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Abstract

Detecting and fending off attacks on computer systems is an enduring problem in computer
security. In light of a plethora of different threats and the growing automation used by
attackers, we are in urgent need of more advanced methods for attack detection. Manually
crafting detection rules is by no means feasible at scale, and automatically generated
signatures often lack context, such that they fall short in detecting slight variations of
known threats.

In this thesis, we address the necessity of advanced attack detection and develop methods
to detect attacks using machine learning to establish a higher degree of automation for
reactive security. Machine learning is data-driven and not void of bias. For the effective
application of machine learning for attack detection, thus, a periodic retraining over
time is crucial. However, the training complexity of many learning-based approaches
is substantial. We show that with the right data representation, efficient algorithms for
mining substring statistics, and implementations based on probabilistic data structures,
training the underlying model can be achieved in linear time.

In two different scenarios, we demonstrate the effectiveness of so-called language models
that allow to generically portray the content and structure of attacks: On the one hand, we
are learning malicious behavior of Flash-based malware using classification, and on the
other hand, we detect intrusions by learning normality in industrial control networks using
anomaly detection. With a data throughput of up to 580 Mbit/s during training, we do not
only meet our expectations with respect to runtime but also outperform related approaches
by up to an order of magnitude in detection performance. The same techniques that
facilitate learning in the previous scenarios can also be used for revealing malicious content,
embedded in passive file formats, such as Microsoft Office documents. As a further
showcase, we additionally develop a method based on the efficient mining of substring
statistics that is able to break obfuscations irrespective of the used key length, with up
to 25 Mbit/s and thus, succeeds where related approaches fail.

These methods significantly improve detection performance and enable operation in
linear time. In doing so, we counteract the trend of compensating increasing runtime
requirements with resources. While the results are promising and the approaches provide
urgently needed automation, they cannot and are not intended to replace human experts
or traditional approaches, but are designed to assist and complement them.





Zusammenfassung

Die Erkennung und Abwehr von Angriffen auf Endnutzer und Netzwerke ist seit vielen
Jahren ein anhaltendes Problem in der Computersicherheit. Angesichts der hohen Anzahl
an unterschiedlichen Angriffsvektoren und der zunehmenden Automatisierung mit der
Angriffe durchgeführt werden, bedarf es dringend moderner Methoden zur Angriffserken-
nung. Das manuelle Erstellen von Regeln zur Erkennung von Angriffen ist in diesem
Umfang nicht mehr zu bewerkstelligen und automatische Ansätze zur Signaturgenerierung
generalisieren oft nur schlecht.

In dieser Doktorarbeit werden Ansätze entwickelt, um Angriffe mit Hilfe von Methoden
des maschinellen Lernens zuverlässig, aber auch effizient zu erkennen. Sie stellen der
Automatisierung von Angriffen einen entsprechend hohen Grad an Automatisierung von
Verteidigungsmaßnahmen entgegen. Für die zuverlässige, lernbasierte Angriffserkennung
müssen die zugrundeliegenden Modelle im Laufe ihres Einsatzes periodisch neu gelernt
werden. Das Trainieren solcher Methoden ist allerdings rechnerisch aufwändig und erfolgt
auf sehr großen Datenmengen. Laufzeiteffiziente Lernverfahren sind also entscheidend.
Wir zeigen, dass durch den Einsatz von effizienten Algorithmen zur statistischen Analyse
von Zeichenketten und Implementierung auf Basis von probabilistischen Datenstrukturen,
das Lernen von effektiver Angriffserkennung auch in linearer Zeit möglich ist.

Anhand von zwei unterschiedlichen Anwendungsfällen, demonstrieren wir die Effektiv-
ität von Modellen, die auf der Extraktion von sogenannten n-Grammen basieren: Zum
einen, betrachten wir die Erkennung von Flash-basiertem Schadcode mittels Methoden
der Klassifikation, und zum anderen, die Erkennung von Angriffen auf Industrienetzwerke
bzw. SCADA-Systeme mit Hilfe von Anomaliedetektion. Dabei erzielen wir während des
Trainings dieser Modelle einen Datendurchsatz von bis zu 580 Mbit/s und übertreffen
gleichzeitig die Erkennungsleistung von anderen Ansätzen deutlich. Die selben Tech-
niken, um diese lernenden Ansätze zu ermöglichen, können außerdem für die Erkennung
von Schadcode verwendet werden, der in anderen (passiven) Dateiformaten eingebettet
und mittels einfacher Verschlüsselungen obfuskiert wurde. Hierzu entwickeln wir eine
Methode die basierend auf der statistischen Auswertung von Zeichenketten einfache Ver-
schlüsselungen bricht. Der entwickelte Ansatz arbeitet unabhängig von der verwendeten
Schlüssellänge, mit einem Datendurchsatz von bis zu 25 Mbit/s und ermöglicht so die
erfolgreiche Deobfuskierung in Fällen an denen andere Ansätze scheitern.

Die erzielten Ergebnisse in Hinsicht auf Laufzeiteffizienz und Erkennungsleistung sind
vielversprechend. Die vorgestellten Methoden ermöglichen die dringend nötige Automa-
tisierung von Verteidigungsmaßnahmen, sollen den Experten oder etablierte Methoden
aber nicht ersetzen, sondern diese unterstützen und ergänzen.
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Chapter 1Efficient Machine Learning for Attack Detection

Introduction

Computer security faces a constant and daily growth of new threats on the Internet. The
attack vectors, types and ramifications of these threats are manifold. On the client side,
malware infections pose a risk to the security of individual hosts and connected networks.
Numerous types of malware are used for infecting computers at a large scale, for instance,
to distribute spam messages or steal personal data (see Franklin et al., 2007; Caballero et al.,
2011), blackmail users (Young and Yung, 1996, 2017), or even hijack resources for mining
crypto-currencies (Huang et al., 2014; Konoth et al., 2018). On the server side, a plethora
of attacks target network services, which range from web-based injection attacks, such
as cross-site scripting (Stock et al., 2015) and cross-site request forgery (Schreiber, 2004;
Pellegrino et al., 2017), to classic exploits against vulnerable implementations. In recent
years, also critical infrastructures and industrial control systems have increasingly become
target of such attacks (e.g., Karnouskos, 2011; Kaspersky Lab, 2015; Cherepanov, 2017).

In the past, it may have been sufficient to manually craft detection rules for such threats.
Nowadays, however, manual analysis fails to keep pace with attack development such that
more automation is needed to handle the overwhelming amount of novel threats in a
timely manner. Moreover, traditional methods for attack detection, such as static signature
matching, often do not provide sufficient protection. Unknown threats for which no
signatures exist remain undetected. This problem is further aggravated by the frequent
use of obfuscation that obstructs static signature matching (Linn and Debray, 2003; Moser
et al., 2007a) and the fact that such signatures often match artifacts, which are unrelated to
the semantics of the considered attack or malware.

In response, alternative lines of research have been explored for attack detection. Most
notably, machine learning has been used for predicting (Shen et al., 2018) and preventing
network intrusions (Wang et al., 2006a; Du et al., 2017), reverse-engineering malware (Chua
et al., 2017; Katz et al., 2018), and detecting malicious codes (Arp et al., 2014; Huang and
Stokes, 2016; Jordaney et al., 2017). In an attempt to further push the limits in terms of
detection performance and the number of false alarms, more and more complex learning
methods have been employed. At testing time, that is, during operation once an adequate
model has been trained, many methods boil down to a simple vector multiplication and
thus are comparable fast. Training complexity, on the other hand, often is substantial.
Many fields of application in attack detection however require periodic retraining over
time, such that the runtime performance of the training phase is equally crucial in practice.
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In this thesis, we explore the use of efficient machine learning for attack detection and
strive for approaches that are both, effective and runtime efficient. We particularly focus
on the training complexity of learning-based detectors and introduce methods, that are
able to keep the underlying model up-to-date in linear time. In doing so, we counteract
the trend of compensating increasing runtime requirements with resources. We introduce
the use of efficient string processing to extract features for machine learning and develop
implementations based on probabilistic data structures for storing them. This forms the
basis for linear-time learning algorithms to identify malware or detect network intrusions.
At this, we look at two learning schemes, and discuss how and when these are applicable
for our means. In particular, we design methods for detecting Flash-based malware using
classification, and for detecting intrusion in SCADA systems using anomaly detection.
Moreover, we demonstrate that even substring statistics alone can be used to effectively
uncover and detect attacks in practice. As an example, we additionally develop an approach
for detecting malware in office documents in linear time.

In the remainder of this chapter, we provide a brief overview of attack detection using
machine learning with a focus on the two prevalent learning schemes: classification and
anomaly detection. Moreover, we address our evaluation methodology and look upon
fundamentals of efficient string processing in view of attack detection in general and
for using it to efficiently gather features for machine learning in particular. Finally, we
highlight our contributions and provide an overview of the thesis.

1.1 Attack Detection using Machine Learning

Machine learning has a long-standing history in computer security and in intrusion
detection in particular, that dates back to the 1990s (Forrest et al., 1996; Lane and Brodley,
1998; Lee and Stolfo, 1998; Lane and Brodley, 1999; Sinclair et al., 1999; Lee et al., 1999;
Warrender et al., 1999). Over the last two decades these approaches have steadily improved
and have been applied in different contexts, including SCADA systems and industrial
networks (Feng et al., 2017). Ever since the advent and growing dissemination of malware,
machine learning has also been used to automate detection on desktop systems (Bayer
et al., 2009; Huang and Stokes, 2016), mobile devices (Arp et al., 2014; Olejnik et al., 2017),
and web pages (Canali et al., 2011; Kapravelos et al., 2013).

A number of different learning methods have emerged in this scope, all of which have
unique advantages and disadvantages for specific fields of application. For instance, clus-
tering methods (see Hastie et al., 2009, Chp. 14) may be employed for malware triage to
establish a preselection and grouping of data, whereas methods for dimensionality reduc-
tion, such as Principal Component Analysis (Jolliffe, 1986), may be used to automatically
learn protocols used in malware communication. For attack detection, however, two learn-
ing schemes are prevalent: classification and anomaly detection. In Chapters 4 and 5, we
use these to develop methods for detecting malware and network intrusions, respectively.
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As depicted in Figure 1.1, classification allows to discriminate one class from another,
while anomaly detection models a single class and makes a distinction to everything
else. At first sight, the difference between both appears to be marginal. From a machine
learning point of view these however are fundamentally different. The first corresponds
to the field of supervised learning, meaning that the method trains on labeled samples
from all classes, that are taken into account for classification. Anomaly detection in turn
is commonly considered an unsupervised method as no labels or only labels for one
class exist. Moreover, both learning schemes offer their very own advantages, if used in
the right setting. As a rule of thumb one may formulate the following prerequisites for
learning-based attack detection:

Classification. If enough representative, labeled data is available for both classes,
this scheme allows to learn a model for discriminating one class from another.
Depending on the type of attacks, this may generalize to unknown attacks but is not
guaranteed to do so.

Anomaly Detection. If only one class is available for training, anomaly detection
may allow for detecting unknown attacks as deviations from a notion of normality.
However, a careful design of the detection system is crucial, as anomalies do not
per se correspond to attacks—this is commonly known as the semantic gap.

Due to the importance of these learning schemes for the methods developed later on,
subsequently, we describe both in more detail in Sections 1.1.1 and 1.1.2. In Section 1.1.3,
we then additionally outline the evaluation methodology used in this thesis for learning
under these two schemes.

benign

malicious

(a) Classification

anomalous

normal

(b) Anomaly detection

Figure 1.1: Schematic depiction of the two prevalent learning schemes for attack detection.
Figure taken from Wressnegger et al. (2013b).

1.1.1 Classification

In computer security often very strict definitions are in demand for deciding about
something being benign or malicious, which immediately suggests a classification task.
The identification of the two classes is achieved by learning a discrimination as illustrated
in Figure 1.1a. Several learning methods, such as decision trees, (deep) neural networks
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and boosting can be used for learning such a classification (Duda et al., 2000). An intuitive
example is the two-class Support Vector Machine (SVM), that learns a hyperplane separating
two classes with maximum margin in a feature space (Schölkopf and Smola, 2002). This
requires to solve a dual optimization problem which in the general (non-linear) case is
rather costly in terms of runtime. A linear SVM may however achieve comparable results
in significantly less time (Fan et al., 2008).

Learning such a classification requires enough data of both classes in order to be able to
generalize to unseen samples. If one class is represented by a few instances only, it is likely
that the model overfits and thereby impedes detection of unknown attacks. In this regard a
lack of data for one class is already a crucial factor for abstaining from using classification. In
some cases of attack detection, sufficient data for both classes can be acquired automatically.
As an example, for learning a client-side detection of web-based attacks, it is possible to
actively visit benign and malicious web pages using honeyclients (Wang et al., 2006b) and
specialized crawlers (Invernizzi et al., 2012). Such crawling enables assembling a recent
collection of training data for both classes. VirusTotal (Google Inc., 2004–2018), for instance,
maintains a large collection of malware as well as benign software originating distributed
acquisitions of data, which we have used in Chapter 4 for classifying Flash-based malware.
In other settings, such as server-side detection of web-based attacks or network intrusion,
one is restricted to passively observing attacks as they happen and record them, for instance,
using network honeypots (Provos and Holz, 2007). As a consequence, it is disproportionately
more difficult to put together a representative set of server-side attacks in a timely manner
and classification methods should not be employed.

1.1.2 Anomaly Detection

Detecting unknown attacks is of critical importance in computer security, as these may
relate to zero-day exploits or new instances of known malware. Fortunately, it is possible to
take this scenario into account using anomaly detection—even if no attacks are available for
training the detector at all. By focusing on the prominent class and learning its structure,
it is possible to differentiate that class from everything else, as illustrated in Figure 1.1b. In
literature this frequently is also called outlier detection (Aggarwal, 2013). Several methods
are suitable for learning such a model of normality, for example, by analyzing the density,
probability or boundary of the given class (Duda et al., 2000). A common approach for
anomaly detection are so-called Support Vector Data Descriptions (SVDDs), that determine
a hypersphere enclosing the data with minimum volume (Shawe-Taylor and Cristianini,
2004). These include spherical one-class SVMs (Schölkopf et al., 2001) as well as simpler
models, as used by PayL (Wang and Stolfo, 2004) and Anagram (Wang et al., 2006a). In
Chapter 5 we demonstrate how an extension of this concept can be used to detect attacks
in proprietary binary protocols.

At this point it is important to stress that methods using anomaly detection do not
explicitly learn to discriminate benign traffic from attacks, but instead normality from
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anomalies. This semantic gap requires designing features and detection systems with
special care, as otherwise identified anomalies may not reflect malicious activity (Gates
and Taylor, 2006; Sommer and Paxson, 2010). Two things need to be particularly taken
in consideration here: First, the notion of normality may change over time, such that
anomaly detectors need to be periodically updated to close the semantic gap between
anomalies and attacks (Maxion and Tan, 2000). Second, to avoid incorporating attacks in
the model of normality, it is necessary to sanitize the training data before learning the
model (Cretu et al., 2008). The latter complicates the use of methods for online-learning,
that is, gradually updating the currently best model with new data over time, and forces
these to revert to updates in large batches. Runtime efficient training thus is essential for
anomaly detection in practice. Nonetheless, anomaly detection is the learning scheme of
choice, if little or no data from the attack class is available, as for example, when learning a
server-side detection of attacks.

1.1.3 Evaluation Methodology

As mentioned before, carefully adjusting learning-based detectors is essential for ef-
fective attack detection. In the course of this thesis, we evaluate the performance of the
developed detectors with the aid of receiver operator characteristics (ROC) and correspond-
ing ROC curves. These curves plot the true-positive rate (TPR) over the false-positive
rate (FPR) of individual detectors or a single detector with different classification thresh-
olds (Bradley, 1997; Fawcett, 2006). The number of samples correctly identified as malicious
are referred to as true positives and the ratio of them to the overall number of malicious
samples as true-positive rate. False positives are benign samples that are wrongly detected
as malicious—in other words, false alarms. The number of true positives, either given
as percentage or rate in the interval [0, 1], is always specified with reference to a specific
false-positive rate. Without this relation the true-positive rate does not carry any weight at
all: A detector that flags everything as malicious by definition yields a true-positive rate
of 100 %. However, it also provokes false alarms for every single benign sample.

Moreover, we use the area under the ROC curve (AUC) as an additional continuous measure
for the overall detection performance of our detectors, that yields a minimal and maximal
value of 0 and 1, respectively. The AUC can hence be interpreted as a measure of how
steep the curve increases towards higher true-positive rates. Figure 1.2 illustrates a ROC
curve that shows the full scale of false positives as rate in the interval [0, 1] on the x-axis or
0 % to 100 %, respectively. As measuring the AUC for the full range is of little expressiveness
(performances for low false positives are poorly represented) we use the bounded AUC, that
is, the area under the ROC curve up to a threshold b of false positives and normalized to
that value: AUC(b). For the field of attack detection it is particularly important to push
forward detection with few false positives.

For training and testing individual detectors we create strictly separated datasets that do
not overlap. 75 % of the samples are used as known data for training and the remaining 25 %
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Figure 1.2: Exemplary ROC curve with the bounded AUC (area under the curve) for a false-positive
rate of 0.5 or 50 %, respectively. Setting this bound allows to zoom in on the critical
range of low false positives that is particularly important for a detector. Figure taken
from Wressnegger et al. (2018).

as unknown data for testing. This partitioning is applied to benign and malicious samples
likewise, and is repeated for 10 experiments, which are averaged to determine the overall
detection performance. The parameters for the detector are chosen solely based on the
results obtained on training data, where one third of it (25 % of the overall data) is used as
so-called validation dataset to compute the expected detection performance. Only then,
the configuration that performed best during training is used to evaluate the detection
performance on the testing dataset. For use cases where data is gathered with respect to
a specific timeline, the datasets are split in strict chronological order. For example, in
Chapter 4 we evaluate our detectors based on data collected during 12 consecutive weeks,
where weeks 1–6 are used for training, weeks 7–9 for validation and weeks 10–12 for testing
the detection performance. If there is no such relation to the point in time the data has
been recorded, as for instance in Chapter 5, we choose the samples for training and testing
datasets randomly, while still ensuring disjoint subsets.

1.2 Efficient String Processing

Efficiently processing large amounts of string-based data is essential for attack detection,
both with and without machine learning. Here, strings generally refer to byte strings of
arbitrary data. Conventional approaches for intrusion detection, for instance, require highly
specialized algorithms for simultaneously matching multiple signatures against a constant
stream of network traffic. This ranges from plain string matching (Aho and Corasick, 1975;
Karp and Rabin, 1987) to full blown processing of regular-expressions (Thompson, 1968;
Navarro and Raffinot, 1999) and is equally applied for malware detection. For machine
learning, by contrast, the efficient processing of strings is crucial for translating input data
into a representation that learning algorithms can work with.
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Many algorithms for efficiently processing string build on specific data structures to
facilitate the execution. As an example, Aho and Corasick (1975) use an annotated trie or
prefix tree as automaton for multi-pattern matching. Others incorporate probabilistic data
structures, such as Bloom filters (Bloom, 1970), to speed up exact string searching using the
Rabin-Karp algorithm (Moraru and Andersen, 2012). Bloom filters have been very popular
in various database and networking applications (Broder and Mitzenmacher, 2005). These
can be thought as hash sets that use multiple hash functions per item and accept a certain
probability of error for membership queries. Moreover, an item may falsely be reported as
part of the set, but an actually inserted item is never overlooked or missed. In Chapter 3
we look at this data structure in more detail as a foundation for Chapter 4, where we use
Bloom filters for classifying Flash-based malware. Efficiently storing sets of strings or even
the number of their occurrences is essential for many applications. The latter however is
not possible with Bloom filters, such that extensions have been developed, at first, to make
up for the lacking possibility of deleting items by additionally tracking a limited range of
counts (Fan et al., 2000), and then to associate arbitrary numeric values to probabilistically
stored strings in so called Count-Min sketches (Cormode and Muthukrishnan, 2005, 2012).
We employ these in Chapter 5 to mine large amounts of substrings for detecting attacks in
proprietary protocols of industrial control systems and use the counts for pruning rare
features of the detection model.

From a computational point of view, finding suitable substrings that can be used as
signatures for traditional detection methods is equally challenging as it requires to find
and count all common substrings across a large number of documents, such as a collec-
tion of malware samples. Fortunately, such statistics can be efficiently collected using
suffix trees (Weiner, 1973) or suffix arrays (Manber and Myers, 1990) in linear or quasi-
linear time. Yamamoto and Church (2001) show how to compute the term frequency, that
is, the number of occurrences of a specific substring in the entire corpus, as well as
the document frequency, that is, the number of documents, that contain a particular substring,
in O(n log n) time and O(n) space. These statistics cannot only be used for identifying sig-
natures that cover a large number of malware samples, but also for collecting evidence for
breaking simple encryption schemes. In Chapter 6 we show how to statically deobfuscate
malware that uses the Vigenère cipher to evade detection by traditional methods.

In machine learning, broadly speaking, many algorithms compute distances between data
points or try to establish a decision boundary that maximizes the distance of data points
of opposing classes. These distances or similarities can be computed on strings directly,
or on strings that have been embedded in vector spaces. The edit distance, for instance,
operates on byte strings and defines how dissimilar two instances are by measuring the
number of deleted, inserted, and substituted bytes in either string (Navarro, 2001). While
many implementations of this class of distances exist, such as the Hamming distance that
only allows substitution, or the longest common subsequence distance that by contrast
does not allow substitution, the most generic and probably most common variant is
the Levenshtein distance (Levenshtein, 1965, 1966). It defines penalty costs for all three
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operations, where these often are set to 1 for the sake of simplicity. Alternatively, one may
use similarity measures such as the Jaccard coefficient that generically operates on arbitrary
sets (Levandowsky and Winter, 1971), in this particular context, on sets of characters or
bytes. This already is very close to string-based embeddings that map strings to vector
spaces, for instance using language models, which we use in this thesis. We discuss this
particular representation in Chapter 3 in more detail.

Efficient implementations of a variety of distances, similarity measures and embeddings
are provided by open-source tools available since Harry (Rieck and Wressnegger, 2016) met
Sally (Rieck et al., 2012).

1.3 Thesis Contributions

In this thesis, we strive for improving attack detection using efficient methods from
machine learning. In principle there exist two basic approaches for detecting attacks,
which are complementary to each other: On the one hand, proactive protection by means
of developing secure systems, and hardening them by finding and eliminating software
vulnerabilities. On the other hand, reactive approaches that detect attacks as they happen
and perform analysis in reaction to these. Examples are the detection of malware or
intrusions on the network, which we focus on in this thesis. In contrast to traditional
approaches, such as virus scanners or signature based intrusion detection systems, we use
techniques from machine learning (classification and anomaly detection) and efficient
string processing to push forward attack detection. Figure 1.3 depicts the relations between
these fields of application. White boxes illustrate approaches contributed in this thesis.

Host Attack

BC

A D A

A BC

A
D

BC

tf = 3 df = 2
tf = 1 df = 1
tf = 2 df = 2

Classification Anomaly
Detection

Substring
Statistics Anti-Virus

Vulnerability
Discovery

ReactiveProactive

Figure 1.3: Overview depiction of approaches for attack detection.
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In summary we make the following contributions:

Necessity of Advanced Attack Detection. We study two key issues in today’s computer
security landscape that call for the use of advanced malware and attack detection in
practice: First, software vulnerabilities as a stepping stone for attackers, and second,
the lack of timely protection against such attacks. As an example, we review 64-bit
migration vulnerabilities and quantify their prevalence. Moreover, we evaluate the
current state of consumer malware detection and the effectiveness of signature-based
malware detection as frequently deployed by anti-virus scanners (Chapter 2).

Data Suitability for Machine Learning. We introduce representations of attack and
malware data, that are suitable for the efficient use with machine learning algorithms.
We present language models for embedding data into vector spaces, before we study
the suitability of these for a detection task at hand. In particular, we develop criteria
that allow to gauge whether a specific representation is more suitable for either
classification or anomaly detection. Additionally, we present time and space-efficient
data structures for efficiently processing string-based data, such as features from
language models, to facilitate linear-time attack detection (Chapter 3).

Learning Malware Detection. We demonstrate the feasibility of the timely detection
of malware in practice. To this end, we combine an in-depth analysis of malware
using static and dynamic analysis with efficient machine learning methods. While
previous research has proven that two orthogonal analyses are beneficial from an
evasion point of view, we show its effectiveness for detection tasks where neither one
nor the other is sufficient on its own. We present novel learning-based classification
approaches using Bloom filters and SVMs, and further discuss how the latter can
additionally be facilitated with Count-Min sketches in practice (Chapter 4).

Learning Proprietary Binary Protocols. We show that, in contrast to prior belief,
language models can very well be used for detecting attacks in arbitrary binary
network protocols. For this, we employ anomaly detection to learn a model of normality
that can be used to uncover attacks. We propose the use of space-efficient counting
of string-based features using Count-Min sketches to cluster data in linear time
and, in further follow, to prune out noise from these models. In combination this
outperforms related work by an order of magnitude in detection performance as
well as the number of false positives (Chapter 5).

Deobfuscating Embedded Malware. We present a technique to locate, extract, and
deobfuscate malware binaries hidden in third-party containers. Without the need for
identifying the container’s format or involved parsing, we statically remove malware
obfuscation based on simple encryption schemes. This is made possible by efficiently
computing substring statistics and the use of probabilistic data structures to store
evidence collected in the process. With that, we deobfuscate malware in linear
time—irrespective of the length of the used encryption key (Chapter 6).
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1.4 Thesis Overview

In the remainder of this thesis, we discuss specific aspects of reactive attack detection
using efficient string processing, machine learning, and the combination thereof. In the
two subsequent chapters, we first motivate the necessity of this line of research, before
we lay the technical foundations for the methods described in this thesis. The latter is
particularly important for understanding the implementation aspects of our work. The
following three chapters connected by increasing sophistication of the used data structures
and algorithms for string processing as well as the underlying motivation. The last chapter
concludes and suggests future work.

Chapter 2 motivates the necessity of new, more advanced approaches for the task of
malware detection based on two central issues. First, we look upon a prevalent, long-
lasting form of software flaws that may be a building block for attacks and second, we
inspect the effectiveness and robustness of traditional methods as employed in today’s
security solutions.

Chapter 3 introduces language models, which we use throughout the thesis for attack de-
tection, and develops suitability criteria for this specific representation of data. We provide
practitioners with concrete measures for choosing a classification setting over anomaly
detection or the other way around. Moreover, in this chapter we discuss probabilistic data
structures that can be used to efficiently store and process string-based data.

Chapter 4 describes a malware detector based on classification using language models.
We discuss structural and behavioral representations of Flash-based malware up to their
embedding in vector spaces. Finally, we look at two approaches for learning a classification:
One based on differences of substring statistics and another, more complex one, using
Support Vector Machines (SVMs). Both are compared to related approaches.

Chapter 5 discusses the use of anomaly detection for reliably detecting attacks in industrial
networks, where we particularly focus on binary-based protocols. We present a method
based on probabilistic data structures that first, clusters network data and second, enables
to on-the-fly prune rare features and generate robust models of normality. Finally, we
evaluate our approach and show that we improve the state-of-the art.

Chapter 6 demonstrates methods to extract obfuscated malware hidden in third-party
containers. While dynamic approaches may achieve the same result, we show that by
narrowing down the field of application it is possible to reveal embedded malware statically
and agnostic to the container format. We discuss the efficient implementation of the
approach using substring statistics and make an comparison to related approaches.

Chapter 7 concludes the thesis and provides an outlook to future work. Supplementary
information can be found in Appendix A.



Chapter 2Efficient Machine Learning for Attack Detection

Necessity of
Advanced Attack Detection

Two factors are crucial for the success of malware and targeted attacks: First, the avail-
ability of an attack vector that serves as gateway to a victim’s system. For this, a malware
or an attacker may gain unprivileged access to a computer system in a number of ways.
This ranges from social engineering over software vulnerabilities to hardware flaws that
effect the entire system. Second, traditional methods for attack detection often fall short in
protecting these systems. With the growing number of attacks reacting in a timely manner
has become a significant issue. Addressing both factors is key for effectively and efficiently
circumventing attacks in practice.

In this chapter, we thus look into two instances of these issues. We begin with a systematic
study on a specific kind of software vulnerabilities in Section 2.1, in order to convey a feeling
for the prevalence of programming flaws in popular software and the potential of them
being used as attack vector. In particular, we focus on 64-bit migration vulnerabilities, that
is, flaws introduced when software is ported from 32-bit to 64-bit platforms (Wressnegger
et al., 2016b, 2017b). These defects are introduced indirectly and are difficult to spot by
the developer without anticipating a later migration. In Section 2.2, we then inspect
the effectivity of static signature matching as—even nowadays—frequently employed by
many anti-virus scanners (Wressnegger et al., 2017a). By analyzing this particular detection
scheme and its implementation, we unveil its restrictions and insufficiency for modern
malware detection.

These two aspects highlight separate strains of research for protecting computer systems
that are complementary to each other: (1) Vulnerability discovery in software, in order
to proactively get down to the root of the problem, and (2) advanced attack detection, to
contain and control the effects of attacks and malware reactively.

2.1 Software Vulnerabilities

While targeting the human element has been shown to be effective in the past (e.g.,
Krombholz et al., 2015; Nelms et al., 2016), a certain level automatization of an attack can only
be achieved by leaving external dependencies out to a large extent. To this end, adversaries
make recourse to software vulnerabilities to unobservedly enter a system, gain privileges,
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and/or execute malicious codes. In practice, complex campaigns and targeted attacks, as
for instance the Stuxnet attack that has targeted industrial control systems (Falliere et al.,
2011), use a combination of software vulnerabilities and the unintentional aid of people to
access air-gapped systems.

In this section, we focus on vulnerabilities that occur in system software in particular.
One of the most prominent classes of vulnerabilities in this scope are integer-based
vulnerabilities. Subtle flaws in integer computations may in further consequence enable to
alter the program flow, cause the denial of service (DoS) of an entire system, or even allow
remote code-execution. Researching causes and countermeasures for this fundamental
kind of vulnerabilities has a long standing history in computer security research (Ashcraft
and Engler, 2002; Brumley et al., 2007; Dietz et al., 2012) so that one may assume that
such flaws are very well contained and accordingly rare nowadays. Unfortunately, this
is not the case. The difference in the widths of data types and the rules for converting
from one type to another are still gotten wrong by many developers. With the growing
dissemination of 64-bit computing in consumer systems, integer-based vulnerabilities have
taken on even greater significance again. The change in data models and the developer’s
unaltered expectations with respect to the width of data types give rise to previously
dormant vulnerabilities that become exploitable on the new architecture.

Let us, for instance, consider the following simplified excerpt of a flaw that we have
discovered during our study in zlib version 1.2.8:

1 int len = attacker_controlled();

2 char *buffer = malloc((unsigned) len);

3 memcpy(buffer, src, len);

This code is perfectly secure on all 32-bit platforms, as the variable len is implicitly
cast to size_t in line 2 and 3 when passed to malloc and memcpy. However, if the code
is compiled using 64-bit Linux, line 2 and 3 produce different results, where a 64-bit
sign extension is performed in line 3. An attacker controlling the variable len can thus
overflow the buffer by providing a negative number. For instance, −1 is converted to
0x00000000ffffffff in line 2 and 0xffffffffffffffff in line 3, resulting in a buffer
overflow.

While modern compilers are able to raise warnings in many situations, various corner
cases still remain difficult to detect automatically. This is further aggravated by the fact that,
for performance reasons, system software often relies on implicit conversion rules, which
elsewhere are considered as potential or even likely programming flaws. In order to avoid
excessive amounts of false alarms in such situations, compilers often adopt a conservative
position with respect to warnings (López-Ibáñez and Taylor, 2006). As a result, 64-bit issues
are rather the rule than the exception in migrated code and there exist several examples of
vulnerabilities solely induced by migration. Subsequently, we study the prevalence of this
particular kind of vulnerabilities in order to convey a feeling for the severity of software
flaws as an attack vector.
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2.1.1 64-bit Migration Vulnerabilities

All types of integers available on 32-bit platforms also exist in 64-bit platforms, however,
their width may differ. This discrepancy gives rise to new vulnerabilities or enables to
trigger vulnerabilities that lie dormant in existing code. The width and signedness of
integer types is defined by the data model which in turn is specific to the respective
platform. The 32-bit variants of Windows and Linux, for instance, both use the ILP32 data
model, where type int, long and pointers are 32-bit wide. The 64-bit versions of these
operating systems differ, though: Windows uses LLP64 (type long long and pointers are
64-bit wide), while Linux, BSD, and MacOS use LP64. Further details on the particular
sizes of integers under different data models and platforms can be found in Appendix A.1.

In the following, we briefly characterize five different types of vulnerabilities that emerge
when compiling code for a 64-bit data model that securely runs on 32-bit platforms. These
vulnerabilities can be categorized by two generic sources of defects: changes in the width
of integers and the larger address space available on 64-bit systems.

Effects of Integer Width Changes. The change in data models introduces truncations
and sign extensions in assignments, that previously have not existed. Surprisingly, the
migration to 64 bit may even flip the signedness of comparisons and render checks for
buffer overflows ineffective:

1. New Truncations A truncation occurs when an expression is assigned to a type narrower
than that of the expression itself. Table 2.1 provides an overview of integer issues caused
by assignments, broken down by basic integer types. For each of the three prevalent data
models, truncations are marked by a filled circle ( ). Particularly noteworthy are those
assignments that behave differently between the platforms, such as conversions from
size_t to unsigned int or long to int. In these cases, new truncations occur that are
specific to the migration process from 32-bit to 64-bit data models.

2. New Signedness Issues Additionally, two types of integer signedness issues arise as code is
ported from 32-bit to 64-bit platforms. First, sign extensions may occur as signed integers
are converted to unsigned types that have become wider than their ILP32 equivalents. Ta-
ble 2.1 indicates signedness errors in assignments as gray circles ( ), where sign extensions
are additionally marked ( E ). For the LLP64 data model, new sign extensions occur for
conversions from int and long to size_t, and for LP64 from int to unsigned long and
size_t. From a security perspective, conversions to the size_t type appear to be especially
fruitful when looking for vulnerabilities. The example of the zlib vulnerability presented
in the introduction illustrates this issue in a real-world scenario.

Second, the signedness of comparisons potentially changes, so that checks to protect
from buffer overflows may become ineffective. Such checks are only effective if they
correctly account for the signedness of the integers involved. Typically, this means that all
integers should be converted to unsigned types prior to comparison. In many cases, explicit
conversions can be omitted on 32-bit systems as integer conversion rules ensure that the
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comparisons will be performed unsigned. This, however, is not guaranteed on 64-bit
platforms anymore, bringing forth comparisons that change their signedness when being
ported. Table 2.2 provides an overview of the signedness of comparisons for basic integer
types and different data models. Unsigned comparisons are marked as filled circles ( )
while signed comparisons are indicated by empty circles ( ). Of particular interest are those
cases where the indicators change between 32-bit and 64-bit data models. For instance, a
comparison involving long and unsigned int is unsigned on both, ILP32 and LLP64, but
signed on the LP64 data model.

Effects of a Larger Address Space. In addition to flaws that result from changes in integer
widths, code running on 64-bit platforms has to be able to deal with larger amounts
of memory as the size of the address space has increased from 4 Gigabytes to several
hundreds of Terabytes. In effect, the developer can no longer assume that buffers larger
than 4 Gigabytes cannot exist in memory. As a result, additional integer truncations and
overflows emerge, which do exist on 32-bit data model, but cannot be triggered on the
corresponding platforms in practice.

3. Dormant Integer Overflows A security-relevant integer overflow cannot be detected by
reasoning about the types of variables alone. Instead, the range in which these variables
operate needs to also be considered. A larger address space allows (a) larger objects to be
created and (b) a larger number of objects to be used. Thus, code that performs arithmetic
operations on the sizes or number of objects with variables narrower than that of pointers
become candidates for integer overflows on 64-bit platforms.

4. Dormant Signedness Issues In addition to truncations, signedness issues may also lie
dormant in existing code and become exploitable as the size of the address space grows. A
common occurrence of such dormant signedness issues is the practice of assigning the
return value of strlen to a variable of type int. For strings longer than INT_MAX, this
results in a negative length. However, on 32-bit platforms, exploiting this type of flaw is
deemed unrealistic due to the restricted amount of memory available (Koziol et al., 2004,
Chp. 18 pp. 494). On 64-bit platforms, however, strings of this size can be easily allocated
by a single process, making it possible to trigger these dormant signedness issues.

5. Unexpected Behavior of Library Functions Several standard C library functions have been
originally designed with 32-bit data models in mind and thus become vulnerable to trunca-
tions, overflows or signedness issues. Although some of these functions have been adapted
to 64-bit data models, developers are often not aware of the changed functionality.

For instance, functions for printing strings, such as fprintf, snprintf and vsnprintf
have been designed with the assumption that strings cannot be longer than INT_MAX. While
this assumption is reasonable on 32-bit platforms, it does not hold true for 64-bit data
models. If the string to be formatted grows too large, the C99 standard demands that
snprintf returns a fixed value of −1 (ISO, 1999, Sec. 7.19.6). In practice, this can result in
vulnerabilities when programmers directly make use of the return value to shift pointers.
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2.1.2 Implicit (Integer) Type Conversions

We proceed to analyze how wide-spread 64-bit migration issues are in today’s software.
In this experiment, we study how often type conversions potentially go wrong. To this end,
we inspect all 198 source packages from Debian stable (“Jessie”, release 8.2) that are tagged
as either Required, Important or Standard and are written in the C or C++ programming
languages. We compile each package on Debian 32-bit and Debian 64-bit in order to inspect
all warnings raised.

Most compilers enable to emit warnings when an assignment, arithmetic operation
or a comparison is applied to operands of incompatible integer types and an implicit
conversion is required. Frequently, these compiler flags are however omitted due to
the sheer amount of warnings potentially raised in practice (López-Ibáñez and Taylor,
2006). As a matter of fact, we find that none of the 198 Debian packages uses one of
these flags. We thus explicitly add the following compiler flags to separately report flaws
related to type conversions: -Wconversion for width conversions, -Wsign-conversion
for changes in signedness, -Wsign-compare for comparisons of signed and unsigned types
and -Wfloat-conversion for conversions that involve a loss in floating point precision.

Table 2.3 summarizes the results. For each conversion type we list the total count of
warnings raised by the compiler on the 64-bit system per package and especially highlight
warnings that have emerged from the migration process. We find that the vast majority
of warnings are width and sign conversions with 442 and 259 warnings per package,
respectively. Especially, the conversion from size_t to int and vice versa appears to be
problematic in practice, spawning 21,527 warnings in core packages of Debian stable. All
these warnings are exclusive to 64-bit and do not occur on 32-bit platforms. By contrast,
sign comparisons only slightly increase due to the 64-bit migration. However, migration
vulnerabilities often occur on 64-bit platforms due to comparisons that remain signed
rather than being implicitly converted to unsigned. Hence, the amount of warnings
resolved in comparison to a 32-bit platform has to be taken into account as well, such that
in total 15 % of the warnings can be considered critical.

2.1.3 Patterns of 64-bit Migration Issues

Of course, not all implicit conversions indicate a bug or even a vulnerability that in further
follow may be used for an attack. We hence narrow this vast amount of suspect locations
down by specifically looking for code patterns that may cause unintended operations on
64-bit platforms. To this end, we make use of techniques from control-flow and data-flow
analysis to model specific patterns of 64-bit migration issues. In particular, we characterize
patterns from the five categories presented earlier and count the occurrences of these
in two code bases: We again consider the packages from Debian stable described in
the previous section and additionally examine the 200 (at the time) most popular C/C++
projects on GitHub.
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P1. New truncations. As an example for a truncation that exclusively happens on 64-bit
systems we consider the faulty use of the standard library function atol. We count
all occurrences of atol and relate these to those invocations that assign the return
value to a variable of type int rather than long.

P2. New signedness issues. When used in the context of memory operations, signedness
issues may cause severe security flaws. For this class, we focus on unexpected sign-
extensions in combination with the memory copy operation memcpy. We count all
invocations of memcpy that use a signed variable of type int to specify the amount
of data to copy and compare these to the overall number of calls to memcpy.

P3. Dormant integer overflows. Integers may under or overflow in various situations. For
this pattern we choose a rather strict scenario, in which a loop iterates over code
based on 64-bit related data. In particular, we count for loops that use a loop-variable
of type size_t and relate these to the subset of loops that additionally increment or
decrement a variable of type (unsigned) int in their loop body.

P4. Dormant signedness issues. For this class, we consider the incorrect use of the strlen
function. We count the calls to strlen that do not use a string literal as parameter
and put these in relation to occurrences that assign the return value of strlen to
(unsigned) int rather than size_t. Left values of other types are not considered as
problematic in this example and count for the reference quantity.

P5. Unexpected behavior of library functions. Finally, we inspect two examples of library
functions that behave differently than (a) developers might expect or (b) the C99
standard specification. First, we count occurrences of snprintf that make use of
their return value and put these in relation to occurrences that use the return value
but do not check its validity. Second, we count the calls to ftell in relation to the
absolute usage of ftell* functions (ftell, ftello, ftell64 and _ftelli64).

The presented patterns do not provide a complete list of 64-bit migration flaws, but
should convey a feeling for the prevalence of such flaws by example. Surprisingly, these
trivial patterns already point out a large number of potential issues. Table 2.4 summarizes
our findings. 21 % of all calls to function atol are assigned to a variable of type int
instead of long, causing a truncation on 64-bit systems (P1). Also, developers frequently
pass signed integers of type int to function parameters defined as size_t. In case of the
memcpy function and its parameter for specifying the number of bytes to copy, roughly
10 % of the calls are used incorrectly, allowing for the malicious use of implicit sign-
extensions (P2). Our pattern modeling integer overflows induced by simple for loops
reveals that in 9.5 % an int variable is incremented although the loop-counter is specified
as size_t (P3). 15 % of all calls to strlen are falsely assigned to a variable of type int rather
than size_t (P4). Finally, the snprintf and ftell functions are incorrectly used and their
results insufficiently checked in 30 % and 70 % of all cases, respectively (P5a & P5b).
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In summary, we observe that projects included in Debian appear to exhibit less such
patterns of 64-bit migration flaws than the projects retrieved from GitHub—the absolute
number however suggests a significant potential for misuse.

2.1.4 Discussion

Ideally, software vulnerabilities are addressed by thorough code audits performed by
human experts. In case of flaws induced by migrating from 32-bit to 64-bit platforms, such
audits need to specifically focus on problematic type conversions and related code patterns.
This however is a time-consuming and complex task. Our study suggests that, on a large
scale, this currently is not put into practice and shows that vulnerabilities resulting from
the migration process are still a major issue.

The prevalence of this particular type of flaw underlines the enormous attack surface
that complex software projects exhibit as of today. An adversary may use vulnerabilities
to attack a system or specially craft malware to do so. By further improving tools that
assist the detection of software vulnerabilities, but also the development process itself,
it is possible to contain a large portion of weak points in software. Eliminating the risk
and fundamentally solving the issue, however, is unlikely. In this thesis, we thus strive for
reactive approaches for detecting attacks.

2.2 Insufficiency of Traditional Methods

Next, we study the effectivity of traditional methods for fending off malware using the
example of commercial anti-virus software. Virus scanners are one of the most common
defenses against security threats. Millions of end hosts run them on a regular basis to
check files for infections and to detect malicious code. The success and prevalence of
these products largely build on their simple yet reliable functionality: Files are matched
against a database of known detection patterns (signatures) which is regularly updated by
the vendor to account for novel threats. Such pattern matching can be implemented very
efficiently and is able to spot all sorts of threats if appropriate and up-to-date signatures
are available (see Aycock, 2006; Ször, 2005). Signature-based detection however suffers from
a well-known drawback: Unknown threats for which no signatures exist can easily bypass
the detection. This problem is further aggravated by the frequent use of obfuscation in
malicious code that obstructs static signature matching (Linn and Debray, 2003; Moser
et al., 2007a; Ferrie, 2008). Over the last decade, anti-virus vendors have increasingly adopted
more advanced detection mechanisms from computer security research to keep up with
malware evolution. Still, signatures based on byte patterns remain an integral part of
security products and complement more sophisticated detection mechanisms.
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1 83 c7 43 ; add edi, 0x43

2 89 fa ; mov edx, edi

3 83 ea 2e ; sub edx, 0x2e

4 {2} ; 2-byte gap

5 00 00
6 33 c0 ; xor eax, eax

7 8a 1f ; mov bl, byte ptr [edi]

8 32 1C 10 ; xor bl, byte ptr [eax + edx]

9 88 1F ; mov byte ptr [edi], bl

10 40 ; inc eax

11 83 f8 05 ; cmp eax, 5

12 7c 02 ; jl +2

13 33 c0 ; xor eax, eax

14 47 ; inc edi

(a) Derived signature for the Swizzor malware.

1 49 64 00 00 ; "Id"

2 37 36 34 38 ; "76487-337-8429955-22614"

3 37 2d 33 33
4 37 2d 38 34
5 32 39 39 35
6 35 2d 32 32
7 36 31 34 00
8 50 ; push eax

9 81 c4 f4 fe ff ff ; add esp, 0xfffffef4

10 33 c0 ; xor eax, eax

11 54 ; push esp

12 6a 01 ; push 1

13 6a 00 ; push 0

(b) Derived signature for a generic backdoor.

Figure 2.1: Static malware signatures derived from anti-virus products (Wressnegger et al., 2017a).

In order to assess the sufficiency of wide-spread attack detection solutions, such as anti-
virus software, we subsequently study the prevalence and specificity of static signatures.
To this end, we make use of a method that derives signatures based on static byte patterns
from anti-virus products by conducting a series of black-box tests (Wressnegger et al., 2017a).
In particular, a virus scanner is provided with a number of slightly modified versions of
the same malware sample. By combining the individual scan results it becomes possible
to reason about the underlying (static) malware signature and approximate its byte pattern.
Figure 2.1a and 2.1b illustrate the byte patterns of two malware signatures derived by the
method. Figure 2.1a shows a signature for the malware family Swizzor. Clearly, an effort
has been made to pinpoint the decryption loop of the malware (starting at line 7) that
unveils the malicious payload at runtime. In particular a 5-byte long key is used to decrypt
data using the XOR operator (line 8). By contrast, the signature shown in Figure 2.1b
contains an ASCII string (line 1–7) that corresponds to the Windows product key of the
Anubis sandbox (Bayer et al., 2006). The instructions at line 8–13 are part of a call to the
RegOpenKeyExA API function. This signature captures a simple environment check used
by several backdoors that compares the product key of the execution environment against
known sandbox systems.

While these signatures describe essential parts of the malware, they are very specific
and thus can easily be circumvented by modest changes of the malicious code. In the first
example, for instance, swapping the independent instructions at line 6 and 7 effectively
bypasses detection. The same principle can be applied to the second example. Moreover,
the second signature matches static data (the product key) that can be trivially relocated
or reformatted in future variations of the malware. Obviously more advanced detection
schemes that take context and semantics of the malicious code in consideration are needed.
This can, for instance, be achieved by detection based on a combination of static and
dynamic analysis as employed by the method presented in Chapter 4 of the thesis.
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Subsequently, we first inspect the prevalence and complexity of such static signatures
in today’s anti-virus solutions, before we further reason about their quality by examining
their context and semantics.

2.2.1 Prevalence and Complexity of Static Anti-Virus Signatures

In the first part of our study, we investigate how wide-spread static pattern matching still
is in comparison to more advanced techniques. For this experiment, we derive signatures
for the open-source scanner ClamAV (AV1) and four commercial anti-virus products (AV2-
AV5). For the purpose of comparability, we operate on malware samples that are detected
by all five scanners. In total we have collected 9,969 malware samples, from which the
vast majority are applications or dynamic libraries in the Portable Executable format. The
remaining files correspond to archives, Windows shortcuts and other carriers of malicious
code. Depending on the applied virus scanner, the files in the dataset are assigned to
roughly 250 malware families, where the concrete number of different signature labels
assigned by the scanners ranges from 277 up to 1,327 (see the first column in Table 2.5).

Using black-box tests (Wressnegger et al., 2017a) we derive signatures for each of these mal-
ware samples in order to statistically assess the quality and content of the used signatures.
Table 2.5 provides a first overview of the derived signatures. The scanners considerably
differ in type and amount of signatures that can be derived. On average, 38 % pattern-based
signatures and 54 % hash-based signatures are inferred, whereas only the remaining 8 %
cannot be uncovered.

AV2 especially stands out with 92 % byte patterns and only a single hash-based signa-
ture, while for the other scanners at least one third of all signatures corresponds to hash
sums. On the other end of the scale, for AV3 one fourth of all signatures could not be
extracted. This may indicate the use of advanced heuristics or that multiple pattern-based
signatures are assigned to the same label, implicitly constructing a signature with long
disjoint patterns.

Derived Signatures

# Labels Hash sums Byte patterns Unknown

AV1 1,327 940 (71 %) 377 (28 %) 10 (1 %)
AV2 277 1 (0 %) 255 (92 %) 21 (8 %)
AV3 522 323 (62 %) 69 (13 %) 130 (25 %)
AV4 282 178 (63 %) 93 (33 %) 11 (4 %)
AV5 586 177 (30 %) 353 (60 %) 56 (10 %)

Average 598 323 (54 %) 229 (38 %) 45 (8 %)

Table 2.5: Results of signature derivation.
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However, not all signatures the method derives can be interpreted as clearly as the
examples from the previous section (Figure 2.1). Many signatures, for instance, match
resources, wrongly aligned code, import tables or even compressed data. To get a better
understanding of the quality of these signatures, we statistically analyze the characteristics
of the corresponding byte patterns. For each of the five scanners Figures 2.2a to 2.2c show
the distribution of the signature size, the number of gaps and the entropy of the patterns.
With respect to the size, AV2 again draws attention: It appears that this scanner makes use
of very compact and equally sized patterns that contain no or only a few gaps. While short
signatures generalize well, they may also induce more false positives which presumably is
the reason why other scanners such as AV3–AV5 use longer signatures—partly also with
more gaps between the byte patterns.
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Figure 2.2: Statistics for the derived byte-pattern signatures.

Moreover, the entropy of signatures can be an indicator for the data used to characterize
a malware sample. An entropy of 0.0 indicates uniform byte patterns, such as padding,
while values close to 8.0 are reached by random, encrypted or compressed data. Matched
import tables reside on the lower end of the scale due to the identical significant bytes of
addresses and x86 code is mostly located in the middle and upper half of the scale. Three
of the scanners cover almost the full range of entropy, indicating the diversity of the byte
patterns in the signatures.

2.2.2 Context and Semantics of Anti-Virus Signatures

As final experiment of our study, we analyze the quality of the derived signatures. We
are interested in determining whether the signatures are bound to a specific context
within the file and if they model semantics of the targeted malicious code. To this end,
we examine how well the derived signatures can be implanted in benign files that have
nothing in common with the original malware. Since our dataset is mainly comprised
of PE executables, we consider a set of benign applications of the same format for this
task, which we have verified not to be flagged as malicious by any of the scanners. In
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particular, we choose the following applications from the Windows system directory:
Calculator, Windows Command Prompt, Internet Explorer, Microsoft Management Console, the
System Configuration Application and Microsoft Paint. We proceed to implant the derived
signatures into these applications, irrespective of the relative position to PE sections or
existing code, and apply the virus scanners to the resulting files. A breakdown of the
detection results for this experiment is provided in Table 2.6. On average 68 % of the
implants are successful. Apparently, several of the pattern-based signatures are applied
without checking the context or semantics of the matching region for plausibility, allow-
ing the direct transfer of signatures from one file to another. The situation is especially
troublesome for AV1, AV2 and AV3 that simply flag the majority of implants as malicious.
AV5 appears to be the only one to use semantics-aware matching in most of the cases. Still,
the overall quantity of working implants is higher than for AV3 or AV4.

Byte patterns Implantable

AV1 377 358 (95 %)
AV2 255 227 (89 %)
AV3 69 65 (94 %)
AV4 93 54 (58 %)
AV5 353 80 (23 %)

Average 229 157 (68 %)

Table 2.6: Detection results on pattern-based signatures implanted in benign PE files.

2.2.3 Discussion

Despite several advanced detection techniques, such as behavioral blocking and packer-
agnostic unpacking, most anti-virus products still rely on static signature matching as a
fall-back mechanism. This signature-based detection is an effective and efficient tool, if
appropriate and up-to-date signatures are available. Our study shows that in practice, a
considerable amount of the deployed signatures correspond to simple byte patterns that
are not bound to particular file types or contexts.

To be effective in fending off attacks at the end host, malware signatures however need
to incorporate context and semantics of the matched program code to avoid side-effects.
Dynamic approaches and heuristics, for instance, implicitly include these relations. In
the remainder of this thesis, we investigate methods for advanced malware detection that
prove effective in this particular scenario. With the aid of machine learning it is possible
to automatically learn complex relations of the malware code and its context.





Chapter 3Efficient Machine Learning for Attack Detection

Data Representation

In this chapter, we investigate how data can be represented to optimally support learning
attack detection. This includes the embedding into an appropriate feature space, but also
to check whether the chosen representation is suitable for a particular learning task and
how the data is stored to optimally facilitate the algorithms to be used for learning.

We begin by discussing language models that generically map arbitrary data into feature
spaces in Section 3.1. This high-dimensional embedding enables us to learn a separation of
individual classes, such as goodware from malware, or benign network traffic from attacks
and intrusions. Whether or not these models are suitable for a particular learning task is
however by no means certain. In Section 3.2, we thus develop suitability criteria that can be
used to decide when to use the one over the other based on the data at hand. Moreover, the
high-dimensionality of language models implies an enormous amount of unique features.
Processing this kind of data efficiently, requires specialized data structures, which we
describe in Section 3.3. We particularly highlight data structures that (a) allow to efficiently
access and search for stored items, and (b) store data probabilistically in order to increase
data density on a limited amount of memory.

3.1 Language Models

Most learning methods operate on numeric vectors rather than on raw data. Therefore,
it often is necessary to construct a map to a vector space for interfacing with learning
methods. In some settings, this can be achieved by defining numeric measures describing
the data, such as the length or the entropy of packets. A more generic map can be developed
by representing strings or substrings, which is applicable to a large variety of data and its
representations (Salton et al., 1975). One particular prominent example are n-gram models,
which in turn are a special case of bag-of-words models. Initially proposed for natural
language processing (Suen, 1979; Cavnar and Trenkle, 1994; Damashek, 1995), n-grams
have become the representation of choice in many detection systems (e.g., Kolter and
Maloof, 2006; Wang et al., 2006a; Rieck and Laskov, 2006; Perdisci et al., 2009; Rieck et al.,
2010; Laskov and Šrndić, 2011; Hadžiosmanović et al., 2012; Wressnegger et al., 2013b, 2016a,
2018).

To describe data in terms of n-grams , each data object x from an input set X first needs
to be represented as a string of symbols from an alphabet A, where A often is defined as
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bytes or tokens. As an example, for analyzing network packets we simply consider the data
in each packet as a string of bytes. Similarly, we model the structure of Flash animations
as hierarchical tokens of container identifiers. By moving a window of n symbols over
each object x, we can then extract all substrings of length n. Figure 3.1 shows examples
of byte and token n-grams as used in Chapters 4 and 5. While byte n-grams of course are
not limited to human-readable strings, token n-grams are not necessarily words either,
but are extracted from bytes based on arbitrary delimiters—in this case blanks, such that
numbers as well as brackets result in individual string tokens.

\x00\x1a GetVal \x00\x1a Ge

\x1a Get

GetV

etVa

tVal

(a) Byte n-grams

69 77 9 2 [ 39 26 ] 86 69 77 9 2

77 9 2 [

9 2 [ 39

2 [ 39 26

[ 39 26 ]

39 26 ] 86

(b) Token n-grams

Figure 3.1: Examples for n-grams based on bytes and tokens with n = 4, extracted from (a) network
data and (b) analysis reports for Flash animation, respectively.

These substrings (n-grams) give rise to a map to a high-dimensional vector space, where
each dimension is associated with the occurrences of one n-gram. Formally, this map φ

can be constructed from an input set X using the set S of all possible n-grams as

φ : X → R|S|,

x 7→
(

occ(s, x)
)

s∈S

where the function occ(s, x) returns the frequency, the probability or a binary flag for the
occurrences of the n-gram s in the data object x.

Several methods for the detection of attacks and malicious software indirectly make use
of this map. For example, the methods PAYL (Wang and Stolfo, 2004), McPAD (Perdisci
et al., 2009) and Anagram (Wang et al., 2006a) analyze byte n-grams for detecting server-
side attacks, where the first two consider frequencies and the latter binary flags for the
occurrences of n-grams. Similarly, the methods Cujo (Rieck et al., 2010) and PJScan (Laskov
and Šrndić, 2011) use token n-grams with a binary map for identifying malicious JavaScript
code in web pages and PDF documents, respectively. We continue this line of research
and use binary embeddings of n-grams for the detection of Flash-based malware on top of
static and dynamic analysis in Chapter 4. In Chapter 5, we then revise the use of n-grams
for high-entropy binary protocols by combining count and binary embeddings for effective
attack detection on network level.

Although n-grams provide generic and effective means for modeling data, the exponen-
tial growth of the resulting vector space often impedes efficient operation. However, the
number of n-grams in a particular object x is linear in the object’s size and thus efficient



3 Data Representation 27

data structures can be used for processing the extracted n-grams. Adequate data structures
to optimally support attack detection are discussed in Section 3.3. Moreover, in the next
section, we show that this sparsity is not only beneficial for processing high-dimensional
vectors but also provides a good indicator for the feasibility of anomaly detection.

3.2 Suitability for Learning

When it comes to the application of learning-based methods there are several prerequi-
sites to be clarified beforehand. For instance, how much training data is needed in order
to learn an expressive model? Obviously the more data is used for training, the better the
outcome might be. To detail this rather general statement Wang et al. (2006a) for instance
specify the “likelihood of seeing new n-grams as training time increases” in order to indicate
the completeness of their model in terms of the amount of training data. If this measure
converges, the training set can be considered as sufficiently large.

Looking at an even earlier stage of learning, other very important considerations need to
be made. For instance, is the underlying problem, the data to be used and the constructed
feature space suitable for learning? Unfortunately previous works often fall short of
explaining the reasons for or against particular methods and features. We have worked out
three criteria for a problem’s suitability for being learned in an anomaly detection setting:
(1) The perturbation within a dataset’s main class, (2) the density of the used feature space
and (3) the variability of the n-grams in the individual classes (Wressnegger et al., 2013b).

Criteria 1 (Perturbation). The perturbation is the expected ratio of n-grams in a benign object that
are not part of the training data.

A perturbation value of 0 means that all possible n-grams in the dataset have been
observed in the training phase, whereas a high value indicates that despite training, a
large number of unseen n-grams is still to be expected in benign objects during test-
ing. This measure is closely related to the likelihood of unseen n-grams as discussed by
Wang et al. (2006a). However, while the convergence of the likelihood only shows that the
training does not improve anymore with an increasing amount of data, it does not allow
to draw any conclusions about the data’s suitability for anomaly detection as such. To do
so we consider the likelihood of the last objects observed during the training phase as the
expected perturbation during testing. Consequently, the lower the perturbation, the better
it is for learning. In Chapter 4, for instance, we abstract string literals of malware reports
to cap the used alphabet and reduce the perturbation.

Criteria 2 (Density). The density is the ratio of the number of unique n-grams in a dataset to the
total number of all possible n-grams induced by the underlying alphabet.

As second criteria we use the density of a training dataset when mapped into the feature
space induced by n-grams. A value close to 0 indicates low density, meaning that the
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feature space is sparse, whereas a value of 1 indicates that the feature space is maximally
dense. This is directly related to the overall size of the feature space and can provide some
indication of how well a class can be learned for anomaly detection. For instance, if a
dataset has been oversimplified in the course of lowering the perturbation, the remaining
symbols may become too general to reflect the characteristics that differentiate one class
from another: The feature space is too densely populated. In feature space both classes
occupy an identical, dense region. This of course assumes a certain homogeneity of the
benign and malicious data. The method presented in Chapter 5 actively counteracts a too
large density by pruning seldom occurring features.

Criteria 3 (Variability). The variability is the ratio of the data’s (information) entropy to its maximal
value as induced by the alphabet size (normalized entropy).

The third suitability criteria is the variability of a dataset to be used for training. A
value of close to 0 means that the variability of the data is very low, whereas a value of 1
indicates maximal uncertainty about the next element in a sequence. As the variability
is normalized to its maximal value, consequently it again cannot be determined for data
that has a virtually infinite set of unique n-grams. Using this measure it is possible to
characterize the structure of a dataset. A moderate variability is equally important for
anomaly detection as well as classification that the data possesses noticeable structure,
which can be learned and used for detection. Random data, that does not present any
kind of visible structure, but largest possible variability, would appear as a flat line at the
maximum of 1.0. Together with the density, the variability also is crucial for the resistance
against polymorphic blending attacks as discussed in Chapter 5.

3.3 Time and Space-efficient Storage

For efficiently learning attack patterns and modeling attacks with language models two
aspects are key when it comes to data structures. First, they need to facilitate runtime-
efficient algorithms and provide fast access. Second, the high number of features induced
by language models requires a considerable amount of memory when stored explicitly.
Space-efficiency thus is essential for realizing efficient machine learning on large amounts
of data.

Subsequently, we discuss data structures that fulfil these criteria on different levels. We
start with tree representations, such as radix trees and suffix trees in Section 3.3.1, that
allow to efficiently search for data and calculate substring statistic as used in Chapter 6 for
deobfuscating malware. In Section 3.3.2, we then proceed with hash tables as a representa-
tive of data structures for sparse representations of data, before we discuss probabilistic
extensions thereof such as Bloom filters and Count-Min sketches in Section 3.3.3. The
latter are central components of the methods presented in Chapters 4 and 5.
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3.3.1 Trees and Tries

String-based data, such as static malware signatures or n-grams used for self-learning
attack detection, frequently are stored in tree-like structures. Tries, for instance, are em-
ployed to reduce redundancy in the data and facilitate efficient string matching algorithms,
such as the well known Aho-Corasick algorithm (Aho and Corasick, 1975).

A trie, or prefix tree, is a search tree that stores items so that each edge corresponds to
one element of the input—in case of strings, one character of the string. At this, inputs
with common prefixes overlap from the root of the trie towards its leaves. Figure 3.2a,
for instance, shows a trie for all 3-grams of the word bananas. Neither the n-gram ban
nor ana share a prefix with any of the other n-grams and thus these constitute separate
branches in the trie. The substrings nas and nan, on the other hand, have a common prefix
such that their paths are merged and only branch for the last element. Nodes themselves
do not necessarily carry any information regarding the values stored in the trie, except for
terminal nodes, that indicate the end of an item. Since the n-grams used as example in
Figure 3.2 by definition are of the same length, here this only applies to leaves and the root
node, which represents the empty string.

b

a

n

a

n

a

n

a

n s

0

1 2 3 4

(a) Trie/ Prefix tree

ban ana
na

n s

0

1 2 3 4

(b) Radix tree or compact prefix tree

Figure 3.2: The (a) prefix tree and (b) radix tree representing n-grams of the word bananas. The
numbered nodes indicate the id of the substring matched by the path. The root node
represents the empty string.

Radix Trees. These trees are a compact representation of a trie that collapses path segments
with no branches. All remaining nodes thus are either branching points or terminal nodes,
that indicate the end of an item. In consequence, edges may be labeled with sequences
of elements. Formally, radix trees are defined over bits, such that the radix r of the tree
specifies the number of bits per element. A branching node thus has at most 2r children.
Figure 3.2b shows the radix tree for the n-grams of the word bananas. In contrast to the
prefix tree, here, direct edges connect the root node with the corresponding leaves for
ban and ana. Also, the prefix of nan and nas is collapsed to a common edge, while the
branch remains. As the example operates on characters of strings the radix r depends on
the encoding and may be 7, 8 or 32 for ASCII, ISO-8859-1, and UTF-32, respectively.
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Suffix Trees. These are another variant of tries that similar to radix trees condense edges
without branching or terminal nodes. The data structure not only stores inputs as is, but
all its suffixes (Weiner, 1973). In doing so, it can be used to efficiently search for substrings,
and collect various statistics in linear or quasilinear time, that are useful to attack detection.
For instance, finding the longest common substrings for signature generation, or counting
term and document frequencies for statistically deobfuscating malware (see Chapter 6).

Figure 3.3a shows the suffix tree for the word banana. Note that the input ends with an
additional character $. This terminal marker may be any character that is not part of the
input alphabet and ensures that each suffix ends in a leaf node. This would not be the case
for suffixes a, ana, and na otherwise. In practice, this of course may also be realized with
alternative means rather than extending the input alphabet.

$ a

$ na

$ na$

na

$ na$

banana$

6

5

3 1

4 2

0

(a) Suffix tree

Input b a n a n a $
Offset 0 1 2 3 4 5 6

SA 6 5 3 1 0 4 2

$ a a a b n n
$ n n a a a

a a n $ n
$ n a a

a n $
$ a

$

(b) Suffix array

Figure 3.3: The (a) suffix tree and (b) the corresponding suffix array for the string banana. In order
to mark the end of the string an additional terminal character $ is introduced. Leaf
nodes are numbered with the starting position of the suffix within the input string.

Such a tree can be built in linear time, O(n). Each input of length n consists of n suffixes,
such that a suffix tree contains just as many leaves. Since edges carry these suffixes as labels,
the overall space complexity is quadratic in the input’s length, O(n2), which however can
be reduced to O(n), if the offsets of the suffixes in the input strings are stored instead.
Nevertheless, the space requirements of such a tree quickly pose a bottleneck for large
applications.

Suffix arrays (Manber and Myers, 1990) offer a space-efficient alternative that in combi-
nation with various auxiliary data, such as the Longest Common Prefix (LCP) Array, can
be used to replace any algorithm using suffix trees and solve the same problem within
the same time complexity (Abouelhoda et al., 2004). The suffix array for the word banana
including the terminal character $ is shown in Figure 3.3b. It contains the starting positions
of the lexicographically ordered suffixes of the input and thus consumes O(n) space. For
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instance, at offset 2 the array holds the value 3 that references the suffix ana$, while offset 3
refers to suffix anana$. As the suffixes are ordered, searching for as well as counting all
occurrences of a substring straight-forward.

3.3.2 Hash Tables

Efficiently storing and processing high-dimensional models relies on a sparse repre-
sentation of vectors. This commonly is realized as associative array, that in contrast to
conventional arrays, maps keys of arbitrary type and order to values. A feature vector
thus only stores dimensions that are non-zero and assumes all missing dimensions to
be zero, which amounts to huge savings in storage space in practice. Such a map can be
implemented with trees and hash tables likewise (Cormen et al., 2009). On average the
latter however offers constant search, insertion, and deletion time in O(1).
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Figure 3.4: Schematic depiction of a hash table using “separate chaining” for collision resolution.

Hash tables are defined over an one-dimensional array of k buckets (slots that may
contain one or more inputs) and a hashing function h that maps input strings to numeric
values in the interval [0, k− 1]. To insert a key-value pair (s1, v1) in the data structure, first,
the hashing function is applied to the key. The resulting value is then used to select the
bucket to store the key alongside with its value as depicted in Figure 3.4. If the hashes of
two different keys collide, as in the case of s2 and s3, the key-value pairs are stored in the
same bucket, connected as linked list, and identified based on string comparison of the
key itself. In the worst case, that is, hashes of all input keys collide, hash tables thus fall
back to (linked) lists which cannot be traversed faster than in the number of items, O(n).
However, how exactly collisions are resolved and how the colliding items are stored is
subject to the respective implementation.

3.3.3 Probabilistic Data Structures

Over the last decades a number of different probabilistic data structures have been
proposed. The objective of their design vary but may roughly be categorized into two
strains: Some facilitate certain algorithms and store data without the loss of information,
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such as Skip Lists (Pugh, 1990) or Random Trees (e.g., Seidel and Aragon, 1996; Martínez
and Roura, 1998). Others put up with the potential loss of data and accuracy to increase
the density of the stored data and to use up significantly less physical memory. In this
section, we look upon the latter and discuss two particular popular variants that have been
used in the scope of this thesis: (1) Bloom filters for classifying malware in Chapter 4, and
(2) Count-Min sketches for robust anomaly detection in Chapter 5.

Bloom Filters. This data structure allows to probabilistically store membership information
of sets (Bloom, 1970). Unlike with hash tables or hash sets inputs are not stored explicitly,
but only marked as included in the filter. Retrieving all stored items, thus is not possible.
Moreover, this data structure may falsely report inclusions (false positives), whilst its design
rules out that included items are not reported (false negatives). For attack detection this
property is particularly beneficial when the severity of wrongly flagged benign programs
or network traffic outweighs false alarms.

s

1 1 1 1

h1(s) hd(s)

width w

Figure 3.5: Schematic depiction of a Bloom filter (Bloom, 1970).

A Bloom filter is defined as an one-dimensional array of w bits, and d hash functions hi

that map input strings to numeric values in the interval [0, w− 1]. Initially all cells of that
array are set to 0. For storing an item in the Bloom filter, each hash function is applied to
that item, for instance a string s appearing in a malware sample. As visualized in Figure 3.5,
the resulting value is then used as position in the bit array. At these offsets the bit value is
set to 1, indicating the presence of the item. Checking for the existence of an item follows
the same procedure: The hash functions are applied to the item to determine the offsets
in the bit array. The item has been stored in the Bloom filter (within a certain probability)
only if all bits at these positions are set to 1. The time needed for inserting as well as
querying items thus is fixed by the number of hash functions applied, O(d), and therefore
comparable to hash tables. False positives may however occur due to hash collisions of
the input string. While it is rather unlikely that all d hashes collide on the same input,
overlaps between multiple strings happen more easily depending on the size of the Bloom
filter. Overall the probability for false- positives can be quantified as(

1−
[
− 1

w

]dn
)d

≈
(

1− e−dn/w
)d

with n being the number of elements inserted in the Bloom filter (Mitzenmacher and
Upfal, 2005, pp. 110). The expected number of false positives can thus be adjusted by the
size of the bit array and the number of hash functions for the expected number of items.
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Count-Min Sketches. This type of probabilistic data structure is closely related to Bloom
filters but additionally allow for counting occurrences rather than answering membership
queries only (Cormode and Muthukrishnan, 2005, 2012).

A Count-Min sketch is defined as a w× d two-dimensional array of numeric items of
arbitrary size and precision, and d hash functions hi that map input strings to numeric
values in the interval [0, w− 1]. To store a particular key-value pair or increment the value
for a key in the sketch, each hash function is at first applied to the key, for instance a string s.
As depicted in Figure 3.6, the resulting value is then used as position in the corresponding
row. At these offsets the stored numeric value is incremented by the provided value v.
Retrieving the value for a key works analogous: The hash functions are applied to the key in
order to determine the numeric values associated to it. The minimum of these values then
recites the approximated, true value—in this example the approximate count of string s.

s

+v
+v

+v
+v

h1(s)

hd(s)
width w

de
pt
h

d

Figure 3.6: Schematic depiction of a Count-Min sketch (Cormode and Muthukrishnan, 2005, 2012).
The substring to be added is denoted as s and is processed by d (the depth of the sketch)
hash functions hi to determine the position pi = hi(s) with i ∈ [1, d], p ∈ [0, w) at
which value v is added. Figure taken from Wressnegger et al. (2018).

By construction, the approximated count ĉ retrieved from a Count-Min sketch is always
larger or equal to the true count c, meaning that the data structure will never underestimate
a stored value:

c ≤ ĉ ∀c ∈ c

where c is the vector of all values stored in the Count-Min sketch. Furthermore, for a width
w = d e

εe and a depth d = dln 1
δe it is guaranteed that the difference between the true and

approximated value is at most ε‖c‖1 with a probability p of at least 1− δ (Cormode and
Muthukrishnan, 2005, 2012)

ĉi ≤ ci + ε‖c‖1

In other words, the estimate of the Count-Min sketch is correct within ε times the
number of items stored in the data structure with a probability of p.
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3.4 Evaluation

We proceed with an empirical evaluation of the suitability criteria and central aspects
of the data structures presented in this chapter. To this end, we have gathered data from
client and server domains covering a wide range of applications that have been discussed
in related works. The composition and nature of these datasets are detailed in Section 3.4.1,
before Section 3.4.2 inspects the suitability of them for learning-based attack detection.
Finally, we look at probabilistic data structures and empirically assess the influence of
hash collisions in Section 3.4.3.

3.4.1 Datasets

In order to cover a large variety of data from different fields of applications, we consider
two scenarios: First, data for client-side intrusion detection, and second, data for server-
side intrusion detection. The first covers system call traces of programs and JavaScript
code of web pages, while the latter involves binary and text-based network protocols.

Client-side Datasets. For the JavaScript dataset we randomly choose 230,000 URLs from
the 1 million most popular web pages at the time (Alexa Internet Inc., 1996–2018) and
additionally scan all URLs using the Google Safe Browsing service (Google Inc., 2008–2018).
We then crawl the web pages using the client-side honeypot ADSandbox (Dewald et al.,
2010), extract all JavaScript code and dynamically analyze it. The executed instructions
and the monitored events constitute the JS-Dyn dataset. Additionally, we process the
plain JavaScript code similarly to Rieck et al. (2010) by extracting lexical tokens, such as
identifiers and numerical constants, for the JS-Stat dataset.

The dataset of system call traces (Syscalls) is extracted from the original DARPA IDS
evaluation datasets (Lippmann et al., 1999) and corresponds to audit trails of the Solaris
BSM module. Although the dataset is rather outdated and has been criticized in the
past (McHugh, 2000; Mahoney and Chan, 2004), we additionally study its characteristics
for the sake of completeness.

Server-side Datasets. The application layer of the Internet protocol suite offers a variety
of different protocols, which we may use for our study. In particular, we consider DNS
and SMB as representatives for binary protocols, and HTTP and FTP for text-based proto-
cols. The DNS dataset has been recorded in a period of one week and contains a total of
294,431 requests. In case of SMB an overall amount of 22.6 GiB of data in 154,460 messages
has been collected on a single day. SMB often encapsulates files and consequently involves
far more data than other protocols. The HTTP data has been recorded from a content
management system in a period of one week and incorporates 237,080 HTTP requests.
For the FTP communication we make use of data recorded during a period of 10 days with
more than 22,000 FTP sessions (Pang and Paxson, 2003).
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Dataset Size
n-gram type

byte token

HTTP 237,080 requests 7

FTP 22,615 sessions 7

JS-Stat & JS-Dyn 230,000 URLs 7

Syscalls 25,797 traces 7

DNS 294,431 requests 7

SMB 154,460 msg blocks 7

Table 3.1: Description of the datasets used for evaluating our data suitability criteria. Additionally
to the size of the datasets also the used n-gram types are specified.

On top of the distinction between client-side and server-side detection we differentiate
the datasets according to the used type of n-grams. For our analyses and experiments we
use the types as shown in Table 3.1, which are consistent with previous work (see Hofmeyr
et al., 1998; Wang et al., 2006a; Rieck and Laskov, 2006; Rieck et al., 2010). Specifically,
we use byte n-grams for the network protocols and token n-grams for the JavaScript and
system call datasets, where the tokens correspond to events, lexical tokens and system call
identifiers, respectively.

3.4.2 Suitability

For this experiment we measure the three suitability criteria that we have developed
in Section 3.2. In the course of this, we differentiate between text-based and binary-based
data/protocols, to better understand the influence of the structure of a protocol on the
suitability for learning attack detection.

Text-based protocols. Protocols based on human-readable text, like HTTP and FTP, or
client-side data such as system call sequences or JavaScript usually maintain a very strict
separation of structure and (payload) data, that often is perceivable without in-depth
knowledge of the protocol or the composition of the data. Intuitively this appears to
simplify the task, which however is not the deciding factor for automated processing such
as machine learning.

Figure 3.7a illustrates the perturbation of the five datasets on the example of 3-gram
models. Note that one of those clearly stands out, namely the datasets composed out of the
dynamic JavaScript reports. The other four quickly converge to zero and do not exhibit
any significant level of perturbation after training. Also JS-Dyn seems to converge but to
a value unequal to zero. Hence, in this particular case benign data constantly exhibits
5–10 % of unseen n-grams. This renders anomaly detection very difficult, as each benign
object appears to be anomalous to 5–10 % already. So, where do the perturbations in the
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JS-Dyn dataset come from? The dataset covers the behavior of JavaScript code and thus
contains variable names and strings. As a result, the alphabet of the n-grams is not fixed,
that is, there exists an infinite number of tokens, consisting of variable names and strings.
While this impedes learning in an anomaly detection settings, it is unproblematic for
classification as shown by Rieck et al. (2010). To be able to still use anomaly detection the
data needs to be preprocessed such that the parts causing the perturbation are abstracted.
For JS-Stat this was done by lexically analyzing the raw program code and introducing
dedicated string tokens that hide but describe the raw data (Rieck et al., 2010; Laskov and
Šrndić, 2011). That way also the names of functions, parameters and variables are abstracted.
A similar approach would be possible to abstract reports from JS-Dyn.

For the density we have to restrict our analysis to data with a closed alphabet. Remember,
the density is the ratio of the number of unique n-grams in a dataset to the total number
of all possible n-grams induced by the underlying alphabet. In consequence, it is not
possible to measure the density for an infinite large set of n-grams as induced by the
dynamic JavaScript reports. Figure 3.7b hence shows the density of the HTTP, FTP, JS-Stat
and Syscalls datasets only and leaves the JS-Dyn dataset out. At first sight the plotted values
seem vanishingly low due to logarithmic scale and the overall size of the feature space
as denominator. However, the steepness of the density’s decay over increasing n-gram
lengths is the crucial indicator here. The steeper the decay the better.

Figure 3.7c shows the variability of our datasets. As the variability is normalized to its
maximal value, it thus again cannot be determined for data that has a virtually infinite set
of unique n-gram tokens such as the dynamic JavaScript reports (JS-Dyn). Therefore, this
dataset is yet again spared out in the figure for this criteria. For the other datasets (from
JS-Stat over HTTP and FTP down to Syscalls) a constant decay of the variability levels can
be observed. This directly mirrors the difficulty to learn a model based on these datasets.

Binary-based protocols. Protocols and formats that use complex binary structures are not
to be categorically ruled out either, only because they happen not to be human-readable
and therefore, less intuitively comprehensible. Depending on the specific dataset it might
be necessary to parse and generalize the protocol beforehand, though. However, for this
study and in line with previous work we apply byte n-grams on the raw payloads, similarly
to HTTP and FTP.

In particular, we examine the SMB/CIFS protocol suite and the DNS protocol. SMB is
mainly used for the transfer of data, but includes other functionality such as the Windows
RPC (MSRPC). Our SMB dataset features the special property that data was mainly retrieved
from the server and only in a few exceptions uploaded by the client. This allows us to
study two different scenarios in the use of SMB: First, the use of largely pure SMB requests
sent by the client to the server and only little additional raw data (SMB-Client) and second,
SMB commands that are heavily interleaved with the transmitted data (SMB-Server). DNS,
on the other hand, consists of relatively short requests and in a large part of printable
characters—the requested domain name. In both cases the basis for a low perturbation is
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provided due to the bounded alphabet of 256 bytes. Figure 3.8a illustrates the perturbation
levels for DNS and the SMB datasets. Especially DNS quickly reaches zero perturbation,
whereas SMB-Server requires much more data and also SMB-Client needs more training.
Note that SMB-Server not only stands out clearly, but its peak is displaced with respect to the
beginning of the recording. This indicates that in the beginning similarly to SMB-Client
mainly pure message blocks are exchanged, before at some point the transmission of large
amounts of raw data starts. Such raw data often is compressed and therefore exhibits
high entropy. Therefore, the uncertainty about the overall observed n-grams increases and
obscures the structure of the protocol.

Figure 3.8c shows the variability and reveals the lack of perceptible structure of the
SMB-Server dataset. SMB-Client on the other hand does not fully share this problem. This
suggests that learning n-gram models of SMB traffic would be feasible if the interleaved
raw data, which constitutes additional noise for the learning algorithm, is excluded. This is
equally true for classification as well as anomaly detection, whereby it is especially critical
for the latter. One option to restrict the data to a manageable subset is, for instance, to
only look at Windows RPC messages (Hadžiosmanović et al., 2012). The density exposes
another interesting property of the considered binary protocols. Figure 3.8b shows that for
n-grams of lengths up to n = 3 the density is particularly high. This happens due to the
use of numeric variables as part of the protocol that may span over the entire range of byte
values, such as length specifiers for subsequent fields, headers, etc. With larger values of n
this influence decreases. SMB-Client and the DNS requests even align with the values for
the HTTP dataset.

In summary, the developed criteria largely confirm previously expressed concerns re-
garding the suitability of binary protocols and especially SMB (e.g., Hadžiosmanović et al.,
2012) for learning. However, at the same time it shows that learning cannot be ruled out
categorically. Constraining the use of raw data in SMB can lower the complexity to a
feasible level. In Chapter 5 we demonstrate how this can be achieved for proprietary binary
protocols in industrial networks. Also DNS requests appear to be very well manageable.
Nevertheless, one needs to note that in the case of DNS the type of attacks usually differ
from those seen for HTTP and FTP.

3.4.3 Probabilistic Data Structures

In this section, we address the impact of collisions in probabilistic data structures such as
Bloom filters and Count-Min sketches. Whenever hash functions are used for referencing
elements in these data structures, it is necessary to take the influence of collisions into
account: Two or more objects (e.g., n-grams) may by chance result in the same hash value.
Depending on the size of the feature space this is more or less likely. Subsequently, we
inspect the influence of such collisions on Bloom filters and the perturbation. Moreover, we
experimentally evaluate the deviation of true and estimated counts in Count-Min sketches.
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Bloom Filters. As described earlier, Bloom filters use multiple hash functions to scatter
item markers across the width of the underlying bit array. While this compensates for
collisions of a single hash function, false positives are possible. The probability for these
strongly depends on the size of the feature space, but also on the overall number of hashed
and stored objects. This can be thought as the saturation of the hash function’s output
range and is related to the density criteria described before (see Section 3.2). We measure
the saturation of a Bloom filter as the number of bits in the underlying bit array that are
set to 1. In the worst case an n-gram model may describe all possible n-grams (when fully
saturated) rather than those representing normal or malicious behavior, thus artificially
increasing the density of the feature space.
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Figure 3.9: Influence of the saturation of a hash function’s output range based on the example of
5-grams extracted from the dynamic JavaScript reports (JS-Dyn).

Figure 3.9 shows the influence of the saturation of a hash function’s output range on the
convergence of the dataset’s perturbation. The black curve shows a seemingly ideal con-
vergence for JS-Dyn (5-grams), whereas the gray one suggests a far from optimal behavior.
On closer examination, it however becomes clear that this happens only due to different
hash saturation levels of 80.44 % and 9.69 %, respectively. In practice, the size of a Bloom
filter hence needs to be chosen so that it does not saturate and collisions are minimized,
in order to obtain the most accurate results.

Count-Min Sketches. Similar to Bloom filters, Count-Min sketches also are subject to colli-
sions and the saturation of the data structure is equally critical. In contrast to Bloom filters
these however manifest differently. Instead of mere false positives (items wrongly reported
as part of the sketch), we are dealing with deviations of the reported value from the true
value stored in the sketch. We thus proceed to empirically inspect the differences of exact
and probabilistic counting. To this end, we extract all 3-grams from the SMB dataset and
store them in an hash table, for exact counting, and a Count-Min sketch with probabilistic
counting. The latter is parameterized to use d = 7 hash functions, with ε = 0.0001 and
δ = 0.01, resulting in a width w = 27,183. Figures 3.10a and 3.10b show the distribution
of the relative frequency of occurrences of the n-grams once counted exactly and once
probabilistically. Figure 3.10c shows the relative frequency of the difference in value of
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these counts. Most values differ by roughly 10 to 20 occurrences , which refers to 1 % of
the total count for the most prominent input strings. None however are lower than the
true value, as guaranteed by design.
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Figure 3.10: Histograms of 3-gram occurrences in network traffic for exact and probabilistic count-
ing, and the difference between both approaches.



Chapter 4Efficient Machine Learning for Attack Detection

Learning Malicious Behavior

As highlighted earlier in Chapter 2, traditional approaches often fall short in detecting
threats against end-users as well as computer networks in a timely manner. In this chapter,
we thus develop a learning-based detection approach that enables the fully automatic
detection of malware. By using language models that generically portray the content as
well as the structure of data, no manual intervention is required—neither during training,
nor in live operation. We show that with the right representations of the data and the use of
probabilistic data structures, learning-based approaches can be both effective and runtime
efficient. In order to optimally facilitate detection, however, domain specific analyses and
preprocessing are needed.

In particular, we demonstrate the feasibility of effective attack detection of Flash-based
malware. We describe the details and peculiarities of this kind of malware in Section 4.1
and outline our method for detecting it in Section 4.2. Due to the complexity of Flash-
based malware an extensive analysis for capturing and profiling malicious intent is needed
in advance, which we detail in Section 4.3. Our method combines a structural analysis
of the container format with guided code-execution of contained program code, that is,
a lightweight and pragmatic form of multi-path exploration. While related approaches
orient analysis toward normal execution or external triggers, our method actively guides
the analyzer towards interesting code regions to maximize its coverage. In Section 4.4, we
then show how to learn a classifier using this profiling data and thus spare an analyst from
manually constructing detection rules. We present two different approaches: One based
on linear Support Vector Machines (SVMs), and another, more simple but faster, approach
using Bloom filters . In Section 4.5, we demonstrate the effectiveness of these detectors,
before we discuss related work in Section 4.6.

4.1 Use Case: Detecting Flash-based Malware

For years dynamic and multimedia content was equatable to the use of the Adobe Flash
platform. This started to change with the upswing and advancement of JavaScript in mod-
ern web browsers, and the gradual implementation of the HTML 5 standard (LaForge, 2016).
In 2016 about every fourth webpage among the Alexa Top 1,000 was still using Adobe Flash
for video streaming, gaming, or advertisements (httparchive, 2016). Its unprecedented
pervasiveness has naturally attracted adversaries that take advantage of security issues to
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attack end-users. Unfortunately, the Adobe Flash platform has a long-standing history of
severe security vulnerabilities. During the last ten years over 1,000 different vulnerabilities
have been discovered in the Adobe Flash Player (Özkan, 2010–2018). In the years 2015 and
2016 alone, the Flash Player has been assigned 595 CVEs, marking an all-time high and
a tremendous increase when compared to previous years. In comparison to the 5-year
average from 2010 to 2014 the number of publicly documented vulnerabilities has more
than quadrupled in both subsequent years. 478 of these vulnerabilities even enable remote
code execution and require a user to merely visit a web page to be infected. This growing
attack surface provides a perfect ground for miscreants, which is mainly driven by two
factors: First, with ActionScript the Adobe Flash platform provides extensive scripting
capabilities to handle user input or drive animations, which can equally be used to facilitate
exploits. Second, the file format used for Flash animations contains a plethora of special
cases that offer a huge attack surface for memory corruption exploits.

Today, two versions of the scripting language are in frequent use, ActionScript 2 and 3,
where the latter is a complete redesign based on the ECMAScript standard (ECMA-262) to
support object-oriented programming. Alongside with the new language, ActionScript 3
introduces a new virtual machine known as AVM2, whereas ActionScript version 1 and 2
are executed on the initial version of the ActionScript VM (AVM1). The Adobe Flash Player
ships both versions to maintain backwards compatibility, such that recent versions may
suffer from attacks against the outdated AVM1 to the same extend as earlier versions. The
Shockwave Flash (SWF) is common to all versions of ActionScript and Flash, although it
has been occasionally extended when new features emerged. Internally, Flash animations
are composed of so-called tags, containers that are used to store ActionScript code as well
as data of various kinds, including audio, video, image, and font data. Current versions of
Flash support several dozen different types of tags, some of which occur nested.

The complexity of the SWF file format, a powerful scripting language and the fact that
both have evolved over years has led to a large variety of attacks and Flash-based malware
in the wild. For instance, several of the reported vulnerabilities have been found to be
used for targeted attacks (Zakorzhevsky, 2014) and exploit kits are known to use recently
published vulnerabilities as well as zero-day exploits for specially tailored Flash-based
malware (Caselden et al., 2015; Trustwave Holdings, 2016).

We can roughly differentiate between three general categories of attacks, that may over-
lap in practice: First, a piece of malware may be specially crafted to exploit the Flash Player
during normal processing of its input, which does not necessarily involve the execution
of ActionScript. An early example for such a vulnerability is CVE-2007-0071, that can be
exploited to execute arbitrary code by leveraging an integer overflow caused by a negative
“Scene Count” value (Özkan, 2010–2018). Second, by utilizing the rich capabilities of Ac-
tionScript, an adversary can further advance the launching or preparation of exploits against
either the Flash Player or different parts of the browser. CVE-2015-3113, for instance,
allows to trigger a bug in the Microsoft Internet Explorer using the external interface of
ActionScript 3. This can then be used to corrupt the length of a Flash Vector object and
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write outside its initially allocated memory (Caselden et al., 2015). ActionScript may also
be used to perform heap spraying (Daniel et al., 2008) or to obfuscate the presence of an
attempt to launch an exploit. Third, malware may use ActionScript to fingerprint the
execution environment in a first stage of an attack and then, redirect the user to an instance
of an exploit kit, serving the actual malware. Adversaries have used this exact scenario in
the past, to reach a vast number of victims by distributing malicious advertisements over
ad networks (see Ford et al., 2009; Li et al., 2012).

Moreover, malware authors employ different types of obfuscation to hinder analysis by
automated systems and human experts (e.g., Linn and Debray, 2003). For malware based on
Adobe Flash, three techniques are particularly prominent: First, so-called staged execution
can be performed. At the first stage the malware only contains functionality to load further
code, which in the second stage triggers the payload—a procedure that may be stretched
over multiple rounds, potentially using encryption. Second, source-code obfuscation by
inserting junk code, redirecting the control flow, or the use of rare or invalid instructions
is frequently used in practice. Third, malware may fingerprint the environment to select a
particular exploit for the current version of the platform or withhold its malicious intent if
under analysis. In the following, we refer to these techniques were appropriate and provide
examples of malware that employs them.

4.2 System Overview

We now present Gordon, our method for the automatic analysis and detection of
Flash-based malware (Wressnegger et al., 2016a). The diverse nature of attacks based
on Flash requires an analysis method to inspect these animations on different levels.
To this end, we implement Gordon by integrating it into different processing stages
of Flash interpreters, thereby blending into existing loading and execution processes.
Consequently, our detectors takes Flash animations as input in step ¬ of Figure 4.1. This

SWF version 10.3

DoABC
69 77 09

77 09 02

09 02 [

...

pushString STR.01 add

STR.01 add STR.01

add STR.01 +

STR.01 + STR.01

­ Profiling¬ Input ® Embedding ¯ Classification

Figure 4.1: Schematic depiction of the analysis and detection process of Gordon with a Flash-based
malware as input, the two-step analysis of the profiler and the classification of our
method’s detectors as output.
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tight integration allows us to make use of data generated directly during execution, such
as dynamically constructed code or downloaded files. The analysis in step ­ is achieved
by two complementary profiling components: First, the profiler inspects the hierarchical
composition of the Shockwave Flash format. This can be done during the loading phase
when the interpreter parses the file for further processing. Second, the control flow of
embedded ActionScript code is analyzed in order to determine indicative regions. By
strategically changing the control flow at branches in the code, Gordon guides execution
along paths covering as much indicative program code as possible. In step ®, we then
combine the reports of both analyses into a common malware profile. These profiles
can be used by a human expert for analyzing Flash-based malware and decide whether a
particular Flash animation is malicious or not. With minor modifications these however
are equally appropriate for learning an efficient malware detector. To this end, we strip
auxiliary information, that are included to assist the analyst, and transform the malware
profile to vectors using language models. Based on these the classifier, indicated in step ¯,
can then discriminate malicious from benign Flash animations.

Learning Malicious Behavior. The output of the analyses steps provide comprehensive
insight into the intent of Flash animations, while language models ensure a suitable
representation for machine learning. On top of this, we investigate two different approaches
for learning a detector for Flash-based malware and show the feasibility of effectively
learning malicious behavior using classification: First, we use Support Vector Machines
to establish a baseline using standard learning techniques. Second, we demonstrate how
similar results can be achieved using much simpler algorithms based on probabilistic data
structures, that we have discussed in Chapter 3, and present a novel two-class classification
scheme based on Bloom filters.

4.3 Data Analysis

Gordon’s profiler is implemented on the basis of two popular and mature open-source
implementations of the Flash platform that are complementary with respect to the versions
they support: Gnash (Savoye et al., 2005–2018) and Lightspark (Pignotti, 2011–2018). While
Gnash provides support for Flash up to version 9, Lightspark enables processing version 9
and higher. As a result, Gordon is able to analyze all currently relevant versions and file
formats of Adobe Flash animations, including all versions of ActionScript code. The profil-
ing implemented for both interpreters features two kinds of analyses, that in turn make
use of data arising during an interpreter’s regular loading and execution process (Adobe
Systems, 2007): First, a structural analysis of the Flash container format which we detail in
Section 4.3.1 and second, the guided execution of ActionScript code, that is, a lightweight
and pragmatic form of multi-path exploration described in Section 4.3.2.
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4.3.1 Structural Analysis

We begin our analysis by breaking down Flash animations into tags, the primary con-
tainers employed by the SWF file format (Adobe Systems, 2013) to store ActionScript code
as well as data of various kinds, including audio, video, image and font data. Due to the
large number of different types of tags Flash files expose a huge attack surface for memory
corruption exploits. As a consequence, many exploits rely on very specific types and ar-
rangements of tags to succeed, and thus, the sequence of tags alone can already serve as a
strong indicator for malware.

For the structural analysis, as employed by Gordon, only tag identifiers and structural
dependencies are of interest, contained data on the other hand is not considered. Conse-
quently, Gordon does not need to know about the format of individual tags and hence,
can also be applied to unknown tags, e.g., tags introduced in future versions. However, to
further enhance the overall detection, our method may be combined with approaches to
specifically target data formats that can be included in a Flash animation’s tags such as the
method presented in Chapter 6. Moreover, exploits often rely on corrupt or incomplete
tags. To better account for these, we additionally include two specific tag identifiers that
mark (a) incomplete tags, that is, tags which are known to the interpreter, but could not
be correctly parsed and (b) tags that contain additional data beyond their specified limits.
The latter occurs, for instance, whenever the file contains data at the end that is not fully
contained in its last tag.

As a result of this structural analysis, we obtain a sequence of container types including
their nesting for each Flash file. Figure 4.2 shows the resulting container listing for a
sample1 of the LadyBoyle malware using CVE-2015-323.

1 69 FileAttributes

2 77 Metadata

3 9 SetBackgroundColor

4 2 DefineShape

5 39 DefineSprite

6 26 PlaceObject2

7 86 DefineSceneAndFrameLabelData

8 43 FrameLabel

9 87 DefineBinaryData // Payload

10 87 DefineBinaryData // Payload

11 82 DoABC // ActionScript 3 Code

12 76 SymbolClass

13 1 ShowFrame

Figure 4.2: Excerpt of the Gordon’s structural report for a LadyBoyle malware sample.

In comparison to many other Flash animations, the content of this file is rather short.
However, for this specific sample the presence of the DefineBinaryData and DoABC tags
is crucial. The first two contain the malware’s payload as binary data, which in turn
gets extracted by ActionScript 3 code embedded in the latter. These tags in combination
1md5: cac794adea27aa54f2e5ac3151050845
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comprise the malicious functionality of the sample. While in this particular case the
structure alone is only an indicator for the malicious behavior, that needs to be backed up by
an analysis of the embedded ActionScript code, other types of malware rely on corrupt tags
that allow to distinctively distinguish these. Some containers, such as the DefineShape tag,
allow to enclose an arbitrary number of other containers. We include these in the listing
as children of the parent tag. Note that the DefineShape tag and its children are not
present in the original sample and have been added for illustration purposes only. For
convenience, the structural report can also be represented as a sequential list of identifiers,
where nested containers are indicated by brackets:

69 77 9 2 [ 39 26 ] 86 43 87 87 82 76 1

It is important to note, that this representation already encodes the complete hierarchy
and relations of the tags to each other. This condensed form is particularly suitable for
automated approaches that do not require a textual description of the tags. We revisit this
topic when discussing the implementation of Gordon’s detectors in Section 4.4.

4.3.2 Guided Code-Execution

When analyzing a sample with Gordon we aim at observing as much indicative behavior
of a Flash animation as possible—ideally the analysis covers all possible execution paths
and corner cases. However, as extensively discussed in computer security literature in the
past (e.g., Moser et al., 2007b; Kolbitsch et al., 2012) this is not feasible due to the potentially
exponential number of different paths, making it necessary to revert to approximations
and heuristics in practice.

While related approaches orient analysis towards normal execution (Wilhelm and
Chiueh, 2007; van Overveldt et al., 2012; Kolbitsch et al., 2012) or external triggers (Crandall
et al., 2006; Moser et al., 2007b; Brumley et al., 2008), our method guides execution towards
indicative code regions: Each branch is chosen such that the execution corresponds to the
path that covers the most indicative ActionScript code not observed so far. In particular,
we are interested in exploring paths containing security-related objects and functions as
well as branches that contain more code than others. Figure 4.3 exemplarily shows the
selected paths of two consecutive runs. During the first, Gordon’s profiler guides execution
towards the loadMovie function, which enables Flash animations using ActionScript 2
to dynamically load code in form of another SWF file. The second run then directs the
interpreter along the path covering the most bytecode instructions. This strategy can hence
be seen as a way to not only maximize code coverage locally (within the sample itself ), but
globally, including all code that is loaded dynamically.

This is made possible by inspecting the control flow of the ActionScript code contained
in a Flash file to learn (a) how much code can be covered along a specific path, and (b) where
security-related objects and functions, such as the aforementioned loadMovie function, are
located. To this end, we first derive the control-flow graph of the ActionScript bytecode and
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Figure 4.3: Illustration of the path-selection strategy. Node labels correspond to the amount of
bytecode instructions in each basic block. Black lines indicate chosen execution paths.
Figure taken from Wressnegger et al. (2016a).

remove cycles induced by loops and recursive function calls. Second, the resulting graph
is annotated with locations of indicative functionality and the number of instructions
contained in each branch, which in turn enables us to efficiently determine the overall code
coverage of individual paths. The results of this analysis is then used for the actual execution
of the Flash animation, allowing Gordon to navigate through the code in a targeted way.

Control-Flow Analysis. A control-flow graph (CFG) as shown in Figure 4.4 contains ba-
sic code blocks as its nodes and directed edges for branches connecting them (see Aho
et al., 2006; Allen, 1970). As part of the Adobe Flash Player’s verification phase, the
ActionScript VM already checks certain control flow properties when bytecode is loaded
into the interpreter (Adobe Systems, 2007). Our control-flow analysis can thus be thought
of as a natural extension to the examinations conducted by Flash interpreters. We, however,
make use of this information only as a starting point for the following analysis.

Upon the generation of a CFG, we are ready to find execution paths that maximize
code coverage. To easily determine these paths, the graph needs to first undergo a few
modifications. In particular, it is necessary to eliminate cycles that occur due to loop
statements in the code. Once these cycles are removed, we obtain an acyclic control-flow
graph (ACFG) which allows us to efficiently determine the code size of complete paths in the
graph. To this end, we rewrite all back-edges (edges pointing backwards with respect to the
control flow) by linking them to the first code block after the loop. Figure 4.4 demonstrates
this for a simple while loop. All conventional loops, nested loops and their special cases
such as unnatural loops can be efficiently resolved using the dominance relations of the
individual nodes (see Aho et al., 2006).

Annotating Control-Flow Edges. Once an ACFG has been generated, we annotate each of
its edges with the number of bytecode instructions covered by the following code block.
We artificially increase the weight of individual instructions, if they correspond to security-
related objects and functions. For example, to pinpoint the dynamic loading of code,
we set the weighting for calls to the loadMovie function (ActionScript 2) and the Loader
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var a:int = 294;

var b:int = 1722;

while (b != 0)

{

var h:int = a % b;

a = b; b = h;

}

trace(a);

Figure 4.4: An ActionScript 3 code snippet, the corresponding control flow graph (CFG) and
its acyclic transformation (ACFG). Dark nodes represent loop headers, while bright
nodes depict generic code blocks. Newly inserted edges are shown in orange.
Figure taken from (Wressnegger et al., 2016a).

object (ActionScript 3) to the maximum to ensure the analyzer targets these first. Both are
frequently used by Flash-based malware to load code downloaded from the Internet or
dynamically assembled at runtime. Similarly, it is possible to emphasize other security-
related functions and objects in ActionScript, such as readBytes and ByteArray, which
are often used for obfuscated code.

Given the annotated graph, the search for the most indicative code regions can be
rephrased as a longest-path problem. For arbitrary graphs determining the longest path is
NP-hard. Fortunately, for directed acyclic graphs such as the ACFG extracted previously,
this perfectly feasible (see Cormen et al., 2009; Sedgewick and Wayne, 2011).

Path Exploration. With the annotated ACFG on hand, we can now guide the interpreter
to execute security-related or large code regions by stopping at every conditional jump
and choosing the branch corresponding to the path with the highest weight. In order to
avoid executing indicative code unnecessarily often, we constantly update visited regions
within the ACFG. Moreover, Gordon enables multiple executions based on the coverage
analysis of previous runs. Hence, a different path is taken and different code regions are
visited in each run, thereby challenging adversarial attempts to hide payload in paths
that are not covered initially. As analysis output of the guided execution, we obtain all
covered ActionScript instructions across multiple execution runs. Figure 4.5 shows a short
excerpt of the instructions executed by a malware to facilitate an exploit2 in the first
run (R1). Instructions at offset 973 to 983 show how the malware obfuscates the usage of
the ByteArray object at offset 984. This object is frequently used to construct malicious
payloads at run-time. The complete listing shows how the encrypted payload is composed
out of different parts, decrypted and finally loaded.

Subsequently, we address certain implementation details of Gordon’s guided code-
execution with a special focus on the characteristics of Flash-based malware and potential
adversarial attempts to avoid analysis.
2md5: 4f293f0bda8f851525f28466882125b7
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1 R1 973: pushString "fla"

2 R1 975: pushString "sh.uti"

3 R1 977: add "fla" + "sh.uti"

4 R1 978: pushString "ls.Byt"

5 R1 980: add "flash.uti" + "ls.Byt"

6 R1 981: pushString "eArray"

7 R1 983: add "flash.utils.Byt" + "eArray"

8 R1 984: callProperty [ns:flash.utils] getDefinitionByName 1

9 R1 > Looking for definition of [ns:flash.utils] ByteArray

10 R1 > Getting definition for [ns:flash.utils] ByteArray

11 R1 987: getLex: [ns:] Class

Figure 4.5: Excerpt of Gordon’s behavioral report.

Reducing Branch Candidates Although Gordon is capable of pursuing all branches in Ac-
tionScript code, narrowing down the candidates speeds up the process and limits the
possibility of breaking the semantics of a sample. Often, web-based attacks are tailored
towards specific browser environments and thus, only trigger malicious activity upon
checking for the correct target environment (Kolbitsch et al., 2012; van Overveldt et al.,
2012). The conditional jumps underlying these checks provide excellent candidates for our
guided execution, as they usually lead to a malware sample’s payload and are likely to be
mutually exclusive, therefore reducing the risk of semantic side-effects.

To restrict our analysis to these conditional jumps, we implement a taint-tracking
mechanism that propagates taint from environment-identifying data sources to condi-
tional jumps. In the scope of Flash-based malware, such data typically originates from
the System.capabilities and flash.system.Capabilities data structures available in
ActionScript 2 and 3, respectively. To track the data flow across built-in functions, we
conservatively taint the result whenever at least one of the input arguments is tainted. Note
that for simplicity, we do not consider implicit data-flow and control dependencies in our
implementation (see Cavallaro et al., 2008; Nair et al., 2008) but leave this for future work.

Countering Obfuscation To account for dynamically loaded code, we additionally hook the
interpreter’s loading routines. All such code then passes through the same analysis steps as
the host file, allowing to analyze files downloaded from the Internet as well as potentially
encrypted code embedded in the Flash animation itself equally thoroughly. This scheme
is applied recursively to ensure that all code is covered by our analysis.

Furthermore, Gordon implements an adaptive timeout mechanism rather than a fixed
period of time as employed in previous works (Ford et al., 2009; Cova et al., 2010; van
Overveldt et al., 2012). In particular, we reset a 10 s timer each time the sample attempts
to load code, giving the sample time to react to this event. This may increase the analysis
duration for certain files but significantly reduces the effort for those that do not load
data or do not contain ActionScript code at all. On average a sample is executed for 12.6 s
with a maximum duration of 3 min, reducing the analysis time by 93 % compared to
a fixed timeout.
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We also take precautions for the possibility that an execution path is not present in the
statically extracted ACFG. In these rare cases, we switch to determining the size of the
branch in an online manner: Gordon looks ahead in order to inspect the instructions
right after the branching point and passively skips over instructions to determine the sizes
of the branches. This analysis in principle is the same as performed earlier (Section 4.3.2)
but applied to the newly discovered pieces of bytecode only.

Lastly, we have observed an increase in the use of event-based programming in recent
malware—presumably to circumvent automatic detection—and thus incorporate the auto-
matic execution of such events into Gordon’s profiler. Immediately after an event listener
is added the specified function gets passed an appropriate dummy event object and is
executed without waiting for the actual event to happen.

Updating the ACFG Our method is designed to run a sample multiple times. To this end,
we update the edge labels of the ACFG during execution to reflect the visited code and
recompute the largest path in an online manner. Consequently, our method implements a
lightweight variant of multi-path exploration that executes different code during each run.
Since we decide on each condition at runtime, identical code regions (functions) may be
referenced multiple times. We hence not only cover the code of the single largest path in
the graph, but potentially a combination of a number of paths. This softens the definition
of such a path as used in graph theory but makes sense in this scope.

4.4 Classification

In order to demonstrate the expressiveness of our analysis, we implement two learning-
based detectors, that are trained on known benign and malicious Flash animations. This
approach spares us from manually constructing detection rules, yet it requires a compre-
hensive dataset for training (see Section 4.5.1). In this section, we propose two approaches: In
Section 4.4.1, we first outline a detector using Support Vector Machines, a well-established
method from the field of machine learning. Moreover, we discuss how the learned fea-
ture weights can be efficiently used with Count-Min sketches in practice. Second, we
demonstrate another classifier based on n-gram statistics that seamlessly fits a representa-
tion as Bloom filter in Section 4.4.2. We refer to these two variants as Gordon-SVM and
Gordon-TCA, respectively. However, before these can be applied, we need to map the
analysis output of Gordon to vector space. To this end we quickly recap the description
on language models from Chapter 3.

Vector Space Embedding To embed the structural and behavioral reports generated by Gor-
don in a vector space, we make use of language models. In particular, we extract token
n-grams from both kinds of analysis outputs. While the compact output representation
of Gordon’s structural analysis already is in a format that can be used to extract such
tokens, the reports generated by the guided code-execution need to be normalized first: We
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extract all instructions, including their names and parameters. Moreover, in order to
contain the perturbation of the data (see Section 3.2), we additionally replace values passed
as parameters with their respective type, such as INT, FLOAT or STR. To avoid losing relevant
information, we however preserve all names of operations, functions and objects. Finally,
we tokenize the behavioral reports using white-space characters. High-order n-grams
compactly describe the content, implicitly reflecting the structure of the reports and can
be used for establishing a joint map to a vector space. To this end, we embed a Flash
animation a using mapping φ in a vector space spanned by the set S of all possible n-grams.
Each dimension in this vector space is associated with the presence of one n-gram s ∈ S.
Analogous to Chapter 3, we define two instances of such a mapping, ϕ1 and ϕ2, as

ϕ1 : F → {0, 1}|S|,

a 7→
(

bin(s, a)
)

s∈S

ϕ2 : F →N|S|,

a 7→
(

cnt(s, a)
)

s∈S

where F is the set of all possible Flash animations and the function bin(s, a) returns 1, if
the n-gram s is present in the analysis output of the file a and 0 otherwise. Function cnt(s, a),
on the other hand, returns the number of occurrences of n-gram s in a. These mappings
can be efficiently calculated for large amounts of data in linear time (Rieck et al., 2012). In the
following, we use ϕ1 and ϕ2 for classification in Section 4.4.1 and Section 4.4.2, respectively.

4.4.1 Classification using Support Vector Machines

For our first detector we employ a linear Support Vector Machine (SVM) that uses the
previously defined vector space embedding for learning a classification between benign
and malicious Flash animations. While several standard learning algorithms can be applied
in this setting, we choose linear SVMs as our baseline for their excellent generalization
capability and very low run-time complexity, which is linear in the number of objects and
features (Schölkopf and Smola, 2002; Fan et al., 2008).

In short, a linear SVM learns a hyperplane that separates two classes with maximum
margin—in our setting these correspond to vectors of benign Flash animations and Flash-
based malware. The orientation of the hyperplane is expressed as a normal vector w in the
input space and thus, an unknown sample a can be classified using an inner product as

f : F → R|S|,

a 7→ 〈w, φ(a)〉 − t

where t is a threshold and f (a) the orientation of φ(a) with respect to the hyperplane. That
is, f (a) > 0 indicates malicious content in a and f (a) ≤ 0 corresponds to benign content.
Additionally, we set φ = ϕ1 for our detector, Gordon-SVM. Due to the way the map-
ping of n-grams is defined, the resulting vectors are sparse: Out of millions of possible
token n-grams, only a limited subset is present in a particular sample a. These vectors can
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thus be compactly stored in memory and the inner product to determine the final score
can be calculated in linear time in the number of n-grams in a sample:

〈w, ϕ1(a)〉 =
∑
s∈S

ws bin(s, a) =
∑
s in a

ws.

Count-Min sketches are not limited to storing integers, but may equally handle floating
point values. We can thus use them to efficiently store a SVM’s weight vector w for its use
in practice. Data structures that allow to query values in constant time enable to further
optimize the calculation of f (a) by avoiding to explicitly construct and maintain those
vectors in memory.

4.4.2 Classification using n-gram Statistics

In the scope of this thesis we additionally explore classification based on n-gram statistics.
Prior work on language models for intrusion detection has shown that recording known
n-grams during training and counting their number of occurrences during testing is
remarkably efficient for detecting anomalies in network traffic (Wang et al., 2006a). We
extend this scheme to two-class classification by learning separate models M+ and M−

for benign and malicious samples, respectively, and combining the resulting similarity
scores as weighted difference.

Learning such a model M∗ of known n-grams can be expressed as the union of all
subsets of n-grams contained in the individual samples a in our training dataset D∗

M∗ =
⋃

a∈D∗
{s ∈ S|s in a}.

We use superscript ∗ to specify the class (benign + or malicious −) and additionally define
a weight vector ω∗ that constitutes the contents of model M∗ as a binary vector,

ω∗ =
(

contains(s, M∗)
)

s∈S

where function contains(s, M∗) returns 1, if n-gram s is contained in the model M∗ and
0 otherwise. This definition is very similar to the binary embedding ϕ1, but applied to
an entire set of Flash animations. Again, these models can conveniently be stored in
probabilistic data structures such as Bloom filters. Wang et al. (2006a) propose to use the
portion of known n-grams to the total number of n-grams as similarity score. Formally,
this can be expressed as the inner product of a model’s weight vector ω∗ and the previously
defined count embedding ϕ2:

scoreM∗ : F → [0, 1],

a 7→ 〈ω∗, ϕ2(a)〉.
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For two-class classification, as used in our second detector Gordon-TCA, we now com-
pute the weighted difference of the scores of both classes

g : F → R,

a 7→ (1− γ) scoreM+(a)− γ scoreM−(a)

where γ ∈ [0, 1] is a factor to vary the weights of the individual classes. A factor of γ < 0.5
gives more weight to the first class (benign samples) and γ > 0.5 shifts focus to the second
class (malicious samples). γ can thus be seen as a parameter for how large the influence of
the additional second class should be.

4.5 Evaluation

We proceed to empirically evaluate the capabilities of Gordon in different experiments,
based on an extensive dataset of Flash-based malware and benign animations, which we
introduce in Section 4.5.1. In particular, in Section 4.5.2 we start by studying the effective-
ness of the guided execution in terms of code covered. Next, we compare the detection
performance of our method using SVMs as well as the classifier based on n-gram statistics
with related approaches in Section 4.5.3 and inspect the runtime performance of both
approaches in Section 4.5.4. Finally, we additionally demonstrate the effectivity of Gordon
in a temporal evaluation over multiple weeks of operation in Section 4.5.5.

4.5.1 Dataset Composition

The dataset for our evaluation has been collected over a period of 12 consecutive weeks. In
particular, we have been given access to files from the VirusTotal service, thereby receiving
benign and malicious Flash files likewise. Since many web crawlers are directly tied to
VirusTotal, the collected data reflects the current landscape of Flash usage to a large part.

We split our dataset into malicious and benign Flash animations based on the classifica-
tion results provided by VirusTotal two months later: A sample is marked as malicious, if
it is detected by at least three scanners and flagged as benign, if none of the 50 scanners
hosted at VirusTotal detects the sample. Samples that do not satisfy one of the conditions
are discarded. This procedure enables us to construct a reasonable estimate of the ground
truth, since most virus scanners refine their signatures and thus, improve their classifica-
tion results over time. The resulting dataset comprises 1,923 malicious and 24,671 benign
Flash animations, with about half of the samples being of version 8 or below and the other
half of more recent versions, therefore handled by the ActionScript VM version 1 and 2
respectively. A summary of the dataset is given in Table 4.1.

To account for the point in time the samples have been observed, we group the samples
in buckets according to the week of their submission to VirusTotal. Consequently, we
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obtain 12 sets containing benign and malicious Flash animations corresponding to the
12-week evaluation period. These temporal sets are used during the evaluation to construct
temporarily disjoint datasets for training and testing to conduct our experiments in strict
chronological order: For our experiments the performance is determined only on samples
that have been submitted to VirusTotal after any sample in the training data. This ensures
an experimental setup as close to reality as possible and demonstrates the approach’s
effectivity of providing timely protection.

Classification AVM1 AVM2 Total

Malicious 864 1,059 1,923
Benign 12,046 12,625 24,671

Total 12,910 13,684 26,594

Table 4.1: Overview of the evaluation dataset.

4.5.2 Coverage Analysis

In our first experiment, we evaluate the effectiveness of the proposed guided code-
execution strategy. To this end, we investigate the code coverage of malware samples in our
12 week dataset. We apply Gordon to the malware and inspect the output of the interpreter.
Due to obfuscation techniques employed by malware, the amount of statically contained
code of a Flash file often is not a reliable measure in this setting. Hence, we compare the
number of executed instructions with respect to a regular execution of the samples. With
the path-exploration strategy employed by Gordon, we manage to oberserve over 50 %
more ActionScript code than during a naive execution, and unveil crucial information not
provided otherwise. We mainly credit this leap in coverage to the recursive analysis of
dynamically loaded code and code assembled at runtime.

4.5.3 Comparative Evaluation

We continue to evaluate the detection performance of both classifiers of Gordon,
showing their ability to correctly classify Flash-based malware and specifically compare
them to FlashDetect3 (van Overveldt et al., 2012). In particular, we evaluate the approaches
on the complete set of 12 consecutive weeks, where we use weeks 1–6 for training and
weeks 7–9 for validation to calibrate the parameters of the detectors. We then combine these
two sets for final training and apply the detectors to weeks 10–12 for testing the detection
performance. Table 4.2 summarizes the results as the true-positive rates (TPR) and the
corresponding false-positive rates (FPR) of the methods.
3Versions not supported by FlashDetect (version 8 and below) have been excluded.
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Method FlashDetect3 Gordon-TCA Gordon-SVM

FPR 1 % 1 % 0.1 % 1 % 0.1 %
TPR 26.5 % 89.7 % 77.7 % 95.2 % 90.0 %

Table 4.2: Detection rates of FlashDetect, Gordon-TCA, and Gordon-SVM.

Each of these methods has a different set of parameters that need to be adjusted during
training. In machine learning this commonly is called, hyperparameter optimization and
is implemented as simple grid search in our experiments. For instance, for Gordon-SVM
we adjust the SVMs penalty parameter C ∈ [10−3, 103] and different weightings of it for the
individual classes (Fan et al., 2008). Additionally, for preprocessing we validate the length
of n-grams and whether or not to scale (L2-normalize) the feature vector (Rieck et al., 2012).
In comparison, Gordon-TCA requires less optimization as only the length of n-grams,
the weighting γ ∈ [0, 1] and the details of the Bloom filter can be set. The latter however
are fixed to a size of 227 bit and 3 hash functions (see Chapter 3). FlashDetect, in turn,
does not require any parameters by design (van Overveldt et al., 2012).

Gordon-SVM. As described in Section 4.4 Gordon’s detectors can be applied to either
the analysis outputs individually or to the joint representation of both. For the variant
using Support Vector Machines, we evaluate the relation thereof in an experiment in
which we use 4-grams to map the reports to vector space. Figure 4.6 shows the detection
performance for detectors using each representation individually (light/dark gray) and
the combination of both (black) as ROC curves, with the true-positive rate on the y-axis
over the false-positive rate on the x-axis. At a false-positive rate of 0.1 % the individual
representations attain a detection rate of 60–65 %. The combination of both increases
the detection performance significantly and enables spotting 90.0 % of the Flash-based
attacks. If the false-positive rate is increased to 1 %, our method even detects 95.2 % of the
malicious samples in our dataset. Additionally, we break down this results by CVE numbers.
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Figure 4.6: Detection performance of Gordon-SVM as ROC curve.
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The average performance is slightly below the overall detection rate, indicating that we
also detect malware that does not carry exploits itself, but facilitates a different attack or
uses obfuscation to obscure the presence of an exploit. This perfectly demonstrates the
capabilities of our approach: First, the complementary views on the behavior and structure
of Flash animations provide a good basis for analyzing attacks and, second, this expressive
representation can be effectively used for detecting malware in the wild.

Gordon-TCA. The detection variant using the weighted difference in n-gram statistics of
the two opposing classes is not able to fully reach the performance set by Gordon-SVM.
As it operates based on a much simpler concept than SVMs, which in turn solve a complex
optimization problem for separating both classes, this is not entirely surprising. However,
by detecting 89.7 % of the malicious samples at a false-positive rate of 1 % it performs
reasonably well. Figure 4.7 shows a direct comparison of the ROC curves. As weighting
factor we have used γ = 0.55 and hence, a slightly stronger focus has been put on penalizing
malicious components. In contrast to Gordon-SVM, we here use 5-grams for embedding
the reports. We observe that the detection performance increases with the size of n, meaning
that the n-grams become more specific to the data at hand. With n = 3 and n = 4, for
instance, an otherwise identical parametrization detects 81.1 % and 85.4 % of the malware,
respectively. This effect has been discussed in the field of intrusion detection before (Tan
and Maxion, 2002) and lies in the very nature of methods mining and storing large amounts
of features. A possible negative impact can be contained by carefully choosing a large and
diverse dataset to ensure the detector generalizes well.
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Figure 4.7: Detection performance of Gordon-SVM and Gordon-TCA as ROC curves.

FlashDetect. For the related method FlashDetect we slightly modify the setting and
exclude Flash animations of versions below 9 from the evaluation, as this detector is ded-
icated to the analysis of ActionScript 3 malware only. Nevertheless, FlashDetect only
identifies 26.5 % of the malicious Flash samples at a false-positive rate of 1 % and thus
cannot keep up with either Gordon-TCA nor Gordon-SVM. Although FlashDetect
employs a heuristic for eliciting malicious behavior during the execution of a Flash an-
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imation, it misses 3 out of 4 attacks. We attribute this low performance to two issues:
First, compared to our method the employed branch selection strategy is less effective
and second, the method has been tailored towards specific types of attacks which are not
prevalent anymore. Gordon in contrast does not rely on manually selected features, but
models the underlying data using n-grams. Therefore, it can better cope with the large
diversity of today’s malware.

AV Engines. We finally determine the detection performance of 50 virus scanners on
the testing dataset. The five best scanners detect 82.3–93.5 % of the malicious samples.
However, due to the very nature of signature-based approaches they provide detection with
practically no false positives. If we parameterize Gordon-SVM to zero false positives only
47.2 % of the malware is detected. This clearly shows, that Gordon cannot compete with
manually crafted signatures in the long run, but provides solid detection of Flash-based
malware shortly after its first occurrence in the wild without the need for manual analysis.

As a consequence, we consider our method a valuable tool for improving the analysis of
Flash-based malware in the short run and a way to provide traditional approaches with a
good starting point in day-to-day business to efficiently craft signatures for AV products.

4.5.4 Runtime Evaluation

Next, we compare the two variants of Gordon in terms of runtime. Both approaches
use linear time algorithms for learning a classification of malicious and benign Flash an-
imations. The underlying methods however differ fundamentally: While Gordon-TCA
pursues an integrated approach that preprocesses the data and simultaneously learns the
model on-the-fly, Gordon-SVM performs these two steps separately using two highly
optimized tools: Sally (Rieck et al., 2012) for embedding the data in vector spaces, and
liblinear (Fan et al., 2008) for learning the Support Vector Machine.

For this experiment we measure the runtime performance of the full toolchain single-
threaded on an Intel Xeon E5-1650 CPU at 3.50 GHz. In order to compensate for disk I/O
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Figure 4.8: Throughput and runtime of Gordon-TCA and Gordon-SVM during training.
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we however operate entirely in internal memory. Figure 4.8a shows that with 588 Mbit/s
Gordon-TCA yields an 1.66× larger throughput than Gordon-SVM. Looking at the
runtime for both methods in Figure 4.8b reveals that learning the linear SVM surprisingly
is not the limiting factor, but the preprocessing is.

In combination with the lower number of parameters and the therefore reduced cost
for hyperparameter optimization, Gordon-TCA, clearly is superior in terms of runtime
during training. For testing, however, both methods essentially perform a single vector
multiplication and thus are comparable in runtime. In summary, one may thus strike a
balance between training performance and the detection performance yield in production.

4.5.5 Temporal Evaluation

To demonstrate the use of Gordon as a fast, complementary detector, we study its per-
formance over several weeks of operation. For this experiment we focus on Gordon-SVM
due its superior performance and thus make use of 4-grams. Moreover, we again operate on
12 consecutive weeks of collected Flash data, but this time we apply the detector one week
ahead of time, that is, we classify one week after the other, based on the previous weeks.

We start off with weeks 1 as training, weeks 2 as validation and weeks 3 as first test dataset.
Over the course of the experiment we shift the time frame forward by one week and
gradually extend the training dataset. This can be seen as expanding a window over the
experiment’s period of time. Hence, Gordon’s detector accumulates more and more data
for training—just as a system operating in practice would. In order to optimally foster
complementary approaches, we choose a liberal false-positive rate of 1 %. Figure 4.9 shows
the true-positive rates achieved by our method during 10 weeks of operation.
Gordon starts off below its average performance and takes time until weeks 5 to perform

well, reaching detection rates between 80 % and 99 % for the remaining weeks. As our
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Figure 4.9: Gordon’s performance over 12 consecutive weeks. The red line illustrates the detector’s
progression over time, showing a clear uptrend towards its optimal performance.
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method makes use of machine learning techniques, the detector requires a certain amount
of training data before it is fully operational and reaches its optimal performance. If
parameterized to 0.1 % false positives, Gordon still reaches detection performances of
82 % on average.

Overall, this experiment shows Gordon’s potential to improve on the detection perfor-
mance shortly after a malware’s appearance in the wild. We consider the number of false
positives—benign samples that need to be additionally analyzed without directly resulting
in a malicious signature—as tolerable trade-off for the leap taken in short-term detection
performance. In practice, one may start off with a rather strict configuration, accept a lower
gain and scale up the interval according to available resources.

4.6 Related Work

A large body of research has dealt with the detection and analysis of web-based attacks,
yet Flash-based malware has received only little attention so far. In this section, we discuss
work related to Gordon, focusing on two strains of research: (1) Flash-based malware and
(2) multi-path exploration.

Note that the implementations of JavaScript and ActionScript interpreters are funda-
mentally different, making an application of detection approaches for malicious JavaScript
source-code unlikely to operate on Flash-based malware available in bytecode. Consequently,
we do not discuss approaches for malicious JavaScript code in this paper and refer the
reader to a wide range of research (Ratanaworabhan et al., 2009; Cova et al., 2010; Canali
et al., 2011; Kolbitsch et al., 2012; Kapravelos et al., 2013). Nonetheless, combining detection
methods for malicious JavaScript and Flash can be of considerable value. Also, the work by
Šrndić and Laskov (2013) is of particular interest, since they have been the first to show the
practicality of using hierarchical document structure for detection.

4.6.1 Flash-based Attacks and Malware

Only few works have studied means to fend off malware targeting the Adobe Flash
platform (Ford et al., 2009; van Overveldt et al., 2012). OdoSwiff (Ford et al., 2009), focuses
on detecting malicious ActionScript 2 Flash advertisements based on expert knowledge
of prevalent attacks. In contrast to OdoSwiff, our method employs machine learning
to automatically produce a classifier based on benign and malicious Flash animations.
FlashDetect (van Overveldt et al., 2012), the successor of OdoSwiff also makes use of
machine learning techniques and, similar toGordon, employs an instrumented interpreter
to dump dynamically loaded code. However, FlashDetect only pursues one level of staged-
execution, focuses solely on ActionScript 3 and employs a simple heuristic for subverting
environmental checks that has proven insufficient for modern Flash-based malware. By
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contrast, Gordon aims at maximizing the coverage of indicative code regions independent
of particular attacks, across multiple stages and versions. As a result, our method allows
to uncover vitally more code than FlashDetect and thereby attains a better basis for
detecting attacks. Furthermore, by not relying on hand-crafted features Gordon can better
cope with the large diversity of today’s malware.

Industry research has mainly focused on instrumenting Flash interpreters for analysis
purposes. Wook Oh (2012), for instance, presents methods to patch ActionScript bytecode
to support function hooking, and more recently, Hirvonen (2014) introduces an approach
for instrumenting Flash based on the Intel Pin Platform. These systems complement
Gordon and may be used to implement our method for other platforms.

Aside from Flash-based malware and therefore, orthogonal to Gordon, several au-
thors have inspected the malicious use of Flash’s cross-domain capabilities (Johns and
Lekies, 2011), its vulnerability to cross-site scripting attacks (van Acker et al., 2012) and the
prevention of such (Louw et al., 2010).

4.6.2 Multi-path Exploration

Ideally an analysis covers all possible paths and corner case, which however is not feasible
due to the potentially exponential number of different execution paths. Most notably in this
context is the work by Moser et al. (2007b), who propose to narrow down analysis to paths
influenced by input data such as network I/O, files or environment information. While
this effectively decreases the number of paths to inspect, it still exhaustively enumerates
all paths of this subset under investigation. A second strain of research has considered
symbolic execution for the analysis of program code and input generation (e.g., Cova et al.,
2006; Saxena et al., 2010). Brumley et al. (2008) combine dynamic binary instrumentation
with symbolic execution to identify malware behavior triggered by external commands.
Similarly, Crandall et al. (2006) use symbolic execution to expose specific points in time
where malicious behavior is triggered. Equally to the enumeration of paths, symbolic
execution shares the problem of an exponential state space.

With Rozzle, Kolbitsch et al. (2012) also make use of techniques from symbolic execu-
tion. However, instead of generating inputs, data in alternative branches is represented
symbolically and, upon subsequent execution of both branches, merged. In doing so,
Kolbitsch et al. accept to break existing code due to the execution of infeasible paths. Based
on the symbolic representation Rozzle likewise is subject to an exponential state space
that is dealt with by limiting the depth of the symbolic trees used. Limbo (Wilhelm and
Chiueh, 2007) avoids this kind of state explosion and reverts to a more simple strategy of
forcing branching conditions to monitor execution. Limbo, however, again exhaustively
enumerates paths and thus does not address the underlying problem in the first place.

All these methods are either driven by the original execution path (Wilhelm and Chiueh,
2007; Kolbitsch et al., 2012) or focus on external triggers (Crandall et al., 2006; Moser
et al., 2007b; Brumley et al., 2008). Gordon, on the other hand, first identifies indicative



4 Learning Malicious Behavior 61

code regions and guides the interpreter towards these, enabling a payload-centric analysis.
X-Force (Peng et al., 2014) however pursues a very similar idea of forced execution as we do,
but focuses on reliably enumerating paths to build comprehensive graph representations
of the code. While Gordon records a small number of correctly executed traces, X-Force
enumerates as many as necessary to build these graphs and also forces execution beyond
errors. With J-Force, Kim et al. (2017) extend this idea to the analysis of JavaScript and
attacks facilitated by exploit kits.





Chapter 5Efficient Machine Learning for Attack Detection

Learning Normality

Learning-based approaches hinge on the availability of sufficient data for training.
Suitable and sufficient training data however does not exist across fields of applications
alike. While for malware detection, we are able to make recourse to large collections of
malware as well as benign software, this is not necessarily the case for network-based attack
detection, for instance. On network level benign traffic significantly outweighs recordings
of genuine attacks. Learning a classification on such one-sided data hardly is feasible and
would result in poor detection performances. Instead, with anomaly detection it is possible
to make a virtue out of this limitation and construct a model of normality based on benign
data only and identify attacks as deviations thereof.

In this chapter, we show how language models can be used for anomaly detection. To this
end, we consider traffic from industrial control systems (ICS) and the detection of attacks
therein as a use case, which we detail in Section 5.1. At this, we investigate attack detection
in a particular challenging environment that heavily relies on (proprietary) binary protocols
with high-entropy data. In Section 5.2, we then provide a brief overview of our method
before describing its core components in detail: First, we present a linear-time algorithm
for clustering network messages based on Count-Min sketches and introduce the concept
of prototype models in Section 5.3. These models are prototypical representations specific
to do not only characterize the structure but also the data that is typically contained.
Second, in Section 5.4 we then show how prototype models enable the implementation
of effective anomaly detection by pruning out irrelevant, noisy features that arise from
the intermingling of structure and data in binary protocols. This enables us to further
enhance the expressiveness of the models and thus allows for robust anomaly detection in
environments with high-entropy data. In Section 5.5 we then evaluate our detector and
discuss related work in Section 5.6.

5.1 Use case: Detecting Intrusions in SCADA Systems

Industrial facilities, such as power stations and water supply systems, are high-value tar-
gets for terrorists and nation-state attackers. The progressing automatization of industrial
processes and the interconnection between devices, facilities and control centers signifi-
cantly increase their attack surface and impose new challenges for security solutions. A
power plant, for instance, consists of a plethora of proprietary software and hardware com-
ponents from various manufacturers. Many of these components use non-standardized
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protocols that are specific to manufactures or even to a particular type of device. Con-
sequently, operators of industrial facilities usually do not know about implementation
details of the (computer) systems they run. Moreover, these protocols often rest on compact
binary structures for minimizing communication overhead and delay. On the field level this
frequently is the case due to the limited resources of devices and legacy reasons. Modbus
messages, for instance, are limited to 256 bytes as the first implementation has been de-
signed for serial communication over RS485 (Modbus.org, 2012). Interestingly, modern
protocols on the control level however often rely on similar representations and structures
as well. This renders the use of traditional intrusion detection approaches for industrial
control systems extremely difficult. As a result, the networks in so-called SCADA systems
have been increasingly targeted by attacks in the last years (e.g., Karnouskos, 2011; Falliere
et al., 2011; Symantec Security Response, 2011; Kaspersky Lab, 2015; Cherepanov, 2017).

Without the availability of protocol specifications that assist in preprocessing network
data, an in-depth analysis of communication content is difficult to accomplish. The
research community has thus moved towards approaches that model the appearance of
network traffic rather than its content (Koutsandria et al., 2014; Parvania et al., 2014; Schuster
et al., 2015; Udd et al., 2016) or even the underlying physical process itself (Hadžiosmanović
et al., 2014; Krotofil et al., 2015; Urbina et al., 2016) in order to detect deviations from the
expected process states. This more abstract perspective allows for the detection of specific
classes of attacks, such as flooding or incremental attacks, but also restricts defense more
than necessary. Stuxnet, for instance, has sabotaged the overall production process by
making small, infrequent changes to the motor speed of centrifuges (Falliere et al., 2011).
While only subtle changes have been made, these operations happened out of the ordinary
and posed anomalies among the usual bus communication with respect to used input
values. Thus, given a precise model of normality such anomalies can be detected—both on
a process- as well as the network-level. Constructing these models however is inherently
difficult. Industrial facilities are subject to changes in hardware (e.g., sensors, PLCs, etc.)
and adaptations of the process itself. On the one hand, using an expert model of the
physical process for detection, implies that this model has to be manually updated at every
change in order to prevent divergence from reality that in turn may result in loopholes for
an attacker. On the other hand, machine learning has been used to automatically learn and
update models of communication contents instead. Previous research has demonstrated
the effectiveness of anomaly detection for network-based intrusion detection for various
fields of application and protocols (Wang and Stolfo, 2003, 2004; Wang et al., 2005; Rieck
et al., 2010; Šrndić and Laskov, 2013; Wressnegger et al., 2013b). However, the prevalent use
of proprietary binary protocols in industrial networks significantly complicates the use
of content-based approaches for the detection of intrusions and often renders existing
approaches ineffective (Hadžiosmanović et al., 2012).

In this chapter, we bridge this gap and present a method that effectively makes use of
content-based anomaly detection for proprietary binary protocols. With this we show that,
in contrast to prior belief, language models are very well usable in such environments.
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5.2 System Overview

We now present Zoe, our method for content-based anomaly detection in industrial
control systems (Wressnegger et al., 2018). By focusing on proprietary binary protocols,
for which we do not know about the structure or the semantics of the transmitted data,
we shift the focus away from the underlying analyses and feature engineering towards
methods for accurately modeling the data at hand. In contrast to the method for classifying
malware, presented in the previous chapter, here we thus consider raw data as observed on
the wire as input in step ¬. Subsequently in step ­, we use language models to embed
the data in feature space and merely cleanse it in the process, in order to prepare it for
learning. An overview of the system is depicted in Figure 5.1.

00 1A 47

1A 47 65

47 65 74

...

58 42 30

42 30 32

30 32 22

32 22 FF

¯ Anomaly Detection® Prototype Models­ Embedding¬ Input

Figure 5.1: Schematic depiction of Zoe and the individual steps involved: First, input data is
recorded at network level, before the raw network traffic is embedded using language
models. Then, the data is clustered for identifying prototypical representations of
message types and use these prototype models for anomaly detection.

A large body of research on content-based intrusion detection has shown that considering
the mere presence of features in network traffic, such as n-grams, often is superior over
counting their occurrences (Wang et al., 2006a; Rieck et al., 2010; Hadžiosmanović et al.,
2012; Šrndić and Laskov, 2013; Wressnegger et al., 2013b). For example, particular strings
might already be indicative to spot network attacks at the application layer. However,
ignoring the frequency of features prematurely discards valuable information. While this
kind of data may not be mandatory for the pure detection of attacks, we show that it plays
a key role in modeling normality and constructing corresponding detection models, in
particular, in proprietary network environments.

Based on this observation we perform two more steps: In step ® we automatically parti-
tion network traffic into k groups of messages with similar content, thereby approximating
states of the underlying protocol. This procedure is designed to not only separate message
types but also, to derive one prototype model per type in the process, which makes a
classical separation of clustering and subsequent learning of content models unnecessary.
In step ¯ we then use these for anomaly detection. One of the main obstacles for analyzing
unknown protocols and detecting attacks therein is “noise”, that is, seemingly random
data that hinders inferring suitable content models (see Hadžiosmanović et al., 2012). We
address this problem by analyzing the occurrences of features in each prototype model
and carefully filtering rare features using a frequency threshold t.
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These two key components form the basis of our detector, which thus is parameterized
by the number of prototype models k and the frequency threshold t:

Zoe(k, t)

The usage of one building block without the other can be denoted as Zoe(1, ∗) for a
detector using one global content model but different thresholds for noise-reduction, and
Zoe(∗, 0) for the use of individual prototype models that do not filter noise. In practice
these two steps however seamlessly intertwine and should be used in combination for
yielding the best possible performance. Subsequently, we describe both in more detail.

5.3 Building Prototype Models

In the absence of appropriate protocol dissectors and parsers, an analysis of network
traffic is only feasible if abstract representations of the exchanged data are developed that
are capable of reflecting content and structure in a generic manner. To tackle this problem,
we model the communication between two parties in a network as a sequence of incoming
and outgoing binary messages or more formally application-level data units (ADUs). For
stateful transport protocols, such as TCP, these messages can be extracted using regular
stream reassembly (Dharmapurikar and Paxson, 2005); for stateless protocols, such as UDP,
these messages simply refer to the application-level payloads. While this representation is
ideal for conventional signature-based detection, for building protocol models we however
require a more structured representation of the data. We thus map each message m
monitored in the network to a corresponding feature vector x = ϕ3(m) using language
models: We extract all n-grams, substrings of length n, from the message and record their
occurrences. Each n-grams is associated with one dimension of the feature space, such that
a message m can be expressed as a vector of n-gram occurrences. Analogous to Chapter 3
we define this map as

ϕ3 : T → {0, 1}|S|,

m 7→
(

bin(s, m)
)

s∈S

where T is the set of all possible messages in network traffic, the set S denotes all pos-
sible substrings of length n and the function bin(s, m) represents the binary occurrence
of the substring s in the input message m. Using this mapping, we translate a set of
messages {m1, . . . , mN} to a set of vectors

X = {x1, . . . xN} with xi = ϕ3(mi).

Based on this representation, we proceed to learn prototype models as a first cornerstone
for coping with high-entropy data in binary protocols. To learn models per message
type we build on methods from the field of clustering (see Hastie et al., 2009, Chp. 14).
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Unfortunately, clustering is a rather expensive task and many algorithms are not suited for
efficiently processing large amounts of data. With Zoe we aim at an integrated solution
that breaks up the separation of clustering and subsequent learning of content models. We
thus build upon a linear-time algorithm for approximating a clustering (Aggarwal, 2009),
that we have tailored to network traffic analysis such that we can build prototype models
on-the-fly.

We first transform our network messages m to feature vectors x as described before, to
build the input dataset X. Then, k samples are drawn from the input data to initialize
clusters C1, . . . , Ck. For each following sample x ∈ X we measure the similarity to each
cluster and assign it to the cluster Cj that has the closest proximity

j = arg max
i∈[1,k]

proxCi
(x).

The overall similarity in turn is calculated based on the input sample x and all samples
that belong to a cluster C:

proxC : {0, 1}|S| → R,

x 7→ 1
|C|

∑
y∈C

sim(x, y).

The similarity measure sim for two input samples may be either approximated by the
dot product ˜sim: x, y→ x · y =

∑n
i=0 xiyi or defined by the cosine similarity based on the

l2-norm ‖x‖2 =
√∑n

i=0 x2
i , that is,

sim: {0, 1}|S| × {0, 1}|S| → R,

x, y 7→ x · y
‖x‖2‖y‖2

= cos(θ)

where θ denotes the angle between the vectors x and y. While this requires slightly more
effort to realize a linear-time implementation, the normalized angle has the advantage of
being a formal distance metric (see Leskovec et al., 2014).

For a sufficiently large input set X the algorithm above approximates a precise clus-
tering with high probability (Aggarwal, 2009). This algorithmic requirement however
also demands an especially efficient way of handling the sets of messages as clusters. We
hence make the following two optimizations in our implementation: First, we store counts
of messages and their substrings rather than the messages themselves in order to save
valuable working memory. For each cluster Ci we only maintain the total number of all
samples |Ci| contained in the cluster and a vector of cumulative counts as prototype models:

Pi =
∑
y∈Ci

y.

This suffices to compute the similarity between messages and clusters as defined before,
and can be used for efficient anomaly detection in further follow. Second, due to the large
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amounts of network traffic we operate on, storing and keeping track of substring counts
already poses a considerable challenge. Retaining exact counts simply is not feasible as it
requires to store all substrings or at least hashes thereof. We thus revert to probabilistic
counting of substrings using Count-Min sketches (see Section 3.3).

5.4 Anomaly Detection

As a second building block for reliably detecting attacks in proprietary network protocols,
we propose an extension to content-based anomaly detection made possible by prototype
models introduced in the previous section. Language models, such as n-grams (e.g., Wang
and Stolfo, 2004; Wang et al., 2006a; Song et al., 2009), have frequently been used for attack
detection and have proven impressively effective for text-based data (e.g., Wang and Stolfo,
2004; Wang et al., 2005, 2006a; Perdisci et al., 2009; Rieck et al., 2010). For binary and
high-entropy data, however, such models are considered mostly impractical by the research
community so far (Hadžiosmanović et al., 2012) and have been widely discarded for the
application in industrial networks.

The main reason why language models perform worse in this environment is founded
in the density of the message data. The density is defined as the ratio of the number of
unique occurrences of a feature to the total number of all possible elements (see Chapter 3).
This ratio significantly influences the quality of the resulting model. In case of high
entropy, as induced by binary network protocols, a model gets so “packed” that it becomes
difficult to differentiate between two classes (benign and malicious messages) and renders
mere binary embeddings impractical (Wang et al., 2006a; Hadžiosmanović et al., 2012).
Count embeddings, on the other hand, have been shown to be less effective when used as
a drop-in replacement in an otherwise identical setting (Wang et al., 2006a; Rieck et al.,
2010; Hadžiosmanović et al., 2012; Šrndić and Laskov, 2013; Wressnegger et al., 2013b).

However, rather than discarding this information altogether, in this work, we use the
number of occurrences to filter relevant from irrelevant information. Note, that we record
the frequency f of samples in which features/substrings s ∈ S occur rather than the total
count of s in the complete dataset. Setting f in relation to the total number of samples N
formally yields the well-established document frequency measure df = f

N . The prototype
models Pi that we have introduced in the previous section represent exactly these feature
frequencies across training samples iff function bin(s, m) is defined to report the existence
of substring s in input message m. Detection schemes based on binary embeddings can
thus be directly derived from prototype models Pi without additional training.

By introducing a threshold t we now prune features that occur in less than t input
samples that have been associated with a cluster and thereby effectively discard noise
from the training data. Models Mi can hence be interpreted as sets of features that are
considered for detection and together form the overall content model used by Zoe:

M = {M1, . . . , Mk} with Mi = {s ∈ S | Pi,s ≥ t}
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This allows us to revert to detection using the (implicit) binary embedding based on the
remaining, most relevant features only. This scheme offers two main advantages: First, it
allows to boil down the set of benign features to those that appear more than t times, and
thus significantly reduces the size of the model as features associated with a value of 0 are
not explicitly stored. Furthermore, this limits an attacker’s reach of play when mimicking
benign messages. Second, for production use and to improve runtime performance of
the final detector this binarized Count-Min sketch can be transformed into a compact
Bloom filter that offers a higher accuracy than established methods with the same memory
footprint (see Section 5.5).

In order to determine the overall detection using k models Zoe considers the score of
the model with the highest resemblance to the message m in question. With a scoring
function d: T → R that yields low values for known/benign messages and high values for
anomalies, this formally translates to choosing the minimum score of k models:

scoreM : T → R,

m 7→ min
i

d(m, Mi)

In accordance to d and using an overall threshold T, a message is considered malicious
for score(m, M) ≥ T and benign otherwise.

It is important to stress that anomaly detection does not explicitly learn to discrimi-
nate benign from malicious data, but instead normality from anomalies. This semantic
gap requires one to design features and detection systems carefully, as otherwise identi-
fied anomalies may not reflect malicious activity. To further tighten the assumption of
anomalies being attacks, it is necessary to periodically retrain the underlying model as
the notation of normality might change over time. In practice, a linear-time approach for
training as well as testing, as presented in this chapter, thus is highly beneficial.

5.4.1 Adjusting Anomaly Detectors

Effective anomaly detection can only succeed with a carefully chosen parametrization
of the detector. This requires benign traffic for building the content model, but also
attack samples to validate the chosen settings and estimate the expected detection perfor-
mance (Sommer and Paxson, 2010). As recordings of such attacks in industrial environ-
ments and for proprietary protocols in particular are naturally rare, we have developed a
tool for the automatic generation of network attacks against unknown protocols. The tool
mimics a protocol based on observed network traffic as close as possible and injects attack
strings, that range from program code (e.g., shellcodes, ROP chains, PLC instructions),
over scripts fragments (e.g., Perl scripts) to random data, at positions containing variable
input. To this end, we first group similar network messages using clustering and then
derive generic rules that describe the structure of the messages in each cluster. Second,
we generate attack strings with different encodings and obfuscations to populate variable
fields of the derived rules.
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Inferring Protocol Rules. For industrial facilities we usually do not have the specification
of the used network protocols on hand and neither does the operator, as vendors normally
do not share product details. Consequently, we are required to automatically infer pro-
tocol models based on network traffic only (Leita et al., 2005; Cui et al., 2006; Krueger
et al., 2012; Gascon et al., 2015). To this end we build upon work by Krueger et al. (2012)
and Gascon et al. (2015) to derive rules for individual messages.

In a first step, we identify messages that have the same structures using off-the-shelf
k-means clustering. Similarly to the method described in Section 5.3 network messages
cannot be directly used at this point, but are embedded into vector space first. We thus
again operate on an input set X = {x1, . . . xN} yield by the feature map ϕ3 with a binary
embedding of substrings s ∈ S. However, as inferring protocol models is much more
involved than simply deriving states, additional statistical tests are applied to filter relevant
from irrelevant substrings/features and to avoid an overly populated vector space that
might hinder the clustering process. We hence subdivide the feature space in constant,
mutable, and volatile parts by applying a binomial test to each feature (Krueger et al., 2010).
A value close to 0 indicates volatile features while a frequency of 1 refers to constant
features. Neither volatile nor constant features are particular valuable for discriminating
messages in a protocol—think of a protocol’s magic values or nonces. We hence reject all
features that do not meet a statistical significance level of α = 0.05 before clustering the
inputs (Holm, 1979).

Subsequently, we derive rules that describe all messages in a cluster which can then be
used to generate new messages that comply with the format of that cluster. To do so we
consider the original messages in each cluster, rather than the reduced representation in fea-
ture space and pair-wise align these using an extended version of the Needleman-Wunsch
algorithm (Needleman and Wunsch, 1970). The resulting rules consist of fixed bytes that
appear at the same position in each message of the cluster and variable fields that may
contain different byte sequences from message to message. Figure 5.2 shows an example
for a set of simple messages consisting out of human readable and binary data.

Message 1 \x00\x1a GetVal "N2HAJ22CT000 XH24" \xff

Message 2 \x00\x1a GetVal "N2HAJ22DT500 XR01" \x00
...

...
Message n \x00\x1a GetVal "N2HAJ31AA100 XB02" \xff

Rule \x00\x1a GetVal "N2HAJ 00 X "

Figure 5.2: Rule inference for a set of simple messages. Figure taken from (Wressnegger et al., 2018).

It is clear to see that our tool is not capable of learning the exact protocol specification
but approximates it based on the network traffic on hand. The depicted cluster contains
messages that apparently transmit a command string GetVal to retrieve sensor values
from a particular device. Furthermore, it contains the length of the transmitted string
as 16 Bit integer in the front and another unspecified flag (presumably a high and low
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value) at the end. Within this cluster only individual parts of the device identifier and the
binary flag at the end change such that the remaining parts are considered constant by
the algorithm. For populating a valid network message with attack payloads this however
is sufficient.

Generation of Attack Messages. With the inferred rules as detailed descriptions of protocol
messages at our disposal, we can now produce authentic network traffic that contains arbi-
trary attack payloads. For a wide range of different attacks we query Metasploit (Rapid7 LLC,
2003–2018) for payloads and encoders—simple obfuscations that, for instance, encrypt
scripts with a simple xor operation, or map program code to printable characters. To
generate attack messages we proceed as follows: For each attack string we randomly choose
an existing network message. The corresponding rule then allows us to replace variable
fields within this message at will. For our experiments we choose exactly one at random and
inject the attack payload. The remaining (constant and variable) fields remain unchanged.
Figure 5.3 depicts this simple scheme.

Generated Message

\x00\x1a GetVal "N2HAJ 31AA1 00 X ... " \xff

Attack Payload

\x03\x00\x00\x16\x11\xe0...\xc0\x01\x0a

Encoder/ Obfuscation

Figure 5.3: Schematic depiction of the generation of network attacks.

5.5 Evaluation

We empirically evaluate Zoe based on the six industrial protocols described in Sec-
tion 5.5.1 and conduct a number of experiments that examine the different aspects of our
method: First, in Section 5.5.2 we demonstrate the overall detection performance of our
method. Second, the influence of Zoe’s de-noising capabilities as well as the impact of
message-specific prototype models is studied in Section 5.5.3 and 5.5.4, respectively. Third,
we measure the data throughput of our method during training in Section 5.5.5 and com-
pare Zoe with related approaches in Section 5.5.6. Finally, we investigate the feasibility
of evasion attacks in the form of polymorphic blending attacks against Zoe, as a final
experiment in Section 5.5.7.

In the course of this evaluation we describe detection performances with the aid of
ROC curves and the corresponding (bounded) AUC, as described in Section 1.1.3. For
training and testing individual detectors we create strictly separated datasets that do
not overlap. 75 % randomly chosen samples are used as known data for training and the
remaining 25 % as unknown data for testing. This partitioning is applied to benign and
malicious samples likewise, and is repeated for ten experiments which are averaged to
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determine the overall detection performance. The parameters for the detector are chosen
solely based on the results obtained on training data and only then, this configuration is
used to evaluate the performance on the testing dataset.

5.5.1 Datasets

For evaluating our approach under realistic conditions, we have partnered with a large
European energy producer. In particular, we have collected roughly 210 GiB of raw network
data during 6 days at a large power plant (total 1,900 MW), and the operation of a coal
mining facility. At the power plant we have recorded network traffic at the control level of
a power unit producing 500 MW. Our recording period covers a ramp-up phase as well
as normal operation of the unit. From this, we have extracted the five most prominent
protocols, all of which are proprietary and publicly undocumented1. Through manual
analysis we however were able to attribute these to a large plant manufacturer. In order to
provide a comprehensive study on protocols that occur in industrial networks the data
recording at the coal mining facility targets Profinet IO at the field level. In total we
have recorded communication between 92,700 unique devices in an authentic production
environment. Table 5.1 summarizes the gathered data.

Protocols P1–P3 build on TCP while P4 & P5 use UDP for direct communication.
Profinet IO, on the other hand, is situated somewhat differently: While TCP/IP is used for
the parameterization and configuration, real-time messages are exchanged on a separate
channel that does not use the Internet protocol at all. Although Profinet IO traffic can be
easily parsed and therefore reliably filtered, there are no protocol parsers publicly available
for the remaining traffic from the power plant. For these protocols we hence resort to
filtering the network traffic based on IP ports, but explicitly consider relations between
communicating entities to sanitize the data. For TCP traffic we additionally reassemble
network streams, such that we are able to evaluate Zoe based on complete “messages”
(approximated as consecutive, unidirectional traffic) for P1–P3, datagrams for P4 & P5, and
Profinet IO packets. All in all, this gives us 46.7 GiB of raw data for our evaluation.

Furthermore, these different protocols show a highly diverse structure. While proto-
cols P1 and P2 seem to exclusively use either text-based or binary-based data for their
communication, protocols P3–P5 use a mixture of both. The latter appear to mainly consist
of binary structures that additionally transmit string-based (printable) data. As these strings
exhibit strong structure that may be interpreted as another protocol on top of the base
protocol we assign these to both sub-groups. Profinet IO then again is strictly based on
binary data. Additionally, server and client communication often vary significantly for these
protocols. To account for this difference in composition and structure, we thus split the
individual protocol subsets in incoming and outgoing traffic and analyze these individually
in our evaluation. UDP and Profinet IO traffic is not effected by this preprocessing step.
1Consequently, publicly available tools such as Wireshark are not capable of parsing these protocol beyond
the TCP/UDP packet structure.
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5.5.2 Overall Detection Performance of Zoe

We begin with demonstrating our method’s detection performance for the six industrial
protocols we have collected. Figure 5.4 shows the results for our detector parameterized
with different de-noising thresholds and numbers of prototype models using 5-grams.
The y-axis shows the detection performance as AUC bound to different thresholds of false
positives, denoted as AUC(b), over the individual protocols on the x-axis. Zoe performs
very well across different protocols and detection performance only differs in nuances.
The parametrization of the detection however is crucial as we demonstrate in the following
sections. For protocol P3 (outgoing), for instance, our experiments show that at least
4 different prototype models are needed to enable good detection. Subsequently, we thus
inspect the influence of the individual components of Zoe in detail and use protocol P3 as
recurring example.
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Figure 5.4: Detection performance of Zoe for the protocols P1 to P6.

5.5.3 De-noising Content Models

Next, we evaluate the impact of different thresholds t used with Zoe to demonstrate
its de-noising capabilities. We hence parameterize Zoe(1, t) with thresholds t ∈ [20, 100]
with a granularity of 5. Figure 5.5 shows the results for protocol P3. At a threshold t = 35
the detector reaches its peak performance with an AUC(0.0001) of 0.8 (light gray line) and
a true-positive rate of 0.978, meaning that 97.8 % of the attack patterns are detected with
at most 1 false positive out of 10,000 network messages. In comparison to no de-noising
(t = 0), we record a tremendous improvement that clearly shows that pre-filtering the
features used for detection is of the essence for effective attack detection in binary protocols.

Moreover, it is interesting to see that the detection performance shoots up at thresholds
of 20 to 25, peaks at t = 35 and flattens out towards higher values. This underlines the
importance of a thorough evaluation with the aid of a comprehensive set of attack samples.
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Figure 5.5: Detection performance of Zoe(1, t) for varying thresholds t. The dashed line indicates
the threshold yielding the highest detection performance (t = 35).

5.5.4 Message-specific Prototype Models

In this section, we bring together the two key components of Zoe and study the influence
of using multiple prototype models on the detection performance. Furthermore, we
explicitly highlight the additional improvement in the eminently important low range of
false positives.

To this end, we train our detector for different numbers of prototype models k and
thresholds t in order to calibrate the detector as described in the previous section. The
best configuration with both components enabled, Zoe(4, 50), is shown as a ROC curve in
Figure 5.6 in relation the best detector without prototype models, Zoe(1, 35). Note, that the
x-axis (false-positive rates) shows a logarithmic scale to better emphasize the improvement,
that the detection specific to message types entails. Such enhancements in detection
performance are of great importance for the application of the detector in production and
limits the costs of false alarms.
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Figure 5.6: Detection performance of two configurations of Zoe: First, a global content-model with
(1, 35) and second, multiple prototype models with (4, 50). The latter clearly improves upon
the other in the critical region of low false-positive rates.
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5.5.5 Runtime Evaluation

Zoe makes use of a linear-time algorithm for clustering network messages and deriving
the final detection models is done in constant time. The latter is achieved by applying
a threshold when processing the prototype models. The runtime performance thus is
mainly influenced by the number of prototype models used for detection and the size of
the n-grams, that is used to process the input data.

In this experiment, we thus evaluate the runtime performance of Zoe with respect to
these two parameters. We again measure the throughput of the full toolchain for training
our method, single-threaded on an Intel Xeon E5-1650 CPU at 3.50 GHz and operate in
internal memory to compensate for disk I/O. Figure 5.7 shows the results in Mbit/s over
the number of used prototype models for three different lengths of n-grams.
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Figure 5.7: Throughput of Zoe during training.

For example, with 28.9 Mbit/s Zoe using three prototype models and 3-grams, per-
forms very well. The throughput however decreases with increasing numbers of pro-
totype models, as each item needs to be compared to each cluster/model before as-
signment. Moreover, initializing and resetting Count-Min sketches is relatively costly,
such that the throughput improves for large data sets. We also observe an impact of
the n-gram length, which results from the increasing number of bytes that gets hashed.
While the number of prototype models cause an unavoidable decline, hashing costs may
be reduced by combining hash functions (Kirsch and Mitzenmacher, 2006), or using
rolling hashes (Moraru and Andersen, 2012).

5.5.6 Comparison with Related Approaches

Ultimately, we conduct a comparison of Zoe to Anagram (Wang et al., 2006a), a content-
based approach based on Bloom filters using higher-order n-grams (n ≥ 3). While it
originally has been designed for detecting attacks in HTTP traffic it has proven effective
for various other protocols as well (Hadžiosmanović et al., 2012; Wressnegger et al., 2013b).
Previous research has shown that it even works for certain binary protocols with a limited
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set of message formats and simple structure such as Modbus (Hadžiosmanović et al., 2012).
Anagram is very similar to the most basic configuration of our detector, Zoe(1, 0), that
neither make uses of prototype models (k = 1) nor de-noising of the content models (t = 0).
In order to maintain comparability in this experiment we employ filters/sketches that have
approximately the same number of items for storing content features. We hence choose
ε = 6× 10−7 and p = 0.99 for Count-Min sketches in order to match the 225 items large
Bloom filter we use for Anagram in this experiment. We also make use of d1 as distance
measure for a direct comparison. Table 5.2 shows the detection performance of both as AUC
bounded to different thresholds of false positives for protocol P3. While Zoe yields high
performance values down to a false-positive rates of 0.0001, Anagram is not able to compete
and only achieves an AUC(0.01) of 0.15, which even reduces to 0.04 for AUC(0.001). This
is founded in the tight connection of structure and data found in binary protocols, which
conventional content-based anomaly detection is not designed to operate on.

Detection performance

Method AUC(0.01) AUC(0.001) AUC(0.0001)

Zoe 0.9984 0.9844 0.8463
Anagram 0.1515 0.0408 0.0002

Table 5.2: Detection performance of Zoe and Anagram for protocol P3.

In the ROC curve shown in Figure 5.8 the difference becomes even more apparent.
Again, a logarithmic scale has been chosen to highlight the importance of low false-
positive rates for intrusion detection. Zoe yields a true-positive rate of 0.971 for as few
as 0.002 % false positives, meaning that, 97.1 % of the attacks are correctly detected with
only 2 false alarms out of 100,000 messages. Anagram, on the other hand, only detects
16.5 % with a 500× higher false-positive rate of 1 %. These results show that Zoe not only
outperforms Anagram by an order of magnitude in sheer detection performance, but also
in terms of false-positive rates.
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Figure 5.8: Detection performance of Zoe and Anagram side-by-side as ROC curves on a logarithmic
scale to better emphasize the extremely small false-positive rates achieved by our method.
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5.5.7 Evasion

In order to bypass content-based anomaly detection an adversary might attempt to
mimic benign content and slip by attacks. We thus also study the effects of a particular
kind of evasion attack—polymorphic blending—on our detector.

Mutation and transformation attacks have a long-standing history for evading intrusion
detection systems on different levels (e.g., Vigna et al., 2004; Rubin et al., 2004; Fogla et al.,
2006; Fogla and Lee, 2006; Perdisci et al., 2006; Song et al., 2007, 2010). Polymorphic blend-
ing attacks are a particular effective tool against content-based intrusion detection (Fogla
et al., 2006). Although, generating these has been proven to be NP-hard (Fogla and Lee,
2006), attackers can resort to heuristics to provide good approximations, for instance,
using iterative hill climbing. This method from mathematical optimization starts off with
an initial solution (the original attack) and iteratively improves it according to a target
function (the scoring function of the detector).

Two aspects are key to the success of the attack: First, the application of lower-order
n-grams and second, a rich and extensive model containing large amounts of benign
features that can be used by the attacker. The latter can also be expressed by the density
and variability of the training dataset (see Chapter 3) that directly influence the richness of
the model. Note, that using higher-order n-grams (n ≥ 3) also increases the complexity of
the model due to rare but apparently benign features. With Zoe we address both aspects by
(a) using substrings of length n = 5 and (b) pruning rare features, thus limiting the reach
of play of an attacker.

In this final experiment, we generate 32,640 blended attack instances per epoch over
a total of 100 epochs. Additionally, after each iteration we select the 10 best performing
instances for further mutations. This results in 3,234,624 variations that are tested for
each attack. Figure 5.9 shows the results of a single experiment for a number of different
thresholds of Zoe. The gray-scale level decreases with higher thresholds from black (t = 35)
to light gray (t = 50).
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Figure 5.9: Polymorphic blending attacks based on 3,234,624 mutations over 100 epochs against
Zoe with different thresholds t.
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The ripples observed in the second half of the curves indicate the point in time when the
algorithm has detected a potential local minimum and attempts to escape by performing
a small number of random mutation at once. The higher the detection score to which
the individual curves converge to, the more robust the detector is against polymorphic
blending attacks. This clearly shows that narrowing down the set of features that are used
in the content model (increasing the threshold) is not only beneficial for the detection
performance itself, but also for improving the resistance against mutation attacks.

5.6 Related Work

Anomaly detection has been intensely studied in computer security research in the
past and in the scope of network-based intrusion detection in particular (e.g., Ingham
and Inoue, 2007; Perdisci et al., 2009; Rieck and Laskov, 2006; Rieck et al., 2010; Wang
and Stolfo, 2003, 2004; Wang et al., 2005, 2006a). The uprise of SCADA security has again
fostered the development of new methods and has extended the scope such that we dif-
ferentiate between the following, orthogonal strains of research: (1) content-based attack
detection, (2) detection based on network characteristics, and (3) detection by modeling
physical processes. Subsequently, we review related work with respect to these different
directions with a special focus on industrial control systems. Due to the proximity to
our approach, we however also include works on content-based anomaly detection in
general-purpose networks.

5.6.1 Attack detection based on Content

A large body of research deals with the in-depth analysis of protocol contents. This
includes the identification (Dreger et al., 2006), analysis (Pang et al., 2006; Wondracek et al.,
2008) and reverse-engineering (Lin et al., 2008; Comparetti et al., 2009) of protocols, but
also the detection of shellcodes in network streams (Polychronakis et al., 2006, 2010; Snow
et al., 2011). Zoe in contrast strives for a less specific approximation of protocols tailored
to the purpose of attack detection, and aims at a wider range of attacks than shellcodes
and abnormal behavior in general.

For this purpose language models such as n-grams have been proven to be very effec-
tive (Wang and Stolfo, 2004; Wang et al., 2005, 2006a; Rieck and Laskov, 2006; Perdisci
et al., 2009; Song et al., 2009). Early approaches (Kruegel et al., 2002; Wang and Stolfo,
2004) build distributions of byte frequency as a notion of normality to detect attacks as
deviation of these histograms. PAYL (Wang et al., 2005) extends these to the use of 2-grams,
before Wang et al. (2006a) propose Anagram and establish the use of higher-order n-grams
(n ≥ 3). Similar to our approach Anagram stores a sparse vector representation of content
data in a probabilistic data structure. Recently, these data structures have also been used for
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protocol-specific anomaly detection (in combination with LTSM networks) for SCADA sys-
tems (Feng et al., 2017). Rieck and Laskov (2006) address the use of higher-order n-grams
with a representation as Trie that allows for the efficient computation of distances of such
vector representations. Spectogram (Song et al., 2009), on the other hand, extracts n-grams
from HTTP request and models these as a mixture of Markov chains and thus avoids
storing observed features altogether. Moreover, it also employs a variant of clustering to
control the number of Markov models. While similar in spirit to Zoe, both approaches
operate on an entirely different scale.

Wressnegger et al. (2013b) and Hadžiosmanović et al. (2012) provide a general overview
of content-based detection based on n-grams. The latter however focuses on indus-
trial control systems and inspects the suitability of various detection methods such as
POSEIDON (Bolzoni et al., 2006) and Anagram (Wang et al., 2006a). In concept similar to
PAYL, Düssel et al. (2009) presents an anomaly detection system based on n-grams using
distance metrics for industrial networks. This certainly shares the motivation with Zoe,
but does not pursue any advanced detection strategies to cope with proprietary binary
protocols found in large industrial facilities.

5.6.2 Attack Detection based on Network Characteristics

Alternatively to evaluating the content of network packets, researchers have consid-
ered sequences of network packets and the relationships of the communicating devices.
These approaches operate on a complementary level of network traffic compared to Zoe.
Yang et al. (2006) present an intrusion detection system that uses an auto-associative kernel
regression model coupled with the statistical probability ratio test. Schuster et al. (2015) ap-
ply a one-class SVM on a number of traces from real-world industrial traffic from different
industrial control systems. Koutsandria et al. (2014) and Parvania et al. (2014) propose to
extend intrusion detection systems for SCADA systems by combining traditional signature-
based approaches and communication rules, while considering physical limits of the
involved devices. Fovino et al. (2010) propose a new state-based intrusion detection system
for SCADA systems that combines traditional, signature-based techniques with a state-
analysis technique. Udd et al. (2016) extend the network security platform Bro (Paxson,
1999; The Bro Project, 1994–2018) to support a particular SCADA protocol.

5.6.3 Attack Detection by Modeling Physical Processes

Several researchers attempt to model the physical process of industrial facilities which
again is orthogonal to our approach. Teixeira et al. (2010), Alajlouni and Rao (2013), and
Vukovic and Dán (2013), for instance, model system state estimators and analyze their
security properties and detect emerging anomalies. Luchs and Doerr (2017) have recently
presented an anomaly detection scheme that makes use of envelope escalation for sensor
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readings. Hadžiosmanović et al. (2014) model the semantics of process variables, while
Mo et al. (2014) propose a model-based technique to detect integrity attacks on the sensors
of cyber-physical system.

Another strain of research formally describes the underlying process. For instance,
Pasqualetti et al. (2013) propose a mathematical framework for modeling cyber-physical
systems and attacks. Wang et al. (2014) employ a detection scheme based on relation-
graphs to detect stealthy false-data injection attacks, while Miao et al. (2014) use linear
combinations of coding sensor outputs to detect those attacks. Do et al. (2014) formulate the
attack problem as transient changes in stochastic-dynamical systems involving unknown
system states. Rocchetto and Tippenhauer (2017), on the other hand, use formal modeling
to discover potential attacks on cyber-physical systems.

Other model-based approaches deal with the detection of manipulated sensor data;
frequently using clustering techniques: Krotofil et al. (2015) propose a process-aware ap-
proach to detect sensor signal manipulations using the correlation entropy in clusters of
related sensors. Kiss et al. (2015) detect attacks targeting measurements using a Gaussian
mixture model to cluster sensor measurements. Urbina et al. (2016) study the physics-
based detection of attacks in control systems and develop an adaptive adversary model as
well as a new metric for measuring the impact of stealthy attacks.





Chapter 6Efficient Machine Learning for Attack Detection

Revealing Malicious Content

Next, we look upon a particular class of malware that hides in third-party containers,
so-called embedded malware, that gets executed once another application processes the
container format. To avoid detection such malware often is obfuscated by rather simple
means, such as the Vigenère cipher. For short keys up to 2 bytes the obfuscation can
be trivially broken using brute-force attacks. However, uncovering malware obfuscated
with longer keys still necessitates manually reverse engineering the code or dynamically
analyzing the malicious document in a sandbox. While in principle it is possible to monitor
and observe the execution of embedded malware, similarly to the approach for detecting
Flash-based malware presented in Chapter 4, the execution modalities render such an
approach ineffective in practice. As the malware is triggered by exploits that are specific
to a particular version of the processing application, an analysis environment needs to
offer multiple (vulnerable) versions of the target application to observe the malware’s
execution (e.g., Schreck et al., 2012). This aggravates analysis and multiplies the runtime
costs per sample.

In this chapter, we thus propose an alternative solution to the problem that is able to
fully statically remove the obfuscation layer of embedded malware. By relying on efficient
string processing and probabilistic data structures this is achieved in linear time and thus
clearly outperforms related approaches. Similar in motivation to the two learning-based
approaches presented before, we show how substring statistics alone can already be enough
to effectively fend off malware. In Section 6.1 we elaborate on the use-case of detecting
malware embedded in common office documents, which we use as exemplary field of
application of our method. An overview of the system is provided in Section 6.2, before we
detail our approach of breaking Vigenère cipher for deobfuscating embedded malware in
Sections 6.3 to 6.5. In Section 6.6 we then conduct an extensive empirical evaluation and
discuss related work in Section 6.7.

6.1 Use Case: Detecting Malware in Office Documents

Documents containing malware have become a popular instrument for targeted attacks.
To infiltrate a target system, malicious code is embedded in a benign document and trans-
ferred to the victim, where it can—once opened—unnoticeably infiltrate the system. Two
factors render this strategy attractive for attackers: First, it is relatively easy to lure even
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security-aware users into opening an untrustworthy document. Second, the complexity
of popular document formats, such as Word and PDF, constantly gives rise to zero-day
vulnerabilities in the respective applications, which provide the basis for unnoticed execu-
tion of malicious code. Consequently, embedded malware has been used as part of several
targeted attack campaigns, such as Taidoor (Trend Micro Threat Research Team, 2012),
Duqu (Bencsáth et al., 2012) and MiniDuke (CrySyS Malware Intelligence Team, 2013).

To hinder a detection by common anti-virus scanners, malicious code embedded in
document files is usually obfuscated, often in multiple layers with increasing complexity.
This obfuscation can be achieved using various techniques, ranging from simple encodings
to strong ciphers and emulator-based packing. Implementations of complex techniques,
however, often contain characteristic patterns and thus increase the risk of detection by
anti-virus scanners (Calvet et al., 2012). As a consequence, simple encodings and weak
ciphers are still widely used for obfuscation despite their shortcomings. Subsequently,
we investigate a specific type of such basic obfuscation, which is frequently used to hide
malware in documents. The substitution of bytes using XOR and ADD/SUB—a variant of
so-called Vigenère ciphers (Schneier, 1996)—is one of the simplest yet widely used obfuscation
techniques. These ciphers are regularly applied for cloaking shellcodes and embedded
malware. Figure 6.1 shows two examples of these ciphers in x86 code.

start: mov al, byte [edx]

add al, ADD_KEY

rol al, ROL_KEY

mov byte [edx], al

inc edx

cmp edx, LENGTH

jl start

(a) Obfuscation using ADD and ROL

start: mov al, byte [PTR + ebx]

sub byte [edx], al

inc ebx

and ebx, 0x0f

inc edx

cmp edx, LENGTH

jl start

(b) Obfuscation with 16-byte key

Figure 6.1: Examples for Vigenère-based obfuscation: The data stored at [edx] is obfuscated
(a) using ADD and ROL of one-byte keys, and (b) using SUB with the 16-byte key at PTR.
Figure taken from (Wressnegger et al., 2013a).

Due to the implementation with only a few instructions, Vigenère-based obfuscation
keeps a small footprint in the code, thereby complicating the task of extracting reliable
signatures for anti-virus scanners. Additionally, this obfuscation is fast, easily understand-
able and good enough to seemingly protect malicious code in the first layer of obfuscation.
Despite these advantages, Vigenère ciphers are far from being cryptographically strong
and suffer from several well-known weaknesses.

Subsequently, we introduce some notation and define the family of Vigenère ciphers
studied in this chapter. This provides a basis for our method for revealing embedded
malware later on.
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6.1.1 Definition of Vigenère Ciphers

We consider the original code of a malware binary as a sequence of n bytes M1 . . . Mn

and similarly represent the resulting obfuscated data by C1 . . . Cn. When referring to
cryptographic concepts, we sometimes denote the original code as plaintext and refer to
the obfuscated data as ciphertext. The Vigenère-based obfuscation is controlled using a key
K1 . . . Kl of l bytes, where l usually is much smaller than n. Moreover, we use K̂i = K(i mod l)

to access the individual bytes of the key. Using this notation, we can define a family of
Vigenère ciphers, where each byte Mi is encrypted with the key byte K̂i using the binary
operation ◦ and decrypted using its inverse operation ◦−1, as follows:

Ci = Mi ◦ K̂i and Mi = Ci ◦−1 K̂i.

This simple definition covers several variants of the Vigenère cipher, as implementations
only differ in the choice of the two operations ◦ and ◦−1. For example, if we define ◦ as
addition and ◦−1 as subtraction, we obtain the classic form of the Vigenère cipher. Table 6.1
lists binary operations that are frequently used for obfuscating malicious code. Note that a
subtraction can be expressed as an addition with a negative element and thus is handled
likewise.

Operation Encryption ◦ Decryption ◦−1

Addition (ADD) (X + Y) mod 256 (X−Y) mod 256
Subtraction (SUB) (X−Y) mod 256 (X + Y) mod 256
Exclusive-Or (XOR) X⊕Y X⊕Y

Table 6.1: Operators of Vigenère ciphers used for obfuscation.

Theoretically, any pair of operations that is inverse to each other can be used to construct a
Vigenère cipher. In practice, most implementations build on logic and arithmetic functions
that induce a commutative group over bytes. That is, the operation ◦ is commutative and
associative as well as there exists an identity element and inverse elements providing the
operation ◦−1. These group properties are crucial for different types of efficient attacks as
demonstrated in Sections 6.5.

Another important observation is that some bytes are encrypted with the same part of
the key. In particular, this holds true for every pair of bytes Mi and Mj whose distance is a
multiple of the key length, that is, i ≡ j (mod l). This repetition of the key is a critical
weakness of Vigenère ciphers and can be exploited to launch further attacks that we discuss
in subsequent sections.
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6.2 System Overview

We now present our method, Kandi, that combines and extends methods from classic
cryptography for deobfuscating embedded malware (Wressnegger et al., 2013a). It consists of
two separate components that complement each other: First, we conduct probable-plaintext
attacks against common variants of the Vigenère cipher. Second, we additionally test each
possible transposition for ROL/ROR instructions to account for this frequent additional
layer of obfuscation. In this case we consider brute-forcing a legit compromise since there
exist only a few combinations to check. Subsequently, both parts are briefly outlined, before
the rest of the chapter mainly focuses on the first, more evolved, component and explains
the attacks against Vigenère ciphers in the scope of embedded malware.

Breaking Vigenère ciphers. For deobfuscating embedded malware and breaking the used
encryption, we first collect the most frequent substrings from a representative set of exe-
cutable files in step ¬ of Figure 6.2, which later on are used as probable plaintexts. These
plaintexts can be automatically retrieved in linear runtime and may include fragments of
the PE header, library names and common code stubs. The method then approximates the
length of possible keys in step ­ using the Kasiski Examination and computes so-called
difference streams of the document and plaintexts in step ®. With these streams at hand it
is possible to look for the plaintexts directly in the obfuscated data. Again, with careful
algorithmic engineering, this third step—that boils down to the multi-string search of
difference streams—can be realized in linear time. If sufficient matches are identified, our
method automatically derives the obfuscation key and reveals the full embedded code for
further analysis, for example, by an anti-virus scanner or an human expert.
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Figure 6.2: Schematic depiction of Kandi and its analysis steps: First, we extract frequent sub-
strings that may be used as plaintexts. Second, we derive the length of the key used for
obfuscation, based on which, we then mount a probable-plaintext attack. Figure taken
from Wressnegger et al. (2013a).

Incorporating ROL and ROR. Finally, in order to increase the effectiveness of Kandi, we
additionally consider transpositions using ROL and ROR instructions. ROL and ROR
are each others inverse function, that is, when iterating over all possible shift offsets they
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generate exactly the same output but in different order. Furthermore, in most implemen-
tations these instructions operate on 8 bits only, such that the combined, overall number
of transpositions to be tested is very small. Consequently, we simply add a ROL shift as a
preprocessing step to Kandi. Although, we attempt to improve over a plain brute-force
approach for breaking obfuscation, we consider the seven additional tests as a perfectly
legit trade-off from a pragmatic point of view.

6.3 Determining Frequent Substrings

The deobfuscation performance of our method critically depends on a representative
set of probable plaintexts. In the scope of this work, we focus on Windows PE files, as these
are frequently used as initial step of an attack based on infected documents. However, our
method is not restricted to this particular type of data and can also be applied to other
representations of code from which probable plaintexts can be easily extracted, such as
Flash animations or ELF objects. To determine these substrings efficiently, we process PE
files using a suffix array (see Chapter 3) and extract all binary strings that appear in more
than 50 % of the files.

Yamamoto and Church (2001) show how to determine the term frequency, tf , as well
as the document frequency, df , of all substrings in the input in (quasi) linear time. They
observe that a suffix array is partitioned in “LCP-delimited intervals”, that is, an interval of
the suffix array SA = {SA1, . . . , SAn} whose elements have a longest common prefix, LCP,
which is larger than the LCP of the outermost elements with its adjoining elements, that
are just about not part of the interval. More formally, these intervals are defined as

〈i, j〉 :
{

SAi, SAi+1, . . . , SAj

∣∣∣SILi,j > LBLi,j

}
,

where SILi,j is the Shortest Interior LCP determined by lcp(i, . . . , j), and LBLi,j refers to the
Longest Bounded LCP given by max (lcp(i− 1, i), lcp(j, j + 1)). These intervals describe
a class of substrings that (a) have the same term frequency and (b) the same document
frequency (Yamamoto and Church, 2001):

classi,j =
{

sm
i

∣∣∣ LBLi,j < m ≤ SILi,j

}
,

with sm
i being the substring of length m of the suffix at position i in the suffix array. The

term frequency of a string s ∈ classi,j then is tf (s) = j− i + 1. Table 6.2 revises the example
from Chapter 3 showing the non-trivial classes for the string banana: class1,3 contains the
string a with a term frequency of three and embeds class2,3, which in turn consists of an
and ana, each of which occur twice in the input string. Finally, class5,6 covers substrings
n and na both with a frequency of two. Additionally, there exist n trivial classes which
interval includes a single line of the suffix array only. For these the term frequency is one
and the shortest interior LCP is defined to be ∞, in order to cover all remaining substrings.
For instance, class6,6 contains nan and nana. Overall there exist n trivial class and at most
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n− 1 non-trivial classes. As LCP-delimited intervals either precede each other, or occur
nested, but do never partially overlap, iterating them is rather straight-forward, such that
all statistics can be compiled in O(n log n) time and O(n) space. For document frequency
additionally an index, that maps positions in the suffix array to documents, is needed.

i SA LCP

0 6 $
1 5 a $
2 3 a n a $
3 1 a n a n a $
4 0 b a n a n a $
5 4 n a $
6 2 n a n a $

0
1
3
0
0
2

class2,3

class5,6

class1,3

Table 6.2: Depiction of LCP delimited arrays that define classes of substrings with the same term
and document frequency based on the example of the string banana.

For the first step of our method for deobfuscating embedded malware, we then make use
of this algorithm to extract the most common binary strings found in PE files distributed
with off-the-shelf Windows XP and Windows 7 installations. Profitable plaintexts are, for
instance, the DOS stub and its text, API strings, library names or code patterns such as
push-call sequences.

6.4 Deriving the Key Length

In the second step, we determine the length of the key that has been used for obfuscation.
For the Vigenère cipher two methods from classical crypt-analysis exist that can be used
to retrieve the key length based on statistics over the ciphertext only: First, the “index
of coincidence”, that operates on rather strict assumptions about the distribution of the
input alphabet which is particular useful for analyzing encrypted language. Second, the
“Kasiski examination” which does not assume any knowledge of the input, but the fact that
it contains substrings that repeat. Subsequently, we discuss both approaches in detail and
inspect their suitability for breaking the obfuscation of embedded malware.

6.4.1 Index of Coincidence

A classic approach for determining the key length from ciphertexts is the index of coinci-
dence, commonly denoted as κ (Friedman, 1922; Friedman and Callimahos, 1985). Roughly
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speaking it represents the ratio of how many bytes happen to appear at the same positions
if you shift data against itself. Formally, the index of coincidence is defined as

κ =

∑256
i=1 fi( fi − 1)
n(n− 1)

,

where fi are the byte frequencies in data of n bytes. Under the condition that we know
the index of some plaintext κp we are able to infer the key length l of the Vigenère cipher.
It is estimated as the ratio of the differences of κp to the index of random data κr and the
ciphertext κc:

l ≈
κp − κr

κc − κr
.

Key Recovery using Frequency Analysis. Next to determining the length of the obfuscation
key, the index of coincidence may even enable recovering the key itself if certain conditions
hold true. Natural languages tend to have a very characteristic frequency distribution
of letters. For instance, in the English language the letter e is with more than 12 % the
significantly most frequent letter in the alphabet (Lewand, 2000). Only topped by the space
character, which is used in written texts in order to separate words.

This frequency distribution can be exploited to derive the key used for the encryption.
As one can easily imagine, the actual frequency distribution does not change by simply
replacing one character with another as in the case of a key of length l = 1. The larger the
key length gets, the more the distribution is flattened out because identical letters may be
translated differently depending on their position in the text. However, since it is possible
to determine the length of the key beforehand, one can perform the very same frequency
analysis on all characters that were encrypted with the same single-byte key K̂i.

Although effective in decrypting natural language text, key recovery using frequency
analysis is not suitable for deobfuscating embedded malware. If the obfuscated code
corresponds to regular PE files, the byte frequencies are almost equally distributed and
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Figure 6.3: Byte frequency distributions of English text and Windows PE files.
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can hardly be discriminated, because executable code, header information and other
types of data are mixed in this format. As an example, Figure 6.3 shows the byte frequency
distributions of English text and PE files, where except for a peak at \x00 the distribution of
PE files is basically flat. The presented ciphertext-only attacks thus only provide means for
determining the key length of Vigenère-based obfuscation, but without further refinements
are not appropriate for actually recovering the key.

6.4.2 The Kasiski Examination

Another ciphertext-only attack for determining the key length is the so-called Kasiski
examination (Kasiski, 1863). The underlying assumption of this method is that the original
plaintext contains some identical substrings. Usually these patterns would be destroyed by
the key; however, if two instances of such substrings are encrypted with the same portion of
the key, the encrypted data contains a pair of identical substrings as well. This implies that
the distance between the characters of these substrings is a multiple of the key length. Thus,
by gathering identical substrings in the ciphertext, it is possible to support an assumption
about the key length.

For our analysis of embedded malware, we use the Kasiski examination (Section 6.4.2) to
directly inspect the raw bytes of a document—without any further parsing or processing of
the file. The big advantage of this method over the index of coincidence is that we neither
need to rely on the byte distribution of the original binary nor have to precisely locate
the embedded malware. Furthermore, the Kasiski examination allows us to take multiple
candidates of the key length into consideration. Depending on the amount of identical
substrings that suggest a particular key length, we construct a ranking of candidates for later
analysis. That way, it is possible to compensate for and recover from misinterpretations.

However, finding pairs of identical substrings in large amounts of data needs careful
algorithmic engineering in order to work efficiently. We again make use of suffix arrays for
determining identical substrings in linear time in the length of the analyzed document. In
particular, we are reusing the algorithm used for efficiently extracting substring statistics
as presented in Section 6.3. Since the Kasiski examination only states that the distances
between identical substrings in the ciphertext refer to multiples of the key length, it is
necessary to also examine the integer factorization thereof. Fortunately, there exists a
shortcut to this factorization step that works very well in practice: If Kandi returns a key
that repeats itself, e.g., 13 37 13 37, this indicates that we correctly derived the key but
under an imprecise assumption of the key length (l = 4 rather than 2). In such cases we
simply collapse the repeating key and correct the key length accordingly.
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6.5 Breaking the Obfuscation

In this section we look at two fundamentally different strategies for breaking the obfus-
cation of embedded malware. Both approaches however are based on first retrieving the
encryption key or a set of candidates, with which the obfuscation can then be reversed. We
begin with discussing the aspects of brute-force attacks and heuristics for determining the
encryption key. Once the key is revealed, deobfuscating the malware is trivial. However, de-
pending on the key length the search space is sizeable, such that runtime quickly becomes
an issue. We thus then turn to a more evolved approach using probable-plaintext attacks that
enables us to deobfuscate embedded malware at scale. To this end, both the previously
collected most frequent substring in Windows executables as well as an accurate estimate
of the key length are of the essence. In the following, we discuss both attack types in detail.

6.5.1 Brute-force Attacks and Heuristics

A straightforward way of approaching malware obfuscations is to brute-force the key
used by the malware author. There are two basic implementations for such an attack: First,
one encrypts all plaintext patterns that are assumed to be present in the original binary
with each and every key and tries to match those. Second, one decrypts the binary or parts
of it and looks for the presence of the plaintext as a usual signature engine would do. In
both cases a valid key is derived if a certain amount of plaintexts match. For short keys, this
approach is both fast and effective. In practice, brute-force attacks prove to be a valuable
tool for analyzing malware obfuscated using keys up to 2 bytes (Boldewin, 2009; Stevens,
2014).

Theoretically, an exhaustive search over the complete key space can be used to also derive
keys with more than 2 bytes. This however comes at the price of runtime performance.
For a key length of only 4 bytes there are more than 4.2 billion combinations that need
to be checked in the worst case. This clearly exceeds the limits of what is possible in the
scope of the deobfuscation of embedded malware. Even worse, 4-byte and 8-byte keys fit
the registers of common CPU architectures and therefore, do not require much different
deobfuscation routines. In fact, the underlying logic is identical to the use of single-byte
keys and the code size is only marginally larger as illustrated in Figure 6.1.

A more clever way of approaching the problem is by relying on the structure of embedded
malware binaries, which are often PE files. In this format \x00 bytes are used as padding
for sections and headers which gives rise to an heuristic. We recall from Section 6.1.1
that the binary operation ◦ has an identity element, which simply is 0 for XOR as well as
ADD instructions. Therefore, whenever a large block of \x00 bytes is encrypted, the key
is revealed multiple times and can be read off without extra effort. Hence, once a highly
repetitive string is spotted in obfuscated data, deobfuscation is a simple task for a malware
analyst. According to our tests the very same technique is leveraged in a proprietary system
for the analysis of malware called Cryptam (Malware Tracker Ltd., 2012-2018). While effective
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in many cases when a full binary including padding is obfuscated, this heuristic fails when
a malware does not encrypt \x00 bytes. Furthermore, such an approach cannot differ
between variants of Vigenère ciphers. Since XOR and ADD have the same identity element,
there is no way to decide which one was used for obfuscation in this setting.

6.5.2 Probable-Plaintext Attacks

To effectively determine the key used in a Vigenère-based obfuscation, we consider classic
attacks based on known and probable plaintexts. We refer to these attacks as probable-
plaintext attacks, as we cannot guarantee that a certain plaintext is indeed contained in an
obfuscated malware binary. Equipped with an expressive set of probable plaintexts and an
estimate of the key length, it is now possible to mount an attack against the obfuscation.
The central element of this step is the key elimination that enables us to look for probable
plaintexts within the obfuscated data and derive the used key automatically. Again, Kandi
directly operates on the raw bytes of a document and thereby avoids parsing the file.

Key Elimination. The idea of this technique is to determine a relation between the plaintext
and ciphertext that does not involve the key: Namely, the difference of bytes that are encrypted
with the same part of the key. Formally, for a key byte K̂i this difference can be expressed
using the inverse operation ◦−1 as:

Ci ◦−1 Ci+l = (Mi ◦ K̂i) ◦−1 (Mi+l ◦ K̂i) = Mi ◦−1 Mi+l .

Note that this relation of differences only applies if the operator used for the Vigenère
cipher induces a commutative group. For example, if we plug in the popular instructions
XOR and ADD from Table 6.1, the difference of the obfuscated bytes Ci and Ci+l allows to
reason about the difference of the corresponding plaintext bytes:

Ci ⊕ Ci+l = (Mi ⊕ K̂i)⊕ (Mi+l ⊕ K̂i) = Mi ⊕Mi+l

Ci − Ci+l = (Mi + K̂i)− (Mi+l + K̂i) = Mi −Mi+l .

Based on this observation, we can implement an efficient probable-plaintext attack
against Vigenère ciphers. Given a plaintext P = P1 . . . Pm, we introduce the difference streams
∆P and ∆C. If the difference streams match at a specific position and the plaintext P is
sufficiently large, we have successfully determined the occurrence of a plaintext in the
obfuscated data. In particular, we compute the difference stream

∆P = (P1 ◦−1 P1+l) . . . (Pm−l ◦−1 Pm)

for the plaintext P and compare it against each position i of the ciphertext C using the
corresponding stream

∆C = (Ci ◦−1 Ci+l) . . . (Ci+m−l ◦−1 Ci+m).
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Using this technique, we can efficiently search for probable plaintexts in data obfuscated
using a Vigenère cipher without knowing the key. This enables us to check for common
strings in the obfuscated code, such as header information, API functions and code stubs.
Once the position of a probable plaintext is found it is possible to derive the used key by
applying the appropriate inverse operation: Kj = Ci+j ◦−1 Pi+j with i being the position
where the difference stream of a probable plaintext matches. The more plaintexts match
in the obfuscated code, the more reliably the key can finally be determined.

Robust Key Recovery. If a probable plaintext is longer than the estimated key length, the
overlapping bytes can be used to reinforce our assumption about the key. To this end,
we define the overlap ratio r that is used to specify how certain we want to be about a key
candidate. The larger r is, the stricter Kandi operates and the more reliable is the key. If
we set r = 0.0, an usual match of plaintexts is enough to support the evidence of a key
candidate. This means that we will end up with a larger amount of possibly less reliable
hints. Our experiments show that for the grand total incorrect guesses will average out
and in many cases it is possible to reliably deobfuscate embedded malware.

If a more certain decision is desired the overlap ratio r can be increased. However, for
larger values of r we require longer probable plaintexts: r = 0.0 only requires a minimal
overlap, r = 0.5 already half of the probable plaintext’s length and r = 1.0 twice the size. As
an example, if the estimated key length is 4 and r = 0.5, only plaintexts of at least 6 bytes
are used for the attack. Depending on the approach chosen to gather probable plaintexts, it
might happen that the length of the available plaintexts ends up being the limiting factor
for the deobfuscation. We will evaluate this in the next section.

Implementation. Both, determining the key length using the the Kasiski examination
and collecting evidence for key candidates, require to keep track of large amounts of
substrings and their counts. Count-Min sketches are especially well suited for this use
case. Moreover, the probabilistic nature of the presented attack is able to compensate for
minor inaccuracies in counting. With respect to the used memory, Count-Min sketches
significantly improve over hash tables, which store substrings explicitly in order to allow
exact counting (see Chapter 3). The difference streams, on the other hand, can be efficiently
searched for by constructing prefix trees from them. These enable looking for multiple
search strings at once in linear time using the Aho-Corasick algorithm.

6.6 Evaluation

We proceed to evaluate the deobfuscation capabilities and runtime performance of
Kandi empirically. Since it is difficult to determine whether embedded malware in the
wild is actually using Vigenère-based obfuscation or not, we start off with a series of
controlled experiments in Section 6.6.1. In Section 6.6.2 we then continue to evaluate
Kandi on real-world malware in Word, Powerpoint and RTF documents as well as different
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image formats. We need to stress that this collection contains malware with unknown
obfuscation. Nonetheless, Kandi is able to expose obfuscated malware in every fourth file,
thereby empirically proving that (a) Vigenère ciphers are indeed used in the wild and that
(b) our method is able to reliably reveal the malicious payload in these cases.

6.6.1 Controlled Experiments

To begin with, we evaluate Kandi in a controlled setting with known ground truth, where
we are able to exactly tell if a deobfuscation attempt was successful or not. In particular, we
conduct two experiments: First, we obfuscate plain Windows PE files and apply Kandi to
them. In the course of that, we measure the runtime performance and throughput of our
approach. Second, the obfuscated PE files are embedded in benign Word documents in
order to show that Kandi not only works on completely encrypted data, but is also capable
of deobfuscating files embedded inside of documents.

Evaluation Datasets. In order to create a representative set of PE files for the controlled
experiments, we simply gather all PE files in the system directories of Windows XP SP3
(system and system32) and Windows 7 (System32 and SysWOW64). This includes stand-
alone executables as well as libraries and drivers and yields a total of 4,780 files. We
randomly obfuscate each of the PE files with a Vigenère cipher using either XOR, ADD or
SUB. We draw random keys for this obfuscation and vary the key length from 1 to 32 bytes,
such that we finally obtain 152,960 (32×4,780) unique obfuscated PE files.

To study the deobfuscation of embedded code, we additionally retrieve one unique and
malware-free Word document for each PE file from VirusTotal and use it as host for the
embedding. Malware appearing in the wild would be embedded at positions compliant
with the host’s file format. This theoretically provides valuable information where to look
for embedded malware. As Kandi does not rely on parsing the host file, we simply inject
the obfuscated PE files at random positions. We end up with a total of 152,960 unique
Word documents each containing an obfuscated PE file.

Deobfuscation of Obfuscated PE Files. To demonstrate the capability of our method to
break Vigenère-based obfuscations, we first apply Kandi to the 152,960 obfuscated PE
files. The probable plaintexts for this experiment are retrieved as described in Section 6.3
without further refinements. Figure 6.4a shows results for this experiment, where the key
length is plotted against the rate of deobfuscated PE files. For key lengths up to 13 bytes,
the obfuscation can be reliably broken with a success rate of 93 % and more. This nicely
illustrates the potential of Kandi to automatically deobfuscate malware. We also observe
that the performance for keys longer than 13 bytes drops. While our approach is not capped
to a specific key length, the limiting factor at this point is the collection of plaintexts and
in particular the length of those.

To study the impact of the plaintext length, we additionally apply Kandi with different
values for the overlap ratio r as introduced in Section 6.5. The corresponding deobfuscation
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Figure 6.4: Deobfuscation performance of Kandi on obfuscated PE files. Figure (b) additionally
shows the performance for different overlap ratios.

rates are visualized in Figure 6.4b. Although a high value of r potentially increases the
performance, it also reduces the number of plaintexts that can be used. If there are too
few usable plaintexts, it gets difficult to estimate the correct key. As a result, Kandi attains
a deobfuscation performance of almost 100 % for r = 1.0 if the keys are short, but is not
able to reliably break obfuscations with longer keys.

Runtime Performance. We additionally examine the runtime performance of Kandi. For
this purpose, we randomly draw 1,000 samples from the obfuscated PE files for each key
length and repeat the previous experiment single-threaded on an Intel Core i7-2600K
CPU at 3.40 GHz. As baseline for this experiment, we implement a generic brute-force
attack that is applied to the first 256 bytes of each file. Due to the defined starting point
and the typical header structure of PE files 256 bytes are already sufficient to reliably
break the obfuscation in this setting. Note that this would not be necessarily the case for
embedded malware.
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Figure 6.5: Runtime performance of Kandi in comparison to a brute-force attack on a batch of
1,000 randomly drawn obfuscated PE files.
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The results of this experiment are shown in Figure 6.5 where the runtime and throughput
of each approach are shown on the y-axis and the key length on the x-axis. Obviously, the
brute-force attack is only tractable for keys of at most 3 bytes. By contrast, the runtime
of Kandi does not depend on the key length and the method attains a throughput of
16.46 Mbit/s on average, corresponding to an analysis speed of 5 files of ∼400 kB per
second. Consequently, Kandi’s runtime is not only superior to brute-force attacks but
also significantly below dynamic approaches like OmniUnpack (Martignoni et al., 2007)
or PolyUnpack (Royal et al., 2006) and thus beneficial for analyzing embedded malware at
large scales.

Deobfuscation of Injected PE Files. As last controlled experiment, we study the deobfusca-
tion performance of Kandi when being operated on obfuscated PE files that have been
injected into Word documents. Figure 6.6a shows the results of this experiment. For
keys with up to 8 bytes, our method deobfuscates most of the injected PE files—without
requiring the document to be parsed. Moreover, we again inspect the influence of the
overlap ratio r in this setting. Similar to the previous experiment, a larger value of r proves
beneficial for short keys, such that keys up to 8 bytes are broken with a success rate of 81 %
and more. This influence of the overlap ratio gets evident for keys between 4 and 8 bytes
as illustrated Figure 6.6b. For keys of length l = 8, a high value of r even doubles the
deobfuscation performance in comparison to the default setting.
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Figure 6.6: Deobfuscation performance of Kandi on Word documents containing obfuscated
PE files. Figure (b) additionally shows the performance for different overlap ratios.

Due to this, we use an overlap ratio of r = 1.0 for the following experiments on real-world
malware. We expect embedded malware found in the wild to mainly use keys of 1 to 8 bytes.
The reasons for this assumption is that such keys fit into CPU registers and therefore
implementations are more compact. Furthermore, 4-byte keys are already intractable for
brute-force attacks.
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6.6.2 Real-World Experiments

To top off our evaluation we proceed to demonstrate how Kandi is able to deobfus-
cate and extract malware from samples seen in the wild. To this end, we have acquired
four datasets of real-world malware embedded in documents and images with different
characteristics.

Malware Datasets. Embedded malware is typically executed by exploiting vulnerabilities in
document viewers. For the first dataset (Exploits 1) we thus retrieve all available Word, Pow-
erpoint and RTF documents from VirusTotal that are detected by an anti-virus scanner and
whose label indicates the presence of an exploit, such as exploit.msword or exploit.ole2.
Similarly, we construct the second dataset (Exploits 2) by downloading all documents that are
tagged as one of the following exploits: CVE-2003-0820, CVE-2006-2492, CVE-2010-3333,
CVE-2011-0611, CVE-2012-0158 and CVE-2013-0634.

As our method specifically targets PE files embedded in documents, we additionally
compose two datasets of malware droppers. The first set (Dropper 1) contains all available
Word, Powerpoint and RTF documents that are detected by an anti-virus scanner and whose
label contains the term dropper. The second dataset (Dropper 2) is constructed similarly by
retrieving all malicious images labeled as dropper. An overview of all four datasets is given
in Table 6.3. We deliberately exclude malicious PDF files from our analysis, as this file
format allows to incorporate JavaScript code. Consequently, the first layer of obfuscation
is often realized using JavaScript encoding functions, such as Base64 and URI encoding.
Such encodings are not available natively for other formats and hence we do not consider
PDF files in this work.

Dataset name Type Formats Samples

Exploits 1 Documents DOC, PPT, RTF 992
Exploits 2 Documents DOC, PPT, RTF 237
Dropper 1 Documents DOC, PPT, RTF 336
Dropper 1 Images PNG, GIF, JPG, BMP 52

Total 1,617

Table 6.3: Overview of the four datasets of malicious documents and images.

Deobfuscation of Embedded Malware. We proceed to apply Kandi to the collected em-
bedded malware. Due to minor modifications by the malware author, it is not always
possible to extract a valid PE file. To verify if a deobfuscation attempt was success-
ful, we thus make use of a PE checker based on strings such as Windows API func-
tion (e.g., LoadLibrary, GetProcAddress, GetModuleHandle) and library names as found
in the import table (e.g., kernel32.dll, user32.dll). Additionally, we look for the MZ
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and PE header signatures and the DOS stub. We consider a deobfuscation successful if
either a valid PE file is extracted or at least five function or library names are revealed in
the document.

We observe that for 359 of the samples no deobfuscation is necessary, as the embedded
malware is present in clear. Kandi identifies such malware by simply returning an obfus-
cation key of 0x00. We support this finding by applying the PE checker described earlier.
The remaining 1,258 samples are assumed to be obfuscated. Every fourth of those samples
contains malware obfuscated with the Vigenère cipher and is deobfuscated by Kandi.
That is, our method automatically cracks the obfuscation of 334 samples and extracts the
embedded malware—possibly multiple files per sample. Table 6.4 details the results for
the individual datasets. A manual analysis of the remaining files on a sample basis does not
reveal obvious indicators for the Vigenère cipher and we conclude that Kandi deobfuscates
most variants used in real-world embedded malware.

Dataset Not Obfuscated Obfuscated Deobfuscated by Kandi

Exploits 1 211 781 180 (23.1 %)
Exploits 2 35 203 64 (31.7 %)
Dropper 1 86 250 81 (32.4 %)
Dropper 2 27 25 9 (36.0 %)

Total 359 1,258 334 (26.6 %)

Table 6.4: Deobfuscation performance of Kandi on real-world malware. The last column details
the number of samples that were successfully deobfuscated.

Figure 6.7a shows the distribution of the key lengths discovered by Kandi. The majority
of samples is obfuscated with a single-byte key and seems to be in reach for brute-forcing.
However, to do so one would need to precisely locate the encrypted file, which is not trivial.
Moreover, our method also identifies samples with longer keys ranging from 3 to 8 bytes
that would have been missed without the help of Kandi. Rather surprising are those
samples that use 3 bytes as a key. One would suspect these to be false positives, but we
have manually verified that these are correctly deobfuscated by our method.

As the final step of this experiment, we analyze the extracted malware binaries with
46 different anti-virus scanners provided by VirusTotal. Since some of these scanners are
prone to errors when it comes to manipulated PE headers, we consider only those 242 de-
obfuscated malware binaries that are valid PE files (conform to the format specification).
The number of detections for each of these files is shown in Figure 6.7b. Several binaries
are poorly detected by the anti-virus scanners at VirusTotal. For instance, 19 % (46) of the
binaries are identified by less than 10 of the available scanners. This result suggests that
the extracted binaries are unknown to a large portion of the anti-virus companies—likely
due to the lack of tools for automatic deobfuscation.
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Figure 6.7: (a) Distribution of key lengths detected by Kandi; (b) Number of anti-virus scanners
detecting the extracted malware binaries.

Finally, the analyzed binaries also contain several samples of the MiniDuke malware
that has been discovered in early February 2013 (CrySyS Malware Intelligence Team, 2013),
at about the same time our initial experiments have been conducted. A few months
before, this threat has been completely unknown, such that we are hopeful that binaries
deobfuscated by Kandi help the discovery of new and previously unknown malware.

6.7 Related Work

The analysis of embedded malware has been a vivid area of research in the last years, in
particular due to the increasing usage of malicious documents in targeted attacks (e.g.,
Bencsáth et al., 2012; Trend Micro Threat Research Team, 2012; CrySyS Malware Intelligence
Team, 2013). Several concepts and techniques have been proposed to locate and examine
malicious code in documents. Our approach is related to several of these, as we discuss in
the following.

6.7.1 Analysis of Embedded Malware

First methods for the identification of malware in documents have been proposed by
Stolfo et al. (2007) and Li et al. (2007). Both make use of content-based anomaly detection
for learning profiles of regular documents and detecting malicious content as deviation
thereof. This work has been further extended by Shafiq et al. (2008), which refine the static
analysis of documents to also locate the regions likely containing malware. Although
effective in spotting suspicious content, these methods are not designed to deobfuscate
code and thus are unsuitable for in-depth analysis of embedded malware. Another branch of
research has thus studied methods for analyzing malicious documents at runtime, thereby
avoiding the direct deobfuscation of embedded code (e.g., Li et al., 2007; Engelberth et al.,
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2009; Schreck et al., 2012). For this dynamic analysis, the documents under investigation
are opened in a sandbox environment, such that the behavior of the application processing
the documents can be monitored and malicious activities detected. These approaches are
not obstructed by obfuscation and can reliably detect malicious code in documents. The
monitoring at run-time, however, induces a significant overhead which is prohibitive for
large-scale analysis or detection of malware at end hosts.

Recently, a large body of work has focused on malicious PDF documents. Due to the
flexibility of this format and its support for JavaScript code, these documents are frequently
used as vehicles to transport malware (Stevens, 2011). Several contrasting methods have
been proposed to spot attacks and malware in JavaScript code (e.g., Cova et al., 2010; Laskov
and Šrndić, 2011) and the structure of PDF files (e.g., Smutz and Stavrou, 2012; Šrndić
and Laskov, 2013). While some malicious PDF documents make use of Vigenère-based
obfuscation, other hiding strategies are more prominent in the wild, most notably the
dynamic construction of code. As a consequence, we have not considered PDF documents
in this work, yet the proposed deobfuscation techniques also apply to Vigenère ciphers
used in this document format.

6.7.2 Deobfuscating and Unpacking Malware

Aside from specific work on embedded malware, the deobfuscation of malicious code
has been a long-standing topic of security research. In particular, several methods have
been developed to dynamically unpack malware binaries, such as PolyUnpack (Royal et al.,
2006), OmniUnpack (Martignoni et al., 2007) and Ether (Dinaburg et al., 2008). These
methods proceed by monitoring the usage of memory and identifying unpacked code
created at runtime. A similar approach is devised by Sharif et al. (2009), which defeats
emulation-based packers using dynamic taint analysis. These unpackers enable a generic
deobfuscation of malicious code, yet they operate at runtime and, similar to the analysis of
documents in a sandbox, suffer from a runtime overhead.

Due to the inherent limitations of static analysis, only few approaches have been proposed
that are able to statically inspect obfuscated malware. An example is the method by
Jacob et al. (2012) that, similar to Kandi, exploits statistical artifacts preserved through
packing in order to analyze malware. The method does not focus on deobfuscation but
rather efficiently comparing malware binaries and determining variants of the same family
without dynamic analysis.

6.7.3 Probable-Plaintext Attacks

Attacks using probable and known plaintexts are among the oldest methods of cryp-
tography. The Kasiski examination used in Kandi dates back to 1863 (Kasiski, 1863) and
similarly the key elimination of Vigenère ciphers is an ancient approach of cryptanaly-
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sis (see Schneier, 1996). Given this long history of research and the presence of several
strong cryptographic methods, it would seem that attacks against weak ciphers are largely
irrelevant today. Unfortunately, these weak ciphers regularly slip into implementations of
software and thus probable-plaintext attacks based on classic techniques are still successful,
as for instance in the cases of WordPerfect (Bergen and Caelli, 1991) and PKZIP (Stay, 2002).

To the best of our knowledge, Kandi is the first method that applies these classic attacks
against obfuscation used in embedded malware. While some high-profile attack campaigns
have already moved to stronger ciphers, such as RC4 or TEA, the convenience of simple
cryptography and the risk of introducing detectable patterns with involved approaches
continues to motivate attackers to use weak ciphers for obfuscation.





Chapter 7Efficient Machine Learning for Attack Detection

Conclusion and Outlook

Manually crafting detection rules is by no means sufficient anymore to keep pace with the
constant growth of new threats on the Internet. Even automatically generated signatures
used by traditional methods often do not scale well, as they lack context and thus generalize
poorly to new attack variants. We hence are in urgent need for alternative means of attack
detection that are able to cope with the increasing automation of attacks.

In this thesis, we have developed methods to detect attacks using machine learning that
push forward reactive computer security. While machine learning is a promising tool to
provide generic and automated detection, it is not void of bias. To be effective, learning-
based approaches require constant training over time: Both, the classification of malware,
as well as the notion of normality established for anomaly detection need to be retrained
and kept up-to-date. We have developed detectors that are trained in linear time with up
to 580 Mbit/s and are able to effectively provide timely protection. We thus counteract the
trend of compensating increasing runtime requirements with resources. To this end, the
underlying models are built using algorithms from the field of efficient string processing
and analyzed using implementations based on probabilistic data structures, such as Bloom
filters and Count-Min sketches, that allow to efficiently store and access features.

In particular, we have used language models and have shown that these are especially
well suited for efficiently modeling the content and structure of attacks in a generic manner.
In addition, we have developed suitability criteria of data in this representation for the two
prevalent learning-based attack detection schemes, classification and anomaly detection,
to decide when to favor the one over the other. For both schemes, we have proposed
highly performant solutions, first, for detecting Flash-based malware and, second, for
detecting network intrusions in industrial control systems. The developed methods do
not only meet our expectations with respect to runtime complexity, but also outperform
related approaches by up to an order of magnitude in detection performance. We thereby
demonstrate that effective and efficient machine learning for attack detection is possible
in practice. Moreover, we have shown that the same techniques can further be used for
revealing malicious content that lies hidden in passive file formats, such as Microsoft
Office documents. We have implemented a method that operates irrespective of the used
key length in constant time, and thus succeeds where previous approaches fail.

In the following Section 7.1, we look upon the results of the individual components
presented in this thesis in more detail, before we discuss possible extensions and future
directions of research in Section 7.2.
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7.1 Summary of the Results

The results of this thesis fall into two categories: First, we have provided insight in
fundamental properties of the problem of attack detection. We have discussed current
factors for the success of malware and targeted attacks, arguing for the necessity of ad-
vanced attack detection, and have compiled suitability criteria for data represented by
language models for learning-based detection. Second, we have developed three specific
approaches for (1) detecting malware using classification, (2) detecting network intrusions
using anomaly detection, and (3) detecting embedded malware. All put a special focus on
efficiently processing data in linear time. Subsequently, we address the results of each of
these parts in detail.

Necessity of Advanced Attack Detection (Chapter 2). We have identified two factors that are
crucial for the success of attacks in practice: The availability of an attack vector such as
software vulnerabilities and second, existing methods for attack detection that are not able
to provide timely protection. In line with this, we have first reviewed 64-bit migration
vulnerabilities as one example for the diverse landscape of software flaws and show that
even in mature, well-tested software, developers unjustifiably treat the unsigned type
size_t and (unsigned) int as equal to a large extend. Second, we have inspected the
prevalence of static signature matching as a fall-back mechanism in modern virus scanners
by conducting a series of black-box tests that allows to derive such signatures. For 38 % of
our malware data set it has been possible to identify specific pattern-based signatures, two
third of which can be implanted into arbitrary files at random locations, indicating that
these signatures are checked without context. Effective attack detection can only succeed,
if detection methods incorporate context and semantics of malicious code. Dynamic
approaches as well as language models, as proposed in this thesis, implicitly include these
relations and thus are more suitable for reliably detecting attacks in practice.

Language Models and Data Suitability (Chapter 3). We have studied the use of language
models, and models based on n-grams in particular, for classification as well as anomaly
detection tasks. As result, we have defined prerequisites that allow to decide whether one
of the two schemes is applicable. Moreover, we have developed three suitability criteria
that can be computed from n-gram data prior to the design of a detection method. These
criteria enable a practitioner to assess the complexity of the detection task and help to select
an appropriate learning scheme. Our suitability criteria, however, only provide indications
for favoring one scheme over the other and should not be considered alone for designing a
detection method. Depending on a particular detection task, it may be possible to operate
a learning scheme in a slightly imperfect setting for the sake of other constraints, such as
run-time performance. Nonetheless, the criteria can guide the development of detection
methods and help to avoid tedious experiments with different learning schemes.
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Detecting Malware using Classification (Chapter 4). We have presented a learning-based
classification approach using language models and have particularly looked at Flash-based
malware. At this, we have combined a structural analysis of the Flash container format
with guided execution of embedded ActionScript code—a lightweight and pragmatic form
of multi-path exploration. The resulting malware profiles have then be used as basis
for automatic, learning-based detection. Our evaluation on 26,600 Flash samples shows
that our method covers 50 % more code than a naive execution, and exposes indicative
patterns that would have been missed otherwise. This increased coverage enables to
identify 90–95 % of malware shortly after its appearance in the wild, where training is
conducted in linear runtime with up to 580 Mbit/s. Our method can be used to bootstrap
the current process of signature generation and point an analyst to novel malware samples
and thereby provides a valuable step towards the timely protection of end users. Moreover,
we have shown that simpler learning approaches based on substring statistics can, with
certain trade-offs, keep pace with more advanced learning schemes.

Detecting Network Intrusions using Anomaly Detection (Chapter 5). In contrast to prior
believe, we have shown that content-based anomaly detection is very well applicable to pro-
tocols with high-entropy data. The frequency values of features carry valuable information
for modeling normality and constructing detection models—especially for proprietary
binary protocols. The combination of learning message-type specific prototype models
and de-noising these enables attack detection in linear time at 30 Mbit/s with particularly
few false positives. In an extensive evaluation using 210 GiB of network traffic from two in-
dustrial facilities, we have shown that our method is able to significantly improve detection
performance compared to related approaches. For instance, our method detects 97.1 % of
the attacks in our dataset with as few as 2 false-alarms out of 100,000 network messages,
while related approaches only yield 16.5 % with a 500× higher false-positive rate of 1 %.
Moreover, we have studied the influence of polymorphic blending attacks on our detector
and have shown that our method’s de-noising functionality effectively limits an attacker’s
reach of play and improves the resistance against this type of mutation attacks.

Detecting Embedded Malware using Substring Statistics (Chapter 6). We have proposed a
method based on the analysis of substring statistics that exploits well-known weaknesses of
obfuscations based on the Vigenère cipher, as used by embedded malware. We have empir-
ically demonstrated the efficiency of this approach on real malware, where our method is
able to uncover the code of every fourth malware in popular document and image formats
in constant time. While our approach targets only one of many possible obfuscation
strategies, it helps to strengthen current defenses against embedded malware and proofs
the feasibility of using substring statistics for malware detection. With up to 25 Mbit/s,
our method is fast enough to be applied on end hosts and thereby enables regular virus scan-
ners to directly inspect deobfuscated code and to better identify some types of embedded
malware. Moreover, by statically exposing details of the obfuscation, such as the key and the
operations used, our method can also be applied for the large-scale analysis of malicious
documents and is complementary to time-consuming dynamic approaches.
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7.2 Future Work

Based on this work a number of extensions and lines of research are possible. In the
following, we discuss some that appear to be particularly promising, such as ways to
improve learning efficiency to speed up the overall process, hardware acceleration of our
methods, adversarial learning, as well as alternative alphabets for representing data and
different platforms.

Learning Efficiency. Neither traditional methods driven by manual or semi-automated
analysis, nor approaches using machine learning detect one hundred percent of new threats.
Looking at historic data of detections, as provided by VirusTotal for malware, allows to
identify samples that, apparently, have been particularly difficult to detect (Wressnegger
and Rieck, 2017). Incorporating these samples during training and validation may help
to steer the learning process such that less data needs to be processed. In contrast to
improving the runtime of the underlying method, as presented in this thesis, this may
help to speed up training by improving the quality of the used data.

Hardware Acceleration. The most obvious potential for runtime improvement however is
to use dedicated hardware for detection. Such attempts are subject of ongoing research for
intrusion detection, for instance, by incorporating the GPU (Vasiliadis et al., 2008), multi-
core machines (Nam et al., 2015), or new algorithms that reduce memory access and cache
misses (Choi et al., 2016) for multi-pattern matching. The probabilistic data structures
we use heavily rely on hash computations and maintain a small memory footprint, and
thus are well suited for being implemented in hardware. Recent work has demonstrated
implementations of Bloom filters (Nathaniel McVicar, 2017) and Count-Min sketches (Tong
and Prasanna, 2015, 2018) that enable a throughput of several Gigabits per second.

Adversarial Learning. Attacks on machine learning methods and learning in adversarial
settings have gained a lot of attention recently. This ranges from data poisoning (Barreno
et al., 2006), over the evasion of detectors (Fogla and Lee, 2006; Biggio et al., 2013), to
inference attacks (Shokri et al., 2017; Nasr et al., 2018). With our experiments, showing that
pruning rare features increases the resistance against mimicry attacks, we took a first step
towards exploring the use of our methods in adversarial settings. More recent attacks and
the sensitivity to membership inference has not been investigated so far. These however
pose some interesting questions for future research.

Alternative Alphabets. Choosing appropriate input representations and the right alphabet
for language models is crucial for the effectivity of our methods. Compression-based
metrics such as the Normalized Compression Distance (Li et al., 2004; Cilibrasi and Vitányi,
2005) and extensions to it (Raff and Nicholas, 2017, 2018) have recently been shown to allow
for efficiently measuring the similarity of string-based data. Using compression tables or,
more general frequent substrings of varying lengths, as an alphabet may be a worthwhile
choice to abstract the input data, reduce and implicitly cleanse its representation, and
improve detection performance, while simultaneously speeding up detection.
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Different Platforms. Finally, the small memory footprint and the runtime efficiency of
the methods presented in this thesis are very well suitable for platforms with hardware
restrictions, such as cars, trains or even airplanes. The automotive sector currently strives
for ever-increasing interconnection between road users and devices. This opens the gates
for remote attackers (Koscher et al., 2010; Checkoway et al., 2011; Miller and Valasek, 2015)
and undermines the need for reliable, on-board attack detection. Applying our methods to
alternative networks and communication systems, such as the CAN bus, is an interesting
field of application. In contrast to this thesis, such work would lay stronger focus on the
runtime efficiency during detection.





Chapter AEfficient Machine Learning for Attack Detection

Supplementary Information

A.1 Data models

A data model defines the width of integer types for a specific platform. Table A.1 provides
an overview of common data models used in the present and past, exemplary operating
systems using them, as well as the number of bytes assigned to each type. For all models,
the width of pointers and the size_t type correspond to the architectures’ register size,
e.g.,IP16 and LLP64 specify the size of pointers as 2 byte and 8 byte, respectively.

The motivation behind the different definitions of basic integer types lies in preserving
their relations as good as possible when migrating code between data models. Due to our
focus on the transition from 32 bit to 64 bit, ILP32 serves as a reference point in this paper,
as it is used on most 32-bit architectures. That is, we assume that a given program works
as intended for ILP32 and look upon the differences when compiling the same program
using a 64-bit data model.

If we compare ILP32 to LLP64 and LP64, as used by 64-bit Windows and most 64-bit
Unix systems, respectively, we see that the type int is 32-bit wide for all three data models.
While for ILP32 this means that int and pointers have the same width, on 64-bit data
models int is only half as wide as the pointer type. The same holds true for the type long
on LLP64. As a consequence, on both 64-bit data models an int variable can no longer be
used to address the full range of memory. While there also exist other 64-bit data models,
such as ILP64 and SILP64, these are only used on few platforms only and define the same
width for int, long and pointers, which renders migrating code less problematic.
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