate sanitization is missing in this par-
ticular instance. Therefore, we leverage both syntactic,
and semantic information to facilitate static exploration
of fuzzer-determined program crashes.

1An execution slice is the set of source lines of code/branches exe-
cuted by a given input.

4



Syntactic and semantic templates are derived from lo-
calized code snippets, and the crash stack trace. Syntac-
tic templates are matched against the program’s abstract
syntax tree (AST) representation, while semantic tem-
plates against the program’s control flow graph (CFG)
representation. In the following, we briefly describe how
templates are generated, and subsequently matched.

Syntactic Templates Syntactic templates are matched
against the program abstract syntax tree (AST). They
may be formulated as functional predicates on proper-
ties of AST nodes. We describe the process of formulat-
ing and matching AST templates using an out-of-bounds
read in UDP parsing code of Open vSwitch v2.6.1 that
was found by afl-fuzz and AddressSanitizer.

Listing 3 shows the code snippet responsible for the
out-of-bounds read. The faulty read occurs on line 636
of Listing 3 while dereferencing the udp header struct
field called udp len. The stack trace provided by Ad-
dressSanitizer is shown in Listing 4. In this instance, the
fault is localized to the function named check l4 udp.
Post fault localization, a vulnerability (AST) template is
derived from the AST of the localized code itself.

Listing 3: Code snippet from Open vSwitch v2.6.1 that
contains a buffer overread vulnerability in UDP packet
parsing code.

624 static inline bool
625 check_l4_udp(const struct conn_key *key ,
626 const void *data , size_t size ,
627 const void *l3)
628 {
629 const struct udp_header *udp = data;
630
631 - // Bounds check on data size missing
632 - if (size < UDP HEADER LEN) {
633 - return false;
634 - }
635
636 - size t udp len = ntohs(udp->udp len);
637
638 if (OVS_UNLIKELY(udp_len < UDP_HEADER_LEN ||
639 udp_len > size)) {
640 return false;
641 }
642 ...
643 }

Listing 6 shows the AST fragment of the localized
faulty code snippet, generated using the Clang compiler.
The AST fragment is a sub-tree rooted at the declara-
tion statement on line 636, that assigns a variable named
udp len of type size t, to the value obtained by deref-
erencing a struct field called udp len of type const

unsigned short from a pointer named udp that points
to a variable of type to struct udp header. Using the
filtered AST fragment, we use AST template matching
to find similar declaration statements where udp len is
dereferenced. The templates are generated by automati-
cally parsing the AST fragment (as shown in Listing 6),
and creating Clang libASTMatcher [1] style functional

predicates. Subsequently, template matching is done on
the entire codebase. Listing 7 shows the generated tem-
plate and the matches discovered.

Listing 4: Stack trace for the buffer overread in UDP
packet parsing code obtained using AddressSanitizer.

1 ================================================
2 ==48662== ERROR: AddressSanitizer:
3 heap -buffer -overflow on address 0x60600000ef3a at
4 pc 0x0000005fd716 bp 0x7ffddc709c70
5 sp 0x7ffddc709c68
6
7 READ of size 2 at 0x60600000ef3a thread T0
8 #0 0x5fd715 in check_l4_udp
9 lib/conntrack.c:636:33

10 #1 0x5fcdcb in extract_l4
11 lib/conntrack.c:903:29
12 #2 0x5f84bd in conn_key_extract
13 lib/conntrack.c:978:13
14 #3 0x5f78c4 in conntrack_execute
15 lib/conntrack.c:304:14
16 #4 0x56df58 in pcap_batch_execute_conntrack
17 tests/test -conntrack.c:186:9
18 ...
19 ================================================

AST templates are superior to simple code searching
tools such as grep for multiple reasons. First, they en-
code type information necessary to filter through only the
relevant data types. Second, they are flexible enough to
mine for selective code fragments, such as searching for
udp len dereferences in binary operations in addition to
declaration statements only.

Listing 5: Match returned using automatically generated
AST template shows a potentially recurring vulnerability
in Open vSwitch 2.6.1. This new flaw was present in the
portion of OvS code that lacked a test harness and was
found during syntactic template matching.

538 static void
539 pinctrl_handle_put_dhcpv6_opts(struct dp_packet
540 *pkt_in , struct ofputil_packet_in *pin ,
541 struct ofpbuf *userdata , struct ofpbuf
542 *continuation OVS_UNUSED)
543 {
544 ...
545 // Incoming packet parsed into udp struct
546 struct udp_header *in_udp =
547 dp_packet_l4(pkt_in );
548 ...
549 // Dereference missing bounds checking
550 size t udp len = ntohs(in udp->udp len);
551
552 ...
553 }

Listing 5 shows one of the matches discovered (see
Match #3 of Listing 7). In the code snippet shown in
Listing 5, the OVS controller function named pinctrl -

handle put dhcpv6 opts handles an incoming DHCP
packet (containing a UDP packet) that is assigned to
a pointer to struct udp header, and subsequently
dereferenced in the absence of a bounds-check on the
length of the received packet. This is one of the bugs
found using syntactic template matching that was re-
ported upstream, and subsequently patched by the ven-

5



Listing 6: AST of the localized fault that triggers an out-of-bounds read in UDP packet parsing code. AST nodes of
interest are shown in green.
1 |-DeclStmt 0x3232120 <line :636:5 , col:41>
2 | ‘-VarDecl lib/conntrack.c:636:12 used udp_len ’size_t ’:’unsigned long’ cinit
3 ...
4 ...
5 | | ‘-MemberExpr 0x32318f0 <lib/conntrack.c:636:28 , col:33>
6 ’const ovs be16’:’const unsigned short’ lvalue - > udp len 0x3102ae0
7 | | ‘-ImplicitCastExpr 0x32318d8 <col:28> ’const struct udp_header *’
8 <LValueToRValue >
9 | | ‘-DeclRefExpr 0x32318b0 <col:28> ’const struct udp_header *’

10 lvalue Var 0x3231680 ’udp’ ’const struct udp header *’

Listing 7: AST template matching and its output. The code snippet surrounding match #3 is shown in Listing 5.
1 =============================== Query ===============================
2 let member memberExpr(allOf(hasDeclaration(namedDecl(hasName("udp_len"))),
3 hasDescendant(declRefExpr(hasType(pointsTo(recordDecl(hasName("udp_header"))))))))
4
5 m declStmt(hasDescendant(member ))
6
7 =============================== Matches ===============================
8 Match #1:
9 ovn/controller/pinctrl.c:635:5: note: "root" binds here

10 out_ip6 ->ip6_ctlun.ip6_un1.ip6_un1_plen = out_udp ->udp_len;
11 ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
12
13 Match #2:
14 tests/test -conntrack.c:52:9: note: "root" binds here
15 udp ->udp_src = htons(ntohs(udp ->udp_src) + tid);
16 ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
17
18 Match #3:
19 ovn/controller/pinctrl.c:550:5: note: "root" binds here
20 size_t udp_len = ntohs(in_udp ->udp_len );
21 ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
22 3 Matches.

dor [10]. Moreover, this match alerted the OvS develop-
ers to a similar flaw in the DNS header parsing code.

To be precise, vulnerability templates need to encode
both data and control flow relevant failure inducing code.
Otherwise, explicit sanitization of tainted input will be
missed, leading to false positives. To this end, we aug-
ment syntactic template matching with semantic (control
and data-flow) template matching.

Semantic Templates Control and data-flow templates
encode semantic code properties needed to examine the
flow of tainted input. However, since each defect is char-
acterized by unique control and data-flow, semantic tem-
plates are harder to automate. We remedy this problem
by providing fixed semantic templates that are generic
enough to be applied to any defect type.

We parse the program crash stack trace to perform se-
mantic template matching. First, we determine the func-
tion in which the program fails (top-most frame in the
crash trace), and generate a template to match other call-
sites of this function. We call this a callsite template.
Callsite templates intuitively capture the insight that, if a
program failure manifests in a given function, other calls
to that function demand inspection. Second, for mem-

ory access violation related vulnerabilities, we determine
the data-type of the variable that led to an access viola-
tion, and assume that this data-type is tainted. Subse-
quently, we perform taint analysis on this data-type ter-
minating at pre-determined security-sensitive sinks such
as memcpy, strcpy etc. We call this a taint template.
Taint templates provide insight on risky usages of a data-
type that is known to have caused a memory access vi-
olation. Callsite and taint templates are matched against
the program control flow graph (CFG). They have been
implemented as extensions to the Clang Static Analyzer
framework [2].

2.3 Match Ranking

Matches returned using static template matching may be
used to (in)validate potentially recurring vulnerabilities
in a codebase. However, since vulnerability templates
over-approximate failure-inducing code patterns, false
positives are inevitable. We remedy the false-positive
problem using a simple yet practical match ranking al-
gorithm.

Algorithm 2 presents the pseudocode for our match
ranking algorithm. The procedure called RANK-MATCHES

6



accepts the set of template matches (denoted as
Matches), and the set of program functions covered by
fuzz testing (denoted as Coverset) as input, and returns
a partially orders list suitable for manual review. For
each match, we apply a ranking predicate on the pro-
gram function in which the match was found. We call
this function, the matching unit. The ranking predicate
(denoted as the procedure isHigh) takes two input pa-
rameters: the matching function name, and the Coverset.
Under the hood, isHigh simply performs a test of set
membership; it checks if the matching unit is a member
of the coverset, returning True if it is a member, False
otherwise. All matching units that satisfy the ranking
predicate are ranked high, while the rest are ranked low.
The ranked list is returned as output.

Our ranking algorithm is implemented in Python using
a hash table based data structure. When the coverset is
given, ranking a match takes O(1) on average, and O(n)
in the worst case, where n is the number of functions
in the coverset. On average, the time to rank all matches
grows linearly with the number of matches. This is really
fast in practice e.g., in the order of a few milliseconds
(see Table 3).

Although afl encodes program coverage information
internally, the encoded information is not at the source
code level. For this reason, our prototype leverages
GCov [9], a publicly available source code level program
coverage tracing tool, for obtaining the coverset of test
inputs in the fuzzer corpus. Although our prototype cur-
rently uses function as a matching unit, it may be suit-
ably altered to work at the level of source line of code
(basic blocks). However, there is a trade-off between co-
verset (and matching unit) granularity (function vs. basic
block) and the run time for obtaining the coverset. Func-
tion level tracing is fast but can lead to untested bugs
being incorrectly ranked low (e.g., buggy untested line
of code in a tested function); basic block level tracing is
relatively slower but it eliminates false negatives. For our
prototype implementation, we have favored lower run
time over ranking soundness in view of the thousands
of test cases that fuzzer corpora usually contain. Indeed,
our evaluation shows that this is a reasonable trade-off.
However, we plan to implement a granularity switch that
will permit the user to switch to basic block tracing at a
modest run time cost.

Validation Although match ranking helps reduce the
burden of false positives, it does not eliminate them en-
tirely. Therefore, we rely on manual audit to ascertain the
validity of analysis reports. Nonetheless, our approach
focuses attention on recurrences of demonstrably vulner-
able code patterns, thereby reducing the extent of manual
code audit.

Algorithm 2 Pseudocode for ranking statically explored
vulnerability matches.
1: function ISHIGH(Matching−unit, Coverset)
2:
3: for each m−unit in Coverset do
4: if m−unit == Matching−unit then return True
5: return False
6:
7: function RANK-MATCHES(Matches, Coverset)
8: RHigh = /0
9: RLow = /0

10:
11: for each match in Matches do
12: if isHigh(match, Coverset) then
13: RHigh += match
14: else
15: RLow += match
16: return (RHigh, RLow)

3 Case Study: Open vSwitch

We evaluated our approach on multiple versions of Open
vSwitch, an open-source virtual switch used in data cen-
ters. We chose Open vSwitch for evaluation because (i)
it is a good representative of production code; (ii) it has
insufficient test harnesses suitable for fuzzing, resulting
in program edge coverage of less than 5%.

Our evaluations were performed using afl-fuzz for
fuzzing, AddressSanitizer for fault localization, falling
back to our implementation of differential slice-based
fault localization, and our implementation of static tem-
plate generation, matching, and ranking algorithms. Ex-
periments were carried out on a 64-bit machine with 80
CPU threads (Intel Xeon E7-4870) clocked at 2.4 GHz,
and 512 GB RAM.

Fuzzing and Fault Localization Using the baseline
fuzzer, we discovered multiple out-of-bounds reads
and assertion failures in packet parsing code in Open
vSwitch. All the discovered flaws were triaged to as-
certain their security impact, and subsequently reported
upstream and fixed. For each unique vulnerability, we
used our fault localization module comprising Address-
Sanitizer, and differential execution slicing, to determine
the lines of code triggering the vulnerability.

Template Matching Using localized code, we auto-
matically generated a template suitable for matching
similar code patterns elsewhere in the codebase. For ex-
ample, the AST snippet shown in Listing 6 was parsed to
derive a template for CVE-2017-9264. Subsequently, we
used the tool clang-query to perform template match-
ing using the derived template. Listing 7 shows the out-
come of template matching for one of the bugs com-
prising CVE-2017-9264. For each vulnerability that the
fuzzer discovered, we counted the number of matches
(excluding the known vulnerability itself) returned using
template matching.

7



Fuzzer-Discovered Vulnerability CVE ID Explored Matches True Positives

Out-of-bounds read (IP) CVE-2016-10377 [4] 5 0
Out-of-bounds read (TCP) CVE-2017-9264 [7] 10 0
Out-of-bounds read (UDP) CVE-2017-9264 2 1
Out-of-bounds read (IPv6) CVE-2017-9264 3 0
Remote DoS due to assertion failure CVE-2017-9214 [5] 22 0
Remote DoS due to unhandled packet CVE-2017-9263 [6] 34 0
Out-of-bounds read CVE-2017-9265 [8] 1 0

Total 96 1

Table 1: Summary of static vulnerability exploration carried out on vulnerabilities found by fuzzing Open vSwitch.
For each fuzzer-discovered vulnerability, our prototype generate a vulnerability template, and matched it against the
entire codebase.

CVE ID Explored matches Ranked high (untested) Reduction in FP (in %)

CVE-2016-10377 5 0 100
CVE-2017-9264 10 0 100
CVE-2017-9264 2 2 0
CVE-2017-9264 3 0 100
CVE-2017-9214 41 17 59
CVE-2017-9263 34 17 50
CVE-2017-9265 1 0 100
Total 96 36 62

Table 2: Effectiveness of our matching ranking algorithm in highlighting untested code, and assisting in fast review of
matches.

We used semantic template matching only when syn-
tactic template matching was too broad to capture the
code pattern underlying the vulnerability. For example,
if a program crash was caused by a failed assertion, syn-
tactic templates (that matched calls to all assertion state-
ments), were augmented with semantic templates (that
matched a smaller subset of assertion statements involv-
ing tainted data types).

Ranking The returned matches were ranked using our
proposed ranking algorithm (see Algorithm 2), and the
ranked output was used as a starting point for manual
security audit. Matches ranked high were reviewed first.
This enabled us to devote more time to audit untested
code, than the code that had already undergone testing.

3.1 Analysis Effectiveness

We evaluated the effectiveness of our approach in two
ways: Quantifying (i) the raw false positive rate of our
analysis; (ii) the benefit of the proposed ranking algo-
rithm in reducing the effective false positive rate after
match ranking was done.

To quantify the number of raw false positives, we
counted the total number of statically explored matches,

and the number of true positives among them. A match
was deemed a true positive if manual audit revealed that
the tainted instruction underwent no prior sanitization
and was thus potentially vulnerable. Table 1 summa-
rizes our findings. Our prototype returned a total of 96
matches for the 7 vulnerabilities found by fuzzing (listed
in column 1 of Table 1). Out of 96 matches, only one
match corresponding to CVE-2017-9264 was deemed a
new potential vulnerability. This was reported upstream
and subsequently patched [10]. Moreover, the reported
(potential) vulnerability helped OvS developers uncover
another similar flaw in the DHCPv6 parsing code that
followed the patched UDP flaw.

Our ranking algorithm ranked untested code over
tested code, thereby helping reduce the manual effort in-
volved in validating potential false positives. Although
it is hard to correctly quantify the benefit of our ranking
algorithm in bringing down the false positive rate, we
employ a notion of effective false positive rate. We de-
fine the effective false positive rate to be the false positive
rate only among highly ranked matches. This is intuitive,
since auditing untested code is usually more interesting
to a security analyst than auditing code that has already
undergone testing. Table 2 summarizes the number of ef-
fective false positives due to our analysis. In total, there

8



CVE ID Localization Syntactic Semantic Ranking Total Run Time Normalized

CVE-2016-10377 82ms 1.66s – 63ms 1.80s 0.20x
CVE-2017-9264 (TCP) 84ms 3.20s – 64ms 3.34s 0.25x
CVE-2017-9264 (UDP) 86ms 4.77s – 59ms 4.91s 0.37x
CVE-2017-9264 (IPv6) 91ms 4.71s – 60ms 4.86s 0.36x
CVE-2017-9214 9ms 8.44s 44.17s 60ms 52.67s 5.51x
CVE-2017-9263 9ms 11.88s 44.26s 59ms 57.09s 5.97x
CVE-2017-9265 111ms 5.74s – 56ms 5.9s 0.62x

Table 3: Run times of fault localization, template matching, and match ranking for all statically explored vulnerabilities
in Open vSwitch. The absolute and relative (to code compilation) run times for our end-to-end analysis is presented in
the final two columns. A normalized run time of 2x denotes that our end-to-end analysis takes twice as long as code
compilation.

were 36 matches (out of 96) that were ranked high, bring-
ing down the raw false positive rate by 62%. Naturally,
we confirmed that the single true positive was among the
highly ranked matches.

Match ranking helps reduce, but not eliminate the
number of false positives. Indeed, 1 correct match out of
36 matches is very low. Having said that, our approach
has borne good results in practice, and has helped ad-
vance the tooling required for secure coding. The addi-
tional patch that our approach contributed to is not the
only way in which our approach met this objective. We
discovered that the template derived from the vulnera-
bility CVE-2016-10377 present in an earlier version of
Open vSwitch (v2.5.0), could have helped eliminate a
similar vulnerability (CVE-2017-9264) that was intro-
duced in a later version (v2.6.1), perhaps during software
development itself. We manually checked that, had the
newly introduced vulnerability been present in the earlier
version of Open vSwitch, it would have been flagged by
our tool and ranked high. This shows that our approach
is suitable for regression testing. Indeed, OvS developers
noted in personal communications with the authors that
the matches returned by our tooling not only encouraged
reasoning about corner cases in software development,
but helped catch bugs (latent vulnerabilities) at an early
stage.

3.2 Analysis Runtime
We quantified the run time of our tooling by measur-
ing the total and constituent run times of our work-
flow steps, starting from fault localization, and template
matching, to match ranking. Table 3 presents our anal-
ysis run times for each of the fuzzer-discovered vulner-
abilities in Open vSwitch. Since fault localization was
done using dynamic tooling (AddressSanitizer/coverage
tracing), it was orders of magnitude faster (ranging be-
tween 9–111 milliseconds) than the time required for
static template matching. For each fuzzer-discovered

vulnerability, we measured the template matching run
time as the time required to construct and match the vul-
nerability template against the entire codebase. Tem-
plate matching run time comprised between 92–99% of
the end-to-end runtime of our tooling, and ranged from
1.8 seconds to 57.09 seconds. Syntactic template match-
ing was up to 4x faster than semantic template match-
ing. This conformed to our expectations, as semantic
matching is slower due to the need to encode (and check)
program data and control flow in addition to its syntac-
tic properties. Nonetheless, our end-to-end vulnerabil-
ity analysis had a normalized run time (relative to code
compilation time) of between 0.2x to 5.97x. The poten-
tial vulnerability that our analysis pointed out in untested
UDP parsing code, was returned in roughly a third of the
time taken for code compilation of the codebase. This
shows that our syntactic analysis is fast enough to be
applied on each build of a codebase, while our seman-
tic analysis is more suitable to be invoked during daily
builds. Moreover, given the low run time of our anal-
ysis, templates derived from a vulnerability discovered
in a given release may be continuously applied to future
versions of the same codebase as part of regression test-
ing.

4 Related Work

Our work brings together ideas from recurring vulnera-
bility detection, and program analysis and testing. In the
following paragraphs, we compare our work to advances
in these areas.

Patch-based Discovery of Recurring Vulnerabilities
Redebug [16] and Securesync [22] find recurring vulner-
abilities by using syntax matching of templates derived
from vulnerability patches. Thus, patched vulnerabili-
ties form the basis of their template-based matching al-
gorithms. In contrast, we template a vulnerability based

9



on automatically localized failures, and debug informa-
tion obtained from fuzzer reported crashes. What makes
our setting more challenging is the lack of a reliable code
pattern (usually obtained from a patch) to build a tem-
plate from. As we have shown, it is possible to construct
vulnerability templates even in this constrained environ-
ment and find additional vulnerabilities even in the ab-
sence of patches.

Code Clone Detection We are not the first to present a
pattern-based approach to vulnerability detection. Yam-
aguchi et al. [25] project vulnerable code patterns derived
from patched vulnerabilities on to a vector space. This
permits them to extrapolate known vulnerabilities in cur-
rent code, thereby permitting the discovery of recurring
vulnerabilities.

Other researchers have focused on finding code clones
regardless of them manifesting as vulnerabilities [13,
14, 19, 21]. Code clone detection tools such as CP-
Miner [20], CCFinder [18], Deckard [17] solve the prob-
lem of finding code clones but rely on sample code input
to be provided. These tools solve the more general prob-
lem of finding identical copies of user-provided code.
Although these tools serve as a building block for re-
curring vulnerability discovery, they require that the user
specifies the code segment to be matched. Manual spec-
ification of code templates might not be feasible while
auditing third-party code. Therefore, we leverage the
fuzzer for discovering vulnerable code patterns.

Hybrid Vulnerability Discovery SAGE [15] is a
white-box fuzz testing tool that combines fuzz testing
with dynamic test-case generation. Constraints accumu-
lated during fuzz testing are solved using an SMT solver
to generate test cases that the fuzzer alone could not gen-
erate. This is expensive because it requires a sophisti-
cated solver. In a similar vein, Driller [24] augments
fuzzing through selectively resorting to symbolic execu-
tion when fuzzer encounters coverage bottlenecks. The
use of symbolic execution to augment fuzzing is com-
plementary to our approach. In practice, security audits
would benefit from both our approach as well as that pro-
posed by prior researchers.

Saner [12] combines static and dynamic analyses to-
wards identifying XSS and SQL injection vulnerabilities
in web applications. The authors of Saner use static anal-
ysis to capture a set of taint source-sink pairs from web
application code, and subsequently use dynamic anal-
ysis on the captured pairs to tease out vulnerabilities.
Their evaluation on popular PHP applications show that
dynamic analysis is able to bring down the number of
false positives produced by static analysis, and find mul-
tiple vulnerabilities. Like our work, Saner demonstrates

that static and dynamic analyses can effectively comple-
ment each other. In contrast to Saner, we differ in the
order of analyses performed (we perform static analy-
sis driven vulnerability exploration after confirmed taint
source-sink pairs have been found), and in the target pro-
gramming language.

Yamaguchi et al. [26] automatically infer search pat-
terns for taint-style vulnerabilities from source code
by combining static analysis and unsupervised machine
learning. They show that their approach helps reduce the
amount of code audit necessary to spot recurring vulner-
abilities by up to 94.9%, enabling them to find 8 zero-
day vulnerabilities in production software. Their work
is close in spirit to ours. However, we avoid the com-
putational overhead involved in their workflow (building
a code property graph, pattern clustering etc.), while re-
taining their template matching run time. In our frame-
work, fault localization and result ranking run times are
almost negligible.

5 Conclusions and Future Work

Fuzzing is a time-tested technique for discovering taint-
style vulnerabilities in software. However, fuzzing is
mainly limited by test coverage, and the availability of
fuzzable test cases. In this paper, we leverage static anal-
ysis to perform an exhaustive search by using fuzzer-
discovered vulnerabilities as a starting point.

We use fault localization techniques to narrow down
the search for vulnerable code patterns. Subsequently,
localized code is used to automatically generate vulner-
ability templates. False positives have been the primary
drawback of static analysis tools. As a remedy, we pro-
pose a ranking algorithm that brings attention to potential
vulnerabilities in untested code.

We evaluate our approach on multiple versions of
the Open vSwitch codebase, a popular virtual switch
used in data centers. Using static exploration of fuzzer-
discovered vulnerabilities, we were able to discover an
additional potential vulnerability in untested code. Fur-
thermore, we show that a vulnerability template derived
from a dated vulnerability would have helped discover a
recurring vulnerability in a later software release. This
shows that static vulnerability exploration has the poten-
tial to weed out flaws at an early stage of software de-
velopment. Indeed, our case study highlights the need
to complement existing software testing approaches like
fuzzing with static analysis.

Our work leaves open multiple avenues for future
work. At present, we rely on manual validation of stati-
cally discovered faults. This may be complemented us-
ing selective symbolic execution tools such as angr so
that additional diagnostics such as path reachability and
concrete test input may be obtained. Orthogonally, the

10



precision of our templates can be improved by modeling
data sanitization functions more precisely.

Acknowledgements. We would like to thank Kashyap
Thimmaraju for helping validate bug reports in an experi-
mental test bed. This work was supported by the follow-
ing awards and grants: Bundesministerium für Bildung
und Forschung (BMBF) under Award No. KIS1DSD032
(Project Enzevalos). The opinions, views, and conclu-
sions contained herein are those of the author(s) and
should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or im-
plied, of BMBF, or any other funding body involved.

References

[1] Clang ast matcher reference. http://clang.llvm.

org/docs/LibASTMatchersReference.html. Ac-
cessed: 31/5/2017.

[2] Clang static analyzer. https://clang-analyzer.

llvm.org/. Accessed: 25/5/2017.

[3] Clang/llvm sanitizercoverage. https://clang.llvm.

org/docs/SanitizerCoverage.html. Accessed:
23/5/2017.

[4] CVE-2016-10377. https://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2016-10377. Ac-
cessed: 24/5/2017.

[5] CVE-2017-9214. https://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2017-9214. Accessed:
24/5/2017.

[6] CVE-2017-9263. https://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2017-9263. Accessed:
24/5/2017.

[7] CVE-2017-9264. https://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2017-9264. Accessed:
24/5/2017.

[8] CVE-2017-9265. https://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2017-9265. Accessed:
24/5/2017.

[9] gcov: A test coverage program (online documen-
tation). https://gcc.gnu.org/onlinedocs/gcc/

Gcov.html. Accessed: 25/5/2017.

[10] pinctrl: Be more careful in parsing dhcpv6 and
dns. https://mail.openvswitch.org/pipermail/

ovs-dev/2017-May/332712. Accessed: 24/5/2017.

[11] H. Agrawal, J. R. Horgan, S. London, and W. E. Wong.
Fault localization using execution slices and dataflow
tests. In Software Reliability Engineering, 1995. Proceed-
ings., Sixth International Symposium on, pages 143–151.
IEEE, 1995.

[12] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic,
E. Kirda, C. Kruegel, and G. Vigna. Saner: Compos-
ing static and dynamic analysis to validate sanitization in
web applications. In 2008 IEEE Symposium on Security
and Privacy (sp 2008), pages 387–401. IEEE, 2008.

[13] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and
L. Bier. Clone detection using abstract syntax trees. In
Software Maintenance, 1998. Proceedings., International
Conference on, pages 368–377. IEEE, 1998.

[14] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and
E. Merlo. Comparison and evaluation of clone detection
tools. IEEE Transactions on software engineering, 33(9),
2007.

[15] P. Godefroid, M. Y. Levin, and D. Molnar. Sage: white-
box fuzzing for security testing. Queue, 10(1):20, 2012.

[16] J. Jang, A. Agrawal, and D. Brumley. Redebug: finding
unpatched code clones in entire os distributions. In Secu-
rity and Privacy (SP), 2012 IEEE Symposium on, pages
48–62. IEEE, 2012.

[17] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. Deckard:
Scalable and accurate tree-based detection of code clones.
In Proceedings of the 29th international conference on
Software Engineering, pages 96–105. IEEE Computer
Society, 2007.

[18] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: a mul-
tilinguistic token-based code clone detection system for
large scale source code. IEEE Transactions on Software
Engineering, 28(7):654–670, 2002.

[19] K. A. Kontogiannis, R. DeMori, E. Merlo, M. Galler, and
M. Bernstein. Pattern matching for clone and concept de-
tection. In Reverse engineering, pages 77–108. Springer,
1996.

[20] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner:
Finding copy-paste and related bugs in large-scale soft-
ware code. IEEE Transactions on software Engineering,
32(3):176–192, 2006.

[21] A. Marcus and J. I. Maletic. Identification of high-level
concept clones in source code. In Automated Software
Engineering, 2001.(ASE 2001). Proceedings. 16th An-
nual International Conference on, pages 107–114. IEEE,
2001.

[22] N. H. Pham, T. T. Nguyen, H. A. Nguyen, and T. N.
Nguyen. Detection of recurring software vulnerabilities.
In Proceedings of the IEEE/ACM international confer-
ence on Automated software engineering, pages 447–456.
ACM, 2010.

[23] K. Serebryany, D. Bruening, A. Potapenko, and
D. Vyukov. Addresssanitizer: A fast address sanity
checker. In Proc. USENIX Annual Technical Conference
(ATC), pages 28–28, 2012.

11

http://clang.llvm.org/docs/LibASTMatchersReference.html
http://clang.llvm.org/docs/LibASTMatchersReference.html
https://clang-analyzer.llvm.org/
https://clang-analyzer.llvm.org/
https://clang.llvm.org/docs/SanitizerCoverage.html
https://clang.llvm.org/docs/SanitizerCoverage.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-10377
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-10377
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9214
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9214
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9263
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9263
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9264
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9264
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9265
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9265
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://mail.openvswitch.org/pipermail/ovs-dev/2017-May/332712
https://mail.openvswitch.org/pipermail/ovs-dev/2017-May/332712


[24] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang,
J. Corbetta, Y. Shoshitaishvili, C. Kruegel, and G. Vigna.
Driller: Augmenting fuzzing through selective symbolic
execution. In Proceedings of the Network and Distributed
System Security Symposium, 2016.

[25] F. Yamaguchi, M. Lottmann, and K. Rieck. Generalized
vulnerability extrapolation using abstract syntax trees. In
Proceedings of the 28th Annual Computer Security Appli-
cations Conference, pages 359–368. ACM, 2012.

[26] F. Yamaguchi, A. Maier, H. Gascon, and K. Rieck. Auto-
matic inference of search patterns for taint-style vulnera-
bilities. In Security and Privacy (SP), 2015 IEEE Sympo-
sium on, pages 797–812. IEEE, 2015.

12


	Introduction
	Static Exploration of Vulnerabilities
	Fault Localization
	Vulnerability Templates
	Match Ranking

	Case Study: Open vSwitch
	Analysis Effectiveness
	Analysis Runtime

	Related Work
	Conclusions and Future Work

