EFFICIENT AND EXPLAINABLE DETECTION OF MOBILE
MALWARE WITH MACHINE LEARNING

VON DER
CARL-FRIEDRICH-GAUSS-FAKULTAT
DER TECHNISCHEN UNIVERSITAT CAROLO-WILHELMINA
ZU BRAUNSCHWEIG

ZUR ERLANGUNG DES GRADES EINES
DOKTORINGENIEURS (DR.-ING.)
- GENEHMIGTE -

DISSERTATION

VON
DANIEL CHRISTOPHER ARP
GEBOREN AM 19.03.1986

IN BERLIN
Eingereicht am: 19.03.2019
Disputation am: 13.06.2019
1. Referent: Prof. Dr. Konrad Rieck
2. Referent: Prof. Dr. Lorenzo Cavallaro

2019

PROMOTIONSAUSSCHUSS:

1. Referent: Prof. Dr. Konrad Rieck

Technische Universitdt Braunschweig
2. Referent: Prof. Dr. Lorenzo Cavallaro

King’s College London
Vorsitz: Prof. Dr. Martin Johns

Technische Universitdt Braunschweig

Braunschweig, Juni 2019

ABSTRACT

In recent years, mobile devices shipped with Google’s Android op-
erating system have become ubiquitous. Due to their popularity and
the high concentration of sensitive user data on these devices, how-
ever, they have also become a profitable target of malware authors.
As a result, thousands of new malware instances targeting Android
are found almost every day. Unfortunately, common signature-based
methods often fail to detect these applications, as these methods can-
not keep pace with the rapid development of new malware. Conse-
quently, there is an urgent need for new malware detection methods
to tackle this growing threat.

In this thesis, we address the problem by combining concepts of
static analysis and machine learning, such that mobile malware can
be detected directly on the mobile device with low run-time overhead.
To this end, we first discuss our analysis results of a sophisticated
malware that uses an ultrasonic side channel to spy on unwitting
smartphone users. Based on the insights we gain throughout this the-
sis, we gradually develop a method that allows detecting Android
malware in general. The resulting method performs a broad static
analysis, gathering a large number of features associated with an ap-
plication. These features are embedded in a joint vector space, where
typical patterns indicative of malware can be automatically identified
and used for explaining the decisions of our method. In addition to
an evaluation of its overall detection and run-time performance, we
also examine the interpretability of the underlying detection model
and strengthen the classifier against realistic evasion attacks.

In a large set of experiments, we show that the method clearly
outperforms several related approaches, including popular anti-virus
scanners. In most experiments, our approach detects more than 90%
of all malicious samples in the dataset at a low false positive rate of
only 1%. Furthermore, even on older devices, it offers a good run-
time performance, and can output a decision along with a proper ex-
planation within a few seconds, despite the use of machine learning
techniques directly on the mobile device.

Overall, we find that the application of machine learning techniques
is a promising research direction to improve the security of mobile de-
vices. While these techniques alone cannot defeat the threat of mobile
malware, they at least raise the bar for malicious actors significantly,
especially if combined with existing techniques.

ii

ZUSAMMENFASSUNG

Die Verbreitung von Smartphones, insbesondere mit dem Android-
Betriebssystem, hat in den vergangenen Jahren stark zugenommen.
Aufgrund ihrer hohen Popularitdt haben sich diese Gerite jedoch zu-
gleich auch zu einem lukrativen Ziel fiir Entwickler von Schadsoft-
ware entwickelt, weshalb mittlerweile taglich neue Schadprogramme
fiir Android gefunden werden.

Obwohl bereits verschiedene Losungen existieren, die Schadpro-
gramme auch auf mobilen Endgerdten identifizieren sollen, bieten
diese in der Praxis hdufig keinen ausreichenden Schutz. Dies liegt
vor allem daran, dass diese Verfahren zumeist signaturbasiert arbei-
ten und somit schddliche Programme erst zuverldssig identifizieren
konnen, sobald entsprechende Signaturen fiir deren Erkennung vor-
handen sind. Durch die rasant steigende Zahl von Schadprogrammen
fiir Android wird es allerdings auch fiir Antiviren-Hersteller immer
schwieriger, die zur Erkennung notwendigen Signaturen rechtzeitig
bereitzustellen. Daher ist die Entwicklung von neuen Verfahren nétig,
um der wachsenden Bedrohung durch mobile Schadsoftware besser
begegnen zu konnen.

In dieser Dissertation wird ein Verfahren vorgestellt und eingehend
untersucht, das Techniken der statischen Code-Analyse mit Metho-
den des maschinellen Lernens kombiniert, um so eine zuverldssige
Erkennung von mobiler Schadsoftware direkt auf dem Mobilgerit zu
ermdglichen. Als Ausgangspunkt fiir die Entwicklung des Verfahrens
dienen hierbei die Erkenntnisse aus einer Studie iiber eine neuarti-
ge Variante von Schadprogrammen, die einen Ultraschall-Seitenkanal
nutzen, um Smartphone-Benutzer heimlich auszuspionieren. Basie-
rend auf den Ergebnissen einer ausfiihrlichen Analyse dieser Schad-
programme wird anschliefSend schrittweise ein Verfahren zur Erken-
nung von Schadsoftware entwickelt, das automatisch Erkennungs-
muster fiir beliebige Varianten mobiler Schadsoftware herleiten kann.
Die Methode analysiert hierfiir mobile Anwendungen zunéchst sta-
tisch und extrahiert dabei spezielle Merkmale, die eine Abbildung
einer Applikation in einen hochdimensionalen Vektorraum ermogli-
chen. In diesem Vektorraum sind schliefSlich maschinelle Lernmetho-
den in der Lage, automatisch Muster zur Erkennung von Schadpro-
grammen zu finden. Die gefundenen Muster konnen dabei nicht nur
zur Erkennung, sondern dariiber hinaus auch zur Erkldrung einer
getroffenenen Entscheidung dienen.

Im Rahmen einer ausfiihrlichen Evaluation wird nicht nur die Er-
kennungsleistung und die Laufzeit der vorgestellten Methode unter-
sucht, sondern dariiber hinaus das gelernte Erkennungsmodell im

Detail analysiert. Hierbei wird auch die Robustheit des Modells ge-
geniiber gezielten Angriffe untersucht und verbessert. In einer Reihe
von Experimenten kann gezeigt werden, dass mit dem vorgeschla-
genen Verfahren bessere Ergebnisse erzielt werden konnen als mit
vergleichbaren Methoden, sogar einschliefilich einiger populdrer An-
tivirenprogramme. In den meisten Experimenten kann die Methode
Schadprogramme zuverlédssig erkennen und erreicht Erkennungsra-
ten von tiber 9go% bei einer geringen Falsch-Positiv-Rate von 1%. Des
Weiteren kann bei einer Auswertung mit verschiedenen Mobilgeréten
gezeigt werden, dass der Ansatz meist nur wenige Sekunden beno-
tigt, um fiir eine Applikation eine Entscheidung mitsamt einer pas-
senden Erklarung zu liefern.

Zusammenfassend untermauern die Ergebnisse dieser Arbeit, dass
die Verwendung maschineller Lernverfahren einen vielversprechen-
den Ansatz darstellt, um die Sicherheit mobiler Gerite zu verbessern.
Wihrend diese Techniken allein zwar auch die Bedrohung durch mo-
bile Schadanwendungen nicht vollends beseitigen konnen, sind sie
dennoch in der Lage, die erfolgreiche Infektion von Mobilgerédten
deutlich zu erschweren.

Vi

PUBLICATIONS

This thesis contains ideas and results that have been published by the
author in the following peer-reviewed papers and articles:

[1]

Daniel Arp, Michael Spreitzenbarth, Malte Hiibner, Hugo Gas-
con, and Konrad Rieck. “Drebin: Efficient and Explainable De-
tection of Android Malware in Your Pocket.” In: Proc. of Net-
work and Distributed System Security Symposium (NDSS). 2014.

Daniel Arp, Erwin Quiring, Christian Wressnegger, and Kon-
rad Rieck. “Privacy Threats through Ultrasonic Side Channels
on Mobile Devices.” In: Proc. of IEEE European Symposium on
Security and Privacy (EuroS&P). 2017.

Ambra Demontis, Marco Melis, Battista Biggio, Davide Mai-
orca, Daniel Arp, Konrad Rieck, Igino Corona, Giorgio Giac-
into, and Fabio Roli. “Yes, Machine Learning Can Be More Se-
cure! A Case Study on Android Malware Detection.” In: IEEE
Transactions on Dependable and Secure Computing (TDSC) (2019).

Besides, the thesis also contains several previously unpublished re-
sults. Furthermore, the author of this thesis contributed to the follow-
ing publications, which also discuss some of the concepts presented
in this thesis:

[1]

Daniel Arp, Fabian Yamaguchi, and Konrad Rieck. “Torben:
A Practical Side-Channel Attack for Deanonymizing Tor Com-
munication.” In: Proc. of ACM Symposium on Information, Com-
puter and Communications Security (ASIACCS). 2015.

Daniel Arp, Erwin Quiring, Tammo Krueger, Stanimir Dragiev,
and Konrad Rieck. “Privacy-Enhanced Fraud Detection with
Bloom filters.” In: Proc. of Int. Conference on Security and Pri-
vacy in Communication Networks (SECURECOMM). 2018.

Hugo Gascon, Fabian Yamaguchi, Daniel Arp, and Konrad
Rieck. “Structural detection of android malware using embed-
ded call graphs.” In: Proc. of ACM Workshop on Artificial Intelli-
gence and Security (AISEC). 2013.

Hugo Gascon, Christian Wressnegger, Fabian Yamaguchi, Da-
niel Arp, and Konrad Rieck. “Pulsar: Stateful Black-Box Fuzz-
ing of Proprietary Network Protocols.” In: Proc. of Int. Con-
ference on Security and Privacy in Communication Networks (SE-
CURECOMM). 2015.

vii

(6]

[10]

[11]

viii

Hugo Gascon, Bernd Grobauer, Thomas Schreck, Lukas Rist,
Daniel Arp, and Konrad Rieck. “Mining Attributed Graphs
for Threat Intelligence.” In: Proc. of ACM Conference on Data
and Applications Security and Privacy (CODASPY). 2017.

Henning Perl, Daniel Arp, Sergej Dechand, Fabian Yamaguchi,
Sascha Fahl, Yasemin Acar, Konrad Rieck, and Matthew Smith.
“VCCFinder: Finding Potential Vulnerabilities in Open-Source
Projects to Assist Code Audits.” In: Proc. of ACM Conference on
Computer and Communications Security (CCS). 2015.

Erwin Quiring, Daniel Arp, and Konrad Rieck. “Forgotten Sib-
lings: Unifying Attacks on Machine Learning and Digital Wa-
termarking.” In: Proc. of IEEE European Symposium on Security
and Privacy (EuroS&P). 2018.

Michael Spreitzenbarth, Thomas Schreck, Florian Echtler, Da-
niel Arp, and Johannes Hoffmann. “Mobile-Sandbox: combin-
ing static and dynamic analysis with machine-learning tech-
niques.” In: International Journal of Information Security (INT |
INF SECUR) 14.2 (2015).

Christian Wressnegger, Guido Schwenk, Daniel Arp, and Kon-
rad Rieck. “A close look on n-grams in intrusion detection:
anomaly detection vs. classification.” In: Proc. of ACM Work-
shop on Artificial Intelligence and Security (AISEC). 2013.

Christian Wressnegger, Fabian Yamaguchi, Daniel Arp, and
Konrad Rieck. “Comprehensive Analysis and Detection of Fla-
sh-Based Malware.” In: Proc. of Conference on Detection of Intru-
sions and Malware & Vulnerability Assessment (DIMVA). 2016.

Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck.
“Modeling and Discovering Vulnerabilities with Code Prop-
erty Graphs.” In: Proc. of IEEE Symposium on Security and Pri-
vacy (S&P). 2014.

ACKNOWLEDGEMENTS

First and foremost, I wish to thank my supervisor Prof. Dr. Konrad
Rieck for giving me the opportunity to work on my research in a
very open and productive environment. Throughout the whole time
as a PhD student, he inspired me with tons of ideas and supported
me with his positive attitude — especially in challenging periods of
my research.

Also, I would like to thank the other members of my PhD com-
mittee. In particular, Prof. Dr. Lorenzo Cavallaro for refereeing this
thesis and Prof. Dr. Martin Johns for chairing the defense committee.
I'm grateful that you have taken the time for doing this, despite your
busy schedules. I cannot thank you enough for that!

I want to express my gratitude to all the wonderful people that
I met during my PhD years, though I cannot list all of them here
explicitly. I'm indebted for all the experiences I could gather during
this time, and will always look back to it with fond memories. Spe-
cial thanks go to Dr. Fabian Yamaguchi, who encouraged me to start
a PhD, which turned out to be one of the best decisions I have ever
made. Moreover, I would like to thank my long-time office mate Er-
win Quiring for many inspiring discussions on security-related topics
and, most importantly, making plans on how to save the world. ;) I
wish to thank Dr. Christian Wressnegger, who always had an open
ear and supported me with his vast knowledge on malware detec-
tion. Warm thanks also go to John Boswell for proof-reading large
parts of this thesis.

Almost needless to say, I thank my parents, who have always been
there for me and supported me in every possible way they could.

Finally, I want to thank my girlfriend Sina, as this thesis would
definitely not have been possible without her encouragement and pa-
tience over the last few years.

ix

CONTENTS

1

INTRODUCTION

Motivation
1.2 Contributions
1.3 Structure of this Thesis

1.1

BACKGROUND
21 Android
2.1.1 Applications
2.1.2 Fragmentation.
2.1.3 Malware
2.1.4 Anti-Virus Scanners .
2.1.5 Application Analysis .
2.2 Machine Learning
2.2.1 The Learning Problem
2.2.2 Generalization and Regularization
2.2.3 Training and Testing .
2.2.4 From Applications to Vectors
2.2.5 Support Vector Machines
2.2.6 Evaluation Metrics . .
2.3 Chapter Summary
ULTRASOUND-BASED TRACKING MALWARE
3.1 Mobile Device Tracking . . .
3.2 Privacy Threats
3.3 Technical Background
3.3.1 Audible and Inaudible Sound
3.3.2 Encoding of Information.
3.3.3 Sending and Receiving
3.4 Methodology
3.4.1 Detecting Mobile Applications
3.4.2 Detecting Ultrasonic Beacons
3.4.3 Discussion
3.5 Empirical Study
3.5.1 Case Study SilverPush
3.5.2 Case Study Lisnr . . .
3.5.3 Discussion
3.6 Evaluation
3.6.1 Controlled Experiment
3.6.2 Audio Beaconsinthe Wild
3.6.3 Applicationsinthe Wild
3.7 Discussion
3.7.1 Limits and Challenges

U B~ R R

O NN

10
12
13
16
17
18
19
20
21
23
26

Xi

Xii CONTENTS

3.7.2 Countermeasures 49

3.7.3 Limitations 51

3.7.4 Conclusion and Outlook 51

3.8 Related Work 53
3.9 Chapter Summary 53
4 LEARNING-BASED MALWARE DETECTION 55
4.1 Methodology 57
4.1.1 Static Analysis of Applications 57
4.1.2 Embedding in Vector Space 60

4.1.3 Learning-based Detection 62
4.1.4 Explanation 62

4.2 Discussiono o 65
43 Related Work 66
4.3.1 Further Related Work 67

4.4 Chapter Summary 69
5 PERFORMANCE EVALUATION 71
5.1 EvaluationData 71
5.1.1 Discussion 74

5.2 Detection Performance 75
5.2.1 Comparison with Related Approaches 75

5.2.2 Comparison with Anti-Virus Scanners. 78

5.2.3 Detection of Malware Families 8o
5.2.4 Detection of Unknown Families 84

5.2.5 Detection of Malware over Time 87
5.2.6 Detection of Suspicious Applications 90
5.2.7 Discussion L. 93

5.3 Run-time Performance 94
54 Limitations 0 L. 95
55 Related Work 96
5.6 Chapter Summary 97
6 MODEL ANALYSIS AND EXPLAINABILITY 99
6.1 Explainability 100
6.1.1 Feature Analysis of Malware Types 101
6.1.2 Feature Analysis of Malware Families 103

6.1.3 Discussion 106

6.2 Model Analysis 107
6.2.1 Support Vector Analysis 107
6.2.2 Regularization. 108

6.2.3 Discussion 111

6.3 Attacks against Machine Learning 112
6.3.1 Attack Scenarios L 112

6.3.2 Evasion Attacks L. 113

6.3.3 Defenses against Evasion Attacks 117

6.3.4 Discussion 120

CONTENTS Xiii

6.4 Related Work, 121
6.5 Chapter Summary 123
7 CONCLUSION 125
7.1 Summaryof Results 125
7.2 Limitations and Future Work 129
A APPENDIX 133
A.1 Suspicious Applications 0L 133

BIBLIOGRAPHY 135

LIST OF FIGURES

Figure 1 Android malware growth 2
Figure 2 Android application analysis 13
Figure 3 Underfitting and overfitting 19
Figure 4 Support vector machines 22
Figure 5 Receiver operating characteristic curve 24
Figure 6 Overview of ultrasonic privacy threats 29
Figure 7 Overview of frequency domain 31
Figure 8 Modulation techniques 33
Figure 9 Schematic depiction of detection method ... 35
Figure 10 Frequency distribution of audio beacon 36
Figure 11 Example of ultrasonic beacon transmission . . 37
Figure 12 Spectrogram of Lisnr sample. 40
Figure 13 Results for device experiment 43
Figure 14 Spectrogram of DVB-T recording 48
Figure 15 Frequency bandwidth of MP3 and AAC. ... 50
Figure 16 Time distribution of SILVERPUSH samples . .. 52
Figure 17 Overview of DREBIN 56
Figure 18 Mock-up of user interface 64
Figure 19 ROC curve for DREBINORIG + + « « « + + « = « . . 76
Figure 20 ROC curve for DREBINAyC « « -« v v v v o v v u 77
Figure 21 Detection per family in DREBINoRrig + . .+ - . - 81
Figure 22 Detection per family in DREBINgyc 82
Figure 23 Detection per family in AMD 83
Figure 24 Leave-one-out results for DREBINogrig - - - - - 84
Figure 25 Leave-one-out results for DREBINgyC 85
Figure 26 Leave-one-out results for AMD 86
Figure 27 Time distribution of full dataset 88
Figure 28 Detection performance over time 89
Figure 29 Analysis of suspicious applications 92
Figure 30 Run-time performance of DREBIN 94
Figure 31 Detailed run-time analysis of DREBIN 95
Figure 32 Support vector selection 108
Figure 33 Detection performance of L1/L2-SVM 109
Figure 34 Feature selection of L1/L2-SVM 110
Figure 35 Attack robustness of L1/L2-SVM 116
Figure 36 Weight distribution of L1/L2-SVM 117
Figure 37 Attack robustness of different classifiers 119
Figure 38 Weight distributions of different classifiers . . 120

Xiv

LIST OF TABLES

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9
Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Table 16
Table 17
Table 18
Table 19
Table 20
Table 21

TV stream datasets
Applications with SilverPush functionality
List of suspicious APIcalls.
Explanation templates
Dataset overview
Comparison with related methods
Detection performance on different datasets
Comparison with anti-virus scanners
Largest malware families in DREBINQRiG . - - -
Largest malware families in DREBIN ayc
Largest malware familiesin AMD
Detection results for malware families
Detection performance over time
Feature ranking for ransomware families
Feature ranking for SMS-Trojan families
Feature ranking for root malware families . . .
Top 10 features of DroidKungFu family
Top 10 features of Fakelnstaller family
Top 10 features of GoldDream family
Top 10 features of SilverPush family
Detection performance of L1/L2-SVM

47

XV

LISTINGS

Listing 1
Listing 2
Listing 3

XVi

Decompiled Goertzel algorithm
Decompiled emulator detection
Smali code for feature addition

ACRONYMS

API Application Programming Interface
APK Android Package Kit

AUC Area Under (ROC) Curve

CPU Central Processing Unit

DTMF Dual-Tone Multi-Frequency Signaling
FFT Fast Fourier Transform

FPR False Positive Rate

FSK Frequency Shift Keying

GPS Global Positioning System

GUI Graphical User Interface

IMEI International Mobile Equipment Identity
IMSI International Mobile Subscriber Identity
IP Internet Protocol

KNN k-Nearest-Neighbor

LDA Latent Dirichlet Allocation

OHA Open Handset Alliance

0S Operating System

PUP Potentially Unwanted Program

ROC Receiver Operating Characteristic

SDK Software Development Kit

SMS Short Message Service

SNR Signal-to-Noise Ratio

SVM Support Vector Machine

TAN Transaction Authentication Number
TPR True Positive Rate

URL Uniform Resource Locator

XVvii

INTRODUCTION

1.1 MOTIVATION

Within the last decade, the popularity of smartphones has grown sig-
nificantly, such that billions of people nowadays own at least one
of these devices [227]. Although there are different reasons for their
popularity, two essential factors are their ease of use and the high
flexibility these devices provide to their users. In particular, the func-
tionality of smartphones is not limited to telephony, but can easily
be extended through small applications, also known as apps. These
applications offer a broad variety of different useful features to the
user, ranging from email and online banking functionality to com-
putationally demanding video games. A user can easily extend her
device with a specific functionality within minutes by installing an
application that provides the required feature.

A considerable part of the success and prevalence of smartphones
can be attributed to Google’s Android Operating System (OS). Within
a relatively short period of time, Android has become by far the most
popular OS for smartphones, and runs on more than 85% of all mo-
bile devices at the time of this writing [9o]. As the majority of its
code base is open source, not only Google itself, but also other com-
panies release hardware with customized versions of the OS. This
openness led to a large variety of devices in different price categories,
making Android smartphones affordable for most people. Besides,
Android also gives its users many possibilities to customize their de-
vices, which resulted in a large and vivid development community
around the operating system.

But the growing popularity of Android smartphones also has a se-
rious downside, since they have also started to attract the attention of
malware authors and dubious advertising companies in recent years.
Having mostly commercial interests, these actors try to distribute ma-
licious applications among credulous smartphone users [93, 94, 223].
As a result, anti-virus vendors observe a significant increase in the
number of malware for Android in the past few years [93]. For ex-
ample, Figure 1 depicts the number of Android malware detected
by the anti-virus vendor GData between 2012 and 2018 [133]. While
the vendor already detected around 200,000 malicious applications in
2012, the number rapidly increased up to more than 3 million sam-
ples in 2016. Moreover, the anti-virus company even expects a total of
roughly 4 million malware samples in 2018.

Smartphones are
widespread
nowadays.

Andproid is the most
popular OS for
mobile devices...

...and commonly
targeted by malware
authors.

Android is targeted
for various reasons...

...and by different
types of malware.

INTRODUCTION

106

Bl Detected malware

22 Predicted malware

Android malware
-5
¥
A
HRREN
Y
SN
SRR
IS S S
—

2012 2013 2014 2015 3016 2017 2018

Year

Figure 1: Based on the number of samples obtained until the third quarter
of 2018, GData estimates that the number of malicious samples for
Android will rise above 4,000,000 [133].

The reasons why adversaries mainly target Android are manifold.
First of all, Android runs on most mobile devices. Consequently, mal-
ware authors significantly increase their chances of infecting a large
number of devices, if they develop their malware for this particular
operating system. Secondly, in contrast to other platforms, Android
allows its users to install applications not only from Google’s official
app store, GooglePlay, but also from other sources, such as third-party
markets or websites. While this offers high flexibility and is therefore
highly appreciated among Android’s user base, it also increases the
risk of accidentally installing malicious applications, as these alterna-
tive sources often do not provide security mechanisms comparable
to those of GooglePlay. Thirdly, a large number of mobile devices
still run deprecated versions of Android that exhibit serious security
vulnerabilities. These vulnerabilities can, in turn, be exploited by ma-
licious applications to escalate their privileges or misuse flaws in the
security design of older versions of Android [93].

In addition to its increasing number, Android malware exhibits a
broad spectrum of malicious behaviors. This includes, for instance,
malware that sends SMS to expensive premium services owned by
the malware authors, or several variants that extort money from the
user [131, 202, 223]. The malware authors exploit the fact that mod-
ern mobile devices often concentrate large amounts of personal data,
ranging from location data to sensitive login credentials [11, 72]. Also,
these devices hold various sensors, like microphones and cameras,
which can be misused by adversaries to spy on unwitting users with-
out their knowledge or consent [e.g., 138, 142].

To protect users from the growing threat posed by mobile malware,
different malware detection solutions exist. The most common one
is most likely the installation of an anti-virus scanner on the device.
Even though these tools can efficiently detect malware with low run-

1.1 MOTIVATION

time overhead, they lack reliable detection in many cases. This is
because these scanners often rely upon manually crafted detection
patterns, also called signatures, which are unavailable for new mal-
ware [145, 175, 208]. Thus, anti-virus scanners frequently have prob-
lems detecting new malware samples, due to the sheer number of
malicious samples arising almost every day. In addition, even small
changes to a malicious application can be sufficient to circumvent the
signatures of many of these scanners [39].

A large body of research therefore studies new methods to improve
the detection of Android malware. These methods can be roughly cat-
egorized into approaches that use static and dynamic analysis. For ex-
ample, TaintDroid [72], DroidRanger [224], and DroidScope [217] are
methods that can monitor the behavior of applications at run-time. Al-
though very effective at identifying malicious activity, run-time mon-
itoring suffers from a significant overhead and cannot be directly ap-
plied on mobile devices. By contrast, static analysis methods, such
as Kirin [71], Stowaway [77], RiskRanker [97], usually induce only a
short run-time burst. While these approaches are efficient and scal-
able, they also mainly build on manually crafted detection patterns,
thus having similar drawbacks as traditional anti-virus solutions. In
addition, current methods usually do not provide explanations for
their decisions to the user. As these approaches, however, often suffer
from false positives, it is essential that users have the possibility to un-
derstand the decisions made by these systems. This, in turn, allows
them to decide whether or not to still trust an application, despite
the assessment of the detector. Moreover, if the decisions of such a
detection system can be reconstructed, it can also help researchers to
improve the accuracy of the system further.

In this thesis, we present novel insights on the Android malware
landscape and propose new methods to tackle this growing threat
effectively. In particular, we first discuss our analysis results on a
sophisticated type of malware that spies on unwitting smartphone
users. Based on our findings, we develop and gradually improve a
method that allows the detection of Android malware in general. To
this end, we leverage techniques from the field of machine learning,
as these have already been successfully applied to similar applica-
tion fields [e.g., 135, 169, 194]. In our case, we use them to build
an efficient and effective detection method, which can derive proper
detection patterns for Android malware automatically. Besides, our
method runs directly on the mobile device, and provides suitable ex-
planations for its decisions to the user. We outline the contributions
of this thesis in the following section.

While various
solutions to this
problem exist...

...they all suffer from
miscellaneous
problems.

INTRODUCTION

1.2 CONTRIBUTIONS

The findings we discuss throughout this thesis can be summarized
into three main contributions:

1. As a motivating example, we present the results of a study, we
conducted on the use of an ultrasonic side channel by mobile
apps. Throughout this study, we have identified a large number
of malicious apps that use this side channel to spy on unwit-
ting smartphone users. In particular, while analyzing several
commercial products that use this technique for different goals,
we find that one of these companies has used it for illicit pur-
poses. Our findings do not only show how the techniques uti-
lized by mobile malware become more sophisticated over the
years, but also how easily new technologies can be misused
by malware authors or dubious advertising companies. Overall,
we have been able to detect 234 samples containing the func-
tionality, which enables them to listen in the background for
ultrasonic signals without the knowledge of smartphone users.
In response to our findings, Google has removed applications
from the official store that endanger users’ privacy by contain-
ing this functionality.

2. As our second contribution, we gradually develop a suitable
method for Android malware detection. Specifically, we start
by proposing a method to identify applications containing the
previously mentioned ultrasonic tracking functionality. After-
ward, we present a more generic approach that allows detecting
Android malware in general. We call this method DreBIN and
it enables us to derive the necessary signatures automatically.
Throughout an extensive evaluation of the method, we show
that DREBIN outperforms related approaches by a large margin,
including several popular anti-virus scanners. Apart from its
good detection capabilities, DREBIN also exhibits an excellent
run-time performance and can therefore run directly on the mo-
bile device. Furthermore, it outputs an explanation for its as-
sessments of analyzed mobile applications. This property does
not only help users understand the decisions of the detection
system, but can also help to improve it further.

3. As the third contribution, we provide a detailed analysis of the
underlying detection model. More precisely, we examine its in-
terpretability, generalization capabilities, and robustness in re-
alistic attack scenarios. To this end, we first compare its expla-
nations for popular malware families with common knowledge
about the behavior of these families. In a second step, we dis-
cuss possible attacks against the detection model and show how

1.3 STRUCTURE OF THIS THESIS

the method can be improved, such that it provides more robust-
ness against these kinds of attacks.

1.3 STRUCTURE OF THIS THESIS

The thesis is structured as follows. In Chapter 2, we provide the
reader with basic background knowledge on the Android operat-
ing system, the malware landscape on Android, and the benefits and
drawbacks of common approaches used to detect these malicious ap-
plications. Moreover, we introduce basic concepts of machine learn-
ing theory that are required to understand the explanations provided
throughout this thesis. In Chapter 3, we present our findings on sev-
eral applications that receive and transmit information using an ultra-
sonic side channel. We hereby focus on a specific malware that uses
this technique to spy on smartphone users. In this context, we also
propose a first method that allows detecting members of this mal-
ware family within a large number of applications. The results in this
chapter have initially been presented at the European Symposium on
Security and Privacy (EuroS&P) in Paris [9].

In Chapter 4, we propose a learning-based method for Android
malware detection and provide a broad evaluation of its detection
capabilities in Chapter 5. The interpretability and robustness of the
underlying detection model is examined in Chapter 6, including re-
alistic attacks against the detection method. We show how the learn-
ing algorithm can be improved to fend off these attacks. All of these
chapters are mainly based on a paper that has been published at the
Network and Distributed System Security Symposium (NDSS) [8], along
with some previously unpublished results to account for recent devel-
opments in this field of research. Besides, we discuss an improved ver-
sion of the learning method in Chapter 6. This improved version has
been developed throughout a joint research project with the PRALabs
of the University of Cagliari. The corresponding article is going to be
published in the IEEE Transactions on Dependable and Secure Computing
(TDSC) [57].

Chapter 7, finally, summarizes the obtained results and outlines
future research directions.

5

BACKGROUND

In this chapter, we provide the reader with the background knowl-
edge necessary to follow the explanations and descriptions in this
thesis. In particular, the chapter is divided into two different parts,
where the first discusses the Android operating system and the sec-
ond part gives an introduction into the field of machine learning.

2.1 ANDROID

The mobile Operating System (OS) Android is developed by a con-
sortium of different companies, the Open Handset Alliance (OHA),
under the leadership of Google. From its first commercial release in
2008, Android has become the most popular mobile operating sys-
tem within a couple of years and runs on roughly 85% of all mobile
devices at the time of this writing [90].

A main reason for its proliferation is the commitment of Google
and the other members of the OHA to openness. As a result, An-
droid is mainly build upon open source components and, for instance,
based on a modified version of the Linux kernel [65, 70]. Moreover,
Android can even be adapted for special requirements and therefore
runs on a large variety of devices.

In contrast to Apple’s operating system iOS, Android users cannot
only install applications (also called apps) from Google’s official store
(Google Play) but also from alternative markets or websites. Moreover,
Google encourages third-party developers to make applications for
Android, for instance, by providing them with the necessary develop-
ments kits and API documentation. Consequently, there exists a large
community developing applications for Android. Its high popularity
and prevalence, however, also makes Android a worthwhile target of
malware authors.

In the following, we discuss basic concepts of Android which we
refer to in this thesis.

2.1.1 Applications

Android applications are mostly written in Java and compiled into
Dalvik Bytecode (or dex code). The dex code of an application is similar
to Java bytecode but specially optimized to run efficiently on mobile
devices [see, 65, 70, 73]. Besides, Android allows developers to imple-
ment parts of their applications in native code, using programming
languages like C and C++. This feature is mostly intended for compu-

Mainly due to its
openness...

...Android has
become the most
popular mobile
operating system.

An app’s manifest
file contains crucial
information,...

...such as its
components...

..., intent filters,...

BACKGROUND

tationally intensive applications, such as video games or multimedia
applications. Unfortunately, it can be misused by malware authors to
hide their malicious code outside the Dalvik bytecode, as we will also
discuss in this section.

The application code and other Android-specific files are packed to-
gether in an Android Package Kit (APK) file, which can be installed
on the device. An APK file is a zip-like archive that must include
certain files and directories. Most importantly, each APK file has to
contain the classes.dex file (i.e., the Dalvik bytecode) and the Android-
Manifest.xml. The manifest file of an application holds information
mainly required during the installation process, including the pack-
age name of the app and the components it consists of. This informa-
tion is used to register the application and its components with the
system at install time [70].

An Android application usually consists of several loosely coupled
components, which, in turn, belong to one of four different compo-
nent types:

* Activities. These components are individual screens with a user
interface and therefore used by all Android applications that
provide a graphical user interface (GUI).

* Services. This component type runs in the background without
a user interface. It is usually employed for long-running tasks,
such as downloading files or playing music. Unfortunately, ser-
vices are commonly misused by malware to perform malfeasant
actions on the device without the user’s knowledge.

* Content Providers. This type of component provides an interface
to application data and is mainly used to share data between
applications. For instance, the user’s contacts can be accessed
through a content provider by an app having the respective per-
mission.

* Broadcast Receivers. These components allow an application to re-
act to system-wide events, e.g., when the screen has been turned
off or the battery is low on charge. Like in the case of service
components, malware uses this functionality to silently start its
malicious components.

INTENTS Android application components can communicate with
each other using certain Intent objects. These are message objects that
can be passed between components to exchange data or trigger cer-
tain tasks. For instance, they are commonly used to start activities and
service components. Moreover, intents also allow the communication
between different applications, which are typically isolated from each
other due to Android’s security policy.

2.1 ANDROID

There exist two types of intents, i.e., explicit intents and implicit in-
tents. Explicit intents are sent to a specific application or component,
while implicit intents are forwarded to all applications that have reg-
istered the respective intent filter in their manifest file. For instance,
the Android system always broadcasts an implicit intent message
BOOT_COMPLETED to inform about the successful completion of the boot
process. A common malicious pattern is to register an intent filter to
listen for this particular intent message. Upon receiving the intent,
the malware starts its malicious service in the background.

PERMISSIONS Android uses a permission system to restrict access
to a set of security-critical API functions and resources. An applica-
tion that, for instance, wants to send SMS, has to declare in its man-
ifest file that it requires the corresponding SEND_SMS permission. The
user then needs to grant the requested permissions to this application
explicitly.

Up to Android 6, a list of all permissions an application requests
was presented to the user prior to its installation. The user had to
grant all permissions to the application or cancel the installation pro-
cess completely. It was not possible for the user to control the access
in a more fine-grained way. Unfortunately, users therefore often in-
stalled overprivileged applications on their devices, including apps
with malicious functionality [4, 77].

Since Android 6, however, the permissions are approved by the
user at run-time. The problem of overprivileged applications remains,
since the Android platform is highly fragmented and a large number
of devices still run with old Android versions. Moreover, even when
permissions are requested at run-time, it is still not always clear to
the user why some permission are requested by an app [204].

2.1.2 Fragmentation

Manufacturers offer devices in all price categories, ranging from cheap
devices to expensive high-end smartphones. As previously mentioned,
this is an essential property of Android and a main reason why it is
widely distributed amongst mobile device users. Since Android is
mostly open source, it is adapted and modified by manufacturers to
their particular needs before being shipped with their devices. Thus,
there exist a broad variety of Android devices in the wild [4].
Unfortunately, this comes at a high cost, as manufacturers do not
always provide recent software updates for their modified Android
versions. Mobile devices therefore often exhibit serious security vul-
nerabilities, which remain unpatched, posing a high risk to the pri-
vate data of smartphone users. As a reaction to this problem, Google
introduced the security patch level and supplies monthly patches since

9

...and requested
permissions.

A large number of
Android devices...

...run deprecated
versions of
Android...

10

...that exhibit

vulnerabilities
exploitable by
malware.

Malware infects
devices through
different attack
vectors.

A large variety of
malware exists,
including malware
variants that...

...send SMS to
premium services,...

BACKGROUND

Android 6. Still, only a few manufacturers provide these patches to
their customers in time [124].

For example, Google reported that 0.3% of all Android devices still
run with Android 2.3 in September 2018 [125]. At first glance, this
seems to be a negligible fraction of devices. However, note that more
than 2.5 billion devices run Android as their operating system [5].
This means there are more than 7.5 million devices still running a
highly deprecated version of Android.

For malware researchers, the fragmentation of Android is a rele-
vant problem, as malicious applications can still exploit vulnerabili-
ties that have already been closed in more recent Android versions.
In consequence, the malware will still be successful, since many An-
droid devices are susceptible to these vulnerabilities.

2.1.3 Malware

As already discussed in the introduction of this thesis, the number
of mobile malware has grown significantly within the past decade.
While a small fraction of these applications have also been found
in the official Google Play Store in the past, most of this malware
spreads through other sources, such as alternative markets or web-
sites [13].

To trick users into installing these malicious applications, malware
authors follow different strategies [223]. A widespread method is to
repackage legitimate applications with malicious functionality and up-
load them to alternative markets, which are particularly popular in
countries like Russia or China. Furthermore, malware authors often
use social engineering techniques, for instance, to get users to visit
compromised websites. The malware is then downloaded from these
websites—in some cases even without the user’s knowledge.

Once installed on the device, malware pursues different goals. While
some malicious applications try to escalate their privileges by exploit-
ing vulnerabilities in the operating system, others silently wait for
commands from external Command and Control (C&C) Servers. Other
types silently steal and transmit sensitive information, such as bank-
ing credentials, to the malware authors. In most cases, malware au-
thors pursue a financial interest, i.e., they try to steal money from the
user of an infected device. We discuss some common types of mal-
ware in the following [202, 223]. Note that also combinations of these
behavioral patterns can often be found in malware.

* Premium-SMS malware. A common scam targeting mobile device
users is the subscription to expensive premium services owned
by the malware authors. In the case of Premium-SMS malware,
the malicious applications send, for instance, SMS to fee-based
services without the knowledge of the users. Zhou et al. [223]

2.1 ANDROID

found that a large fraction of the malware analyzed by them
belong to this kind of malware.

Ransomware. This type of malware locks the user’s device and
then demands a ransom from the user to unlock the device
again. To lock the device, Android ransomware usually uses
screen overlays, which are rendered on the very top of the screen,
thus effectively hindering the user from accessing the compro-
mised device. Similarly, other variants of this malware encrypt
the data on the device. After successfully locking the device, the
fraudsters blackmail users to pay several hundred dollars to re-
gain access to their device. Interestingly, the number of samples
belonging to this type of malware has significantly grown in the
past few years, according to Wei et al. [202].

Banking trojans. The members of this type try to steal the user’s

bank account credentials. For example, the malware family Zitmo
aims to circumvent the two-factor authentication mechanism

used by most banks to protect a user’s bank accounts [76]. Due

to this security mechanism, it is not sufficient for the fraud-
sters to solely compromise the victim’s computer, since they still

require the mobile transaction authentication numbers (TANS).
Therefore, the fraudsters trick users into installing malware on

their mobile devices. The banking trojan then intercepts the mo-
bile TAN and forwards them to the malware authors.

Aduware. This type of mobile applications cannot necessarily be

categorized as malware, even though there is an intersection be-
tween both application sets. In particular, advertising libraries

are a prevalent way for developers of mobile applications to

earn money. In some cases, however, the advertising is very

aggressive and can thus significantly impact the user experi-
ence. For instance, Google banned several applications from

their market due to dubious advertising practices [116]. Nonethe-
less, since also a large fraction of legitimate applications are us-
ing advertising libraries, any boundary between legitimate and

illicit usage of these libraries is somewhat arbitrary. Applica-
tions belonging to this category are therefore also oftentimes

considered as grayware.

Regardless of the malware type, the applications usually try to re-
main undetected by users and anti-virus scanners.

To avoid being detected by users, malware often actively hides sus-
picious elements, such as application icons, from them. In many cases,
the malicious functionality runs as a background service on the de-
vice and is therefore not easy to detect. Furthermore, malicious ser-
vices are commonly triggered by system events like, for instance, in-

11

...blackmail mobile
device users,...

...steal sensitive data
from the device,...

...0T Use aggressive
advertising.

Malware uses
various techniques...

12

...to slip through
current detection
systems.

AV scanners often
rely on signatures...

...which can be
easily circumvented.

BACKGROUND

tent messages that are only sent if the screen is turned off. This makes
their detection even more difficult.

Moreover, several obfuscation techniques exist that allow malicious
applications to impede their detection by anti-virus scanners. While
the previously mentioned repackaging method can already be sufficient
to slip through the recognition system of many anti-virus scanners,
more advanced obfuscation techniques download or decrypt the ma-
licious payload at run-time and are therefore extremely hard to de-
tect [see 160].

In the following sections, we give more details on the limitations
of current detection systems and discuss techniques that can alleviate
the drawbacks of these systems. Furthermore, we provide more exam-
ples of actual malware and details on their inner working throughout
this thesis. For instance, in Chapter 3 we discuss in detail a malware
that uses an ultrasonic side channel to steal sensitive data from the
mobile device.

2.1.4 Anti-Virus Scanners

Anti-virus scanners are still the most common way to detect mali-
cious applications on computers and mobile devices. Unfortunately,
the detection capability of these scanners is often limited, as their
detection mechanism relies on detection signatures in many cases [see
16, 145, 189, 208]. These signatures are known detection patterns, like
unique byte sequences in malicious samples, which are stored in the
scanner’s database. If a signature in the database matches with (parts
of) an application, the application gets flagged as malicious by the
anti-virus scanner.

While the signature-based approach is a simple yet often effective
method for the detection of malware, it exhibits several drawbacks.
Most importantly, it fails as soon as there exists no proper signa-
ture for a malware in the database. Therefore, the signature database
needs to be continuously updated to allow for reliable detection. Due
to the growing number of malicious software for Android (see Chap-
ter 1), however, it becomes increasingly difficult for anti-virus vendors
to provide signatures for new malware in time. This, in turn, leads to
time windows in which devices remain vulnerable [53]. Besides, mal-
ware authors usually only need to slightly modify their malicious
samples to bypass anti-virus products, for example, by repackaging
their malicious code into different legitimate applications [39, 223].
The reason for this is that these signatures are often crafted such that
they ideally produce no false positives. Consequently, they are not
generic enough to compensate even for small modifications to the
malware. Thus, simple obfuscation techniques can already be suffi-
cient to circumvent these detection systems.

2.1 ANDROID

1a05 €800 6e10 7300 0600 0c00 1a0l 0700 6e20 6¢00
4 1000 0c00 1a0l e800 1202 6e30 3300 1602 0c01 1302
% 0010 2322 3700 6e20 6500 2000 0a03 3d03 1100 1204 —
A 6e40 6200 2134 28f6 0d00 6el0 2900 0600 1a00 e800
6e20 2800 5600 0e00 6el0 6400 0000 6el0 6100 0100
const—string v5, "tmp”
= invoke—virtual {v6}, [.]getClass|.]
g move—result—object v0
n const—string vl, 7 /assets/game.apk”
invoke—virtual {v0, v1}, [.]getResourceAsStream]|...
String str = "tmp”;
< InputStream resourceAsStream = getClass ().
2 < getResourceAsStream (7 /assets/game.apk”) ; <
- FileOutputStream output = openFileOutput ("tmp”, 0);
byte [] bArray = new byte[4096];

Figure 2: The Dalvik bytecode (dex code) of an application can be disassem-
bled to smali code or decompiled to Java code.

2.1.5 Application Analysis

To overcome the limitations of the prevalent signature-based approach,
more advanced methods have been proposed to fend off malware
more effectively. While these approaches may significantly differ from
each other, they all rely on static and dynamic analysis techniques
to gather information from an application [23]. The extracted infor-
mation is, in turn, used to decide whether the application exhibits
malicious characteristics or not. In the following, we provide a brief
description of both analysis techniques and discuss their advantages
and disadvantages.

STATIC ANALYSIS When performing a static analysis of an applica-
tion, information is extracted from the application without executing
it, for instance, by analyzing its source code. In the case of Android
application analysis, the source code of an application is in most cases
unavailable. Therefore, the Android manifest and the dex code are con-
sidered as a starting point for the analysis, as these usually contain
the main functionality of an application.

Before the analysis, both files need to be translated into an inter-
pretable format that can be easily processed later on. While the trans-
lation of the manifest file is straightforward, it is more involved for
the dex code, i.e., the compiled source code of the application. In par-
ticular, the decompilation of Dalvik bytecode is often prone to errors,

13

In static analysis,
applications are
analyzed without
executing them.

14

These techniques are
often successful in
detecting malware...

...but strong
obfuscation can
hinder their success.

Dynamic analysis
can help tackling
obfuscation,...

...but also exhibits
inherent limitations.

BACKGROUND

and sometimes even consciously prevented by application develop-
ers to hinder theft of intellectual property by competitors. To impede
the static analysis of their applications, app developers and malware
authors apply obfuscation strategies that lead decompilation tools to
fail or even crash [45, 73].

Instead of using the decompiled Java code of an application, a com-
mon approach is therefore to disassemble the bytecode into an inter-
mediate representation, such as smali [87], which is easier to handle
than the original bytecode. Figure 2 depicts an example of different
representations of the same code snippet. Note that, while it is in
principle possible to decompile native libraries in a similar way, it is
far more complex, as the code lacks crucial information, such as type
information and variable names.

Overall, static analysis poses an efficient way to identify charac-
teristic functionalities of an application. However, it also has inher-
ent limitations. Most importantly, it does not allow analyzing code
that has been encrypted or modified with advanced obfuscation tech-
niques. For example, the execution of code that is downloaded by a
malicious application at run-time is almost impossible to detect solely
with techniques of static analysis [136, 145, 160]. In presence of these
advanced obfuscation techniques, further analysis techniques need to
be applied in many cases.

DYNAMIC ANALYSIS To compensate for the weaknesses of static
analysis, another strain of methods relies on information that is gath-
ered during the actual execution of an application. In particular, ap-
plications are executed in controlled environments, and the actions
performed during their execution are documented and analyzed. Us-
ing this approach, it is possible to observe malicious behavior which
would usually remain hidden when solely relying on static analysis
techniques [205]. For instance, dynamic analysis can allow extracting
URLs from the network traffic of a malicious application, even though
they are stored encrypted in the source code of the malware. Similarly,
it might be possible to identify malicious payload that is downloaded
at run-time by malicious software.

Despite its advantages, also dynamic analysis techniques suffer
from several drawbacks. First of all, these approaches are in gen-
eral computationally more demanding than static analysis methods.
Second, most approaches do not execute the applications directly on
the devices” hardware but instead in an emulated environment—also
known as sandboxes. These sandboxes mostly exhibit various artifacts
that allow malicious applications to detect their execution in such
an environment and, in consequence, avoid running their malicious
code [see 85, 159]. While there also have been proposed approaches
that run directly on the hardware [e.g., 117, 147, 210, 214], these lack

2.1 ANDROID

the flexibility of an emulated environment and also often exhibit arti-
facts that allow their detection [144].

While the first two limitations of dynamic analysis systems can
at least be improved, the third limitation cannot be fixed. In par-
ticular, it is impossible to ensure that a dynamic analysis approach
triggers all possible actions of an arbitrary program [56]. Thus, also
dynamic analysis techniques only allow proving the presence of ma-
licious functionality in an application, but not its absence.

To maximize the probability of a successful detection of malware,
static and dynamic analysis techniques should be combined. How-
ever, the methods presented in this thesis solely rely on static anal-
ysis, since they are designed to run on limited hardware resources.
With the growing computational power of mobile devices, however,
it should also be possible to extend them with techniques of dynamic
analysis in the future.

15

16

While there exist
three different types
of learning
problems,...

...we solely focus on
Android malware
detection...

BACKGROUND

2.2 MACHINE LEARNING

In recent years, machine learning has become an essential part in
various application fields, ranging from recommendation systems in
online shops [95, 149, 174] to security-related applications like spam
and fraud detection [10, 100]. The popularity of these techniques re-
sults from their ability to automatically infer general patterns and
dependencies from large amounts of data, thus enabling computer
systems to reliably solve different tasks without requiring to be ex-
plicitly programmed.

As a result, a large number of machine learning techniques have
been proposed that tackle various problems. These methods are com-
monly divided into three different categories:

* Supervised Learning. In these kinds of problems, some data points
are given along with their corresponding labels. For instance, in
the case of Android malware detection, we have a data set of
Android apps given and for each application the information
whether it is considered malicious or benign. The learning algo-
rithm is then supposed to derive a model that can predict the
correct labels for unknown instances.

* Unsupervised Learning. In the unsupervised setting, also some
training examples are given but in this scenario without any
label information. Instead, the learning algorithm tries to find
generic patterns or structures in the underlying data. An exam-
ple of such a problem is topic modeling [28], where a learning
algorithm tries to automatically identify relevant topics within
a set of unlabeled documents. Finally, it assigns each document
to those topics which are probably discussed in it.

* Reinforcement Learning. The third strain is reinforcement learn-
ing. In this setting, the data does also not contain explicit labels
for the data. Instead, it gets feedback on how good or bad a par-
ticular action of the machine learning model was. Using the re-
trieved feedback, the model is improved stepwise in a trial-and-
error approach. These algorithms are, for example, used to let
computers automatically infer the mechanisms behind games
like chess or backgammon.

In this section, we introduce several basic concepts of machine
learning that are essential to follow the explanations provided in this
thesis. We thereby specifically focus on the application of machine
learning for Android malware detection, i.e., a supervised learning prob-
lem where the detection system needs to distinguish between two dif-
ferent classes. While a detailed introduction into the field of machine
learning is out of scope, interested readers are referred to a large body
of literature that exists on this topic [e.g., 3, 27, 67].

2.2 MACHINE LEARNING

We start with a formal description of the learning problem con-
sidered in this thesis. Afterward, we discuss the SVM algorithm in
more detail, as it poses the basis for our proposed detection method.
Finally, we give details on several metrics that allow examining the
performance of detection systems.

2.2.1 The Learning Problem

Let us consider some input x € X that describes the information we
have about an Android application. For instance, this information
might include the API functions the application uses, the network
addresses it tries to communicate with, or some available metadata,
like its ratings in the market it has been downloaded from. We assume
that there exists an optimal—but unknown—prediction function f :
X — Y that allows predicting the correct label for each application of
the input space X, i.e., it correctly assigns the true value of the two
possible outcomes (Y = {benign, malicious} or Y = {—1,+1}) to each
application.

Unfortunately, we neither have any information on what this pre-
diction function f looks like exactly nor do we know the actual dis-
tribution of malicious and benign applications in X. Looking for that
particular function f therefore resembles the search for a needle in
a haystack. Luckily, there exist a large number of machine learning
algorithms that allow us to find appropriate solutions for this task de-
spite our lack of knowledge. Using these techniques, we strive to find
a proper approximation f : X — Y of the actual prediction function
f solely based on a dataset D. In the following, we assume that this
dataset contains N samples x; along with their corresponding true
labels yi, i.e., D ={(x1, y1), ..., A(XN’ yn) k-

To find a good approximation f based on the given data, we apply
a learning algorithm that determines the most suitable function from a
set of possible candidate functions J(, where J{ is often referred to as
the hypothesis set [3]. For example, 3 could be the set of all possible
linear functions from which the algorithm selects the classifier that
yields the lowest number of misclassifications on D.

To compare the different candidates with each other, the learning
algorithm uses an error function E(f) to assess the costs of its decision
when preferring one candidate over another. At first glance, it might
seem to be sufficient to select the hypothesis as our final classifica-
tion model that yields the lowest number of misclassifications on the
available data D. However, this will often result in a classifier that
performs poorly on previously unseen data. Instead, further consid-
erations are necessary to find a proper error function that allows the
learning algorithm to select a classification model with good general-
ization properties.

17

..which is a
supervised learning
problem.

We are looking for a
prediction function...

...that enables us to
distinguish between
malicious and
benign data.

18

Solely minimizing
the error on the
available data...

...leads to overfitted
classification models.

To tackle this
problem...

BACKGROUND

2.2.2 Generalization and Regularization

Finding a classification model that performs well in general in the
previously discussed setting is difficult, since we do not know the
actual underlying distribution of applications. Instead, we only know
a small fraction of N samples, which the learning algorithm uses to
derive some estimates about the actual distribution. Depending on
the expressiveness of the given data D, the resulting classification
model will perform well or poorly on unseen data. Unfortunately,
the given data is often noisy, thus making it difficult for the learning
algorithm to select a proper classification model.

When using an error function Ein(f) that only measures the num-
ber of misclassifications on this data, we will mostly end up with a
classifier that is affected by noise. The error function Ein(f) is the em-
pirical error or also often called the in-sample error. Instead of solely
using Ein(f) to measure the performance of different classifiers, we
therefore need a possibility to estimate the expected error (or out-of-
sample error) Eout(f). This would, in turn, allow us to assess the gen-
eral detection performance of all possible classification models in our
hypothesis set .

REGULARIZATION Fortunately, there exists the principle of Struc-
tural Risk Minimization, which was proposed by Vapnik and Chervo-
nenkis in 1974 [196]. The concept allows bounding the expected error
of a classification model. Consequently, it becomes feasible to select
a classification model for which we can derive certain guarantees on
its detection performance on unseen data. In particular, Vapnik and
Chervonenkis show that it is possible to find an upper bound for the
(unknown) expected error Equ(f) by introducing an additional regu-
larization term [3]:

Eout(ﬂ < Ein(f) + Q(f]-f), (1)

where the regularization term QO depends on the considered hypothe-
sis set (. While it is out of the scope of this thesis to discuss the under-
lying mathematical considerations behind this expression in further
detail, we want to at least motivate how regularization helps us solv-
ing our initial problem. Interested readers are referred to the large
body of literature that exists on this topic and in which the underly-
ing concepts are discussed in detail [e.g., 3, 196].

Simply put, the regularization term penalizes the selection of more
complex classification models, since these have a higher probability
to fit towards noise. In contrast, the empirical error term ensures that
the resulting classification model is not too simple (i.e., too far away
from the actual model f), as it would otherwise not yield a satisfac-
tory detection performance on the given dataset D. If a classifier fits
to the noise in the training data without generalizing the underlying

2.2 MACHINE LEARNING

—— Model f
True function f
Data set D

Model
True function
Data set D

(a) Underfitting (b) Overfitting

Figure 3: Underfitting and overfitting

concept, we refer to it as an overfitted model. Conversely, if a classi-
fier does not generalize the underlying concept of the data, since the
model lacks complexity, we refer to it as an underfitted model.

Figure 3 depicts examples of underfitting and overfitting for a regres-
sion problem. In the first case, a linear model (polynomial with de-
gree 1) is used to describe the underlying data. Unfortunately, it does
not fit to the data very well, as the distribution of the data points is
not linear. Using a polynomial of degree 15, however, also leads to
unsatisfying results, since it fits noisy points within the dataset. By
adding a regularization term to the optimization problem that the
learning algorithm solves, it is possible to find a solution that is close
to the true function f.

2.2.3 Training and Testing

Although the introduction of a regularization term is essential for
finding a good classification model, the boundary defined in Equa-
tion 1 is in practice still too loose to get a good estimate of the ex-
pected error Eqyt.

As a remedy, it is common practice to split the available dataset
D into a separate training dataset Dirain and a test dataset Diegt. The
classification model is then solely trained on the training dataset and
its performance is evaluated on the remaining test data to get an esti-
mate of the expected error Eyyt. During the learning phase, different
classification models need to be compared with each other in order
to eventually select the best model. Comparing the models based on
their performance on the test dataset, however, would again lead to
overfitting. The reason is that a classifier might perform well on the
test data by coincidence and is then preferred over another model
with better generalization performance.

To avoid this, we further split the training data into a (smaller)

training dataset Dy, . and a validation dataset D, . We train different

19

...we apply the
concept of
reqularization...

...and carefully split
the available data...

20

...into different
datasets for training
and testing.

Machine learning
algorithms cannot
handle Android apps
directly.

Therefore, we use
specific functions...

BACKGROUND

models on DP . and evaluate their detection performance on Dy,.
Finally, we can pick the best model based on the results obtained on
Dyal, retrain it again on the complete training data Dirain, and evaluate
its performance on Diyest.

While this approach significantly lowers the chance of overfitting
the model, it introduces another problem. Since less data is avail-
able for training, the overall detection capabilities of the resulting
classifier are often negatively affected. Consequently, a less suitable
model might be picked by the learning algorithm due to the lack of
data. Fortunately, there exist several techniques that help avoid over-
titting, while still allowing us to consider the complete training data
Dirain. One commonly used technique for this purpose is k-fold cross-
validation.

K-FOLD CROSS VALIDATION This approach selects the best model
by first splitting the training data Dy into K equally-sized chunks.
The learning algorithm then trains different models on K — 1 chunks
and evaluates their performance on the hold-back chunk. This pro-
cess is repeated K times, where each time another chunk is picked as
the validation set. Finally, the model that yields the best average per-
formance for all runs is selected and retrained on the complete data
Dirain. Commonly used values for K are 5 and 10, respectively.

2.2.4 From Applications to Vectors

After having obtained an overview of the principles behind machine
learning, let us have a short outlook at how these techniques can help
us to address the problem of Android malware detection in practice.
At first glance, machine learning techniques do not seem to be par-
ticularly useful for this purpose, as they usually operate on mathe-
matical vector spaces. Therefore, they are not able to handle Android
applications directly.

To solve this problem, we first extract features from an Android ap-
plication that later allow its description in a vector space. For instance,
the number of requested permissions or the occurrence of certain API
calls may be used as such features. Note that we provide details on
the exact features we use for the detection of malicious Android ap-
plications in Chapter 4.

Following the feature extraction step, we can finally make use of
a particular group of functions that enable us to derive vector rep-
resentations of Android applications based on the extracted features.
Again, we provide more concrete examples of some mapping func-
tions later in this thesis. For now, it is sufficient to know that these
functions exist and that they pose a useful tool to make machine
learning techniques applicable to Android malware detection.

2.2 MACHINE LEARNING

Formally, the mapping process can be defined as follows. Let Z
be the set of all Android applications and z € Z a specific Android
application belonging to that set. A feature map ¢ : Z — X then
maps the application z to X C R4 where it is represented by a d-
dimensional vector x:

x=¢(z)=(91(2),...,94(z)) with deN". (2)

Oftentimes, each feature is associated with a particular dimension
@i(z) in the vector space. The dimensionality d of that vector space
can even be infinite. While we do not have to deal with such large vec-
tor spaces throughout this thesis, it should be mentioned that there
indeed exist machine learning techniques that tackle learning prob-
lems even in such an infinite dimensional space [48, 176].

2.2.5 Support Vector Machines

The Support Vector Machine (SVM) builds a class of supervised learn-
ing methods, which are widely applied in many different fields, such
as pattern recognition or malware detection. Initially proposed by
Vapnik in 1979 [195] as a method for solving linear problems, it be-
came particularly popular in 1992 when Boser et al. [32] generalized
its mathematical formulation such that it could also be applied to
solve non-linear problems. The reason for its popularity originates
from the fact that the SVM provides a simple mathematical formula-
tion combined with good generalization guarantees, thus effectively
minimizing the chance of overfitting.

In the following, we discuss the details of the SVM formulation
that are necessary to follow the descriptions provided throughout
this thesis.

DATASET In the following, we consider a set of training data D =
{(x1,Y1),..., (xNn,yn)} that consists of samples in a d-dimensional
vector space R%. Each sample belongs to one of two different classes
with labels y € {—1,+1}.

HARD-MARGIN svM Ideally, the two classes are distributed in the
vector space such that they can be easily separated through a simple
linear function f: X — IR:

f(x) =w'x+Db, (3)

where w € RY denotes the vector of feature weights, and b € R the
so-called bias. Figure 4a depicts an example for such a distribution in
R?. However, although we already consider a restricted set of linear
functions, namely those that separate both classes, there still exists an
indefinite number of suitable candidates to pick from, i.e., the cardi-
nality of the hypothesis set J{ is infinite. Depending on the selected

21

...that enable us to
map Android apps
into a vector space.

The SVM allows
solving linear and
non-linear problems.

22

The SV M solves an
optimization
problem...

...which allows
finding the
hyperplane...

...that separates both
classes with
maximum margin.

BACKGROUND

(b) Soft-margin SVM

Figure 4: The soft-margin SVM can be applied if the two classes are not lin-
early separable.

function, the classifier might perform poorly on the (still unknown)
test data. Fortunately, there is only one particular function that ex-
hibits the highest robustness towards noise, thus effectively minimiz-
ing the risk of overfitting—the one that separates both classes with
maximum margin. The SVM algorithm allows us to find this particu-
lar function.

To this end, the SVM algorithm solves an optimization problem
that selects the parameters w and b of the classifier function such
that the margin between both sets of the training data is maximized.
Mathematically, this can be described as follows:

min W w, (4)
s.t. yiw'xg+b)>1,i=1,...,n. (5)

Note that minimizing the term Jw '

the margin [3]. In Figure 4 the margin is visualized by dashed lines.
The vectors lying on the margin are the so-called support vectors and
uniquely define the hyperplane. Consequently, the algorithm selects
only a small number of important data points to derive a classification
model, instead of memorizing the complete training data. After hav-
ing successfully determined the optimal weight vector w, and bias
b,, the SVM can finally classify unknown applications by applying
the decision function h: X — {—1,1}

W corresponds to maximizing

h(x) = sign(wlx +b,). (6)

However, throughout this thesis, we do not consider the bias term
during training (i.e.,, b = 0) but instead set it later manually when
calibrating the classifier (see Chapter 4). Therefore, the optimization
problem is simplified such that the SVM only needs to determine the
weight vector w [32]. Similarly, it is possible to extend the weight

2.2 MACHINE LEARNING

vector w and each instance x; with an additional dimension, i.e.,
w! « wT, b] and xiT — [xiT, 1] and omit optimizing the bias term

explicitly [103].

SOFT-MARGIN svM The previously discussed formulation of the
SVM has a major restriction, as it only allows solving problems where
the classes are perfectly linear separable. In practice, however, this
underlying assumption is rather unlikely to hold. Therefore, the so-
called soft-margin SVM [48] introduces additional slack variables &; > 0,
which allow the SVM to misclassify a certain number of samples:

min W' w+C ZiN:1 &is (7)
w,b
st yiw'xi+b)>1—&,i=1,...,n. ®)

In this case, the cost parameter C > 0 weights the penalty for mis-
classifications. Figure 4b shows an example for a soft-margin SVM.
By allowing the misclassification of a small number of noisy data
points, it still enables us to find a line that separates both classes.
Using the initial formulation of the SVM, this would not have been
possible. Note, however, that not only the points lying directly on
the margin are now considered as support vectors. Additionally, all
misclassified data points and points lying inside the margin are also
used to describe the classification model. Consequently, the number
of support vectors can also indicate how certain the decisions of the
trained model will be for unseen data. In Chapter 6, we will discuss
this property of the SVM in more detail.

There exist various formulations of the SVM algorithm that ac-
count for the slack with different loss functions. Two commonly used
loss functions are, for instance, the hinge loss (q = 1) and the square
loss (q = 2) function:

min Twlw +CY ! max(0,1—yi(w'x +b))9, (9

regularizer loss function

This unconstrained formulation of the optimization problem con-
sists of two terms. The first term is a reqularization term, which mea-
sures the complexity of the classification model. The second term de-
pends on the training data D and penalizes the empirical error. Note
that it is also possible to use a different regularization term. We will
also examine the effects of different regularizers in Chapter 6.

2.2.6 Evaluation Metrics

Throughout this thesis, we assess the performance of Android mal-
ware detection methods using various evaluation metrics. Each of
these metrics provides information on certain aspects of the perfor-
mance. In the following, we briefly discuss some evaluation metrics
used to measure the performance of machine learning algorithms.

23

By introducing slack
variables...

...we can compensate
some noise in the
available data...

...and still use a
linear model.

24

ROC curves are
commonly used to
compare binary
classifiers.

BACKGROUND

RECEIVER OPERATING CHARACTERISTIC Plotting a Receiver Op-
erating Characteristic (ROC) curve is a very common method to as-
sess the performance of binary classifiers [75]. In our case, the two
considered classes contain the malicious and legitimate applications,
respectively. However, instead of making a strict binary decision di-
rectly, many classifiers apply a threshold to the output of an internal
scoring function. For instance, the decision function of an SVM ap-
plies a threshold (—b) to the dot product w "x to determine the class
of an application.

1 7

AUCo, s

True positive rate

| |
0.4 0.6 0.8 1
False positive rate

Figure 5: Example of a ROC curve.

Depending on the selected threshold, the number of correctly iden-
tified malicious samples (i.e., true positives) and the number of false
alarms (i.e., false positives) may vary. A ROC curve plots the true posi-
tive rate (TPR) against the false positive rate (FPR) for various decision
thresholds of the classifier. Figure 5 illustrates an example of such a
ROC curve. In our case, the TPR and FPR are defined as:

true positives
malware samples

TPR = (10)

false positives

FPR = .
benign samples

(11)

In order to compare the performance of different classifiers with each
other, a conventional method is to consider the Area Under (ROC)
Curve (AUC) [33]. Using the AUC allows comparing two classifiers
solely based on a single scalar value. Unfortunately, the expressive-
ness of this metric is often limited, especially if the two considered
classes are unbalanced—like in the case of Android malware detec-
tion. To clarify this, let us consider an example where two classifiers
yield the same AUC of 0.9. However, while the first one provides a

2.2 MACHINE LEARNING

constant TPR of 0.9, the second classifier detects no malicious samples
at all, until reaching an FPR of 0.1, i.e., 10% false positives. Afterward,
its TPR increases to 1.0 instantly. In practice, we would prefer the first
classifier over the second one, as it enables us to detect 90% of all ma-
licious samples without any false positives. When solely considering
the AUC values, however, it does not seem to make any difference,
which classifier we select.

As a solution to this problem, it is possible to use the bounded
AUC for performance measurements instead. This metric considers
the AUC up to a predefined false positive rate (see Figure 5). Note
that a normalized bounded AUC of ¢ (with 0 < ¢ < 1) guarantees that
the classifier reaches at least a true positive rate of c at the considered
FPR boundary [167]. In this thesis, we refer to an AUC bounded at
an FPR of 0.01 as AUCy o1. Moreover, we refer to the detection rate
of a classifier calibrated to a FPR of 1% as TPRy 7. Note that the
actual FPR of such a classifier might even be lower than 1% on the
test data, but never exceeds it throughout all experiments presented
in this thesis.

PRECISION AND RECALL Instead of using the bounded AUC, the
precision and recall of a classifier are also common metrics to assess
its performance on unbalanced datasets. In the context of malware
detection, these two metrics can be described as follows:

true positives
flagged samples

precision = (12)
true positives

recall = TPR =
malware samples

(13)

The precision of a classifier corresponds to the probability that an
application indeed exposes malicious behavior when being flagged
as malware by the classifier. The recall, however, simply corresponds
to the true positive rate.

A disadvantage of these two metrics is that they should always be
considered together in order to allow for a meaningful interpretation
of the obtained results. Nonetheless, it highly depends on the partic-
ular problem whether a higher recall or a higher precision is more
desirable. To account for this, classification systems are commonly
compared with each other using the Fg-measure:

Tecall - precision
B2 . precision +recall’

Fo =(1+B%)- (14)
where 3 is a non-negative real valued number that puts more em-
phasize on precision or on recall, depending on the requirements of
the classification model. If § = 1, precision and recall are weighted
equally, corresponding to their harmonic mean. Throughout this the-
sis, we often provide the precision, recall, and F;-score in addition to
other metrics.

25

The bounded AUC
ensures that we
select a classifier...

..with a low false
positive rate.

Alternatively, one
can use precision
and recall...

...to measure the
performance of a
classifier.

26

BACKGROUND

2.3 CHAPTER SUMMARY

In this chapter, we have provided the reader with the necessary back-
ground knowledge to follow the explanations and descriptions in the
upcoming chapters. In particular, we have first briefly explored the
internals of the Android OS and its ecosystem. Afterward, we have
also discussed the increasing threat of malware targeting the operat-
ing system as well as the problems which current solutions have to
detect these applications.

In the second part of this chapter, we have discovered the basic con-
cepts of machine learning and also have provided an introduction to
the principles of Support Vector Machines. Finally, we have discussed
various metrics that are commonly used to evaluate the performance
of learning-based detection systems.

ULTRASOUND-BASED TRACKING MALWARE

Equipped with the necessary background knowledge from the previ-
ous chapter, we can begin our journey towards an efficient learning-
based algorithm for Android malware detection. We start our explo-
ration by presenting an empirical study, which examines the preva-
lence of a sophisticated kind of spyware. In particular, the malware
uses an ultrasonic side channel to track unwitting mobile users. We
provide a detailed description of the underlying technology in this
chapter. While the technology itself is not necessarily harmful and
can even be useful for legitimate purposes, we find that it has already
been misused by malware to spy on mobile device users.

Based on this actual case of ultrasound-based tracking malware, we
are able to give the reader practical insights into the manual analysis
of Android applications. That is, how it allows identifying malicious
functionalities relevant for the crafting of proper detection methods.
Using the characteristics derived through manual inspection, we can
build a first learning-based method that allows scanning for charac-
teristic code regions in applications. In addition to that, we also ex-
amine the proliferation of ultrasonic beacon technology in general. In
summary, we discuss the following aspects in this chapter:

1. We reverse engineer the inner workings of three commercial
tracking technologies using ultrasonic beacons. Moreover, we
provide detailed insights on how the malicious and legitimate
usage of this technology differ from one another.

2. We conduct an empirical study to show where ultrasonic au-
dio beacons are currently used. To this end, we implement two
detection methods, which allow us to efficiently scan mobile
applications and audio data for indications of ultrasonic side
channels.

3. Finally, we empirically evaluate the reliability of the ultrasonic
technique under different conditions and present limitations
that help determine how and which defenses should provide
proper protection.

Before discussing the threats to privacy induced by ultrasonic side
channels, we first give a short overview on tracking technologies, par-
ticularly focussing on their ultrasonic variants. In this context, we also
briefly describe three commercial solutions we investigate throughout
our study. Note that not all of these solutions necessarily apply the
technology for illicit purposes, but were rather picked for our study
since they are known to use the ultrasonic beacon technology.

27

28

Many companies are
using tracking
technologies...

...to provide users
with targeted
advertisements.

A new tracking
technology based on
ultrasounds...

...raises serious
privacy concerns.

ULTRASOUND-BASED TRACKING MALWARE

3.1 MOBILE DEVICE TRACKING

Nowadays, a large number of companies and websites uses various
tracking technologies to fingerprint desktop and mobile devices. As
an example, websites often identify their visitors by collecting infor-
mation about the devices visiting them. For instance, the used screen
resolution and the fonts installed on a system already pose relevant
features for this purpose [68]. Using the acquired information, the
website operators can, in turn, derive unique fingerprints that often
allow the distinct identification of individual users.

While such tracking may help in identifying fraud, for example
logins from unknown devices, it is often used for targeted advertis-
ing that can impact the privacy of users. Moreover, devices are no
longer only fingerprinted and monitored as users surf the web, but
also when they open applications on smartphones and other mobile
devices [e.g., 105, 123, 152]. Consequently, it becomes possible to track
the location of users and their activity even across different devices
and applications. Various advertising platforms already provide cor-
responding services to their customers, including Google’s Universal
Analytics and Facebook’s Conversion Pixel.

Recently, several companies have started to explore new ways to
track user habits and activities with ultrasonic beacons. In particular,
they embed these beacons in the ultrasonic frequency range between
18 and 20 kHz of audio content and detect them with regular mobile
applications using the device’s microphone. This side channel offers
various possibilities for tracking: The mobile application Shopkick, for
instance, provides rewards to users if they walk into stores that collab-
orate with the Shopkick company. In contrast to GPS, loudspeakers
at the entrance emit an audio beacon that lets Shopkick precisely de-
termine whether the user walked into a store. Furthermore, mobile
applications like Lisnr and Signal36o present location-specific content
on mobile devices, such as vouchers for festivals and sports events
via ultrasonic beacons.

In a particularly alarming case, the developers of SilverPush filed
a patent, which even raised attention in the media [198] due to its
threat to privacy: The patent proposes to mark TV commercials us-
ing ultrasonic beacons, thus allowing them to precisely track a user’s
viewing habits. In contrast to other tracking products, however, the
number and names of mobile applications carrying this functionality
are unknown. Therefore, the user does not notice that her viewing
habits are monitored and linked to her mobile devices.

In the following, we systematically investigate the technical im-
plementation, prevalence, and privacy implications induced by ul-
trasonic user tracking. In particular, we gain detailed insights into
the current state of the art by examining the communication proto-
cols and signal processing of three commercial solutions: Shopkick,

3.2 PRIVACY THREATS

Lisnr and SilverPush. By doing this, we are able to develop a proper
detection mechanism for mobile applications as well as methods for
detecting ultrasonic beacons in audio. These detection methods let us
obtain an overview of the current prevalence of ultrasonic tracking
used in practice. We start with a discussion on the threats to privacy
induced by ultrasonic side channels.

3.2 PRIVACY THREATS

Ultrasonic side channels on mobile devices can be a threat to the pri-
vacy of a user, as they enable unnoticeably tracking locations, behav-
ior and devices. For example, an adversary can spy on the TV viewing
habits of a user, locate its position if in range of an ultrasonic signal,
or even weaken anonymization techniques. The user just needs to in-
stall a regular mobile application that is listening to ultrasonic signals
through the microphone in the background. Figure 6 summarizes the
resulting privacy threats:

User devices
Smartphone TV Audio

O Ultrasonic beacons R O Q Ultrasonic beacons
D @ e |
| » 000 S | 4 Ej
Adversary Adversary
(a) Media Tracking (b) Cross-Device Tracking
Anonymity service
Shop
O Proximity to shop Website visit
L @

Ultrasonic beacons ‘ Ultrasonic beacons

Adversary Adversary

(c) Location Tracking (d) Deanonymization

Figure 6: Examples of different privacy threats introduced by ultrasonic side
channels. (a) Ultrasonic beacons are embedded in TV audio to
track the viewing habits of a user; (b) ultrasonic beacons are used
to track a user across multiple devices; (c) the user’s location is
precisely tracked inside a store using ultrasonic signals; (d) visi-
tors of a website are de-anonymized through ultrasonic beacons
sent by the website.

29

Ultrasonic beacons
can be used to...

30

...spy on users’
viewing habits,...

...link their devices,...

...track their
location,...

...or even
de-anonymize them
in the internet.

ULTRASOUND-BASED TRACKING MALWARE

MEDIA TRACKING An adversary marks digital media in TV, radio,
or the web with ultrasonic beacons and tracks their perception with
the user’s mobile device. The audio signal may carry arbitrary in-
formation, such as a content identifier, the current time, or broadcast
location. As a result, it becomes possible to link the media consuming
habits to an individual’s identity through her mobile device. Where
traditional broadcasting via terrestrial, satellite, or cable signals pre-
viously provided anonymity to a recipient, her local media selection
becomes observable now. In consequence, an adversary can precisely
link the watching of even sensitive content, such as adult movies or
political documentations, to a single individual — even at varying
locations. Advertisers can deduce what and how long an individual
is watching and obtain a detailed user profile to deliver highly cus-
tomized advertisements.

CROSS-DEVICE TRACKING Ultrasonic signals also enable an ad-
versary to derive what mobile devices belong to the same individ-
ual. When receiving the same signal repeatedly, devices are usually
close to each other and probably belong to the same individual. Con-
sequently, an advertiser can track the user’s behavior and purchase
habits across her devices. By combining different information sources,
the advertiser can show more tailored advertisements. Similarly, an
adversary can link together private and business devices of a user, if
they receive the same ultrasonic signal, thereby providing a potential
infection vector for targeted attacks.

LOCATION TRACKING An ultrasonic signal also enables an adver-
sary to track the user’s movement indoor without requiring GPS. A
location, for example a drug store, emits an ultrasonic signal with a
location identifier. This information reveals where and when an in-
dividual usually stays. Furthermore, the adversary can learn when
people are meeting or are in close proximity to each other.

DE-ANONYMIZATION The side channel through ultrasonic codes
makes the de-pseudonymization of Bitcoin and de-anonymization of
Tor users possible. As an example, a malicious web service can dis-
close the relation between a Bitcoin address and a user’s real-world
identity. Whenever the service shows a uniquely generated address
to which the user has to pay, it also transmits an ultrasonic signal to
the payer’s mobile device. This, in turn, enables the service to link the
user’s Bitcoin address to her mobile device. A similar attack strategy
against Tor users has recently been demonstrated by Mavroudis et

al. [139].

In summary, an adversary is able to obtain a detailed, comprehen-
sive user profile by creating an ultrasonic side channel between the

3.3 TECHNICAL BACKGROUND 31

mobile device and an audio sender. Our case study on three commer-
cial ultrasonic tracking technologies reveals that the outlined tracking
mechanisms are not just a theoretical threat, but have already been ac-
tively deployed.

3.3 TECHNICAL BACKGROUND

Before presenting the current state of the art on ultrasonic side chan-
nels, we briefly introduce the basics of acoustic communication and
corresponding information encoding. A reader familiar with these
topics can directly proceed to our methodology on detecting ultra-
sonic implementations in Section 3.4.

() (b)

1 <= 22T __ Ultrasonic
K E“ 18 |-- __ Near ultrasonic
=1 ‘
i @ Audible
9]
g =
< S | N R UG S
& N Speech
-1 = o
Time Time

Figure 7: (a) Audio wave of a music track, (b) spectrogram of the frequencies
contained in the music track.

3.3.1 Audible and Inaudible Sound

Sound can be formally described as a sum of waves with different fre-
quency. While natural sound is usually composed of a wide spectrum
of these frequencies, humans are only able to perceive a particular
range, where frequencies outside of this range remain inaudible. For
designing an inaudible side channel it is thus essential to first pick an
appropriate frequency band for transmission:

¢ Infrasound (< 20 Hz): Frequencies below 20 Hz can generally In general, the
not be perceived by the human ear. Due to the long wave length, ~ fuman earcan
however, infrasound is difficult to create with small devices and perceive frequencies

. . o up to 16 kHz
moreover less efficient in transmission. reliably.

* Audible sound (20 Hz—20 kHz): In general, humans are able to
perceive frequencies consciously between 20 Hz and 20 kHz. This
upper bound decreases with age [101], such that humans of 30
years and older often cannot recognize sound above 18 kHz.

e Ultrasound (> 20 kHz): Frequencies above 20 kHz can also not be
perceived by humans. Moreover, the small wave length enables

32

The frequency range
between 18 and

20 kHz can thus be
used to transmit
information...

...without being
recognized by most
human beings.

M-FSK allows
encoding M
different symbols...

ULTRASOUND-BASED TRACKING MALWARE

creating ultrasound from small devices and also provides the
ground for a quick transmission.

As a consequence, ultrasound theoretically is a perfect match for
designing an inaudible yet effective side channel between devices.
However, most loudspeakers and microphones deployed in commod-
ity hardware are not designed to transmit inaudible sound. Instead,
these devices exactly aim at the audible range of frequencies between
20 Hz and 20 kHz [102]. This problem is alleviated by the decreasing
hearing performance of humans, leaving a near-ultrasonic frequency
range of 18 kHz to 20 kHz for transmission, which is only perceived
by very young or sensitive humans.

Consequently, commodity and thus existing audio hardware can
be leveraged for establishing a side channel. No additional hardware
or technology is needed. An alternative to sound, for example the
iBeacon solution, requires a dedicated sender device that emits the
Bluetooth signal. Moreover, the receiving device needs to support the
Bluetooth Low Energy standard.

To visually present sound in this paper, we make use of the plots
shown in Figure 7, where (a) depicts the amplitude and (b) the spec-
trogram over time for an exemplary sound. In the latter case, the
individual frequencies of the sound are plotted over the y-axis and
their power is indicated by brightness. The sound corresponds to a
music track and it is visible that also inaudible frequencies above 18
kHz are part of the recording.

3.3.2 Encoding of Information

So far, we have identified the frequency band from 18 kHz to 20 kHz
as a promising channel for designing inaudible communication. It
thus remains to investigate how information can be encoded on this
channel. Fortunately, acoustic and electromagnetic waves share sev-
eral similarities and many basic concepts developed in telecommuni-
cation can also be applied for acoustic communication, such as differ-
ent variants of signal modulations.

However, when transmitting information using inaudible sound,
we need to make sure that no frequencies outside the selected band
occur. This requirement renders the concept of Frequency Shift Keying
(FSK) attractive for this purposes since other concepts like Phase Shift
Keying (PSK) potentially introduce discontinuities in the signal. These
discontinuities may lead to high instantaneous frequencies and result
in perceptible clicks.

In FSK each bit or symbol is represented by a separate frequency
within the specified frequency band. An example is depicted in Fig-
ure 8 where a simple bit sequence is transmitted using two different
frequencies. Obviously, it is possible to generalize this binary FSK and
encode M symbols with M separate frequencies. This generalization

3.3 TECHNICAL BACKGROUND

(a) Input signal

(b) Frequency Shift Keying (FSK)

Figure 8: Information encoding using FSK modulation.

is known as M-FSK and a variant of it is used by SilverPush and also
by Lisnr.

Even though these implement a vanilla M-FSK, the changing fre-
quencies within the given band can also introduce minor discontinu-
ities and thus audible clicks [102]. This effect can be prevented using
techniques like continuous-phase frequency shift keying or at least
mitigated when lowering the amplitude at frequency transitions as
proposed by Deshotel [60].

3.3.3 Sending and Receiving

Equipped with a frequency band and a simple encoding scheme, an
attacker only needs to construct a corresponding sender and a re-
ceiver. In the case of media- and cross-device tracking, implementing
a sender is rather straightforward, as the attacker just needs to em-
bed the prepared frequency signal into the audio stream broadcast
via TV, radio or a web stream. Designing a receiver is a little bit more
involved, as the corresponding device needs continuously monitor
the sound using a built-in microphone.

Without loss of generality, we focus on a receiver implemented
for the Android platform, as the same concepts also apply to other
mobile platforms. The Android platform provides a dedicated class
called AudioRecord for recording audio data from the microphone
without compression. Note that compression algorithms can foil the
plan of an ultrasonic side channel, as they may cut off inaudible
sounds from the recording. While this class is easy to access, an app
still requires the RECORD_AUDIO permission for recording audio. Thus,
the user also needs to explicitly grant this permission to the app. Un-
fortunately, users tend to blindly grant permissions to Android appli-
cations, if they are interested in their functionality. As a consequence,
the permission-based security mechanism of Android does not really
stop an application from listening for inaudible beacons.

33

...using M separate
frequencies.

Ultrasonic beacons
can be injected into
various media...

...including music,
television, and even
web streams.

34

The beacons can be
silently received by
mobile devices.

To conduct our
study, we build two
different tools.

The first one detects
apps which contain
code regions...

...Characteristic for
ultrasound-based
communication.

ULTRASOUND-BASED TRACKING MALWARE

Furthermore, a continuous stealthy recording can be easily imple-
mented on Android using the concept of services that work in the
background so that a user can even switch to another application. In
consequence, a covert transmission of an ultrasonic signal can take
place at any time, since it may not be clear when a viewer, for ex-
ample, will watch a TV program that contains the embedded audio
beacon. To revive a service after a shutdown of the device, techniques
known from Android malware can be employed, such as triggering
the service on events like boot-up or finished phone calls.

3.4 METHODOLOGY

With these basics of communication in mind, we are ready to develop
two tools for detecting indicators for ultrasonic side channels: While
the first one identifies the receiving implementation in an Android
application, the other spots the corresponding ultrasound beacons in
an audio signal. In the following, we discuss both tools in more detail.

3.4.1 Detecting Mobile Applications

To study the prevalence of mobile applications using inaudible sound
to track user behavior, we require a detection tool capable of effi-
ciently scanning a large amount of Android applications for corre-
sponding implementations.

Automatically identifying algorithms in program code, however,
is a challenging task that requires to abstract from concrete imple-
mentations. In the general case determining whether an algorithm is
present in a program is undecidable [166]. As a remedy, we thus use a
lightweight detection method, which is capable of performing a fuzzy
matching of interesting code fragments on a large set of applications.

The design of our method is inspired by a detection technique de-
veloped in the context of network intrusion detection [201, 207]. Fig-
ure 9 depicts the detection method used. In the first step, we man-
ually select methods from the available sample applications that are
known to be crucial for their functionality. This, for instance, includes
the Goertzel algorithm and the CRC checksum calculation present in
samples of SilverPush and Shopkick, respectively.

Throughout the training step, our method identifies the code re-
gions containing these methods and extracts all n-grams with n = 2
from the corresponding byte sequences. To generalize different im-
plementations, it keeps only shared n-grams, that is, byte sequences
of length n that are present in all methods of the same functional-
ity. These shared n-grams are stored in a Bloom filter [30], a classic
data structure that allows to compactly describe a set of objects. As a
result of this learning phase, our method provides a set of Bloom fil-

3.4 METHODOLOGY

SilverPush Selected Shared
instances code regions n-grams

APK — [1A43A6 1985 E3 | —
¥

85 E3 1A 43 A6

Learning phase H——H:

Bloom
. — filter
Detection phase -
v
—~ ipraewl
Unknown Sliding window Extracted
application over code n-grams

Figure 9: Schematic depiction of the detection method for mobile applica-
tions that employ inaudible sound.

ters, where each filter represents one characteristic method indicative
of inaudible tracking.

Scanning an unknown Android application for occurrences of the
learned patterns is conducted similarly: Our method first identifies
all Dalvik code regions in the application and then extracts n-grams
by moving a sliding window of 100 bytes over the code. The extracted
n-grams under the window are compared against the different Bloom
filters and a match occurs if a pre-defined amount of the n-grams is
also present in one of the Bloom filters. Ultimately, an application is
flagged as being suspicious, if at least one characteristic method is
found in the code regions. Note that this approach can be applied to
spot arbitrary code of interest.

3.4.2 Detecting Ultrasonic Beacons

As ultrasonic beacons may vary between different techniques, we
also need a broad detection approach to spot previously unknown
beacons. Furthermore, the approach must be able to analyze large
amounts of data efficiently and we need to ensure that the algorithm
produces no or at least only few false positives which can be manu-
ally verified later.

Based on our insights from exploring current commercial tracking
technologies (see Section 3.5), we assume that the energy of the bea-
cons in the frequency band between 18 kHz and 20 kHz is higher
than in other common signals. Thus, an anomaly detection in the

35

The second tool
scans for unusual
signals...

36

...in the ultrasonic
frequency band.

ULTRASOUND-BASED TRACKING MALWARE

150 — 150 -

]]

T 100 1 E 100

< 50 4 < 50

0 0 | 1 \
0 5 10 15 20 0 5 10 15 20

Frequency [kHz] Frequency [kHz]
(a) Music library (b) Lisnr sample

Figure 10: Plot (a) shows the frequency distribution of more than 1,500
songs whereas Figure (b) depicts the frequency distribution of
an audio sample containing a Lisnr audio beacon.

considered frequency band seems a promising candidate to identify
arbitrary ultrasonic beacons. To this end, we require a meaningful
model of the energy distribution for each signal class of interest. This
includes audio files, TV streams and environmental sounds in a com-
mon shopping mall.

3.4.3 Discussion

The described tools allow the scanning of large amounts of data for
evidence of ultrasonic beacon technology. In order to be applicable
for this purpose, both tools are highly optimized to produce only very
few false positives. Moreover, they can scan the data within a reason-
ably short amount of time. Note, however, that the efficiency of these
tools is achieved at the cost of a loss in generality. This holds, in par-
ticular, for the application scanner as it needs to identify characteristic
methods for each SDK individually, which can be used for training
a precise detection model. Nonetheless, despite this drawback, the
method fits perfectly the requirements we have for this study, as we
will see in the next section.

3.5 EMPIRICAL STUDY

We proceed with an investigation of commercial ultrasonic tracking
technologies, namely SilverPush, Lisnr, and Shopkick. These three ap-
plications use ultrasound to send messages to the mobile device, but
with different use cases: SilverPush targets media and cross-device
tracking, while Lisnr and Shopkick perform location tracking (cf. Sec-
tion 3.2). In the following, we especially focus on the inner workings
of SilverPush and Lisnr and additionally discuss Shopkick where it
differs to Lisnr or SilverPush.

3.5 EMPIRICAL STUDY

N
N

Amplitude

Frequency [kHz]

-1 0
Time

(©

22

Amplitude
Frequency [kHz]

-1 1 7
Time Time

22

Amplitude

Frequency [kHz]

Time Time

Figure 11: Example of transmission of ultrasonic beacons. The upper three
panels depict the audio wave of an audio signal, while the lower
three panels show the corresponding Spectrogram. (a)-(b) show
a music track, (c)-(d) a ultrasonic beacon, (e)-(f) shows the result
after embedding the beacon into the original track.

To gain insight into their functionality, we make use of the reverse-
engineering tools Radarez and Androguard. In particular, we apply
Radare2 to extract the Dalvik bytecode of Android applications and
employ Androguard to decompile Java code from the applications.
We switch to Radare2 when an application uses native code through
the Android Native Development Kit (NDK) or Androguard does
not resolve a method’s control flow correctly. As no obfuscation has
been used in the SilverPush, Lisnr, and Shopkick samples, this semi-
automatic analysis proceeds rather quickly and we gain detailed in-
sights on their communication protocols and signal processing.

3.5.1 Case Study SilverPush

We start our investigation of the SilverPush implementation with the
GitHub repository of Kevin Finisterre [81], who collected initial infor-
mation about SilverPush after the media coverage in November 2015.

37

38

SilverPush encodes
all letters of the
English alphabet...

...using a separate
frequency for each of
these letters.

Instead of analyzing

the full frequency
spectrum...

ULTRASOUND-BASED TRACKING MALWARE

The repository contains 21 Android applications that we examined
for the functionality to retrieve ultrasonic beacons.

COMMUNICATION PROTOCOL SilverPush uses the near-ultrasonic
frequency range to transmit audio beacons, as Section 3.3.1 generally
motivates. These beacons consist of five letters from the English al-
phabet where each letter is encoded using a separate frequency in
the range between 18 kHz and 20 kHz. The encoding scheme thus
corresponds to an M-FSK with M being the number of letters in the
used alphabet.

As the acoustic transmission can be subject to noise or other high-
frequency sounds, the implementation contains two simple mecha-
nisms for error detection: (1) no letter must appear twice in a trans-
mitted beacon and (2) the letter "A” must be present in every beacon.
Obviously, these mechanisms limit the set of available beacons for
transmission, but in combination realize a naive but effective error
detection. The audio snippet in Figure 11 (c) and (d) contains a valid
audio beacon of SilverPush, where Figure 11 (e) and (f) depict the
same beacon exemplarily embedded into an audio signal.

Listing 1: Decompiled Goertzel algorithm.

public double getMagnitude()
{
a = new double[2];
b =0;
while (b < this.n) {
this.processSample(this.data[b]);
b=1(b+1);
}
this.getRealImag(a);
c = this[0];
d = this[1];
e = Math.sqrt(((c * c) + (d = d)));
this.resetGoertzel();
return e;

O N U AW N R

HooRoe
N R O
o n

BoR
ENERW)

[
&
-

SIGNAL PROCESSING The SilverPush implementation records au-
dio from an available microphone at a sampling rate of 44.1 kHz and
directly analyses the recorded data in blocks of 4,096 audio samples.
Due to the use of a sampling frequency of 44.1 kHz, the implemen-
tation is capable of detecting beacons up to 22 kHz—provided that
the available loudspeakers and microphones support such a high fre-
quency. The developers seem to have been aware of this problem and
thus limited the FSK encoding of letters to 20 kHz.

To decode the beacons from the raw audio data, the implementa-
tion makes use of the so called Goertzel algorithm, a classic signal pro-
cessing algorithm that is widely used in telecommunication systems,
for example, for identifying DTMF tones in software. The algorithm’s

3.5 EMPIRICAL STUDY

advantage compared to the more common Fast Fourier Transform (FFT)
is its ability to detect a single target frequency precisely with little
computational effort. On the contrary, the Fourier transform provides
access to several frequencies at once and thus is a more robust tool
for spotting a signal. It is worth noting that we found one seemingly
older Android application of SilverPush during our empirical evalua-
tion that uses a Fourier transform. However, it seems that all current
instances use the Goertzel algorithm.

Listing 1 shows the decompiled and characteristic Goertzel algo-
rithm as found in the implementation of SilverPush. The algorithm
runs over all 4,096 audio samples, calculates the real and imaginary
part of a specified target frequency in lines 5-9, and finally returns
the magnitude obtained from line 12.

DATA COLLECTION After collecting a valid beacon, the implemen-
tation then sends the resolved audio beacon to a server in unen-
crypted form, together with device information that are usable to
identify the device, such as the IMEI, the Android ID, the device
model, and even the phone number. While this transmission of per-
sonal data is already a privacy invasion, the fact that it is triggered
from the audio of a TV transmission makes this a more than ques-
tionable approach.

Listing 2: Decompiled emulator detection.

if (Build.BRAND.contains("generic")
[| Build.DEVICE.contains("generic")
|| Build.PRODUCT.contains("sdk")
[| Build.HARDWARE.contains("goldfish")
[| Build.MANUFACTURER. contains ("Genymotion")
[| Build.PRODUCT.contains("vbox86p")
[| Build.DEVICE.contains("vbox86p")
|| Build.HARDWARE.contains("vbox86")) {
SP_MiscUtil.a(context, "audio_tracker", false);

© ® N U AW N R

=
S)

Log.w(..., "Working on an Emulator! SilverPush SDK Disabled");
return false;

-
=

=
N

H
@
-

EMULATOR DETECTION In addition to transmitting sensitive data
through an ultrasonic side channel, the SilverPush SDK also shares
another characteristic with common malware. In particular, it checks
whether the application is running in an emulator before starting
its background service. In the case of a successful detection, it pre-
vents the service from being started. Listing 2 depicts the decom-
piled code snippet of this functionality, which can be found in the
class com.silverpush.sdk.android.SilverPush®. As the snippet shows, Sil-
verPush checks the build information in order to verify whether it is

1 919ad85f95d3562c09fc0d589d5521916720678ee7db877d56F4b8f91bb8c20b

39

...it scans only for
certain frequencies.

The malware collects
lots of sensitive
information...

...and cannot be
detected when
executed in an
emulator.

40

Lisnr’s technique
resembles that of
SilverPush...

ULTRASOUND-BASED TRACKING MALWARE

—llll.llllll lll|ll-.l.ﬁllvll CHER i LTS l'III B0 —

Frequency [kHz]

Time

Figure 12: Spectrogram of a disclosed Lisnr audio beacon. An FSK scheme
encodes a repeating bit sequence in the near-ultrasonic frequency
range between 18.5 and 19.5 kHz.

being executed in an emulator — a procedure that can often be found
in malicious samples [36].

3.5.2 Case Study Lisnr

We continue our investigation with Lisnr that realizes an ultrasonic
side channel to display location-specific content on the mobile device.
For example, during a festival, participants can receive notifications,
such as welcome messages or vouchers when they are close to a spe-
cific location.

COMMUNICATION PROTOCOL Figure 12 shows a disclosed Lisnr
audio beacon in the near-ultrasonic frequency range that we spotted
in a music song. The switching frequencies reveal an M-FSK encoding
scheme (M = 3) between 18.5 and 19.5 kHz. Moreover, the beacon is
continuously repeated, as the unique frequency block order in the
figure also emphasizes.

SIGNAL PROCESSING Lisnr records audio with 44.1 kHz and gen-
erally analyzes the data in blocks of 4,410 samples. In contrast to Sil-
verPush, its audio analysis is implemented in native code using the
Android NDK. In this way, the computationally demanding analysis
runs directly on the smartphone’s CPU without an intermediate vir-
tual machine. We find that the native code in Lisnr implements both,
the Goertzel algorithm and an FFT, for decoding ultrasonic signals.
After detecting a code, Lisnr shows location-specific content to the
mobile device user.

Similarly, Shopkick implements an FFT in native code for detecting
audio beacons in collaborating shops. If a customer wants to earn a

3.6 EVALUATION

reward, she needs to start the audio analysis manually and the ap-
plications then performs an analysis of the full frequency spectrum,
which is computationally more demanding than the Goertzel algo-
rithm. Thus, it runs for a few seconds only in order to avoid that the
battery drains too quickly.

DATA COLLECTION In contrast to SilverPush, we find no indica-
tion that the Lisnr SDK collects lots of sensitive information from the
device. Instead, Lisnr seems to mainly use the Android Advertising
ID (AAID) in order to identify devices. The Advertising ID is a reset-
table ID, which has been introduced by Google to allow personalized
advertising, while limiting the impact on users’ privacy. Unlike Lisnr,
Shopkick tries to gather lots of sensitive data, including the email ad-
dress and phone number of the user. In contrast to SilverPush, how-
ever, this information must be actively provided to Shopkick by the
user. Still, it is questionable if Shopkick actually requires all this in-
formation just to properly provide users with its services.

3.5.3 Discussion

In summary, SilverPush and Lisnr share essential similarities in their
communication protocols and signal processing. Both, for example,
use an FSK near the ultrasonic range and employ the Goertzel al-
gorithm in the background. However, SilverPush does not inform the
user about the tracking whereas the user is aware of Lisnr’s and Shop-
kick’s audio analysis. All these technologies show that the step be-
tween a legitimate use and spying is rather small. The privacy threat
posed by ultrasonic beacons hinges on the notification of the user,
who solely depends on this information: First, she cannot hear the
audio beacons when, for example, watching TV. Second, she may not
know that her mobile device is listening in the background, since
there is no visible indication that an application contains this form of
device tracking.

3.6 EVALUATION

With our two tools to spot ultrasonic implementations from Section 3.4
and our insights into the current state of the art in ultrasonic tracking
from previous section, we are ready to conduct an empirical eval-
uation and assess the impact of this privacy threat in practice. We
especially perform the following three groups of experiments:

1. Controlled experiment. We first examine the technical reliability
and evaluate limitations of ultrasonic side channels under real-
istic conditions with human subjects and mobile devices (Sec-
tion 3.6.1).

41

...but it is less
privacy-invasive.
Most importantly,...

...users are informed
about its presence in
an application.

42

Despite their
inherent hardware
limitations,...

ULTRASOUND-BASED TRACKING MALWARE

2. Audio beacons in the wild. To uncover the presence of ultrasonic
beacons, we scan different locations, TV channels, and websites
for indications of ultrasonic side channels (Section 3.6.2).

3. Applications in the wild. We finally investigate the presence of
ultrasonic implementations by analyzing over 1,3 Million An-
droid applications collected in December 2015 (Section 3.6.3).

3.6.1 Controlled Experiment

Although the companies behind SilverPush, Lisnr, and Shopkick mar-
ket their technique as an effective approach for their respective track-
ing scenario, we have been skeptical about the reliability of the un-
derlying side channel in practice. In particular, it is questionable to
which extent the built-in microphones of common devices are capa-
ble to reliably perceive high frequencies in presence of environmental
noise, since they are mainly intended to work within the voice band.
Moreover, the audio beacons might still get detected by some people
due to the varying frequency sensitivity of the human ear. Conse-
quently, we first conduct a proof-of-concept experiment consisting of
two different scenarios: In the first scenario we explore hardware lim-
itations of common devices, while in the second scenario, we answer
the question whether ultrasonic beacons are undetectable by the hu-
man ear.

EXPERIMENTAL SETUP We create ultrasonic beacons that cover dif-
ferent frequencies, lengths and sound levels. In particular, we choose
frequencies between 18 and 20 kHz and vary the signal length be-
tween 0.3 and 1 seconds, and the sound level between o and 18 dB.
The resulting audio beacons are then embedded in different video
files that cover realistic conditions such as speech, music or silence.
The files are played through standard TV loudspeakers at a common
loudness level of 60 dBA. In both scenarios, the TV plays the test se-
quences while users or devices listen to it in a fixed distance of about
two meters.

DEVICE EXPERIMENT In the first scenario, we are interested in de-
termining whether and how effective mobile devices can spot the
embedded beacons. To this end, we consider five Android devices,
namely two Asus Nexus 7, an LG-P88o, a Motorola Moto G 2, and a
Fairphone 1, which each run a frequency analysis to spot anomalies in
the ultrasonic range. The devices are exposed to the prepared video
files, containing embedded beacons of varying frequency ranges and
sound levels, such that a detection rate can be measured over multiple
experimental runs.

The results of this experiment are presented in Figure 13a, where
the average detection performance of all devices on 10 repetitions

3.6 EVALUATION

100 A ® ® o —4 |
9
c 80 o
s
© 60
o
g
s 40
&
é) 20 —— 18 kHz ||

—e— 20 kHz
O I
—10 -5 0 5
SNR (in dB)
(a) Noise robustness

100
<
£ 80
_.03
© 60
o
g
5 40
&
é) 20 I I 18 kHz

0
X
&

%Q/
(b) Device performance

Figure 13: Results for the device experiment. Figure (a) presents the detec-
tion performance vs. signal-to-noise ratio for different frequency
bands and (b) the detection performance for different frequency
bands and mobile devices.

is plotted against different signal-to-noise ratios (SNR). The SNR de-
scribes the sound level of the audio beacon compared to the sound
level of the commercial, that is, the SNR increases when amplifying
the audio beacon. In particular, an increase of the SNR by 6 dB corre-
sponds to an amplification of the audio beacon by a factor of 2.

We observe that the devices are able to reliably detect the audio
beacons even at very low SNRs. Starting from an SNR of -5 dB al-
most all beacons are correctly identified on both frequency bands.
However, we notice a variance in the success rate among the differ-
ent devices. Figure 13b presents the detection performance for each
of the devices and frequency bands. While some devices, such as the
Fairphone, have problems in detecting audio beacons close to the au-
dible frequency range, the reverse holds true for one of the Nexus 7
tablets, which does not accurately detect audio beacons at 20 kHz.

43

...mobile devices
usually detect
ultrasonic beacons
reliably.

44

In contrast to most
mobile devices,...

...humans often have
problems perceiving
ultrasonic beacons.

ULTRASOUND-BASED TRACKING MALWARE

As in the case of the two Nexus 7 devices, it is likely that frequency
response patterns of the built-in microphones vary depending on the
particular model and device, thus having an influence on the detec-
tion performance. Moreover, since our audio analysis runs as a back-
ground process, the performance may also depend on the current
load on the device and timing of running processes. Nonetheless, all
devices attain a detection rate of at least 60%, which is sufficient to
spot audio beacons if multiple repetitions are embedded in sound.

USER EXPERIMENT In the second scenario, we ask 20 human sub-
jects between the age of 20 and 54 to watch in total 10 minutes of
videos. Some contain audio beacons at a frequency of 18 kHz in or-
der to cover the lower end of the near-ultrasonic range. The beacons
are embedded at various spots with different loudness levels ranging
from o to 18 dB and the participants are asked to note down when
they perceive a beacon in the audio.

None of the human subjects is able to spot the embedded beacons
reliably even at the highest loudness level, although the frequency of
18 kHz lies within the age-dependent audible range and the partici-
pants are aware of the presence of audio beacons in the video clips.
Two participants at the age of 23 and 27 are able to spot 17 and 6
beacons, respectively, from a total of 26 embedded beacons. More-
over, six participants state that they have perceived some anomalies
in the signal. However, only few of these are indeed audio beacons.
On the contrary, all participants are able to identify the beacons at
the highest sound level without background sound. The reason for
this discrepancy is that the human ear masks the tone in the pres-
ence of nearby frequencies and sounds. This effect is well-known and
exploited in audio compression formats like MP3 and AAC which
apply psychoacoustic models to lower the used transmission rate.

In summary, although our participants are aware of the audio bea-
cons, they had considerable problems to identify the audio beacons
reliably. The beacons are mainly perceived as an usual anomaly in
sound. Hence, if not aware, a user might not even notice the ultra-
sonic signals. At the same time, different mobile devices already suc-
cessfully tracked the signal at a SNR of -5 dB. In the end, our experi-
ment confirms the technical feasibility to transmit ultrasonic beacons
to a mobile device covertly, but also spots the limitations of this side
channel.

3.6.2 Audio Beacons in the Wild

The previous experiment demonstrates that ultrasonic side channels
are technically well realizable. In the next step, we explore whether
this new form of tracking is already employed in practice.

3.6 EVALUATION

Country # TV channels Size
United States 7 25h
Germany 5 24h
Spain 6 23h
Austria 3 21h
United Kingdom 2 16h
Philippines 5 16h
India 10 15h

Table 1: Dataset from TV streaming analysis.

Regarding Lisnr, we can spot audio beacons in recordings from
the web that corresponds to events where Lisnr also participated. It
shows that this technology is actively deployed, but rather at spe-
cific events, yet. We thus also investigate Shopkick that appears to be
more widespread. To this end, we record audio in 35 stores in two
European cities and detect an ultrasonic signal from Shopkick at four
stores. Although we acknowledge that the user starts the Shopkick ap-
plication intentionally, our findings underline the active distribution
of ultrasonic tracking in the daily life.

The last question is whether TV streams contain ultrasonic beacons,
especially from SilverPush. In fact, we have no information when,
how, and where these beacons are transmitted in TV. Our search is
thus close to finding a needle in a haystack. Consequently, we conduct
a broad search across different countries and TV channels, rather than
focusing on a specific scenario.

In particular, we record TV streams retrieved over the Internet from
7 different countries, where we focus on channels presenting a lot of
commercials. Table 1 summarizes the number of TV channels and
the total duration of analyzed audio signals per country. We need to
note that the quality of the transmitted audio streams differs consid-
erably between the recorded channels. While we are generally able
to retrieve audio with a sufficient sampling rate between 40 and 48
kHz, the channels make use of different compression settings that
potentially filter out inaudible high frequencies (see Section 3.7).

We analyze the recorded data, comprising almost 6 days of au-
dio, with our standalone detection tool presented in Section 3.4.2. Al-
though our tool is capable of detecting ultrasonic beacons at arbitrary
frequencies between 18 and 20 kHz, we do not find any indications of
such beacons in the recorded data, leaving us with a negative result.
On the one hand, it seems that ultrasonic device tracking is not used
in the considered TV channels; on the other hand, we cannot rule out
that the beacons have been initially present but later removed due to
compression for Internet streaming. In addition, we also visited the
global, Indian, and Philippine Top 500 Alexa websites and recorded

45

We are able to spot
ultrasonic signals in
European stores...

...and various
media...

...but not in
television streams
or websites.

46

When scanning
applications for
characteristic
functions,...

...we find 234 apps
potentially listening

in the background.

ULTRASOUND-BASED TRACKING MALWARE

their audio output to spot ultrasound. Similar to TV streams, we do
not find any indications of ultrasonic beacons.

3.6.3 Applications in the Wild

Our Lisnr and Shopkick findings emphasize their active deployment,
but we cannot quantify their distribution on the receiving side yet. In
consequence, we would like to determine the distributions of Lisnr,
Shopkick, and SilverPush. To this end, we focus on the landscape
of Android applications and apply the static detection method pre-
sented in Section 3.4.1 to search for Lisnr, Shopkick, and SilverPush
implementations in the wild.

In particular, we retrieve all Android applications submitted to the
VirusTotal service in the end of December 2015. In total, we obtain a
dataset of 1,320,822 applications, covering numerous benign as well
as malicious samples and a total volume of over 8 Terabytes. We
then apply our detection tool to scan for applications that contain
code fragments similar to our initial 21 SilverPush samples as well as
4 Lisnr samples we identified during the research. Finally, we scan
for similar code fragments found in different versions of the official
Shopkick application.

Within the 1,320,822 Android applications, our scan yields 2 and
1 samples with functionalities of Lisnr and Shopkick, respectively.
These samples are either applications that have been released by these
companies themselves or by other companies officially collaborating
with Shopkick or Lisnr. The user is thus aware of the deployed tech-
nology and needs to start the audio analysis manually.

On the other hand, our scan returns 39 unique SilverPush matches
within our Android application dataset. We manually verify that each
of these matches is indeed an instance of the SilverPush implemen-
tation embedded into applications from India and the Philippines.
Table 2 lists five representative applications from our dataset along
with their developer and number of downloads as reported by the
Google Play Store.

The download numbers are considerable: Two applications have
between 1 and 5 Million downloads, while the other three have about
50,000 to 500,000 downloads. It becomes evident that SilverPush has
already been deployed in real-world applications. While in April 2015
only six instances have been known, our experiment unveils another
39 installations. Moreover, with the help of VirusTotal we have been
able to identify further instances, reaching a total of 234 samples
in January 2017. These additional samples have been identified by
searching for virus labels containing the term “SilverPush” and then
eliminating false positives using our detection tools. Based on this
strategy we obtain 244 applications, where 10 samples are false pos-

3.7 DISCUSSION

Application Name Version Downloads
100000+ SMS Messages 2.4 1,000,000 — 5,000,000
McDo Philippines 1.4.27 100,000 — 500,000
Krispy Kreme Philippines 1.9 100,000 — 500,000
Pinoy Henyo 4.0 1,000,000 — 5,000,000
Civil Service Reviewer Free 1.1 50,000 — 100,000

Table 2: Third-party applications with SilverPush functionality.

itives that do not contain actual functionality but just strings related
to the SilverPush implementation.

Our analysis provides us with two important insights regarding
SilverPush: First, the number of mobile applications containing the
SDK has grown during our study. Second, the applications have not
only been downloaded a few hundred times, but some of them have
possibly been installed by thousands of people. Even if the audio
beacons are not embedded in actual TV commercials, our findings
indicate that the SilverPush SDK has been deployed in a large number
of applications between 2015 and 2017.

3.7 DISCUSSION

During the analysis and evaluation of the ultrasonic tracking tech-
nologies, we have gained insights into their capabilities but also spot-
ted some limitations. In this section we therefore discuss require-
ments that have to be satisfied in order to allow the tracking to work
properly. Furthermore, we discuss countermeasures to alleviate this
new privacy threat.

3.7.1 Limits and Challenges

Although we are able to verify the feasibility of ultrasonic side chan-
nel communication under realistic conditions throughout our empir-
ical study, we have experienced several issues which may impede a
successful communication. In particular, there exist a bunch of chal-
lenges on the sender and the receiver side, which have to be con-
sidered in order to allow an inaudible communication between the
devices.

BANDWIDTH RESTRICTIONS When analyzing the frequency spec-
tra of the TV channels recorded for our analysis, we find that sev-
eral of them are cut off at a frequency higher than 18 kHz and can
thus not contain any audio beacons. Figure 14 depicts, for instance,
a typical TV signal received via DVB-T. The spectrum of the signal

47

Common
compression
algorithms...

48

...remove high
frequencies from
audio signals.

Consequently, it
becomes unlikely to
find ultrasonic
beacons...

ULTRASOUND-BASED TRACKING MALWARE

22 =

< 17 Cut off

T

4

>

Q

=

5

o

&
4 Speech
O -

Time

Figure 14: Spectrogram of DVB-T recording. Note that audio frequencies
above 17 kHz are cut off.

clearly shows the absence of any frequencies above 17 kHz. In prin-
ciple, common video broadcasting standards like ASCT, DVB and
ISDB allow sampling rates of less than 40 kHz, which would remove
the desired frequency band. However, since the sampling frequency
has been high enough in the recorded data, the low-pass filtering of
the signal most probably results from the compression applied to the
audio signal.

Several audio compression algorithms are capable of removing fre-
quencies that are inaudible, such as MP3 and AAC. As both formats
use a psychoacoustical model and offer various options, it thus can-
not contain any audio beacons. Figure 15 gives a tendency for MP3
and AAC by using a fixed bitrate as indicator of quality. In particular,
we compressed a stereo music track with embedded high-frequency
tones with ffmpeg’s built-in MP3 and AAC encoder and tried to de-
tect these tones after compression. As an example, for MP3 a bitrate
of 320 kb/s allows frequencies up to 20 kHz, while a common bitrate
of 128 kb/s removes ultrasonic frequencies entirely from the signal.

Furthermore, we have also uploaded videos with embedded audio
beacons to YouTube to test whether high-frequency tones are pre-
served. YouTube always encodes an uploaded video to ensure that
it can be played with different devices in different quality levels. In
our tests, the highest quality of a stereo signal reaches up to 18.5 kHz,
while a mono signal conveys audio beacons in the full frequency spec-
trum between 18 and 20 kHz. As a consequence, ultrasonic side chan-
nels are currently only possible if a mono recording is uploaded to
the YouTube platform.

Finally, a legitimate question arises why an adversary does not sim-
ply use the audible frequency range. The device could perform sound
or speech recognition to identify the TV viewing habits or the loca-
tion. The music recognition service Shazam already provides addi-
tional information about a brand or product based on the identified
sound [115]. There are, however, two problems. First, Shazam’s recog-

3.7 DISCUSSION

nition algorithm requires a full frequency analysis through a Fourier
Transform [199]. This analysis is computationally more demanding
than the beacon detection through the simple Goertzel algorithm
(see Section 3.5). In consequence, a persistent background monitor-
ing drains the battery of mobile devices more quickly. Second, an
audio beacon can carry additional information about the location or
the played media that, in turn, facilitates tracking (see Section 3.2).

SOFTWARE RESTRICTIONS Another restriction arises from the new
permission model introduced by Android 6 [63]. In contrast to pre-
vious Android versions, the new system differentiates between nor-
mal and dangerous permissions and the user has to grant dangerous
permissions at run-time. The set of dangerous permissions also com-
prises permissions like RECORD_AUDIO and READ_PHONE_STATE, which
are crucial for SilverPush’s functionality. It should thus raise the users’
doubts when an application, for example, unexpectedly wants to
record audio.

Although this new permission model increases security theoreti-
cally, there are three practical problems: First, when an application
targets an SDK smaller than 23, the old permission model is used
again where the user is only asked at installation time. Second, fa-
mous applications can carry the ultrasonic tracking functionality. It is
unclear if a user questions the necessity of a dangerous permission
in this case. Therefore, the new permission model might alleviate the
risk, but can unfortunately not entirely prevent unauthorized track-
ing. Thirdly, due to the fragmentation of Android, a large number
of devices still run Android versions below 6.0 and are thus not pro-
tected (see Chapter 2). That is, even though Android 6 has already
been released in 2015, roughly 30% of all Android devices still run an
Android version lower than 6.0 in October 2018 [125].

HARDWARE LIMITATIONS Finally, we notice that various limita-
tions are introduced by the built-in microphones and speakers in
common hardware. As we have already discussed in Section 3.6.1,
the detection performance differs between several devices. Moreover,
although the SilverPush patent, for instance, also considers inaudible
frequencies in the infrasound range below 20 Hz, it is unlikely that
such frequencies can actually be used, since they require specialized
hardware to send and receive sound. Consequently, only the consid-
ered range of 18 to 20 kHz is a realistic and technically feasible range
for transmission of inaudible beacons.

3.7.2 Countermeasures

Based on the different challenges for transmission, we identify de-
fenses to limit the tracking via ultrasonic beacons. Obviously, a sim-

49

...in compressed
media, such as
YouTube videos.

Android 6 (and
above) provides
further protection...

...but still does not
run on all devices.

50

ULTRASOUND-BASED TRACKING MALWARE

IN 20 //E]

o4,

> /

9

=

]

i

o

é 18

g

g

E / —%— MP3

= —8— AAC-LC
16 T

48 96 128 160 192 256 320

Bitrate [kB/s]

Figure 15: Frequency bandwidth of MP3 and AAC.

ple yet effective defense strategy is to filter out frequencies above
18 kHz in the transmitted audio signal, e.g., in the radio or TV device.
However, manipulating either the hardware or software of these de-
vices is not feasible for regular users. Moreover, the emitting sender
is not always within the user’s control, for example during location
tracking.

Therefore, practical countermeasures should address the mobile de-
vice. If the device is not secretly listening, a transmitted audio beacon
is harmless. Hence, we consider the following countermeasures for
the Android operating system:

DETECTION OF IMPLEMENTATIONS An option is to scan for ap-
plications with known ultrasonic side channels functionality. Our de-
tection tool presented in Section 3.4.1 might provide a good start for
the development of a corresponding defense. Similarly to a virus scan-
ner, such a detection can be applied locally on the device as well as
directly on a market place. As our approach builds on static code
analysis, however, detecting the corresponding functionality can be
hindered by obfuscating the respective implementations. Moreover,
the detection tool requires manual effort to identify the characteristic
functions for each library separately.

NOTIFICATION Just as for Bluetooth or Wifi, a more fine-grained
control of the audio recording is likely the best strategy for limiting
the impact of ultrasonic side channels. A combination of user notifi-
cations and a status in the pull down menu can inform the user when
a recording is taking place and lets her detect unwanted activities.

3.7 DISCUSSION

3.7.3 Limitations

Our study deals with a real-world threat and underlying technical
problems. It is thus naturally subject to certain limitations, which we
briefly discuss in the following.

First of all, our study could not reveal any indications of ultrasonic
sounds in TV streams. However, whether this finding is to be inter-
preted as a negative or positive result is unclear. While we designed
our study with great care and as broad as possible, it is not unlikely
that we simply missed audio beacons due to monitoring TV channels
at the wrong time or place. Moreover, the beacons could have been
obfuscated using code spread spectrum techniques. In this case, our
detection method from Section 3.4.2 would have missed these signals.
However, we could not find any indications throughout our analysis
that SilverPush uses this kind of technique. In addition, the detection
of Lisnr or Shopkick beacons makes it rather unlikely that we missed
beacons in TV streams due to the high similarity of SilverPush to
Lisnr or Shopkick.

Second, although our detection tool provides an efficient way to
identify the functionality of SilverPush, Lisnr, and Shopkick, it re-
lies on the knowledge of currently used code. Changing the code
basis would possibly prevent a detection, but it seems unlikely that
the developers permanently adapted their code to avoid detection in
this case. However, since it is not uncommon for malware authors
to change their code base regularly, the detection tool is not suitable
for malware detection in general. In the next chapter, we therefore
propose another learning-based method which is more generic, thus
allowing the detection of different variants of malware.

3.7.4 Conclusion and Outlook

Since we could not find indications for ultrasonic beacons in TV, the
question arises whether and how this technology is still used. Interest-
ingly, the developers of SilverPush contacted us in May 2017, shortly
after our findings had been published. According to them, the deploy-
ment of the SilverPush library has been stopped in the end of 2015,
and it has only been used by around 10 applications in total.
However, the timestamp analysis of our collected data shows that
there are also applications from 2016 containing the SDK. Moreover,
we still detected an additional application in May 2017 that contains
the SDK and has been released in March 2017. Figure 16 depicts the
distribution of the collected Android applications over time. Note that
the plot does not show all collected samples but only those 179 appli-
cations for which we could extract the respective timestamps.
Overall, there are two observations which support the statement of
the SilverPush developers regarding the end of the malware’s active

51

SilverPush probably
stopped ultrasound
tracking...

52

...and its apps have
been removed from
Google Play.

Unfortunately, new
technologies raise
similar privacy
concerns.

ULTRASOUND-BASED TRACKING MALWARE

3 40
£
c 20
9]
HH

0

2015 2016 2017
Time

Figure 16: Time distribution of SILVERPUSH samples.

deployment. First, the majority of applications has been created in
2015. Second, the number of new applications has dropped in January
2016. Still, it remains unclear why we have been able to identify fur-
ther applications containing the SilverPush SDK and, moreover, why
the number differs significantly from the one reported by the devel-
opers. Possibly, the SDK has been repackaged without the knowledge
of the SilverPush developers. Unfortunately, the developers did not
provide us with a proper answer to this question.

Google contacted us roughly at the same time as the SilverPush de-
velopers. Using our findings, Google was able to remove all remain-
ing applications from their GooglePlay store. Moreover, they could
even identify further samples containing the SilverPush SDK in the
store. Overall, it should therefore be unlikely that SilverPush still
poses a threat to users” privacy—at least when installing applications
from GooglePlay. However, as we have broadly discussed throughout
this chapter, the underlying technology works reliably and can thus
still be misused by malware authors.

Furthermore, other technologies can be used to track users with
their mobile devices. For instance, audio fingerprints, as used by
Shazam [199], were initially considered too computationally expen-
sive to be computed on mobile devices in the background (see Sec-
tion 3.7.1). However, the technology becomes more attractive as the
computing power of these devices increases. In particular, the New
York Times reported in late 2017 about the SDK Alphonso, which ex-
hibits alarming parallels to the SilverPush SDK [192].

Nonetheless, during a rough analysis of five applications contain-
ing the library, we found no evidence suggesting the exposure of
sensitive data, such as the phone number. Still, the case of Alphonso
once again demonstrates how close legitimate and malicious use of
the tracking functionality can be. Additionally, it shows that tracking
based on audio fingerprints can also impact the privacy of mobile
device users.

3.8 RELATED WORK

3.8 RELATED WORK

Ultrasonic cross-device tracking touches different areas of security
and privacy. We review related approaches and concepts throughout
this section.

MOBILE DEVICE FINGERPRINTING While classic web browser fin-
gerprinting is characterized by a vivid area of research in the last
years [152], there is only a small number of works that examine mo-
bile devices. A straightforward adoption of browser fingerprinting
methods is not possible due the highly standardized nature of mobile
devices [105]. Nevertheless, Hupperich et al. recently demonstrated
the feasibility to fingerprint the mobile web browser as well [105].
Furthermore, Kurtz et al. showed how personalized device informa-
tion such as the list of installed apps or the most-played music songs
also provide an effective way to fingerprint an iOS device without
any user permission [123].

Another approach is to leverage unique physical characteristics
from device sensors such as the camera [88], the accelerometer [31] as
well as the microphone and speakers [8, 31, 55, 225] for fingerprint-
ing. Although the resulting hardware fingerprints are highly unique
due to their random character, their computation is expensive and
requires access to the sensor for a certain amount of time.

While these works aim at fingerprinting one device, the studied
ultrasonic side channel enables an adversary to track a user across
her multiple devices, her visited locations as well as to obtain her
media usage.

COVERT ACOUSTIC COMMUNICATION Different researchers have
demonstrated the feasibility to communicate covertly in the ultra-
sonic range with just standard loudspeakers and microphones [60,
64, 102, 126, 218]. The considered scenarios, however, differ from our
study. First, these authors mainly focus on bypassing security mecha-
nisms and bridging the “air gap” between isolated computer systems.
Second, the ultrasonic communication is usually conducted in a quiet
environment, whereas ultrasonic user tracking demands a high ro-
bustness that can compensate different environmental noise.

3.9 CHAPTER SUMMARY

In this chapter we have discussed the privacy threats of ultrasonic
tracking for mobile device users. Using this technology, malicious
applications are able to monitor users” TV viewing habits, track their
visited locations, and deduce their other devices. Furthermore, even
side channel attacks on Bitcoin or Tor users become possible. In the

53

54

ULTRASOUND-BASED TRACKING MALWARE

end, malware authors might obtain a detailed, comprehensive user
profile using solely the device’s microphone.

By analyzing prominent examples of commercial tracking technolo-
gies, we gained insights about their current state and the underlying
communication concepts. The case of SilverPush emphasizes that the
step between spying and legitimately tracking is rather small. While
the technology behind SilverPush shares essential similarities with le-
gitimate solutions, it mainly differs in that the user is unaware of the
tracking functionality performed by SilverPush in the background.

Throughout our empirical study, we confirm that audio beacons
can be embedded in sound, such that mobile devices spot them with
high accuracy while humans do not perceive the ultrasonic signals
consciously. Moreover, we spot ultrasonic beacons from Lisnr in mu-
sic and Shopkick beacons in 4 of 35 stores in two European cities,
proving that the technology is already actively used by companies in
the wild. While we do not find indication of ultrasonic tracking in
TV media, we are able to detect the SilverPush SDK in 234 Android
applications, which have been collected between December 2015 and
January 2017.

As a reaction to our findings, Google removed all remaining appli-
cations containing the SilverPush SDK from GooglePlay in May 2017.
However, even though SilverPush might not pose a privacy threat
anymore, the underlying technology can still be misused by malware
authors in the future. While the detection tool used for this study can
in principle be extended to also detect other characteristic code re-
gions, it requires manual effort to identify and extract them for each
new malware family individually.

Instead, we present a new learning-based approach in the next
chapter, which automatically identifies characteristics of arbitrary mal-
ware families, thus allowing the detection of unknown malware in-
stances without needing to craft the required signatures manually.

LEARNING-BASED MALWARE DETECTION

In the previous chapter, we discussed a sophisticated malware which
uses an ultrasonic side channel to transmit information impercepti-
bly, without the users” knowledge. To detect this malware family, we
built an efficient tool that allows scanning for members of it in a large
number of applications. However, before being able to derive proper
signatures, the detection tool first requires the malware analyst to
manually identify characteristic code regions in some initial samples
of this family. Consequently, the approach is only feasible when try-
ing to detect samples of a small number of malware families, but it is
not suitable for detecting Android malware in general.

Therefore, we are looking for a more general solution that enables
us to detect Android malware without the need for much manual ef-
fort. To this end, we consider machine learning techniques, as these
have already been successfully applied for intrusion and malware de-
tection before [e.g., 156, 168, 173]. However, in contrast to previous
approaches, we want to perform the classification directly on the de-
vice, without requiring the user to send applications to an external
server. This constraint has mainly two reasons. First, uploading ap-
plications to an external server is not always possible and can even
lead to high costs for the user. Second, requiring users to send their
applications to an external analysis server theoretically enables the
operator of this server to derive sensitive information on device us-
age. This can possibly have severe privacy implications.

To tackle the described challenges, we present DREBIN, a lightweight
method for Android malware detection that infers detection patterns
automatically and enables identifying malware directly on the smart-
phone. DREBIN performs a broad static analysis, gathering as many
features from an application’s code and manifest as possible. These
features are organized in sets of strings (such as permissions, API
calls, and network addresses) and embedded in a joint vector space.
As an example, an application sending premium SMS messages is
cast to a specific region in the vector space associated with the cor-
responding permissions, intents, and API calls. This geometric rep-
resentation allows DREBIN to identify combinations and patterns of
features indicative of malware automatically using machine learning
techniques. For each detected application the respective patterns can
be extracted, mapped to meaningful descriptions and then provided
to the user as explanation for the detection. Aside from detection,
DREBIN can thus also provide insights into the identified Android
malware samples.

55

We propose a
learning-based
method...

...which allows the
detection of Android
malware...

...directly on the
mobile device.

56

-
-

Android app
(apk)

LEARNING-BASED MALWARE DETECTION
(b) Embedding in vector space

(a) Broad static analysis

Feature sets

@ Network addresses

Feature sets

Malicious

(+)

.

Suspicious API calls
®, -
@ Network addresses

(d) Explanation (c) Learning-based detection

Linear

Benign model

)

Figure 17: Schematic depiction of the analysis steps performed by DREBIN.

In summary, we make the following contributions to the detection

of Android malware in this paper:

e Effective detection. We introduce a method combining static anal-

ysis and machine learning that is capable of identifying An-
droid malware with high accuracy and few false alarms, inde-
pendent of manually crafted detection patterns.

Explainable results. The proposed method provides an explain-
able detection. Patterns of features indicative of a detected mal-
ware instance can be traced back from the vector space and pro-
vide insights into the detection process.

Lightweight analysis. For efficiency we apply linear-time analysis
and learning techniques that enable detecting malware on the
smartphone as well as analyzing large sets of applications in
reasonable time.

In this chapter, we describe the details of our approach. An exten-

We provide an sive evaluation of its detection capabilities on actual Android mal-
extensive evaluation ware is provided in the next chapter. During the assessment, we also

of DREBIN in the
next chapters.

point to some limitations of the method, which might be subject to
further research. Note, for instance, that DREBIN builds on concepts

of static analysis and thus cannot rule out the presence of obfuscated
or dynamically loaded malware on mobile devices. Due to the broad

4.1 METHODOLOGY

analysis of features, however, the method raises the bar for attackers
to infect smartphones with malicious applications and strengthens
the security of the Android platform, as demonstrated by our evalua-
tion in Chapter 5.

4.1 METHODOLOGY

To detect malicious software on a mobile device, DREBIN requires a
comprehensive yet lightweight representation of applications that al-
lows determining typical indications of malicious activity. For this
purpose, it employs a broad static analysis which extracts feature
sets from different sources and analyzes these in an expressive vector
space. This process is illustrated in Figure 17 and briefly outlined in
the following:

a) Broad static analysis. In the first step, DREBIN statically inspects a
given Android application and extracts different feature sets from
the application’s manifest and dex code (Section 4.1.1).

b) Embedding in vector space. The extracted feature sets are then mapped
to a joint vector space, where patterns and combinations of the fea-
tures can be analyzed geometrically (Section 4.1.2).

¢) Learning-based detection. The embedding of the feature sets enables
us to identify malware using efficient techniques of machine learn-
ing, such as linear Support Vector Machines (Section 4.1.3).

d) Explanation. In the last step, features contributing to the detection
of a malicious application are identified and presented to the user
or analyst for explaining the detection process (Section 4.1.4).

In the following sections, we discuss these four steps in more detail
and provide the necessary technical background of the analysis.

4.1.1 Static Analysis of Applications

As the first step, DREBIN performs a lightweight static analysis of a
given Android application. Due to the hardware limitations of mobile
devices, the static extraction of features needs to run in a constrained
environment and still complete its extraction process within a reason-
able amount of time. If the analysis takes too long, the user might skip
the ongoing process and refuse the overall method. Accordingly, it be-
comes essential to select features which can be extracted efficiently.
We thus focus on the manifest and the disassembled dex code of
the application (see Chapter 2), which both can be obtained by a lin-
ear sweep over the application’s content. We provide details on the
implementation later in this chapter. To allow for a generic and ex-
tensible analysis, we represent all extracted features as sets of strings,

57

Our method
performs a broad
static analysis...

...and extract
features from 8
different sets.

58 LEARNING-BASED MALWARE DETECTION

such as permissions, intent filters, and API calls. In particular, we
extract the following 8 sets of strings.

FEATURE SETS FROM THE MANIFEST Every Android application

This includes contains a manifest file called AndroidManifest.xml, which provides
features JJ: 70”; lth’f data supporting the installation and later execution of the application.
manifest file...

During the analysis process, DREBIN extracts the following feature
sets from this file:

S1 Hardware components: This first feature set contains requested
hardware components. If an application requires access to the
camera, touchscreen, or the GPS module of the mobile device,
these features should be specified in the manifest file. Request-
ing access to specific hardware clearly has security implications,
as the use of specific combinations of hardware often reflects
harmful behavior. An application which has access to GPS and
network modules can, for instance, collect location data and
send it to an attacker over the network.

S2 Requested permissions: One of the most essential security mecha-
nisms introduced in Android is the permission system. Permis-
sions are actively granted by the user at installation time and

...like the requested allow an application to access security-relevant resources. As
permissions of an shown by previous work [71, 173], malicious software tends to
application. request certain permissions more often than innocuous applica-
tions. For example, a high percentage of current malware sends
premium SMS messages and thus requests the SEND_SMS permis-
sion. We therefore gather all permissions listed in the manifest

in a feature set.

S3 App components: There exist four different types of components
in an application, each defining different interfaces to the sys-
tem: activities, services, content providers, and broadcast receivers.
Every application can declare several components of each type
in the manifest. The names of these components are also col-
lected in a feature set, as the names may help to identify well-
known components of malware. For example, several variants
of the so-called DroidKungFu family share the name of particu-
lar services [see 109—111].

S4 Filtered intents: Inter-process and intra-process communication
on Android is mainly performed through intents: passive data
structures exchanged as asynchronous messages and allowing
information about events to be shared between different compo-
nents and applications. We collect all intents listed in the man-
ifest as another feature set, as malware often listens to specific
intents. A typical example of an intent message involved in mal-

4.1 METHODOLOGY

ware is BOOT_COMPLETED, which is used to trigger malicious activ-
ity directly after rebooting the smartphone.

FEATURE SETS FROM DISASSEMBLED CODE Android applications
are developed in Java and compiled into optimized bytecode for the
Dalvik virtual machine. This bytecode can be efficiently disassembled
and provides DREBIN with information about API calls and data used
in an application. We use this information to construct the following
feature sets:

Ss

Se

S7

Sg

Restricted API calls: The Android permission system restricts ac-
cess to a series of critical API calls. Our method searches for
the occurrence of these calls in the disassembled code to gain
a deeper understanding of the functionality of an application.
A particular case, revealing malicious behavior, is the use of re-
stricted API calls for which the required permissions have not
been requested. This may indicate that the malware is using
root exploits in order to surpass the limitations imposed by the
Android platform.

Used permissions: The complete set of calls extracted in Ss is
used as the ground for determining the subset of permissions
that are both requested and actually used. For this purpose, we
implement the method introduced by Felt et al. [77] to match
API calls and permissions. In contrast to Ss, this feature set pro-
vides a more general view on the behavior of an application, as
multiple API calls can be protected by a single permission (e.g.,
sendMultipartTextMessage() and sendTextMessage() both require
that the SEND_SMS permission is granted to an application).

Suspicious API calls: Certain API calls allow access to sensitive
data or resources of the smartphone and are frequently found in
malware samples. As these calls can especially lead to malicious
behavior, they are extracted and gathered in a separate feature
set. This includes, for instance, the usage of SMS functionality.
Moreover, we also consider functions which are known to be
used by malware for obfuscation, such as the use of encryption
and reflection calls. Table 3 lists the collected API call types
along with some common examples. Note that the list should
ideally be updated regularly to keep up with the evolution of
malicious software (see Section 5.2.5).

Network addresses: Malware regularly establishes network con-
nections to retrieve commands or exfiltrate data collected from
the device. Therefore, all IP addresses, hostnames, and URLs
found in the disassembled code are included in the last set of
features. Some of these addresses might be involved in botnets

59

Additional features
are gathered from
the dexcode...

...including API
calls known to be
frequently used by
Android malware.

60

As most learning
models operate on
numerical vectors...

LEARNING-BASED MALWARE DETECTION

Suspicious behavior Indicative API calls
getDeviceld()
Access of sensitive data getSubscriberId()

execHttpRequest ()

Network communication setWifiEnabled()
getMessageBody ()
Usage of SMS functionality sendTextMessage()

Runtime.exec()
Execution of external code DexClassLoader.loadClass ()

Cipher.getInstance()
Possible obfuscation reflect.Method.invoke()

Table 3: Examples of API calls considered as suspicious.

and thus present in several malware samples, which can help to
improve the learning of detection patterns.

4.1.2 Embedding in Vector Space

Malicious activity is usually reflected in specific patterns and combi-
nations of the extracted features. For example, a malware sending pre-
mium SMS messages might contain the permission SEND_SMS in set S,
and the hardware component android.hardware.telephony in set Sj.
Ideally, we would like to formulate Boolean expressions that capture
these dependencies between features and return true if a malware is
detected. However, due to the large amount of data, it is infeasible to
infer these Boolean expressions from real-world data in practice.

As a remedy, we aim at capturing the dependencies between fea-
tures using concepts from machine learning. As most learning meth-
ods operate on numerical vectors, we first need to map the extracted
feature sets to a vector space. To this end, we define a joint set S that
comprises all observable strings contained in the 8 feature sets

S=5;USU---USsg. (15)

We ensure that elements of different sets do not collide by adding
a unique prefix to all strings in each feature set. In our evaluation,

4.1 METHODOLOGY

the set S roughly contains up to 3.2 million different features (see
Section 5.2.5).

Using the set S, we define an |S|-dimensional vector space, where
each dimension is either o or 1. An application z is mapped to this
space by constructing a vector ¢(z), such that for each feature s ex-
tracted from z the respective dimension is set to 1 and all other di-
mensions are o. Formally, this map ¢ can be defined for a set of
applications Z as follows

@:2 {0,115, o(z) > (I(zs)),g (16)

where the indicator function I(z, s) is simply defined as

1 if the application z contains feature s
I(z,5) = PP (17)
0 otherwise.

Applications sharing similar features lie close to each other in this rep-
resentation, whereas applications with mainly different features are
separated by large distances. Moreover, directions in this space can
be used to describe combinations of features and ultimately enable
us to learn explainable detection models.

Let us, as an example, consider a malicious application that sends
premium SMS messages and thus needs to request certain permis-
sions and hardware components. A corresponding vector ¢(z) for
this application looks like this:

0 HARDWARE : :android.hardware.wifi } S
]

HARDWARE: :android.hardware.telephony

REQ_PERMISSION: : SEND_SMS } S
2

0 REQ_PERMISSION: :DELETE_PACKAGES

At first glance, the map ¢ seems inappropriate for the lightweight
analysis of applications, as it embeds data into a high-dimensional
vector space. Fortunately, the number of features extracted from an
application increases linearly with its size. That is, an application
z containing m bytes of code and data includes at most m feature
strings. As a consequence, only m dimensions are non-zero in the
vector ¢ (z)—irrespective of the dimension of the vector space. It thus
suffices to only store the features extracted from an application for
sparsely representing the vector ¢(z), for example, using hash ta-
bles [47] or Bloom filters [30].

61

...we need to map the
extracted feature sets
to a vector space.

62

A linear SVM

learns a hyperplane...

...that separates
both classes with
maximum margin.

LEARNING-BASED MALWARE DETECTION

4.1.3 Learning-based Detection

In the third step, we apply machine learning techniques for automat-
ically learning a separation between malicious and benign applica-
tions. The application of machine learning spares us from manually
constructing detection rules for the extracted features.

While several learning methods can be applied to learn a separa-
tion between two classes, only a few methods are capable of produc-
ing an efficient and explainable detection model. We consider linear
Support Vector Machines (SVMs) for this task. In short, a linear SVM
determines a hyperplane that separates the training points of two
classes in feature space with maximal margin. In our case, one of
these classes is associated with malware, whereas the other class cor-
responds to benign applications. An unknown application is classi-
fied by mapping it to the vector space and determining whether it
falls on the malicious (+) or benign (—) side of the hyperplane. Note
that a detailed description of the algorithm and its mathematical back-
ground is described in Chapter 2.

To stay compliant with the previously discussed notation, the detec-
tion model of a linear SVM corresponds to a vector w € R'S!, which
is perpendicular to the hyperplane and specifies its direction in fea-
ture space. The corresponding detection function f : Z — R is then
given by the term

f(z) = (p(z),w) =)_1(z,5) - w; (18)
seS
and returns the orientation of ¢(z) with respect to w. That s, f(z) > b
indicates malicious activity, while f(z) < b corresponds to benign
applications for a given threshold b.

To compute the function f efficiently, we again exploit the sparse
representation of the map ¢. Given an application z, we know that
only features extracted from z have non-zero entries in ¢(z). All other
dimensions are zero and do not contribute to the computation of f(z).
Hence, we can simplify the detection function f as follows

f(z) = Z I(z,s) - ws = Zws- (19)
seS s€z
Instead of an involved learning model, we finally arrive at a simple
sum that can be efficiently computed by just adding the weight w
for each feature s in an application z. This formulation enables us to
apply a learned detection model on a smartphone and also allows us
to explain results obtained by the Support Vector Machine.

4.1.4 Explanation

In practice, a detection system must not only indicate malicious activ-
ity, but also provide explanations for its detection results. It is a com-

4.1 METHODOLOGY

mon shortcoming of learning-based approaches that they are black-
box methods [182]. In the case of DREBIN, we address this problem
and extend our learning-based detection, such that it can identify fea-
tures of an application that contribute to a detection. Moreover, an
explainable detection may also help researchers inspect patterns in
malware and gain a deeper understanding of its functionality.

By virtue of the simple detection function of the linear SVM, we are
able to determine the contribution of each single feature s to the func-
tion f(z). During the computation of f(z), we just need to store the
largest k weights w; shifting the application to the malicious side of
the hyperplane. Since each weight wy is assigned to a certain feature
s, it is then possible to explain why an application has been classified
as malicious or not. This approach can be efficiently realized by main-
taining the k largest weights w; in a heap during the computation of
the function f(x) [47].

After extracting the top k features by their weights, DREBIN auto-
matically constructs sentences that describe the functionality underly-
ing these features. To achieve this goal, we design sentence templates
for each feature set which can be completed using the respective fea-
ture. Table 4 lists these templates. For features frequently observed
in malware, such as the permission SEND_SMS, we provide individual
descriptions.

Feature set Explanation

S;1 Hardware features App uses %s feature %s.

S, Requested permissions App requests permission to access %s.
S3 App components App contains suspicious component %s.
S4 Filtered intents Action is triggered by %s.

S5 Restricted API calls App calls function %s to access %s.
S¢ Used permissions App uses permissions %S to access %s.
S7 Suspicious API calls App uses suspicious API call %s.

Sg Network addresses Communication with host %s.

Table 4: Templates for explanation.

For most of the feature sets, the construction of sentences from the
templates in Table 4 is straightforward. For example, for the hardware
features we make use of their naming scheme to construct mean-
ingful sentences. For instance, DREBIN presents the sentence "App
uses hardware feature camera.” to the user, if an application uses the
android.hardware.camera feature.

Similarly, we provide explanations for requested and used permis-
sions. The explanation for a permission can be derived from the An-
droid documentation which provides proper descriptions—at least
for all system permissions. We slightly modify these descriptions in
order to present meaningful explanations to the user. However, due

63

DREBIN provides
explanations for its
decisions.

It extracts the most
significant features...

...and uses them to
derive descriptions.

64

LEARNING-BASED MALWARE DETECTION

to the fact that application developers are able to define custom per-
missions we also provide a generic sentence which is presented to the
user if no proper description exists. We follow the same approach for
the restricted API calls that build on the use of certain permissions.
For all other feature sets the templates are directly filled with either
the feature’s name or a corresponding placeholder.

An example of an explanation generated by DREBIN is shown in
Figure 18. The presented sample belongs to the GoldDream family.
DREBIN correctly identifies that the malware communicates with an
external server and sends SMS messages. The application requests
16 permissions during the installation process. Many users ignore
such long lists of permissions and thereby fall victim to this type of
malware. In contrast to the conventional permission-based approach,
DreBIN draws the user’s attention directly to relevant aspects that
indicate malicious activity. Furthermore, DREBIN presents a score to
the user which tells him how confident the decision is. As a result, the
user is able to decide whether the presented functionality matches his
expectation or not.

ﬁ Drebin

Alert

The scanned application 'foobar.apk’ may contain
malicious functionality.

Detection Score

T
W -

benign malicious

Explanation

0.52 NETWORK:lebar.gicp.net

- Communication with host lebar.gicp.net
0.45 PERMISSION:SEND_SMS

. Application sends SMS messages
0.45 INTENT:SMS_RECEIVED

- Action is triggered by SMS message

Block App Install App

Figure 18: Example of an explanation.

In addition to the benefit for the user, the generated explanations
can also help researchers discover relevant patterns in common mal-
ware families. We discuss this aspect in more detail in Chapter 6.

4.2 DISCUSSION

4.2 DISCUSSION

While the presented method is already feasible when running on
Desktop computers, it requires additional considerations to run it
directly on a mobile device. In the following, we discuss several prob-
lems along with possible solutions to address the hardware limita-
tions of smartphones. Finally, we give some details on the implemen-
tation we used for the evaluation of DREBIN in Chapter 5 and Chap-
ter 6.

OFFLINE LEARNING In our implementation, we do not learn a
detection model on the smartphone due to its computational costs.
Moreover, a large data set is needed to train the classification model,
which cannot be stored directly on the device. Instead, we train the
Support Vector Machine offline on a dedicated system and only trans-
fer the learned model w and threshold b to the smartphone for de-
tecting Android malware.

MODEL SIZE However, as the number of available applications used
to train the classifier increases, so does the number of available fea-
tures, and hence also the size of the resulting classification model.
Although the SVM only selects a small fraction of the available fea-
tures, the model will still exceed an acceptable size at some point.
Fortunately, there exist two techniques which allow an effective re-
duction of the model size—feature selection and feature hashing. Note
that both methods can even be combined to further reduce the size of
the detection model.

The first option to limit the model size is feature hashing [177]. This
technique is related to the concept of Bloom filters [30]. In order
to apply feature hashing, we can define a new mapping function
® : Z —{0,1}™ that maps an application z into an N-dimensional vec-
tor space, where N < [S]| restricts the model size. For this purpose, ¢
uses a hash function h : § — {1, ..., N}, which assigns a natural num-
ber to each feature string s. Besides the dimensionality reduction, the
technique also allows mapping each application independently into
the feature space. Note, however, that h is not an injective function
and thus different features might get associated with the same dimen-
sion. Although h can be selected such that it minimizes the probabil-
ity of such a collision, too many collisions occur if |S| becomes too
large. Consequently, no meaningful explanation can be derived from
the model anymore. In this case, performing a feature selection poses
a better option.

When applying feature selection techniques, only the most discrimi-
nant features of the training data are picked to train the model. There
exist different methods to select these features [98, 99, 120]. For in-
stance, we examine the impact of two different methods for feature

65

The classifier is
trained on an
external server.

The size of the
resulting model can
be reduced...

...using feature
hashing...

..ot feature
selection.

66

KIriN uses 9
security rules to
check for suspicious
characteristics.

LEARNING-BASED MALWARE DETECTION

selection in Chapter 6. While the first one selects the features with the
largest weights in w, the second approach uses the concept of regular-
ization for feature reduction (see Chapter 2). We will discuss both of
them in detail in Chapter 6. Furthermore, we demonstrate how much
the number of features can be reduced with these techniques.

IMPLEMENTATION To allow for efficient processing of applications
directly on the device, we implement a prototype of DREBIN based on
the tools aapt (Android Asset Packaging Tool) and DexDump. In particu-
lar, we use aapt to extract the feature sets S1-S4 from the manifest file
and apply a modified version of DexDump for the extraction of the
remaining feature sets. We evaluate the efficiency of this prototype
implementation in Section 5.3.

For all other experiments in this thesis, we use a re-implementation
of DREBIN based on a modified version of the Androguard [61] toolbox.
While this implementation is slower than the original tool, it has the
advantage that Androguard is a commonly used software and under
constant development. Thus, it is compatible with newer Android
versions which, for instance, provide new mappings between permis-
sions and API calls [2, 18, 77]. Furthermore, it allows adding new
features to DREBIN with little effort. Note that we slightly modified
Androguard such that it can also inspect some (obfuscated) applica-
tions where otherwise the analysis usually fails. In addition, we use
GNU Parallel [191] to compensate for the run-time overhead intro-
duced by Androguard.

4.3 RELATED WORK

Several researchers have already proposed Android malware detec-
tion systems before DREBIN. In the next chapter, we compare our ap-
proach to some existing ones that can also be applied directly on the
mobile device. For a better understanding of the discussions provided
throughout the next chapter, we give a more detailed description of
these approaches in the following. Afterward, we discuss further ex-
isting work on Android malware detection.

KIRIN This is one of the first approaches to Android malware de-
tection and was already presented back in 2009 by Enck et al. [71].
At that time, the most recent Android version was 1.1, and only
a few malicious applications were known. It was, however, already
foreseeable that mobile malware might become a severe threat in the
near future. As a result, the authors proposed a lightweight certifica-
tion method for Android that allows the identification of potentially
dangerous functionality in mobile applications. For this purpose, the
method uses 9 distinct security rules, which mainly check whether
an application requests suspicious combinations of permissions. For

4.3 RELATED WORK

instance, it categorizes an application as potentially dangerous, if the
app requests the permissions RECEIVE_SMS and WRITE_SMS at the
same time. As in the case of DREBIN, these checks can be performed
directly on the phone.

Nonetheless, while Kirin is a very lightweight yet effective approach,
it suffers from the drawback of requiring manual effort to derive its
security rules. In contrast, DREBIN infers these rules automatically.
Consequently, it makes sense to perform a direct comparison of both
detection approaches.

RCr In 2012, Sarma et al. [173] presented an approach to automat-
ically infer risk signals based on Rare Critical Permissions (RCP) from
a given set of Android applications. These risk signals, in turn, allow
determining whether an unknown application requests a critical per-
mission or a combination of critical permissions that are unusual to
occur in legitimate apps. In total, the authors consider 26 permissions
as critical which allow applications to access particularly sensitive or
security-relevant functionalities of the device.

In contrast to Kirin, but similar to DREBIN, the method does not rely
on static rules but automatically infers them from a training dataset.
Nonetheless, it only uses a small subset of permissions that need to
be manually defined in advance.

PENG The last approach we use for comparison was proposed by
Peng et al. [156] in 2012. The authors use risk scoring functions to
measure the risk of an application. Similar to Kirin and RCP, the risk
score is based on the requested permissions of an application, i.e.,
it increases with the number of permissions an application requests.
However, the extent to which a specific permission influences the re-
sulting risk score may vary, depending on the underlying distribu-
tion that an application is considered to belong to. For estimating
these distributions, the authors propose different Naive Bayes mod-
els. These models mainly differ in their ability to weigh certain critical
permissions or to consider different application categories within the
used dataset.

For our evaluation, we implement the approach of Peng et al. using
an SVM instead of a Naive Bayes classifier. The SVM shows similar
results to those reported in the original paper. Besides, it allows exam-
ining the impact of the additional feature sets considered by DrREBIN
on the overall detection performance.

4.3.1 Further Related Work

The analysis and detection of Android malware has been a vivid area
of research in the last years. In addition to the previously discussed
approaches, further concepts and techniques have been proposed to

67

RCP checks an
application for rare
critical permissions.

This approach
assigns a high risk
to applications that
request many
permissions.

68

In contrast to other
static approaches,...

...DREBIN is
optimized for
effectiveness and

efficiency.

Analyzing
applications at
run-time...

LEARNING-BASED MALWARE DETECTION

counter the growing amount and sophistication of this malware. An
overview of the current malware landscape is provided in the studies
of Felt et al. [76], Zhou & Jiang [223], and Wei et al. [202].

DETECTION USING STATIC ANALYSIS The first approaches for de-
tecting Android malware have been inspired by concepts from static
program analysis. Several methods have been proposed that statically
inspect applications and disassemble their code [e.g., 13, 71, 73, 77,
97]. For example, the method Stowaway [77] analyzes API calls to de-
tect overprivileged applications and RiskRanker [97] statically iden-
tifies applications with different security risks. Similarly, Chen et al.
propose the tool MassVet [44], which allows scanning for repackaged
malware in large amounts of data. Finally, there also exist common
open-source tools for static analysis, such as Smali [87] and Andro-
guard [62], which enable dissecting the content of applications with
little effort.

Our method DREBIN is related to these approaches and employs
similar features for identifying malicious applications, such as per-
missions, network addresses, and API calls. However, it differs in two
central aspects from previous work: First, we abstain from crafting de-
tection patterns manually and instead apply machine learning to an-
alyze information extracted from static analysis. Second, the analysis
of DREBIN is optimized for effectiveness and efficiency, which enables
us to inspect applications directly on the smartphone.

DETECTION USING DYNAMIC ANALYSIS Another branch of re-
search has studied the detection of Android malware at run-time.
Most notably, are the analysis system TaintDroid [72] and Droid-
Scope [217] that enable dynamically monitoring applications in a pro-
tected environment, where the first one focuses on taint analysis, and
the latter allows the introspection at different layers of the platform.
While both systems provide detailed information about the behavior
of applications, they are technically too involved to be deployed on
smartphones and detect malicious software directly.

As a consequence, dynamic analysis is mainly applied for offline
detection of malware, such as scanning and analyzing large collec-
tions of Android applications. For example, the methods Mobile Sand-
box [183], DroidRanger [224], VetDroid [221], AppsPlayground [163],
Andrubis [131], CopperDroid [190], and Monet [186] have been suc-
cessfully applied to study apps with malicious behavior on different
datasets. Google operates a similar detection system called Bouncer.
Such dynamic analysis systems are suitable for filtering malicious ap-
plications from Android markets. Due to the openness of the Android
platform, however, applications may also be installed from alternative
sources, such as web pages and memory sticks, which requires detec-
tion mechanisms that operate on the smartphone.

4.4 CHAPTER SUMMARY

ParanoidAndroid [161] was one of the few detection systems that
employed dynamic analysis and can spot malicious activity while
running on the smartphone. To this end, a virtual clone of the smart-
phone is run in parallel on a dedicated server and synchronized with
the actions of the device. This setting allows for monitoring the be-
havior of applications on the clone without disrupting the function-
ality of the real device. The duplication of functionality, however, is
involved and with millions of smartphones, operating ParanoidAn-
droid at large scale is technically not feasible in practice.

4.3.1.1 Detection using machine learning

The difficulty of manually crafting and updating detection patterns
for Android malware has motivated the use of machine learning.
Several methods have been proposed that analyze applications au-
tomatically using learning methods [e.g., 22, 156, 173]. As already
discussed, Peng et al. [156] apply probabilistic learning methods to
the permissions of applications for detecting malware. Similarly, the
methods Crowdroid [38], DroidMat [209], Adagio [91], MAST [43],
DroidSIFT [219], MaMaDroid [137], and DroidAPIMiner [1] analyze
features statically extracted from Android applications using machine
learning techniques. Closest to our work is Droid APIMiner [1], which
provides a similar detection performance to DREBIN on Android mal-
ware. However, DroidAPIMiner builds on a k-nearest neighbor clas-
sifier that induces a significant runtime overhead and impedes oper-
ating the method on a smartphone. Moreover, Droid APIMiner is not
designed to provide explanations for its detections and therefore is
opaque to the practitioner.

Overall, previous work using machine learning mainly focuses on
accurate detection of malware. Additional aspects, such as the effi-
ciency and the explainability of the detection, are not considered. We
address these aspects and propose a method that provides an effec-
tive, efficient, and explainable detection of malicious applications.

4.4 CHAPTER SUMMARY

Android malware is a fast-growing threat. Classic defenses, such as
anti-virus scanners, increasingly fail to cope with the amount and
diversity of malware in application markets. While approaches like
DroidRanger [224] and AppPlayground [163] support filtering mali-
cious applications from these markets, they induce a run-time over-
head that is prohibitive for directly protecting smartphones. Other
approaches, such as the detection tool presented in Chapter 3, re-
quire manual effort to derive proper signatures that allow the detec-
tion of malware on the device. As a remedy, we introduce DREBIN,
a lightweight method for detecting Android malware. DREBIN com-
bines concepts from static analysis and machine learning, which en-

69

...is still infeasible
directly on the
mobile device.

Most learning-based
methods are
computationally
expensive...

...and thus do not
run directly on
mobile devices.

70

LEARNING-BASED MALWARE DETECTION

ables it to better keep pace with malware development. In the fol-
lowing chapter, we compare its detection performance to related ap-
proaches and examine whether its run-time is low enough, such that
DREBIN can be applied directly on mobile devices.

PERFORMANCE EVALUATION

In the previous chapter, we presented a machine learning-based ap-
proach capable of detecting Android malware directly on mobile de-
vices. We named our method DReBIN. While common detection meth-
ods still rely on manually crafted signatures, our approach is, in
contrast, able to automatically infer characteristic patterns from mali-
cious applications. To demonstrate the efficacy of DREBIN, we conduct
a comprehensive analysis, including the examination of its detection
capabilities and run-time performance. In summary, we conduct the
following experiments:

1. Detection performance. We evaluate the detection performance of
DRreBIN on different datasets and compare it with related ap-
proaches, including popular anti-virus products. The datasets
used throughout the evaluation contain samples of several years,
covering the time span between 2010 and 2017.

2. Run-time performance. In the second step, we analyze the run-
time performance of a prototype implementation of DREBIN on
several mobile devices. The mobile devices have different hard-
ware configurations in order to ensure that DREBIN also runs on
older devices with limited computational power.

5.1 EVALUATION DATA

We start our analysis by comparing the detection performance of
DREBIN against the related methods [71, 156, 173] that we discussed
in the previous chapter. For all experiments, we consider datasets that
contain Android applications over several years. Table 5 provides an
overview of all dataset, including the number of samples per class
and the respective time range.

Dataset #Malicious #Benign Time Period
DREBINQRIG 5,557 123,430 2010 — 2012
DREBIN pyc 6,013 93,635 2010 — 2012
AMD 24,553 93,635 2010 — 2016
SILVERPUSH 234 93,635 2010 — 2017

Table 5: Overview of datasets used for the evaluation of DREBIN.

In the following, we provide a detailed description of all listed
datasets and discuss why they are relevant for our evaluation.

71

We evaluate our
method using
Android applications
from 2010 to 2017

72

The first dataset

contains around

130,000 different
applications...

...including roughly
5,600 malicious
Android apps.

The second dataset
is derived from the
first one...

PERFORMANCE EVALUATION

DREBIN-ORIG DATASET This denotes the dataset used in Arp et
al. [8] and has been one of the largest datasets used for the evalu-
ation of a learning-based approach back in 2014. To construct this
dataset, we acquired 131,611 applications containing benign as well
as malicious applications. The samples have been collected between
August 2010 and October 2012. In detail, the dataset contains 96,150
applications from the official Google Play store, 19,545 applications
from different alternative Chinese Markets, 2,810 applications from
alternative Russian Markets, and 13,106 samples from other sources,
such as Android websites, malware forums, and security blogs. In
addition, the dataset includes all samples from the Android Malware
Genome Project [223].

To distinguish malicious from benign applications, we sent each
sample to the VIRusToTAL service and flagged the applications based
on the output of ten common anti-virus scanners (AntiVir, AVG, Bit-
Defender, ESET, F-Secure, GData, Kaspersky, McAfee, Sophos, and
Symantec). We scrutinized all samples as malware which had been
flagged by at least two scanners. Subsequently, we removed samples
labeled as adware from our dataset, as this type of software is in a
twilight zone between malware and benign functionality.

The final dataset contains 123,430 benign applications and 5,557
malware samples. Note that there are slight differences compared to
the numbers reported in Arp et al. [8]. These differences arise, since
the reimplementation of DREBIN is unable to analyze a small number
of applications.

Following the described labeling procedure, we sought to ensure
that our data is (almost) correctly split into benign and malicious
samples. However, as we discuss throughout this section, drawing
a distinct line between malicious and benign applications is often
difficult, since anti-virus scanners do not follow common labeling
schemes [106]. Instead, they often even change their decision over

time [92, 143].

DREBIN-AVC DATASET In late 2017, we rescanned the complete
DREBINQRG dataset to check whether samples initially considered as
false positives (i.e., samples only flagged by a single scanner) have
been flagged by additional scanners in the meantime or indeed turned
out to be false positives.

Surprisingly, we experience significant growth in the number of
samples that are flagged by at least one scanner. In particular, we find
that 35,352 applications are now flagged at least once, when consider-
ing all anti-virus scanners available on VIRusToTAL. In consequence,
we revise our labeling procedure and scrutinize all samples as mali-
cious using a threshold of 10 anti-virus flags. As proposed by Lindor-
fer et al. [130], we regard all 21,299 samples with less than 10 flags
as suspicious and analyze them separately in Section 5.2.6. Note that

5.1 EVALUATION DATA

a large fraction of these samples are only flagged by a single scan-
ner and thus are likely false positives. Still, we regard none of these
14,034 samples as benign, as we cannot be completely sure whether
these do indeed not exhibit any malicious functionalities.

Moreover, we again filter samples that have been flagged as poten-
tially unwanted programs (PUPS) by the popular labeling tool AV-
CLASS [119], leaving us with a total of 6,013 malicious samples. The
vast majority of the remaining samples—s5,040 applications—are al-
ready part of the DREBINQRig dataset. The difference occurs due to
the different labeling approach used by AVCLASS and the additional
information provided by VIRusToTAL.

In summary, the dataset consists of 6,013 malicious samples, 93,635
benign samples, and 21,299 suspicious samples. The vast majority
of these newly flagged samples can, presumably, be considered as
grayware. The reasons for the significant growth in the number of
this type of application are manifold. First of all, a large number of
these samples have been flagged only by a couple of anti-virus scan-
ners and are possibly false positives. Second, Google has changed the
Google Play policies several times within the past few years. As an
example, samples containing advertising libraries that make use of
push notifications have been banned from Google Play in September
2013 [116, 179]. Therefore, these applications have also been flagged
by several anti-virus scanners since then.

ANDROID MALWARE DATASET The Android Malware Dataset (AMD)
has been composed by Wei et al. [202] and contains 24,553 malicious
samples. The applications belong to 71 different malware families and
have been collected by the authors between 2010 and 2016.

The authors only select a malicious application for their dataset if it
has been flagged by at least 50% of the 55 anti-virus scanners available
at VirusToTaL. Furthermore, at least 50% of the anti-virus scanners
that flagged a sample as malicious, had to agree on the malware fam-
ily the sample belongs to. Otherwise, the sample was removed from
the dataset. Using this approach, the authors ensure that the dataset
only contains samples which have a very low probability of being
false positives.

Unfortunately, the AMD dataset does not contain any benign sam-
ples. Therefore, we use the benign samples from DREBINyc to eval-
uate the detection performance of DREBIN on this dataset. The result-
ing dataset finally comprises a total of 24,553 malware samples and
93,635 benign applications.

SILVERPUSH DATASET Initially, we have motivated the develop-
ment of a learning-based detection method for Android malware by
pointing to the inherent limitations of signature-based approaches.
An example of such a signature-based approach has been presented

73

...by using more
recent labeling
information
retrieved in 2017.

The third dataset
contains around
25,000 malicious
samples from 2010
to 2016.

74

Finally, we prepare a
dataset to examine
the detection of the

Silverpush family.

PERFORMANCE EVALUATION

in Chapter 3. While this method allows us to detect samples reliably
which exhibit specific characteristics, it requires much effort to craft
the necessary signatures manually. In this chapter, we would like to
examine whether DREBIN can extract the characteristic patterns re-
quired to detect these samples automatically. To this end, we compose
a dataset consisting of all 234 samples of SILvErRPUSH and all 93,635
benign samples of the DREBIN sy dataset.

5.1.1 Discussion

Each of the four datasets is considered to shed light on a different
aspect of the detection capabilities of DREBIN. In particular, we use
the DREBINQRig dataset to verify that the reimplementation of our
tool still provides results comparable to its original implementation.
Additionally, we use the DREBINgyc dataset to account for more re-
cent labeling information we retrieved from the VIRUSTOTAL service
in late 2017. The VIRUSTOTAL reports show that a significant number
of anti-virus engines follow unstable labeling schemes that change
over time. Therefore, we also conduct experiments using the AMD,
which solely consists of malware samples with a very low probabil-
ity of being false positives. Finally, we prepare a distinct dataset to
examine the detection performance of the SILvErRPUSH family.

5.2 DETECTION PERFORMANCE

5.2 DETECTION PERFORMANCE

Equipped with the necessary data, we can examine the detection ca-
pabilities of DReBIN. To this end, we start the evaluation by compar-
ing its detection performance with related learning-based approaches
and common anti-virus solutions in Section 5.2.1 as well as 5.2.2, re-
spectively. Subsequently, we assess its detection performance of differ-
ent malware families in Section 5.2.3, also considering in Section 5.2.4
the case where no samples of a malware family have been available
during training of the classifier, i.e., when DREBIN has to output a de-
cision for entirely unknown malware families. Afterward, we analyze
its detection performance over time, using a large dataset that covers
multiple years (see Section 5.2.5). In Section 5.2.6, we finally inspect
its detection score for samples on which many anti-virus scanners dis-
agree in their decision, making it difficult to confidently assign these
samples to one of the two classes.

5.2.1 Comparison with Related Approaches

We begin our evaluation by comparing DREBIN with related static ap-
proaches on all previously discussed datasets. In particular, we com-
pare the detection performance against Kirin [71], RCP [156], and the
approach proposed by Peng et al. [156]. For a detailed description
of these approaches, we refer the reader to Chapter 4, where we dis-
cussed these methods in detail.

EVALUATION SETUP For this experiment, we randomly split the
datasets into a training set Dirin (66%) and a test set Diest (33%). The
detection model and the respective parameters of DREBIN are exam-
ined on the training data, whereas the test set is only used for mea-
suring the final detection performance. We repeat this procedure ten
times for each dataset and average the results. For interested readers,
we provide a detailed description of the training procedure in the
following paragraph.

TRAINING STEP Instead of performing a k-fold cross-validation or
performing a time-based split of the training data, we follow a slightly
different training approach. In particular, we split the training data
Dirain into two datasets of equal size—a (new) training set Dyain o and
a validation set Dyr,in . We train a linear SVM on the training data
Diraino using different parameters. More precisely, we vary the cost
and weight parameters in the range of C = 10~',...,10% and W =
10°,...,10%, respectively. At the end of the training step, we select the
parameter combination that yields the best bounded AUC 1 (see
Chapter 2) on the validation set Dirin 1. Using the selected parameter
combination, we train a model on the full training data Diin, i.e., the

75

We evaluate the
detection capabilities
of DREBIN in six
different scenarios.

76

DREBIN clearly
outperforms all
related approaches...

PERFORMANCE EVALUATION

1
0.8 B
o -
@ .
= -
— i
0) | 4 —
S 06 e S R BT
. p— *
¢ R
Q_‘ 04 | ‘ -
) II
HE ; ‘ ® Kirin
02|t G E S — R RCP 2
! - - - Pengetal.
. Drebin
o L \
0 0.02 0.04 0.06 0.08 0.1

False positive rate

Figure 19: ROC curve comparison for DREBINQR;; dataset.

concatenation of training and validation set. Finally, we evaluate the
detection performance of the resulting model on the remaining test
data Dtest-

RESULTS An overview of the results for all considered methods
and all datasets is listed in Table 6. The results show that DrREBIN
clearly outperforms all related approaches, yielding detection rates
between 92% and 99% at a false positive rate of 1%. Note that this
corresponds to one false alarm when installing 100 applications on
the mobile device. In contrast, the related approaches provide lower
detection rates between 8% and 94% at the same false positive rate.
KiriN even exhibits higher false positive rates between 4 to 5% de-
pending on the dataset. This can be seen in Figure 19 and Figure 20,
which show the ROC curves for DREBINoRrig and DREBIN sy, respec-
tively. Overall, KiriN and RPC have obvious limitations detecting the
malicious applications, since they only use a subset of the available
requested permissions.

Dataset KIRIN RPC Peng Drebin

DREBINORig | 042 £0.01 0.12 +0.01 0.49 £+ 0.03 | 0.95 + 0.01
DREBINpyc | 0.38 £ 0.01 o0.11 £0.01 0.53 £0.02 | 0.92 + 0.01
AMD 0.44 £ 0.00 0.08 £ 0.00 0.66 + 0.04 | 0.99 %+ 0.00
SILVERPUSH | 0.63 £ 0.06 0.08 £ 0.04 0.94 + 0.02 | 0.99 £ 0.01

Table 6: Detection rates for learning-based approaches. Except for Kirin, all
listed results refer to a false positive rate of 1%.

However, all related methods show that requested permissions are
important evidence for malicious activity. In the case of the SILVER-

5.2 DETECTION PERFORMANCE

1
08 K .]
o et
Y -
= .-
= -
g) 0.6 |- o -
= e o
z |/ .
aQ,) TR]
) 0.4 13 .
\ P
E " o Kirin
02 M RCP |
. i
! - - - Pengetal.
. Drebin
o L i
0.0 0.02 0.04 0.06 0.08 0.1

False positive rate

Figure 20: ROC curve comparison for DREBIN zyc dataset.

pUsH family, requested permissions like RECORD_AUDIO can already
provide strong evidence to identify this family, as the results for Peng
et al. indicate. Nonetheless, even when considering all available per-
missions, the approaches often still lack crucial information to be able
to achieve an acceptable accuracy in many cases. The excellent perfor-
mance of DREBIN results from the combination of different feature
sets used to model malicious activity. These sets include requested
permissions but also contain other relevant characteristics of appli-
cations, such as suspicious API calls, filtered intents, and network
addresses. As a result, DREBIN detects the samples of the SiLvErPUSH
family almost perfectly, without the manual effort of crafting specific
signatures like the approach used in Chapter 3.

Dataset Precision Recall F1-Score TPRo.01

DREBINOR|G | 0.90 £ 0.02 0.93 £0.01 0.92 &+ 0.00 | 0.95 &£ 0.01
DREBINpAyc | 0.93 £0.02 091 £0.02 0.92 = 0.00 | 0.92 £ 0.01
AMD 0.99 + 0.00 0.99 = 0.00 0.99 &£ 0.00 | 0.99 =+ 0.00
SILVERPUSH | 0.99 £ 0.01 0.99 +0.01 0.99 + 0.01 | 0.99 £ 0.01

Table 7: Detection rates of DREBIN on different datasets.

Table 7 provides further results of DREBIN’s detection performance
in terms of precision and recall. For these metrics, we consider a clas-
sification threshold of o. Both metrics also confirm the good perfor-
mance results of the classifier and two interesting insights:

First, all metrics underline that DREBIN can detect the malicious
applications of the AMD dataset extremely reliably, yielding a detec-
tion rate of about 9g9%. Although the different ages of the benign and
malicious dataset might contribute to this result, their impact on the

77

...by combining
several different
types of features.

78

We compare our
approach to five
popular anti-virus
scanners...

...using the
VirusTotal service.

PERFORMANCE EVALUATION

detection performance should almost be negligible, as both classes
have a considerable time overlap. Instead, the purity of the malicious
data seems to make it particularly easy for the detection model to
distinguish between benign samples and malware in this case. In par-
ticular, since a significant fraction of anti-virus scanners had to agree
in their decisions throughout the labeling step, most samples of the
AMD dataset likely contain very distinct malicious patterns. In con-
sequence, it becomes easier for DREBIN to distinguish these samples
from legitimate applications.

The second insight is the impact of the relabeling step between
DRreBINORiG and DREBINayc on the detection performance. Overall,
the detection rates between DREBINQRiG and DREBINayc only slightly
differ, as Figure 20 shows. However, the false positive rate decreases
significantly, which also results in a better precision on the DREBIN ayc
dataset. For comparison, when considering a false positive rate of
0.1%, DREBIN is able to detect 79.10% and 84.07% of the malware in
DREBINORiG and DREBINayc, respectively. The absence of grayware in
DREBIN gy presumably leads to this decrease in the false positive rate.
Thus, similar to the AMD dataset, it becomes easier for the detection
methods to distinguish between malware and benign samples.

5.2.2 Comparison with Anti-Virus Scanners

Although DREBIN shows a better performance compared to related
learning-based approaches, in the end it has to compete with anti-
virus products in practice. Thus, we conduct an additional exper-
iment which provides a direct comparison of DREBIN with several
common anti-virus products.

EVALUATION SETUP For the comparison, we pick the five scan-
ners that yielded the best detection performance on DREBINQOR;g in
2012. The detection performance of these scanners was determined
by using the results obtained from the VIRusToTAL service when up-
loading the samples to the service for the first time. By following this
approach, we are able to determine whether an anti-virus scanner has
already been capable of detecting the malicious samples at the time
these samples have been collected by us.

Throughout the evaluation, we examine three different malware
datasets. Besides the malicious samples of the two already discussed
datasets DREBINORig and DREBINayc (see Section 5.1), we also use
the malicious samples provided by the Malgenome project [223]. We
choose a false-positive rate of 1% for DREBIN, which we think is suffi-
ciently low for practical operation.

RESULTS The results for all five anti-virus scanners are shown in
Table 8. Overall, the detection rate of the anti-virus scanners varies

5.2 DETECTION PERFORMANCE

DreBIN AV1 AV2 AVs AVy AVsy

DREBINORIG | 94.50% 96.41% 93.71% 84.66% 84.54% 78.38%
DREBINgyc | 92.23% 87.44% 88.24% 91.35% 88.92% 89.31%
Malgenome | 98.21% 98.63% 98.90% 98.28% 98.07% 98.66%

Table 8: Detection rates of DREBIN and anti-virus scanners.

considerably. While the best scanners detect more than 9o% of the
malware in the DREBINORjc dataset, the worst performing scanner
yields a detection rate which is more than 15% lower than that of the
best performing one. On the DREBINORjg dataset, DREBIN provides
the second best performance with a detection rate of 94.5% and out-
performs 4 out of the 5 scanners. This observation is remarkable since,
due to our test setting, at least two scanners should be able to detect
each malware sample. Therefore, all samples have to be known for
a certain amount of time, and most anti-virus scanners should be
equipped with a corresponding signature.

When considering the DREBINayc dataset, which has been rela-
beled using more recent labeling information, the detection results for
the anti-virus scanners vary only insignificantly. In this case, DREBIN
even yields the best detection performance, slightly outperforming all
anti-virus scanners. This result indicates that the selected anti-virus
scanners are likely optimized towards a very low false positive rate,
since none of them is close to a perfect detection rate, although the
considered samples have been flagged by at least 10 anti-virus scan-
ners and are known for several years (see Section 5.1). In contrast, on
the Malgenome dataset, most anti-virus scanners achieve better de-
tection rates than DREBIN, since these samples belong to a popular
malware dataset and have been public for a longer period of time.
Hence, almost all anti-virus scanners provide proper signatures for
this dataset. Note that, when rescanning the malicious samples of the
DREBINQOR|; dataset in late 2017, the results for this dataset are com-
parable to those obtained for the Malgenome dataset.

In all fairness, it needs to be mentioned that the false-positive rates
of anti-virus scanners are in general lower than the false-positive rate
of 1% we consider for DREBIN. However, the average user only installs
some dozens of applications on her device. According to Google [96],
the average number of installed applications per smartphone in the
U.S. has been 35 in 2016. In consequence, we consider a false-positive
rate of 1% still acceptable for operating DREBIN in practice. Moreover,
as we further discuss in Section 5.2.6, even anti-virus scanners do not
have a common malware definition. Consequently, there exists a large
margin of applications where the decision of whether a particular
application should be considered as malicious or as a false positive
becomes somewhat ambiguous.

79

DREBIN even
outperforms popular
anti-virus scanners
in many cases...

...and its false
positive rate is low
enough for practical
application.

8o

Analyzing the
detection rate for
different malware

families...

...ensures that not
only large families
can be detected.

PERFORMANCE EVALUATION

DISCUSSION The previous experiments show that DREBIN is capa-
ble of deriving meaningful patterns from malicious applications au-
tomatically, yielding detection results comparable to those obtained
by common anti-virus products. While DREBIN has a slightly higher
false positive rate than current anti-virus solutions, the classification
model allows—in contrast to the signature-based approach of anti-
virus scanners—the detection of previously unknown malicious sam-
ples. Unlike DREBIN, anti-virus products often require multiple weeks
or even months until their signature databases get updated, thus leav-
ing mobile devices vulnerable in this time frame. While a lower false
positive rate is indeed crucial when scanning thousands or millions
of applications, we argue that a false positive rate of 1% is sufficient
in case of mobile devices, since only a few dozen applications are
installed on the device by average users.

5.2.3 Detection of Malware Families

An important aspect when evaluating the detection performance of
a malware detection method poses the balance between the different
malware families in the dataset [170]. In particular, if the number of
samples of certain malware families is much larger than that of other
families, the detection result mainly depends on these families. To
address this problem, one can use the same number of samples for
each family. However, this leads to a distribution that significantly
differs from reality. Instead, we evaluate the detection performance
for each of the 20 largest malware families in each dataset separately.
We again start our analysis using the DREBINoRj; dataset.

DREBIN-ORIG FAMILY DETECTION Figure 21 illustrates the detec-
tion performance of DREBIN for each family, while Table g lists the
available number of samples per family. DREBIN is able to reliably de-
tect all families with an average accuracy of 93.82% at a false-positive
rate of 1%. In particular, seventeen families show a detection rate of
more than 9o%, where five of them can even be identified perfectly
(H, I, O, P, Q). There is only one malware family which cannot be reli-
ably detected by DRreBIN. This family is Gappusin (R) [148]. Although
it is in many cases possible to extract features which match the de-
scription of the Gappusin family—amongst others the hostname of
the external server—there are too few malicious features to identify
the samples as malware. Gappusin mainly acts as a downloader for
further malicious applications and thus does not exhibit common ma-
licious functionality, such as theft of sensitive data.

DREBIN-AVC FAMILY DETECTION As mentioned in Section 5.1,
the DREBINQRiG dataset contains many samples which have been con-
sidered as benign in previous experiments but are now flagged as

5.2 DETECTION PERFORMANCE

100 [Z i = R
nlls n I F] ‘JL_ % T
80 | | % |
&
<
60 || ||
g
8
-+
9]
D 40 || L
)
A
20 || L
[0 Detection rate (FP=o0.01)
= Average detection rate (FP=0.01)
0 S) g S 1
ABCDETFGHTI J]KLMNOPQRST
Malware families
Figure 21: Detection per family in DREBINORG.-
Id Family # Id Family # Id Family #
A Fakelnstaller 925 H Kmin 147 O MobileTx 69
B DroidKungFu 667 I FakeDoc 132 P FakeRun 61
C Plankton 625 J Geinimi 92 Q SendPay 59
D Opfake 613 K Adrd 91 R Gappusin 58
E GingerMaster 339 L DroidDream 81 S Imlog 43
F BaseBridge 330 M LinuxLotoor 70 T SMSreg 41
G N

GoldDream 69

Iconosys 152

Table 9: Largest malware families in DREBINQRG.

malicious by several anti-virus scanners. In the following, we repeat
the same experiment as conducted on DREBINQRiG using the relabeled
dataset. Afterward, we compare the result.

The family names and the number of samples for each family in
DREBINsyc can be found in Table 10. Figure 21 depicts the detection
performance of DREBIN for each family. Note that the malware fam-
ilies differ between DREBINayc and DREBINQRig, due to the altered
labeling procedure. The average detection performance for the fam-
ilies slightly increases to 94.98%. Furthermore, it is noteworthy that
none of these families exhibits a detection rate of less than 85%. We
conclude that the relabeling approach lead to more stable family la-
bels, allowing DREBIN to better distinguish between the two classes
in this dataset.

The largest family with a low detection performance of only 45.57%
is SMSAgent [15]. The family contains 19 samples and is ranked on
place 32. When examining the members of this family in more depth,
we notice that only 13 of the 19 available samples request a permis-
sion related to SMS functionality. Most of these samples contain ad-

81

Most malware
families are detected
reliably by DREBIN.

82

Some samples of the
SmsAgent family
hide their malicious

payload successfully.

[=

PERFORMANCE EVALUATION

100 <
&= Slmm . T4 T
& [e 0
30 | | % %]
o |
IS
= 60 || ||
o
2
-—
9]
2 40l]
©
A
20 ||]
[l 0 Detection rate (FP=0.01)
= Average detection rate (FP=0.01)
0 g) g) 5 g g
ABCDEFGHTIJKLMNOPOQRS ST
Malware families
Figure 22: Detection per family in DREBIN pyc.
Id Family # Id Family # Id Family #
A fakeinst 883 H iconosys 201 O fujacks 67
B droidkungfu 682 I kmin 149 P pjapps 65
C opfake 603] boxer 114 Q lotoor 62
D plankton 601 K geinimi 100 R imlog 49
E ginmaster 365 L fakeapp 94 S steek 46
F basebridge 334 M droiddream 82 T fakenotify 43
G fakeflash 240 N golddream 72

Table 10: Largest malware families in DREBIN ayc

vertising libraries and are possibly flagged by generic heuristic signa-
tures. However, among the remaining 13 applications are two particu-
larly interesting ones”. In both cases, DREBIN classifies them as benign,
since it can only extract a handful of mainly unsuspicious features. In
contrast, both samples are flagged by around 25 anti-virus scanners.
When analyzing these samples, we discover that both applications
are loading code at run-time from an APK file that is hidden inside
the assets folder. The hidden application, in turn, contains the mali-
cious functionality. This example demonstrates an inherent drawback
of DREBIN, since it solely relies on static analysis for its decision. Thus,
it is susceptible to this kind of obfuscation where code is loaded dy-
namically at run-time. As a remedy, it is possible to extend DREBIN
such that it looks for apk and dex files hidden inside an app and then
analyzes them separately in this case [184]. We provide a detailed
discussion of the limitations of DREBIN in Section 5.4.

0fcccc5d9f3f3e0cf9d559ea203318f06feb6037443e441db5c7d2688285b005
13c5a348d44allabal43e82lec5¢c0257fad89bb642d3c2ed4753cd811146¢ccb5

5.2 DETECTION PERFORMANCE

100 _ T z EE
80 | | L
&
<
= 60 || ||
g
8
-+
9]
D 40 |] L
)
A
20 || L
[0 Detection Rate (FP=0.01)
- Average detection rate (FP=0.01)
0 S) g S 1
ABCDEFGHI JRLEMNOP QRS T
Malware families
Figure 23: Detection per family in AMD.
Id Family # Id Family # Id Family #
A Airpush 7843 H BankBot 648 O Triada 210
B Dowgin 3385) Jisut 547 P Minimob 203
C Fakelnst 2172 J KungFu 546 0 Kyview 175
D Mecor 1820 K Lotoor 328 R SlemBunk 174
E Youmi 1300 L RuMMS 310 S SmsKey 165
E Fusob 1276 M Mseg 235 T SimpleLocker 165
G Kuguo 1199 N Bogx 215

Table 11: Largest malware families in AMD.

AMD FAMILY DETECTION Figure 23 shows the results for the An-
droid Malware Dataset, while Table 11 lists the respective families. As
can be seen in the plot, none of the 20 largest families has a detec-
tion rate below 92%. We deduce that the excellent detection perfor-
mance on this dataset results from the labeling procedure, which led
to a very pure malware dataset [202]. Surprisingly, there are only
four malware families in the complete dataset where DREBIN yields a
detection rate below 90%, i.e., Opfake (88.83%), FakeUpdates (73.81%),
Tesbo (69.44%), and Fobus (60.00%). The latter three consist of only 4
to 5 samples, thus making it difficult for DREBIN to generalize their
characteristics appropriately, as these have to be derived from only
two training samples on average.

In general, however, we cannot observe a dependency between the
detection rate and the size of the malware families. Instead, there
are many families in the AMD which also contain very few samples
but can be detected very well by our approach. We conclude that it
highly depends on the diversity of the members within a particular
malware family whether it is possible to derive meaningful patterns

83

Most of the AMD
families can be
detected extremely
reliably...

...even when only
few samples are
available for
training.

84

How much is the
family detection rate
affected if no or only

a few samples are

available during the
training phase?

PERFORMANCE EVALUATION

for its detection or not—mostly independent of the number of avail-
able samples of a family.

To gain a deeper understanding of this issue, we perform addi-
tional experiments in the next section. These show how DREBIN per-
forms in general when no or only a few samples of a particular mal-
ware family are available during training.

5.2.4 Detection of Unknown Families

The underlying learning algorithm of our approach is supervised, i.e.,
DREBIN uses labeled benign and malicious data to derive its detection
model. Thus, it is essential to assess how many samples of a family
need to be known to detect this family reliably. To study this issue,
we conduct two additional experiments where we limit the number
of samples for a particular family in the training set.

100 [

80 |-

Detection rate

A8 o Samples Available

810 Samples Available

S NN NSNS NNNNUNNNNNUNUNSNNNNNNUNNNNNNNNNNNANNNN NN

R AR R

S NS NSNS NNSNUS NSNS NSNS NSNS NSNS

SNSSNSSNSNNSSNSSNSS O

A B CDEV FGHTI] KT LMNOTPIOQRST

Malware families

Figure 24: Detection of unknown families for DREBINOR;G.

EXPERIMENTAL SETUP For each of the three datasets considered
in the previous section, we conduct two additional experiments to
examine how well DREBIN can generalize even if only a few samples
of a specific malware family are available. In the first experiment, we
provide no samples of the family, corresponding to a malware strain
that is utterly unknown to the classifier. In the second experiment,
we put 10 randomly selected samples of the family back into the
training set, thus simulating the starting spread of a new family. Each
experiment is repeated 10 times, and the results are finally averaged.

DREBIN-ORIG FAMILY DETECTION The results of the two experi-
ments on DREBINQRjg are presented in Figure 24. If no samples are
available during the training step, it becomes rather difficult for our
method to detect a family, since the SVM cannot discriminative pat-

5.2 DETECTION PERFORMANCE

terns in advance. However, only very few samples are necessary to
generalize the behavior of most malware families. With only 10 sam-
ples in the training set, the average detection performance increases
by 30 percent on average. Three families can even be detected per-
fectly in this setting. The reason for this is that members of certain
families are often just repackaged applications with slight modifica-
tions. Due to the generalization which is done by the SVM, it is there-
fore possible to detect variations of a family, even though only a very
small set of samples is known.

100

80

60

40

Detection rate

20

N N T T R Y

S NSNS NUNASSNUNNNNSANSSNNSNSSSNSNNSNNNNSNNNNNN

R

N N NN NN NN

SNNNNNNNNANY

A BCDETFGHTIJKLMNOTPOQRST
Malware families

Figure 25: Results for leave-one-out experiments on DREBIN zyc.

DREBIN-AVC FAMILY DETECTION Figure 25 depicts the results
on the DREBINyc dataset. Like for DREBINQRiG, the experiment first
shows a decrease in the detection rate if no samples are provided.
Similarly, the average performance increases again by 20% when only
ten samples of a malware family are available for training.

In addition, the results also exhibit interesting differences. For ex-
ample, DREBIN provides a detection performance of 0% on DREBIN gy
if no members of the family imlog (R) are available during train-
ing. In contrast, it shows acceptable results for the same family on
DREBINORG (S) in the same setting. When comparing the number of
samples of imlog available in both datasets, we notice that DREBIN sy
contains 6 additional samples of this family (see Table 9 and Table 10).
In this case, the relabeling procedure assigned additional samples to
this family. These samples initially enabled DRrReBIN to still extract
characteristic patterns from the training data and, in turn, achieve a
reasonable detection performance on the test set. Using the relabeled
data, however, these samples are not available during training any-
more, thus leading to a lack of detection for this particular family.

85

The detection rate
drops significantly,
if no samples are
provided during
training...

...but increases
again if only a few
samples are put back
into the training set.

86

Owverall, DREBIN
has problems
detecting completely
unknown families...

PERFORMANCE EVALUATION

100 >

Y/ 7
80 " 4 /| /. 7| A
[} . 7 7 Y 7 Y
-— “ ’ 7 7 7 7
= z 1Y 7 ‘A ;
= 60 7 "l 7 7. 7 4
c z Ny 7 2 B /
o) 4 B y ‘M 7
—-— l 7 7 7 7 7
U “ 7’ 7| ’ 7| 7’
g Z 7 7 ‘B ;
% 27 5 2 27 5
40 2 7z 7| 4 7| 4
) z 1Y ; ‘A 7
/ 7 ‘B 7
20 B . 7 7 7 7 H
o Samples Available |7 G ‘B 2
I . 7 7 7 ; 7
I 10 Samples Available |’ ’ ‘B %z N7
0 Z G ‘AL ‘AL

A B CDETZ FGHT]J] KU LMNOPQRST

Malware families

Figure 26: Results for leave-one-out experiments on AMD.

AMD FAMILY DETECTION Finally, we perform the same experi-
ments using the AMD dataset. The results obtained on this dataset are
particularly interesting, since DREBIN provides almost perfect results
on this dataset in the experimental setup presented in Section 5.2.3.

Figure 26 shows the results for the detection of unknown families.
Surprisingly, even if we consider a setting where no samples of a par-
ticular malware family are available, DREBIN shows a good detection
performance for many of these families. We suspect that these fami-
lies partially share similar malicious characteristics, like, for instance,
the sending of SMS to premium services. Hence, these characteristics
allow DrEBIN the detection of these families.

However, there also exist several families for which this observa-
tion does not apply. In particular, the malware family Mecor (D) is
an example for this. The family cannot be detected when no samples
are available but is detected almost perfectly as soon as only 10 sam-
ples are provided for training. When analyzing this case, we find that
the family sends sensitive data to an external command and control
server [203], whose URL is an essential feature for DREBIN to identify
this family. Consequently, DREBIN requires some samples of this fam-
ily to extract characteristics specific to this family and achieve reliable
detection of Mecor.

DISCUSSION In the conducted experiments, we have examined the
detection capabilities of DREBIN if no or only a few samples of a
family are available during training of the classification model. For
all three considered datasets, we experience a significant drop in de-
tection rate if no samples of a family are available throughout the
training step. However, as soon as only 10 samples are provided,
the average detection rate increases significantly by 14% (AMD) to
33% (DREBINQOR|G)- Table 12 summarizes the results.

5.2 DETECTION PERFORMANCE

Average detection rate (TPR o1)

Samples
DREBINORIG DREBIN pyC AMD
o 0.42 £ 0.31 0.63 = 0.33 0.77 £ 0.30
10 0.75 £ 0.42 0.82 £ 0.22 0.92 £ 0.15

Table 12: Average detection results for largest families.

Interestingly, we observe significantly different results for some of
the malware families depending on the considered dataset. By ana-
lyzing these cases, we notice that these differences mostly occur due
to different labeling procedures. In particular, even a small number of
updated labels can have a significant impact on the detection rate of
a specific malware family. This observation further indicates that of-
ten only a few samples can make the difference whether DREBIN can
detect a malware family or not. This is an important insight, since
malware evolves and anti-virus analysts find new malware variants
on a regular basis. As a result, DREBIN might not always be able to de-
tect a new malware strain immediately but requires some samples to
infer proper detection patterns. In the next section, we thus analyze
the actual impact of time on the detection performance of DREBIN in
more detail.

5.2.5 Detection of Malware over Time

Previously, we have evaluated the detection performance of DREBIN
without considering the time dependency within the data set. This ex-
perimental setting implicitly follows the assumption that the underly-
ing distribution is stationary, i.e., it does not change over time. In prac-
tice, however, malware analysts discover new malware families on a
regular basis, and therefore the distribution continuously changes —
a phenomenon referred to as concept drift in machine learning [112,
180]. As the results obtained in Section 5.2.4 indicate, DREBIN might
not always be able to reliably detect members of newly occurring mal-
ware families. To examine the impact of time on the detection results,
we therefore conduct additional experiments:

1. We examine the detection rates of DREBIN over time using ap-
plications from 2010 to 2015. In particular, we check for each
year the detection performance of a classification model that
has been trained on the available data from the previous years.

2. We compare the performance of the results to the performance
obtained when training and testing on samples of the same year.
This way, we retrieve a direct comparison between the results
obtained on a stationary dataset and a distribution that changes
over time.

87

...but only needs a
small number of
family members to
infer proper patterns
for detection.

How does the
evolution of malware
affect the detection
performance?

88

For the evaluation,
we use roughly
450,000 Android
applications...

...ranging from the
year 2010 to 2015.

PERFORMANCE EVALUATION

DATASET To evaluate the detection performance of our approach
over time, we combine the DREBINQoric malware dataset [8] and the
AMD dataset [202]. We use these two malware datasets, as both have
been widely studied by several researchers and contain malicious
samples ranging over multiple years. In addition, we use 431,551 be-
nign samples that we have collected between 2010 and 2015, including
the benign samples of the DREBIN oy dataset.

2010 2011 2012 2013 2014 2015

10¢

10°

10%

103

Number of samples

2
10 I 1 Malicious samples

TTTTTT

Benign samples

10!

T

Year

Figure 27: Time distribution of the full dataset.

For all samples, we try to obtain their creation date by extracting
the timestamp from the classes.dex file of each application using the
aapt tool. We remove samples from the dataset for which this ap-
proach yields an implausible result, i.e., if the timestamp does not lie
between 2010 and 2016. Moreover, we discard all applications from
2016, since we do not have enough benign data for this year. Our
final dataset consists of 27,872 and 431,551 malicious and legitimate
samples, respectively. Figure 27 shows the distribution of samples for
these years. Note that the numbers are plotted logarithmically, as they
differ significantly between the years.

EXPERIMENTAL SETUP Using the discussed data set, we evaluate
the detection performance of our approach throughout two different
settings. In the first setting, we randomly sample distinct training
and test sets from the dataset of a particular year and evaluate the
detection performance of the resulting classifier, i.e., we use a station-
ary distribution, which does not change over time. In contrast, in the
second setting, we evaluate a classification model on the data of a par-
ticular year where the classifier has been trained and calibrated using
all available data from the previous years, i.e., we use a presumably
non-stationary distribution that changes over time. For each of these
two settings, we conduct five independent runs and average the re-
sults. In the following, we refer to the first scenario as stationary and
to the second scenario as time-based.

5.2 DETECTION PERFORMANCE

1 4./¢ @ —o— —0]

B

le 0.8 |- 3

~

[

T E 1

P 0.6

51

~

o

2 04 :

-

R7)

o

~

g 02} 1

= Time-Based

—@— Stationary

0L I H
2011 2012 2013 2014 2015

Years

Figure 28: Detection results for DREBIN over time.

RESULTS Figure 28 shows the results for both considered scenarios.
In the stationary scenario, DREBIN achieves very good results with de-
tection rates between 95% to almost 100% at a false positive rate of
1%. For the years 2011 and 2012, we obtain slightly worse results than
for the subsequent years. This observation can be explained by the
circumstance that the data of these years contains the malicious sam-
ples of the DREBINQRjc dataset. As already discussed in Section 5.2,
these samples are more difficult to detect for DREBIN than those of
the AMD dataset, thus slightly affecting the detection performance.
Nonetheless, for the stationary scenario, the impact is negligible for
the overall detection performance.

The differences become apparent when considering the time-based
setting. While for all years the detection rate decreases, a significant
drop of almost 60% can be observed for the year 2011. Note, however,
that the underlying classifier has been trained solely on the data from
2010. This dataset contains only 413 malware samples, thus presum-
ably making it difficult for the SVM to generalize enough malicious
characteristics from the data. As more data becomes available in the
subsequent years, the detection capability of DREBIN improves, yield-
ing detection rates between 74% and 87%. While these results are still
significantly below the detection rates obtained in the stationary set-
ting, we assume that they can be further improved by continuously
retraining the classifier.

Overall, it highly relies upon the particular malware families that
occur over time whether DREBIN can detect them or not. In particular,
the detection rate might immensely vary, depending on the available
training data, i.e., if it allows DREBIN to learn the required patterns in
advance. As demonstrated in Section 5.2.4, in some cases even new
malware families can be detected if they share salient characteristics
with already known families. In case of malware families that yield

89

While DREBIN
achieves good
detection rates on
the stationary
distribution...

...a significant drop
occurs when the
time dependency is
considered.

The detection
performances
increases again as
more data becomes
available.

90

PERFORMANCE EVALUATION

Setting ‘ Year ‘ Precision Recall F1-Score TPR .01
2011 | 0.93 £0.01 0.95 £0.01 0.94 £ 0.00 | 0.95 +0.01
2012 | 0.98 £ 0.00 0.99 + 0.00 0.99 &£ 0.00 | 0.99 +0.00
Stationary | 2013 | 0.99 £ 0.00 0.99 + 0.00 0.99 + 0.00 | 0.99 +0.00
2014 | 0.99 £ 0.00 1.00 £ 0.00 0.99 £ 0.00 | 1.00 £0.00
2015 | 0.98 £ 0.01 0.99 = 0.00 0.98 £ 0.00 | 0.99 £0.00
2011 | 0.89 £ 0.00 0.35 = 0.00 0.50 %+ 0.00 | 0.38 +0.02
2012 | 0.99 £ 0.00 0.74 = 0.00 0.85 =+ 0.00 | 0.74 +0.00
Time-Based | 2013 | 0.98 +£ 0.00 0.86 + 0.00 0.92 + 0.00 | 0.86 +0.00
2014 | 0.99 £0.00 0.87 +0.00 0.93 =+ 0.00 | 0.87 +0.00
2015 | 0.92 £ 0.00 0.87 = 0.01 0.91 + 0.01 | 0.87 +0.01

Table 13: Detection performance over time.

completely novel characteristics, however, DREBIN will most likely fail
to detect them.

DISCUSSION Initially, Android malware detection methods have
been evaluated without considering the time dependency within the
data. However, in recent years, several researchers have started to
study the impact of concept drift on the classification results of An-
droid malware detection systems [7, 112]. In this section, we have
conducted additional experiments in order to examine the effect of
concept drift on the detection performance of DREBIN. Similar to the
results presented by other researchers, we also notice that the over-
all detection rate decreases. However, DREBIN is often still able to
achieve good results, depending on the fraction of newly occurring
malware families within the test data, i.e., the extent of the concept
drift. It is therefore difficult to provide concrete numbers how much
concept drift impacts the overall detection performance in general, as
this highly depends on the available data.

Overall, the essence of supervised learning algorithms is to ex-
tract and learn patterns from a given set of training data that allow
distinguishing between multiple classes. Consequently, it becomes
challenging—if not impossible—for these algorithms to identify com-
pletely unknown patterns not available during training. As a remedy,
sophisticated feature design and continuous retraining of the classi-
fier can help to alleviate the problem of concept drift, but can also not
solve it completely.

5.2.6 Detection of Suspicious Applications

In the previous sections, we have performed different experiments
on data that could be split into legitimate and malicious applications

5.2 DETECTION PERFORMANCE

with high confidence. When describing the datasets in Section 5.1,
however, we have already mentioned that a significant fraction of the
samples in the DREBINQR|g dataset is now flagged by at least one anti-
virus scanner—even though these samples have initially been consid-
ered legitimate. Throughout this section, we analyze these suspicious
samples further and discuss the gained insights.

We notice that only a small number of anti-virus scanners consider
these samples as malicious. That seems surprising, given the fact that
these applications are already known for several years by now. At first
glance, it might thus be reasonable to declare them as false positives
and ignore the malware flags of the small number of anti-virus scan-
ners. Nonetheless, labeling these applications as benign is problem-
atic, as it remains unclear whether these applications do exhibit any
malicious characteristics or not. As a remedy, users could therefore
decide on their own, whether or not to trust a particular application.
To support users in their decision, the classification score of DREBIN
might be helpful in case of doubt. In the following, we therefore ex-
amine the informative value of this decision score.

EVALUATION SETUP To examine the expressiveness of the score,
we first label all samples of the DREBINQR;; dataset as malicious that
have been flagged by at least one anti-virus scanner, i.e., we assume
the worst case that all flagged samples are indeed malicious. Next,
we split the dataset into training and test sets using the following
approach:

* Training dataset. For training, we use all malicious samples with
at least 10 anti-virus flags. Thus, the training set consists of
14,053 malware samples and 62,423 randomly selected benign
samples from the full dataset.

e Test dataset. For testing, we consider all malware samples with
less than 10 anti-virus flags combined with the remaining be-
nign applications. Hence, the test set contains 21,299 malicious
and 31,212 benign samples.

Using this setup, we apply the classifier on the test set and sort the
samples according to their assigned classification score. Finally, we
compare the scores with the number of anti-virus flags. We repeat
this procedure ten times and average the results.

RESULTs Figure 29 shows the results of this experiment. The sam-
ples are sorted using their normalized classification score that ranges
between o and 1, i.e., samples with a higher score are more likely to
be malicious according to DREBIN. The plot shows a strong correla-
tion between the number of anti-virus flags and the score assigned
by DrEBIN. In particular, we see exponential growth in the number of
anti-virus flags for samples with a score close to 1.

91

The classification
score correlates with
the number of
anti-virus flags

92

The unexpected peak
at a score of 0.8..

..most likely
originates from false
positives.

PERFORMANCE EVALUATION

81 T— Fitted curve

§D Anti-virus flags .
= .
0

5 6

.=

7

-

g

© 4

)

<o)

[

=

>

< 2

HH*

"-."——?.’.=—‘==" | *

o 0.25 0.5 0.75 1

Normalized SVM score

Figure 29: Evaluation of detection performance on suspicious samples, i.e.,
applications that are flagged by less than 10 but at least one anti-
virus scanner.

Note, however, that the plot also exhibits an unexpected peak for
a group of samples with a score of about 0.8. To examine this issue,
we randomly select 10 of these samples and perform a static and dy-
namic analysis of them. In our analysis, we find that all of these ap-
plications® are quiz games, sharing most of their code base. Besides,
they all contain the same advertising SDKs, namely Mobclix and Ponti-
flex. The dynamic analysis exposes the network communication with
both advertising networks. Apart from displaying advertisements to
the user, some device information is sent to the servers of these ad-
vertising companies.

Nonetheless, even though this information also includes the IMEI
of the device, it does not appear to be particularly malicious. We con-
clude that these applications are mainly flagged due to the presence
of the advertising SDKs. This is also reinforced by the fact, that all of
these samples are considered to belong to the Mobclix family by sev-
eral anti-virus products. Interestingly, different versions of these ad-
vertising libraries also occur in many benign samples. Consequently,
we also analyze three randomly selected benign samples. We find that
these samples exhibit a similar behavior than those samples flagged
as malicious.

In conclusion, we cannot tell with full certainty whether or not
these samples contain malicious functionality. Two reasons, however,
highly indicate that they cannot be regarded as actual malware. First
of all, the analyzed samples contain only a small amount of code
and we thus consider it unlikely that we missed the malicious func-
tionality. Instead, the matching anti-virus signatures are possibly not
specific enough and thus result in false positives [208]. Second, the

2 The full list of SHA256 hashes can be found in Section A.1

5.2 DETECTION PERFORMANCE

samples have only been flagged by less than 10 anti-virus scanners,
although they have already been available for a long time. For com-
parison, the malicious samples included in the original DREBINORiG
dataset are now flagged by 40 scanners on average.

In summary, this specific example shows that the line between a
malicious and legitimate application can be blurry. Hence, the out-
put score of DREBIN can in many of these cases help decide whether
an app exhibits suspicious functionalities. In case of doubt, the user
should not install it on the device. In some cases, however, the line
becomes too thin, making it challenging for DREBIN to distinguish
between both cases.

5.2.7 Discussion

In the experiments conducted throughout this section, we have fo-
cused on the evaluation of DREBIN’s detection capabilities. To this
end, we have examined the detection performance in six different
scenarios using various datasets. Overall, DREBIN shows good per-
formance results with detection rates of more than 90% at 1% false
positives in most cases, thus clearly outperforming several related
approaches and even some popular anti-virus scanners. Furthermore,
we have analyzed that its good detection capability is not only limited
to large malicious families within the available data but even holds
for families with only a few samples in many cases.

Nonetheless, we have also identified the possible limitations of our
approach throughout the experiments. As a first limitation, we notice
that it becomes difficult for DREBIN to detect some malware families
if no members of these families are available in the training data. This
insight is of particular interest, since new malware families arise over
time, thus changing the underlying distribution and possibly affect-
ing the detection performance of the classifier. The continuous change
of the underlying distribution is a common problem in machine learn-
ing referred to as concept drift.

Fortunately, we could also observe that DREBIN often requires only
very few samples in order to extract and generalize characteristic pat-
terns of a malware family. While this property does of course not
solve the problem that the underlying distributions vary over time, it
indicates that continuous retraining of the classifier can be beneficial
to limit their impact on the overall detection performance.

93

94

We measure the
run-time of our

prototype app on
five different

smartphones.

Even on older
smartphones...

...the classification
takes only tens of
seconds.

PERFORMANCE EVALUATION

5.3 RUN-TIME PERFORMANCE

Besides the detection performance of a malware detection system,
also its run-time performance has a direct impact on its applicability
in practice. This becomes even more critical if the system is supposed
to run on minimal hardware, such as mobile devices, as in the case of
DREBIN. In consequence, we also perform an analysis of DREBIN’s run-
time performance on different mobile devices in this section. While
the computing power of mobile devices is rapidly increasing, it is
still limited compared to regular desktop computers. Consequently,
a detection method that is supposed to run directly on these devices
has to carry out its task very efficiently.

102 T T
el @
-+ H ! b
' i E I n
! 1
1L
2 e T ety ot B
! N
£ - 4
g i "
B100 |
H
1
T
.
107! '

PC N4 S3 XMP N3 Ny
Devices

Figure 30: Run-time performance of DREBIN.

To analyze the run-time of DREBIN we implement a standalone
Android application that receives a learned detection model and is
able to perform the detection process directly on the smartphone. Us-
ing this application, we measure the run-time of DREBIN on different
devices using 100 randomly selected popular applications from the
Google Play Store. For this experiment, we choose devices which
cover various widespread hardware configurations, including four
smartphones (Nexus 4, Galaxy S3, Xperia Mini Pro, and Nexus 3),
a tablet (Nexus 7), and a regular desktop computer (PC).

The results are presented in Figure 30. On average, DREBIN is able
to analyze a given application in less than 15 seconds on the five
smartphones. Even on older models, such as the Xperia Mini Pro,
the method is able to analyze the application in roughly 20 seconds
on average. Overall, no analysis takes longer than 1 minute on all
devices. On the desktop computer (2.26 GHz Core 2 Duo with 4GB
RAM) DreBIN achieves a remarkable analysis performance of 750 ms

5.4 LIMITATIONS

102

10!

100

Run-time (sec)

107! .,

—— Estimate (S3)
- - Estimate (PC)
° Measurements

102 - :
102 107! 100 10!

Size of dexcode (MB)

Figure 31: Detailed run-time analysis of DREBIN.

per application, which enables scanning 100,000 applications in less
than a day.

A detailed run-time analysis for the desktop computer and the
Galaxy S3 smartphone is presented in Figure 31, where the run-time
per application is plotted against the size of the analyzed code. Sur-
prisingly, on both devices DREBIN attains a sublinear run-time, that
is, its performance increases with O(y/m) in the number of analyzed
bytes m. Apparently, the number of features does not increase lin-
early with the code and thus larger applications do not necessarily
contain more features to analyze.

From this evaluation, we conclude that DREBIN does not only reli-
ably detect malicious applications but is furthermore able to perform
this task in a time that clearly meets practical requirements.

5.4 LIMITATIONS

The previous evaluation demonstrates the efficacy of our method in
detecting recent malware on the Android platform. However, DREBIN
cannot generally prohibit infections with malicious applications, as
it builds on concepts of static analysis and lacks dynamic inspection.
In particular, transformation attacks that are non-detectable by static
analysis, for example, based on reflection and bytecode encryption
[see 164, 215, 222], can hinder an accurate detection. To alleviate the
absence of a dynamic analysis, DREBIN extracts API calls related to
obfuscation and loading of code, such as DexClassLoader.loadClass()
and Cipher.getInstance(). These features enable us to at least spot
the execution of hidden code—even if we cannot further analyze it.

95

Besides advanced
obfuscation
techniques...

96

...also targeted
attacks against the
classification model
can impact the
detection rate.

PERFORMANCE EVALUATION

In combinations with other features, DREBIN is still able to identify
malware despite the use of some obfuscation techniques.

To avoid crafting detection patterns manually, we make use of
machine learning techniques for generating detection models. While
learning techniques provide a powerful tool for automatically infer-
ring models, they require a representative basis of data for training.
As we have seen throughout this chapter, the quality of the detec-
tion model of DREBIN critically depends on the availability of rep-
resentative malicious and benign applications. However, gathering
recent malware samples requires some technical effort. Fortunately,
methods for offline analysis, such as DroidRanger [224], AppsPlay-
ground [163], and RiskRanker [97] might help here to automatically
acquire malware and provide the basis for updating and maintain-
ing a representative dataset for DREBIN over time. Using recent data
to continuously update the classification model allows limiting the
impact of concept drift, which can otherwise significantly lower the
detection performance of DREBIN, as demonstrated in Section 5.2.5.

Another limitation that follows from the use of machine learning is
the possibility of mimicry and poisoning attacks [e.g., 151, 157, 197].
While obfuscation strategies, such as repackaging, code reordering or
junk code insertion do not affect DREBIN, renaming of activities and
components between the learning and detection phase may impair
discriminative features [164, 222]. Similarly, an attacker may succeed
in lowering the detection score of DREBIN by incorporating benign
features or fake invariants into malicious applications [151, 157]. Al-
though such attacks against learning techniques cannot be ruled out
in general, the thorough sanitization of learning data [see 50] and
frequent retraining on representative datasets can limit their impact.
Furthermore, we present several improvements to the underlying op-
timization algorithm of DREBIN, which can help to increase its robust-
ness towards these attacks, in the next chapter.

5.5 RELATED WORK

In this chapter, we have performed an extensive evaluation of DREBIN
and also pointed to several pitfalls that should be considered when
designing malware detection experiments. Since the Android mal-
ware detection field is a relatively novel strain of research, best prac-
tices for designing experiments are continuously discussed and im-
proved in this area. In the following, we give a brief overview of
some work in this field.

First of all, the work of Rossow et al. [170] has significantly in-
spired the design of the experiments presented in this chapter. In
their paper, the researchers systematically analyze the experimental
design of several popular papers on malware detection and describe
prudent practices for the design of these. The guidelines should, in

56 CHAPTER SUMMARY

turn, allow other researchers to avoid different flaws that Rossow et
al. could identify throughout their study. While other research groups
already discussed some of these pitfalls before [121, 128, 182], Rossow
et al. have been the first to systematically analyze them and to pro-
vide guidelines how to design prudent experiments. We have taken
these guidelines into account when designing the experiments pre-
sented in this chapter. For example, we have examined the detection
performance of malware families separately in Section 5.2.3.

Furthermore, other researchers have more recently begun to study
the impact of time on the detection performance of Android malware
classifiers [e.g., 112, 130, 137]. One of the first works that demon-
strates the impact of time on the detection performance of Android
classifiers has been presented by Allix et al. [7]. In particular, the
authors demonstrate that the performance of classifiers often signif-
icantly decreases over time, as malware evolves continuously. As a
reaction to this finding, Mariconti et al. [137] propose the system Ma-
MaDroid, which keeps its detection capabilities for long periods of
time. To this end, the system utilizes sequences of abstracted API
calls, which are less likely to change over time. However, even their
approach cannot fully compensate the impact of concept drift. Thus,
continuous retraining of the classifier remains mandatory, which is
often computationally expensive.

Hence, in order to avoid unnecessary retraining of classifiers, sev-
eral researchers have proposed methods that allow detecting concept
drift within data [e.g. 59, 112, 113, 134, 180]. An early detection of
concept drift helps to decide when a classifier requires retraining. For
instance, Maggi et al. [134] present techniques to detect concept drift
in web applications, such that learning-based intrusion detection can
be retrained only if necessary. More recently, Jordaney et al. [112]
propose the Transcend framework to identify concept drift in classi-
fication tasks. The framework is applicable for different learning al-
gorithms and thus not limited to Android malware detection. Using
their approach, they were able to show that the performance decay of
different methods, including DREBIN, can be significantly reduced by
selecting the right time to retrain the classifier.

5.6 CHAPTER SUMMARY

Our evaluation has shown that our proposed machine-learning based
approach achieves remarkable detection results on the considered
datasets. In most experiments, DREBIN detects more than 9o% of the
malicious samples at a low false positive rate of only 1%, thus outper-
forming signature-based approaches in many cases. While anti-virus
scanners generally exhibit a low false positive rate, they have difficul-
ties to detect unknown malicious samples, even if those belong to an
already known strain of malware. In contrast, DREBIN detects these

97

98

PERFORMANCE EVALUATION

samples in most cases very reliable. Its detection capabilities only
meet their limitations if utterly novel malware families arise, whose
characteristics cannot be learned in advance. Frequent retraining of
the classifier should, however, alleviate the impact on the detection
rate in many cases.

In the second set of experiments, we have also examined the run-
time performance of DREBIN on different mobile devices. Overall, the
analysis of applications takes less than 15 seconds on average and
even on ancient devices never longer than 1 minute per application.
We consider these run-times to be sufficient for practical usage.

MODEL ANALYSIS AND EXPLAINABILITY

Throughout the previous chapters, we were able to show that our
proposed learning-based detection method allows deriving a reliable
classification model for Android malware detection. However, it re-
mains an open question which of the extracted features are particu-
larly useful and significantly impact the classifier’s decision. Analyz-
ing these features cannot only yield essential insights into common
malicious patterns, but also ensures that the classifier’s decisions are
not based upon unwanted artifacts in the underlying data. In other
words, a careful feature analysis helps us to assure that the underly-
ing model does not suffer from overfitting towards noise.

Conversely to DREBIN, many learning-based approaches are de-
ployed as black-box systems [182]. While this lack of transparency
might impede the effort of adversaries to run attacks on the model,
it also hinders users and analysts to understand the classifier’s de-
cisions. Thus, an analyst might be unable to identify possible flaws
in the training and prediction process. This lack of interpretability
can, in turn, have serious implications for the overall classifier perfor-
mance and understanding of the underlying distributions.

Hence, a detection system should maintain good interpretability,
stability and be robust against possible attacks at the same time. In
this chapter, we examine these properties for DREBIN in more detail.
To this end, we perform an extensive analysis of the classification
model, which can be divided into the following steps:

1. Explainability. In the first step, we examine the patterns learned
by the classifier. In detail, we consider several of the malware
families available in two popular datasets, namely DREBIN and
AMD, and analyze the most relevant features determined by
the algorithm, i.e., features having the highest impact on the
classifier’s decision.

2. Model analysis. In the second step, we examine different prop-
erties of the model that provide a better understanding of its
inner workings, ultimately allowing us to improve its robust-
ness against targeted attacks further. More precisely, we analyze
the impact of different regularizers on the overall stability and
selected support vectors of the resulting model.

3. Attacks on the model. Finally, the robustness of the classification
model towards targeted attacks are considered. Based on the
obtained insights, we improve the detection system to make it
less prone towards such attacks.

99

100

MODEL ANALYSIS AND EXPLAINABILITY

6.1 EXPLAINABILITY

Learning-based detection systems are often deployed as black-box
systems, whose decisions cannot be interpreted by users or even ex-
perts. This lack of interpretability can in some cases even have serious
consequences, thus making such systems not suitable in various ap-
plication fields. In case of a malware detection system, false alarms
might lead to a bad reputation of an affected company whose appli-
cations have mistakenly been flagged as malicious. Thus, it is crucial
for such a system that its decisions are interpretable.

Fortunately, the underlying machine learning algorithm of DREBIN,
a linear SVM, allows an interpretation of the obtained results. This
is due to the fact that each component w; of the model vector w
can be associated with a specific feature. In the following, we use
this property of the classifier to derive the patterns, which led to its
decisions in the experiments discussed in the previous chapter. To
this end, we examine the following two cases:

1. Malware types. Malicious applications can be grouped into dif-
ferent types, like ransomware or SMS malware. Fortunately, the
authors of the AMD dataset provide this information for their
gathered samples. We check whether the features extracted by
the algorithm match these descriptions.

2. Malware families. We analyze a set of famous malware families
present in the DREBIN dataset. For these families, we determine
the most relevant features selected by the learning algorithm
and discuss whether these match common descriptions of anti-
virus vendors.

Before we provide an in-depth discussion of the most relevant fea-
tures, let us first describe how these features are determined through-
out the evaluation.

EXPERIMENTAL SETUP In both scenarios, the procedure of how
we obtain the most relevant features is identical for malware fami-
lies and malware types, respectively. In particular, we first select all
samples of the test set belonging to a certain malware family or type.
For each feature vector x, we then sort its available features s € x
according to their weights ws assigned by the SVM. Afterward, we
pick the ten features with the highest malicious scores. We repeat this
procedure for each sample of the considered malware family or type.
Finally, the results are averaged and the ten most highly ranked fea-
tures are picked for discussion. These features are presented to the
user with high probability, when scanning an app of the considered
malware family.

6.1 EXPLAINABILITY

6.1.1 Feature Analysis of Malware Types

The AMD dataset provides information about salient characteristics
of the malware families. In the following, we consider different types
of malware families and compare the top-ranked features with the
functionality provided by the authors of AMD. For these experiments,
we examine the models trained on the dataset described in Chap-
ter 5, containing the 24,553 malicious samples of the AMD dataset
and 93,635 benign samples.

RANSOMWARE The AMD dataset contains six ransomware fami-
lies, where the five largest are listed in Table 14. Instead of encrypting
files on the device, these families mainly use screen overlays to block
the mobile device and hinder users from accessing their data. A fea-
ture related to this behavior is the permission SYSTEM_ALERT_WIN-
DOW, which has to be granted to the malware in advance, allowing
it to display such overlay screens [see 24, 86, 131].

Feature Rank

Malware family # Samples

1 <5 <10
Fusob 1,277 v v v
Jisut 560 v v
SimpleLocker 173
Koler 69 v v v
Roop 48 v v v

Table 14: The permission SYSTEM_ALERT_WINDOW often indicates ran-
somware functionality. The table shows the rank of this feature
for the five largest ransomware families in the dataset.

In five of these six families, this permission is ranked among the top
5 features and in three cases even on the very top. The only exception
is the family SimpleLocker, since this malware uses encryption instead
of screen overlays to block users from accessing their data. However,
no features related to this functionality can be found within the top 10
features. In this case, more advanced features are needed that allow
deriving additional insights into the malicious behavior.

SMs-TROJANS A large fraction of malicious applications uses SMS
functionality to steal money or sensitive information from unwitting
users. Within the AMD dataset, a total of 15 families are known to
use SMS functionality for malicious purposes, such as sending SMS
messages to premium services.

In 11 of these families, the SEND_SMS permission is ranked on
the very top, including the five largest families presented in Table 15.

101

Mobile ransomware
often uses display
overlays instead of
encrypting data on
the device.

SMS-Trojans abuse
the messaging
functionality for
different purposes,...

102

...such as sending
SMS to expensive
premium services.

Malware authors try
to get root privileges
on the device...

...in order to perform
arbitrary actions.

MODEL ANALYSIS AND EXPLAINABILITY

Feature Rank

Malware family # Samples

1 <5 <10
Fakelnst 2,172 Ve v ve
RuMMS 402 v v v
SmsKey 165 v v v
Gumen 145 v v v
Leech 128 v v v

Table 15: The SEND_SMS permission is often requested by SMS-Trojans,
thus making it a valuable feature to detect this kind of malware.

Moreover, the feature is ranked number 2 for the remaining fami-
lies. Overall, this example shows that malware still often abuses SMS
functionality, thus making the request of the respective permission a
valuable feature for its detection.

ROOT MALWARE The most dangerous type of malware tries to ob-
tain root privileges, therefore enabling it, in the worst case, to per-
form arbitrary actions on the device. In total, there exist 23 families
in the AMD dataset that yield this kind of behavior. However, while
15 of those families explicitly request the user for granting root privi-
leges, the remaining eight families even try to obtain these privileges
through root exploits.

Feature Rank

Malware family # Samples

1 <5 <10
Fusob 1,277 v v
BankBot 648 v v
DroidKungFu 546 v v
RuMMS 402 v v
Lotoor 329 v v v

Table 16: Features like the intent filter DEVICE_ADMIN_ENABLED or the
invocation of /system/bin/su indicate that an application tries to
gain root access on the device.

From a total of 15 families requesting admin privileges, the intent
filter DEVICE_ADMIN_ENABLED is listed among the top 5 features
in 12 of them. In case of the family SimpleLocker, it is even ranked on
the very top. Instead of requesting admin privileges, multiple fam-
ilies also try to exploit known vulnerabilities of the Android OS in
order to escalate their privileges. We consider the suspicious calls /sys-
tem/bin/su and Runtime.exec() as indicative for this behavior. In seven

6.1 EXPLAINABILITY

of these eight families, at least one of these features is listed among
the top 10 features. In the case of the family Lotoor, the su command
is even ranked on the very top.

6.1.2 Feature Analysis of Malware Families

In addition to the analysis of different malware types, we examine
the most relevant features for several popular malware families in
the next step. To this end, we consider the 5,557 malicious samples
from the DREBINQRric dataset as well as the 234 samples from the
S1LVERPUSH dataset. Overall, we discuss the results of four malware
families which exhibit different malicious characteristics.

The descriptions are mainly based upon malware reports from
other researchers or anti-virus vendors. In some cases, however, we
conduct an additional static analysis to retrace the background of
some of the ranked features further. For these cases, we provide the
SHA256 hashes of the analyzed samples as foot notes.

DROIDKUNGFU This family is a strain of malware root access on
the device. The malware has been first reported in 2011 [111] and is
particularly interesting, since it has evolved over time [109, 110], i.e.,
the authors added several obfuscation techniques, such as encryption
of malicious payload. Despite these efforts to disguise the malicious
characteristics, DREBIN is still able to detect samples of this family
reliably, as has been demonstrated in Chapter 5.

Top 10 features

Feature s Feature set Weight [wy]
SIG_STR S4 Filtered intents 0.60
getNetworkInfo() S5 Restricted API calls 0.37
system/bin/su S7 Suspicious API calls 0.35
getDeviceld() S5 Restricted API calls 0.32
getSubscriberId() S5 Restricted API calls 0.26
Runtime.exec() S7 Suspicious API calls 0.25
BATTERY_CHANGED_ACTION S4 Filtered intents 0.25
ACCESS_FINE_LOCATION S¢ Used permissions 0.20
getLinelNumber() S5 Restricted API calls 0.17
getSubscriberId() S7 Suspicious API calls 0.12

Table 17: Top 10 features of the DroidKungFu family.

The ten most relevant features are listed in Table 17. The malware
tries to exploit several vulnerabilities in earlier Android versions to
gain root access and steal sensitive data from the device. Its intention
to gain root access is reflected by the feature system/bin/su and Run-

103

DroidKungFu tries
to gain root access..

104

...and steal sensitive
data from the device.

Fakelnstaller sends
SMS to expensive

premium services...

...and hides its
payload inside of
legitimate apps.

MODEL ANALYSIS AND EXPLAINABILITY

time.exec(). Features like getLine1Number, getSubscriberld, and getDevi-
celd indicate that the malware tries to access sensitive data, i.e., the
phone number, the IMEI, and the IMSI of a device. The two intents
BATTERY_CHANGED_ACTION and SIG_STR are filtered by a broad-
cast receiver component, which is part of many DroidKungFu sam-
ples. Both intents are used to trigger malicious functionality when the
application is running in the background.

Besides, newer variants of the malware® decrypt and install another
APK file hidden in the host malware. Looking for the call getNetwork-
Info leads to the class containing the decryption routine. The API
function itself is invoked within a helper function to check whether
an infected device has access to the internet.

FAKEINSTALLER Another malware family whose members steal
money from users by sending expensive premium SMS. The family
has been widely distributed back in 2012 [172]. Its name is derived
from the fact, that the members of this family hide their malicious
code inside repackaged versions of legitimate applications, thus trick-
ing users into installing them.

Top 10 features

Feature s Feature set Weight |wy]
SEND_SMS S, Requested permissions 0.80
sendTextMessage() S5 Restricted API calls 0.25
READ_PHONE_STATE S» Requested permissions 0.14
BOOT_COMPLETED S, Filtered intents 0.12
WAKE_LOCK S¢ Used permissions 0.12
READ_SMS S2 Requested permissions 0.11
PHONE_STATE S4 Filtered intents 0.06
getLinelNumber() S5 Restricted API calls 0.06
SEND_SMS S¢ Used permissions 0.05
getDeviceId() S5 Restricted API calls 0.04

Table 18: Top 10 features of the FakelInstaller family.

During the installation process, the malware sends SMS messages
to premium services owned by the malware authors. Even on the
first sight, four of the extracted features indicate that the malware
uses SMS functionality. Like the member of the DroidKungFu family,
a large fraction of these samples also collects sensitive information,
such as the telephone number.

Furthermore, some variants present a notification to the user that
a critical update is available each time the device finished its boot-

25be589140173949124108759ab5bb57b126396f1401e3bfbfdc5e5c056e0d03
fdccbe2c567elf7fd9eaca2a92d5230956aa8b5a2d9b7918656a6a7a913aaaa9d
af33315dfbf3ed5a0d28e8ed03a79d20¢c3b77b16129cca9439bb4cbddcal76e2

6.1 EXPLAINABILITY

ing process [140]. To this end, the malware registers a broadcast re-
ceiver that waits for the intent message BOOT_COMPLETED. More-
over, the permission WAKE_LOCK is listed, since several variants use
the deprecated Android Cloud to Device Messaging (C2DM) service,
allowing the malware authors to remotely push notifications onto the
mobile device [84].

GOLDDREAM The members of this family are trojans, which mon-
itor an infected device, collect sensitive data, and record information
from received SMS messages and incoming phone calls [108, 187].
This data is later sent to an external server owned by the malware
authors.

Top 10 features

Feature s Feature set Weight [wy]
lebar.gicp.net Sg Network addresses 0.37
PHONE_STATE S4 Filtered intents 0.36
SMS_RECEIVED S4 Filtered intents 0.35
getDeviceld() S5 Restricted API calls 0.30
getSubscriberId() S5 Restricted API calls 0.30
INSTALL_PACKAGES Sz Requested permissions 0.30
sendTextMessage () S5 Restricted API calls 0.24
SEND_SMS S Requested permissions 0.23
getSubscriberId() S7 Suspicious API calls 0.16
ACCESS_FINE_LOCATION S¢ Used permissions 0.14

Table 19: Top 10 features of the GoldDream family.

The intent filter SMS_RECEIVED directly hints us to the reading of
SMS messages. Moreover, the intent filter PHONE_STATE indicates
that the malware is interested in the information that incoming calls
are received. Most of the listed features are related to the collection
of sensitive data, such as the IMEI or IMSI. After the malware has
collected sufficient data, it sends the data to an external server and
waits for additional commands. The hostname of this command and
control server is ranked on top of the feature list.

SILVERPUSH As has already been discussed in Chapter 3, samples
belonging to this family listen in the background for ultrasonic bea-
cons and send sensitive information to the company’s server. The
most expressive features of this family determined by DreBIN are
listed in Table 20.

Many of the relevant features derived by DREBIN are connected
to known characteristics of Silverpush. In particular, the API call Au-
dioRecord.init() as well as the used permission RECORD_AUDIO di-

105

GoldDream collects
sensitive data from
the device...

..and waits for
further commands
from the malware
authors.

Also in the case of
Silverpush...

106 MODEL ANALYSIS AND EXPLAINABILITY

Top 10 features

Feature s Feature set Weight [wy]
getSimCountryIso() S7 Suspicious API calls 0.10
getLinelNumber() S5 Restricted API calls 0.09
Base64 () S7 Suspicious API calls 0.09
AudioRecord.init() S5 Restricted API calls 0.06
getConnectionInfo() S5 Restricted API calls 0.05
getAccountsByType() S5 Restricted API calls 0.04
RECORD_AUDIO S¢ Used permissions 0.04
app.silverpush.co Sg Network addresses 0.04
app.silverpush.co/V2/exp Sg Network addresses 0.04
GET_ACCOUNTS S¢ Used permissions 0.03

Table 20: Top 10 features of Silverpush family.

..the features point rectly link to the recording functionality of these applications. Fur-
to characteristic thermore, the URL of the company’s server is listed in the top fea-
functionalities. - ;ves. The remaining features are mainly API calls used by the sam-

ples to access sensitive data on the device.

6.1.3 Discussion

Overall, the analysis of the most relevant features shows that the SVM
indeed selects meaningful features automatically, which can be linked
to essential characteristics of many malware types and families. As an
example, the SVM assigns high weights to features that are connected
to the rooting of a device or the sending of premium SMS.

However, although these features can even help regular users to
better understand analyzed applications in some cases, they still often
require expert knowledge for full comprehension. Thus, more abstrac-
tion is still needed to present meaningful explanations to users. A
simple way of achieving this, pose predefined description templates
as discussed in Chapter 4 to which relevant features can be mapped.
A drawback of this approach is the manual effort needed to contin-
uously keep these descriptions up-to-date. In consequence, further
research is required to derive meaningful descriptions from the ex-
tracted features automatically.

6.2 MODEL ANALYSIS

6.2 MODEL ANALYSIS

We have shown that DREBIN can extract meaningful patterns from ma-
licious applications automatically, thus allowing users and analysts
to understand the classifier’s decisions. In this section, we illuminate
various aspects of the underlying model related to its generalization
capabilities and overall size, as these properties can have a signifi-
cant impact on its applicability in practice. In detail, we examine the
following aspects:

1. We analyze the support vectors upon which the classification
model is built. These provide information on the overall gener-
alization performance of the resulting model and its expected
growth over time.

2. Moreover, we examine the impact of different regularizers, as
these can also affect the overall size, generalization performance,
and stability of the resulting model.

6.2.1 Support Vector Analysis

We start our examination of the underlying model by considering the
data points of the training set which define the hyperplane and give
the SVM its name—the support vectors. In particular, we analyze the
number of these vectors in more depth, since it does not only allow
us to conclude about the overall size of the resulting model, but can
also give us an estimate on the boundary of its generalization error
at the same time.

According to the SVM learning theory, the relation between the
expected value of the generalization error and the number of support
vectors is given by [37, 67]

En(Ng]

Elerror] < “n , (20)

where N denotes the number of support vectors selected out of a
training set of n samples. The SVM only uses these N vectors for the
description of the hyperplane. Note that it is possible to remove any
of the non-support vectors from the training set, without changing the
resulting classification model. In consequence, the ratio between the
average number of support vectors N and the number of available
training samples n allows estimating the generalization capabilities
of the SVM for a specific problem domain, i.e., the sensitivity of the
classifier towards stochastic noise.

DATASET To examine the number of support vectors, we take a
closer look at the classification models obtained in the time-based sce-
nario discussed in Section 5.2.5.

107

The number of
support vectors of

an SVM...

...allows drawing
conclusions about
its generalization
performance.

108

The SVM selects
roughly 10% of the
training samples as

support vectors.

The choise of the
reqularizer...

MODEL ANALYSIS AND EXPLAINABILITY

RESULTS Figure 32 shows the results of these experiments. Note
that, although the training size grows significantly over time, the
number of support vectors increases much slower.

10°
\ \ \
Support Vectors
251 —e— Training Set 1
0
=
g.‘ 2 1
o}
wn
«— 15]
o
=
]
£ 1
z
0.5 |
0 : : ‘ H
2011 2012 2013 2014 2015

Years

Figure 32: Ratio of samples in training data and selected support vectors.

On average, the SVM selects about 10% of the available training
data as support vectors. From this result, we conclude that the SVM
indeed generalizes particular characteristics from the training data,
instead of simply memorizing the data points of the training set.
Thus, it only needs a fraction of the available samples to distinguish
between both classes. Moreover, the resulting classifier shows a good
detection performance, as we have already examined in Chapter 5.

6.2.2 Regularization

Previously, we have considered the standard SVM formulation with
L2-regularization. Although using this formulation leads to a model
with good detection performance, the resulting classification model
w is derived through a linear combination of roughly 10% of the
training dataset. As a result, its storage requirements tend to grow
with the number of available training samples.

As a remedy, we examine an alternative formulation of the SVM,
which uses an L1-regularizer instead. This formulation usually leads
to sparser models and should thus require less storage. In the follow-
ing, we evaluate how much the number of features can be reduced
when using this formulation. Furthermore, we discuss possible draw-
backs that should be considered when preferring one formulation
over the other.

L1-REGULARIZATION Before we discuss our evaluation, let us first
recapture the differences between using a L1-regularization and a 12-

6.2 MODEL ANALYSIS

regularization. Formally, the optimization problem is slightly changed
when using an L1-regularizer [74]:

rrl‘i)n [wll; +C>_{_; max(0,1 —yinxi))z. (21)

This formula looks very similar to the one presented in Chapter 2.
Only the penalty term on w has been replaced by a 1-norm |.||;. To
give an intuition why this often leads to a sparser solution for w, con-
sider Figure 33, which schematically depicts the difference between
an L1- and L2-regularization.

(@) (b)

Figure 33: Schematic depiction of difference between (a) L1-Regularization
and (b) L2-Regularization.

In both cases, an optimization problem is solved that aims to find
proper model parameters w*, such that an optimal balance between
the costs caused by misclassification of training data and the regu-
larization penalty is achieved. In both figures, the ellipses depict the
contour of the quadratic loss function, while the blue shape refers
to the regularization term. Due to the shape of the Ll-regularizer,
the chance that the best trade-off can be found on one of the axis
is significantly higher compared to the L2-regularization term. In our
example, the optimal point can be found on the w; axis, thus pushing
the value for wy towards zero. The same principle holds if w contains
more dimensions, such as in the case of DREBIN.

6.2.2.1 Model sparsity

To evaluate the impact of regularization on the sparsity of the result-
ing model w, we use the same evaluation setup as discussed in the
previous section. For brevity, we refer to the SVM with L1-regularizer
as L1-SVM and to the [2-regularized version as L2-SVM.

Figure 34 shows the results of this experiment. In detail, the plots
depict the total number of features, and how many of them are se-
lected by the L1- and L[2-regularized SVM, respectively. The total
number of available features increases between 2011 and 2015 from

109

- Minimizes
empirical loss

_ _ Optimal

trade-off

Minimizes
- regularization

...can significantly
affect the model
sparsity.

110

The L1-SVM

reduces the number
of features to 0.3%...

..without having too
much impact on the
detection rate.

MODEL ANALYSIS AND EXPLAINABILITY

106 =
(7)) .
) B
=
=}
T 105
o 10°E &
o = .
- I .
= L |
—
£ 10t '
g g i
=} s]
Z [—e— Total features |
103 |- L2-SVM =
H/ —m— L1-SVM]
i i I il
2011 2012 2013 2014 2015

Years

Figure 34: Number of selected features for L1- and L2-regularized SVM.

221,623 to 3,205,207 features. The L2-SVM already reduces the num-
ber of features significantly, selecting roughly 6% of the available
features. Thus, only 13,015 and 205,038 features remain in 2011 and
2015, respectively. However, the L1-SVM even reduces this number
further, yielding an average number of only 9,147 features in 2015.
This means, in consequence, that the L1-SVM only selects about 0.3%
of all available features.

6.2.2.2 Detection rate

The feature reduction provided by the L1-regularized SVM raises rea-
sonable doubts whether the resulting model still yields an acceptable
detection performance compared to the L2-SVM. Therefore, we also
examine the respective detection rates and compare them to the re-
sults obtained with the [2-regularized classifier.

Table 21 lists the results for this experiment. Surprisingly, the detec-
tion performance does not significantly decrease when using the L1-
SVM. Instead, the classifier even shows a better performance for the
year 2011. Only the variance of the detection performance is in gen-
eral larger compared to the [2-SVM—especially for 2011 and 2012.

A possible explanation for this observation might be that the L2-
regularizer tends to distribute the weight more evenly among fea-
tures that often occur in combination. In contrast, the L1-regularizer
instead tends to pick only one of them, thus reducing the overall num-
ber of features. As a result, the classification score of an application
can differ significantly, depending on the presence or absence of an
important feature.

6.2 MODEL ANALYSIS

Regularizer ‘ Year ‘ Precision Recall F1-Score TPRg o1
2011 | 0.85 £ 0.03 0.46 +0.05 0.59 £ 0.04 | 0.46 £0.05
2012 | 0.99 = 0.01 0.75 £ 0.08 0.85 £ 0.05 | 0.75 +0.08
L1 2013 | 0.99 = 0.00 0.82 +0.01 0.90 £ 0.00 | 0.82 F+0.01
2014 | 0.99 £ 0.00 0.82+0.01 0.90 £ 0.01 | 0.83 +0.01
2015 | 0.96 £ 0.00 0.87 = 0.01 0.91 £ 0.01 | 0.88 £0.02
2011 | 0.89 = 0.00 0.35 £0.00 0.50 £ 0.00 | 0.38 +0.02
2012 | 0.99 = 0.00 0.74 £ 0.00 0.85 £ 0.00 | 0.74 +0.00
L2 2013 | 0.98 £ 0.00 0.86 &+ 0.00 0.92 £ 0.00 | 0.86 £0.00
2014 | 0.99 £ 0.00 0.87 = 0.00 0.93 £ 0.00 | 0.87 £0.00
2015 | 0.92 = 0.00 0.87 +0.01 0.91 £ 0.01 | 0.87 +0.01

Table 21: Detection rates for different regularizers.

6.2.3 Discussion

Let us summarize the results of this section. At the beginning of the
section, we considered the number of support vectors, since it allows
estimating the generalization performance of the SVM, i.e., whether
the algorithm indeed learns the overall concept of the underlying
distribution instead of just memorizing the samples in the training
set. In case of Android malware detection, the obtained results show
a significant reduction in the number of samples necessary to describe
the underlying model. However, the number of support vectors tends
to grow together with the overall size of the training set.

Hence, we conclude that the number of support vectors also has
an important practical implication in our application field: A smaller
number of support vectors leads to sparser classifiers which, in turn,
require less disk space on the device. As we figured out during fur-
ther experiments, the choice of a regularization term significantly af-
fects the size of the resulting classification model.

In particular, when using an [2-regularizer, the SVM selects on
average about 6% of the available features in the training dataset,
while using an L1-regularizer even further reduces this number to
only 0.3%. Thus, the model derived with the L1-SVM requires much
less disk space compared to the [2-SVM. At the same time, compa-
rable detection rates can be achieved, making the L1-model a good
alternative when detecting malware directly on the device.

111

112

With increasing
application of
learning-based
systems...

...also grows the
possibility of attacks
against them.

MODEL ANALYSIS AND EXPLAINABILITY

63 ATTACKS AGAINST MACHINE LEARNING

By now, we have demonstrated in several experiments that the linear
SVM algorithm is able to generalize common malicious patterns, thus
enabling it to identify variants of known malware families reliably.
The underlying algorithm, however, has not initially been designed
with security in mind. In particular, we assumed that the malware au-
thors do not specifically craft their malicious samples such that they
can circumvent a machine learning based detection system. With the
growing popularity and deployment of machine learning techniques
in security applications, attackers will likely try to attack these sys-
tems. In this section, we discuss possible attacks against DREBIN and
present effective countermeasures.

Attacks against machine learning are not a novel research field, but
have already been studied by many researchers within the last two
decades [104, 132, 154]. Moreover, the interest in this field has grown
significantly in the past few years, especially since machine learning
algorithms have become ubiquitous in a wide range of different ap-
plication fields, including autonomous driving [127, 226], recommen-
dation systems [49, 95], or malware detection [114, 129].

6.3.1 Attack Scenarios

While many different attacks on machine learning based systems ex-
ist, a large fraction of them can be assigned to two attack classes.
These classes mainly differ regarding the point in time at which at-
tackers may try to influence the detection system:

* Poisoning Attacks. In this type of attack [25, 151, 197], adver-
saries try to attack the learning algorithm throughout the train-
ing phase. To this end, they manipulate the training data in or-
der to impair the performance of the resulting model. Although
this kind of attack can indeed significantly affect the accuracy
of machine learning based systems, it also requires a powerful
adversary who controls the underlying distribution from which
the training data is sampled from.

* Evasion Attacks. In contrast to poisoning attacks, evasion attacks
attempt to circumvent machine learning based systems at test
time [83, 157]. The attackers manipulate malicious samples such
that these are misclassified by the system as legitimate applica-
tions. In many cases, it is assumed that the attacker does neither
have access to the (complete) training data nor to the classifica-
tion model.

Overall, we consider it unlikely, though not impossible, to face an
attacker that has the capabilities assumed in the poisoning attack sce-

63 ATTACKS AGAINST MACHINE LEARNING

nario. Thus, we leave the development of proper defenses against poi-
soning attacks to future research and focus on evasion attacks instead,
as the required prerequisites are more likely to occur in practice. In
order to examine this kind of attack in more detail, we first define
a theoretical framework, which allows us to analyze these attacks in
more detail. Using this framework, we then evaluate the liability of
DRreBIN to these attacks and discuss possible defenses.

6.3.2 Evasion Attacks

In the following, we perform a stepwise derivation of a framework
that enables us to examine the robustness of the classification model.
For the sake of simplicity, we make various assumptions that are to
the advantage of the attacker, though unlikely to hold in practice. Ul-
timately, this attack model should allow us to get an upper bound for
the attacker’s capabilities and develop effective defenses. In particu-
lar, we assume the following attack scenario:

1. We consider an attacker with perfect knowledge, i.e., an attacker
who knows the full classification model w. This assumption is
rather unlikely to hold in practice, since the attacker would need
to have background knowledge of all feature used throughout
the training phase of the model. However, if it is possible to
find appropriate defense strategies against this kind of attacker,
these defenses should also be effective against adversaries with
less background knowledge.

2. We assume that the attacker can manipulate all features with the
same effort. In practice, however, this assumption might often
not be correct, as we will discuss in more detail later in this
section. Consider, for instance, the permissions requested by an
app. In most cases, these cannot be removed by an adversary
without restricting the app’s functionality at run-time.

Before presenting the theoretical framework to evaluate evasion at-
tacks against DREBIN, we first discuss the possibilities and challenges
an attacker faces when trying to manipulate a malicious application
such that it affects the score of the decision function.

FEATURE MANIPULATION Since DREBIN operates on binary vec-
tors, the adversary can either add or remove features in order to cir-
cumvent the detection system. In the following, we discuss the chal-
lenges of both possibilities.

Adding features is in general feasible, in particular, when inject-
ing manifest features. For instance, requesting additional permissions
does not impact any existing application functionality. For the dex
code, the attacker can safely introduce information that is not actively

113

Crafting proper
defenses against
strong attackers..

..makes the
algorithm also
robust against
realistic attackers

Adding features is
often easier for an
adversary..

114

..than removing
features

MODEL ANALYSIS AND EXPLAINABILITY

executed, by adding code after return instructions (dead code) or with
methods that are never invoked. Listing 3 shows an example of a
method that introduces a URL feature, but is actually never called by
the application.

.method public addUrlFeature()V
.locals 2
const-string vl1l, "http://www.example.com"
invoke-direct {v0O, vl1},
— Ljava/net/URL; -><init>(Ljava/lang/String;)V
return-void
.end method

Listing 3: Smali code for adding a URL feature.

However, this only applies when such information is not directly
executed by the application, and could in principle be stopped at the
parsing level by analyzing only the methods belonging to the appli-
cation call graph. Given that the device has enough computational
power to conduct such an analysis, attackers would be enforced to
change the executed code, which adds further constraints. For exam-
ple, when adding an API call to a dex code method that is executed
by the application, attackers need to pay attention that they do not
introduce undesired artifacts that influence the semantics of the orig-
inal program. Accordingly, injecting a large number of features may
not always be feasible.

Compared to the addition of features, their removal is even more
complicated. For instance, removing permissions from the manifest is
often not possible, as this can limit the applications functionality. The
same holds for intent filters. Some application component names can
be changed but the attacker must ensure that the component names
in the dex code are changed accordingly.

With respect to the dex code, multiple ways can be exploited to
remove its features. For instance, it is possible to hide network ad-
dresses by storing them as encrypted strings and decrypting them
at run-time using additionally introduced functions. However, this
should be done by avoiding the addition of features that are already
used by the system and indicate malicious functionality. Similarly, it
is possible to hide suspicious and restricted API calls, for instance,
by invoking them at run-time through reflection. In this case, the at-
tacker also needs to be careful not to introduce other calls that might
increase the suspiciousness of the application.

For the reasons mentioned above, performing a fine-grained eva-
sion attack that changes many features may be difficult in practice,
without affecting the malicious application’s functionality. In addi-
tion, another problem for the attacker is getting to know precisely
which features should be added or removed without having access

63 ATTACKS AGAINST MACHINE LEARNING

to the classification model or the training data. This becomes par-
ticularly a problem to the attacker if the classifier is continuously
retrained, as is the case of DREBIN.

EVASION ATTACK ALGORITHM With the discussed background
knowledge on the attacker’s capabilities at hand, we can finally de-
scribe a framework to examine the robustness of the classifier. In
particular, we assume that the attacker tries to perform a minimal
number of modifications to an application z such that the resulting
sample z* gets misclassified by the classification function f. Formally,
this procedure can be described with:

z* = arg min f(x'), (22)
z'eQ(z)

where x’ denotes the feature vector of a modified sample z'. This
application, in turn, has been derived from its unaltered version z,
by applying a modification from the space of all valid modifications
Q(z). Since we consider a linear classification model, this equation
simplifies further to

T

z* =arg minw x’. (23)

z'eQ(z)

Here, w describes the linear classifier. Using this principle formula-
tion we can finally design a more specific evasion attack on DREBIN
and examine its impact on the detection performance of the under-
lying classifier. Given the assumption that attackers can remove and
add arbitrary features to evade the classifier, they can perform the
following steps to circumvent a binary classifier as is used by DREBIN.
In the first step, all weights stored in the model vector w are sorted
in descending order of their absolute value W1y, ... ,W(q) with
wml = ... = w(g)l- In the next step, we can modify the feature
vector x of an application fork =1,...,d:

e if x(1) = 1 and w(y) > 0, we set x) to zero;
* if x() = 0 and w() < 0, we set x(y) to one;
* else x(y) is left unmodified.

Note that the attacker yields to perform as little modifications as
possible and thus only continues his attack until x is flagged as benign
by the classification model or the maximum number d of modification
is reached.

RESULTS Figure 35 shows the results for the L1-SVM and the L2-
SVM. Both classifiers have been trained on the DREBINQR g dataset as
described in Chapter 5 using the exact same splits for training, valida-
tion, and testing to ensure comparability. In absence of any attacker,

115

The attacker yields
to modify a
malicious sample..

..such that it gets
misclassified as
benign

The modification of a
small number of
features..

116

..already leads to a
significant drop in
detection rate

The L1-SVM is
more prone towards
these attacks than

the L2-SVM

MODEL ANALYSIS AND EXPLAINABILITY

100 [+ ‘ A
a —a— [2-Regularizer

\ L1-Regularizer
80 [+ 3

: \

-

(o]

60 |]

S

Q

B

Q

2 40 |

jo¥)

A
20 |+ ‘ 3
07 A A Avd A A

01 5 10 15 20

Number of modified features

Figure 35: Comparison of L1- and L2-regularized SVM under attack.

both classifiers achieve high detection rates. However, as soon as the
attacker starts to modify even a small number of features, the detec-
tion performance drops significantly for both classifiers. In particular,
when modifying just a single feature, the detection rate for the L1-
SVM and the [2-SVM drops by 16% and 8%, respectively. Moreover,
one can observe that the L1-SVM is more prone to the attack and its
performance thus drops faster than for the L2-SVM.

The reason for this observation is not surprising, since the regu-
larization with the L1-norm results in a classification model that has
much fewer features than the L2-regularized model. While this is a
valuable property regarding disk space efficiency, it has the drawback
of resulting in a less stable model, as the absence or presence of a par-
ticular feature can have a high impact on the resulting classification
score of the detection system.

This interpretation is also confirmed by the weight distribution of
both models, as is depicted in Figure 36. The L1-regularized model
contains on average only around 5,000 features, while the L2-SVM has
more than 100,000 feature weights. Note that, however, most of the
weights of the L2-SVM are close to zero. The weights of the L1-S5VM
are much less equally distributed than those of the L[2-regularized
version, resulting in a model more prone to evasion attacks, as has
been confirmed throughout our experiments.

Overall, it is necessary to find a good trade-off between the num-
ber of selected features, interpretability, and stability of the resulting
model. Since the L2-SVM requires much more features, but the L1-
SVM results in a less stable model, the question remains whether it
is possible to train a classifier that combines the strengths of both
models. To this end, we examine the Sec-SVM in the next section,
which promises a good trade-off between detection performance, in-
terpretability, and model stability.

63 ATTACKS AGAINST MACHINE LEARNING

4 F] T
@-0— Li-Regularizer
L2-Regularizer

Absolute weights
N

ok o —

! !
1 2 5 10 100 1000 10000

Absolute weights (in descending order)

Figure 36: Weight distribution of L1- and L2-regularized SVM.

6.3.3 Defenses against Evasion Attacks

The evasion attacks discussed in the previous section have shown that
an attacker is already able to evade the classifier of DREBIN by modify-
ing a small number of features of an Android application. Although
even the modification of few features might be challenging in practice
(see Section 6.3.2), it seems necessary to improve the algorithm such
that these attacks require much more effort on the attackers’ side.

The main problem, why these attacks are successful, lies in the un-
equal distribution of feature weights in the underlying classification
model w. Thus, it becomes possible for an attacker to evade the clas-
sifier by just modifying a small number of features with high weights.
In the following, we discuss two approaches to alleviate the impact
of evasion attacks and compare them with the unmodified version of
the algorithm.

MULTIPLE CLASSIFIER SYSTEM The first approach is based on the
combination of the output of multiple, independently trained Sup-
port Vector Machines as proposed by Biggio et al. [146]. The individ-
ual classifiers are trained using different, randomly selected features.
This is a common technique known as the random subspace method,
which is also part of several other popular learning methods like, for
instance, random forests [35]. Furthermore, the training of the classi-
tiers is conducted using different data sets, uniformly sampled from
the complete training set with replacement (also a standard technique
known as bootstrapping [69]). Finally, the obtained outputs of all clas-
sifiers are averaged and used for the overall decision (a technique
known as bootstrap aggreating, short bagging [34]).

Using this approach leads to more evenly distributed weights and
thus alleviates the impact of evasion attacks. Note, that averaging

117

An unequal
distribution of
features weights...

...makes the method
prone towards
evasion attacks.

118

The Sec-SVM sets
boundaries for the
feature weights

MODEL ANALYSIS AND EXPLAINABILITY

the output of all classifiers is equivalent to using a linear classifier
whose weights are the average of the weights of the base classifiers,
respectively. With this simple trick, the computational complexity at
test time remains thus equal to that of a single linear classifier [146].
Thus, the approach only needs more computational resources during
training, as it requires to train multiple classifiers in parallel.

THE SEC-SVM ALGORITHM The original SVM algorithm solves the
optimization problem without considering an adversary who tries
to evade the resulting classifier. To overcome this drawback of the
original SVM formulation, we modify the algorithm such that the
optimization constraints bound the feature weights into a meaningful
interval defined by the vectors w'® and w"?. The formulation then

becomes:
nl\i,n Iwiw+CY ! max (0,1 —yw'xi) , (24)
s. t. wfgwkgw‘ﬁb,kzh...,d. (25)

Therefore, this optimization problem just differs from the original
SVM formulation by the presence of a box constraint on w. The
lower and upper bounds on w are defined by the vectors wl® =
(wllb,. ..,whb) and w'b = (w‘fb, . ..,w}jb), which are selected during

training with a suitable procedure [57].

EVALUATION SETUP We evaluate the effectiveness of the proposed
defenses using a dataset comparable to the DREBINQRig dataset. The
data contains 121,329 benign and 5,615 malicious samples, including
all malware samples from the DREBINOR|g dataset. The samples have
been labeled using the VirusToraL service. In particular, samples
flagged by at least 5 antivirus scanners are considered as malicious
and only samples without any flags are labeled as benign. During
the training step, we randomly select 30,000 applications from this
dataset and use them to learn a classification model. All remaining
samples are used for testing. This procedure is repeated 10 times and
the obtained results are finally averaged.

When running Drebin on the given dataset, more than one million
features are extracted by the static analysis. However, as discussed
in the previous section, even when using an [2-regularizer, most of
these features get assigned a weight close to zero and thus do not
have significant impact on the classifier’s decision. For computational
efficiency, we retain only the most discriminant d’ features with the
highest values on the training data. Throughout our evaluation, we
noticed that using only d’ = 10, 000 features does not significantly af-
fect the accuracy of Drebin. This is consistent with the recent findings
of Roy et al. [171], as it is shown that only a very small fraction of fea-
tures is significantly discriminant, and usually assigned a non-zero

63 ATTACKS AGAINST MACHINE LEARNING

weight by the SVM learning algorithm. For the same reason, the sets
of selected features turned out to be the same in each run.

For the sake of a fair comparison among different SVM-based learn-
ers, we set C = 1 for all classifiers and repetitions. For the MCS-
SVM classifier, we train 50 base linear SVMs on random subsets of
80% of the training samples and 50% of the features, as this en-
sures a sufficient diversification of the base classifiers, providing more
evenly-distributed feature weights. The bounds of the Sec-SVM are se-
lected through a 5-fold cross-validation. In particular, for each feature
weight w; we optimize the two scalar values (w‘i‘b, wlib) €{0.1,0.5,1} x
{-=1,-0.5,—-0.1}.

100 [‘ ‘ ‘
A\x e-e-o5SVM
—— MCS

el \\\ Sec-SVM | |
60 \ .

Detection rate

20 |+ 1

0 i O O

o 1 5 15 50 100 200

Number of modified features

Figure 37: Comparison of different classifiers under attack.

RESULTS We perform an evasion attack using the approach de-
scribed in Section 6.3, except for the difference that the adversary
can only add but not remove features from the manifest file. The un-
derlying idea behind this restriction is the fact that it is difficult for
an adversary to remove features like the requested permissions in
practice (see Section 6.3.2).

The results of our experiments are depicted in Figure 37. In the
absence of an attacker, all methods show similar performance and
yield a detection rate of about 94% to 96% at a false positive rate of 1%.
The Sec-SVM performs slightly worse than the other two algorithms,
while the MCS-SVM vyields the best results. However, the detection
performance of all classification models differs significantly in the
presence of an attacker.

In particular, for the vanilla SVM algorithm, the decrease in detec-
tion performance is similar to the results presented in the previous
section. For instance, when only two features are modified by the
attacker, the detection performance already decreases to about 63%.
This result lies in between the detection rates obtained with the L1-

119

Sec-SVM and
MCS-SVM show a
higher robustness
against the attack.

120

The Sec-SVM
improves the
classifier robustness
significantly..

..by distributing the
weights more evenly.

MODEL ANALYSIS AND EXPLAINABILITY

SVM and L[2-SVM presented in the previous section, which yield a
detection performance of 62% and 76%, respectively. Note that the
SVM examined in this experiment is [2-regularized, but trained on a
subset of the 10,000 most relevant features. In consequence, it is not
surprising that the obtained results are quite similar to those achieved
with the L1-regularized SVM.

The other two approaches show higher robustness against the per-
formed evasion attack. Using the MCS-SVM, the attacker already
needs to modify five features to reduce the detection performance
to 62% and around 20 features to push it towards zero. In contrast,
the Sec-SVM still detects about 62% of the malicious samples when
20 features have been modified by the attacker. Overall, the robust-
ness of the classifier is doubled when using an MCS-SVM and even
tenfold when applying the Sec-SVM.

3] =

e-e— SVM
a—— MCS

\ Sec-SVM

N
I
I

Absolute weights

;

!
1 2 5 10 100 1000 10000

Absolute weights (in descending order)
Figure 38: Comparison of weight distribution of different classifiers.

The reason for the increased level of security lies in the more evenly
distributed weights, as can be derived from Figure 38. Note that the
Sec-SVM exhibits on average a maximum absolute weight value of o.5.
This means that, in the worst case, modifying a single feature leads to
a decrease of 0.5 of the classification score. In contrast, the decrease is
significantly higher for the MCS-SVM and the SVM, with maximum
values of approximately 1 and 2.5, respectively. It is thus apparent
that it requires a larger number of modified features to evade the
Sec-SVM than is needed for the other two detection methods.

6.3.4 Discussion

With the growing number of application fields for machine learning
algorithms, the risk for these systems to be attacked increases at the

6.4 RELATED WORK

same time. Hence, it is crucial to have possible attack scenarios in
mind when designing such systems.

In this section, we discussed possible evasion attacks on DREBIN
and how they can affect the detection performance of the system. To
this end, we first examined the capabilities attackers might have in
practice and proposed an attack framework that allows evaluating
the impact of such an attack on the classifier. Unfortunately, we expe-
rience a significant drop in the detection rate when an attacker can
manipulate features that have been assigned a high weight by the
classifier. When using an Ll-regularizer, the detection performance
decreases even faster than with the [2-SVM.

As a remedy, we examine the performance of a slightly changed
formulation of the SVM that yields to distribute the weights more
evenly among the available features. As a result, the success of the
attacker is significantly affected, since more features need to be ma-
nipulated until a sample is misclassified. In particular, an attacker
has to manipulate ten times more features compared to the unpro-
tected case. Moreover, the performance of the underlying system is
only slightly affected and yields detection rates comparable to those
obtained when using the original formulation of the SVM.

Of course, even though the Sec-SVM significantly raises the bar for
attackers, it still gets to its limits with increasing capabilities of an ad-
versary. Furthermore, it is not capable of dealing with more advanced
obfuscation strategies, such as encryption or reflection, as it still re-
lies on static analysis. Therefore, it also has the inherent weaknesses
of the original approach.

6.4 RELATED WORK

ATTACKS AGAINST MACHINE LEARNING Machine learning has
become an important technique for solving tasks in many domains,
including security-critical ones, such as spam detection [100, 150], in-
trusion detection [122, 167, 201], and malware detection [51, 114, 169,
206]. However, the underlying machine learning algorithms of these
systems have initially been designed under the assumption that train-
ing and test data follow a stationary distribution. As a result, these
systems are often vulnerable to well-crafted attack targeting the un-
derlying machine learning algorithm [20, 21].

Several researchers presented attacks against learning-based sys-
tems [e.g., 40, 54, 185, 213, 228]. One of the first works in this area has
been done by Dalvi et al. [52], who developed a formal framework to
evaluate evasion attacks. Using this framework, they performed a suc-
cessful attack against spam classifiers and strengthened the learning-
algorithm accordingly. In their paper, Dalvi et al. focussed on eva-
sion attacks, which often have the underlying assumption that the
attacker has perfect knowledge of the model. While this assumptions

121

122

MODEL ANALYSIS AND EXPLAINABILITY

seems unrealistic at first glance, there exist several works that demon-
strate how machine learning models can be reconstructed by an at-
tacker [132, 193, 200]. Therefore, Biggio et al. [26] proposed a frame-
work to systematically examine evasion attacks by adversaries with
varying background knowledge. More recently, Szegedy et al. [188]
successfully demonstrated a perturbation attacks against Deep Neu-
ral Networks (DNNs). In this attack, some of the pixels within an
image are imperceptibly modified such that the content of the image
gets misclassified by the model.

In addition to evasion attacks, also different poisoning attacks have
been proposed in recent years [e.g., 25, 82, 107, 151, 157, 211]. As an
example, Perdisci et al. [157] performed a successful attack against
worm signature classifiers by injecting noise into the training data.
Similarly, Xing et al. [211] demonstrated how the recommendation
systems of popular Web services can be manipulated by injecting spe-
cific information into users” profiles.

In response to the growing number of attacks, many researchers
also suggested defenses against attacks on machine learning mod-
els [e.g., 58, 107, 154, 181]. Related to the defense discussed in this
chapter, Demontis et al. [58] analyzed how the selection of the regula-
rizer can improve the robustness of SVM classifiers towards evasion
attacks. Furthermore, the examination of defenses against evasion at-
tacks specifically targeting Deep Neural Networks is currently a vivid
research field. For instance, Papernot et al. [154] proposed a defense
against this kind of attack by obfuscating the gradients of neural net-
works. Not even a year later, however, Carlini and Wagner [42] were
able to show that the defense is ineffective. As a reaction to their
finding, other researchers presented further defenses [see 155, 212].
Unfortunately, it has already been shown that many of them do also
not provide proper protection [12, 41]. Thus, it is likely that this cat-
and-mouse game will continue in the near future, hopefully resulting
in more robust learning methods.

EXPLAINABILITY In order to effectively thwart the success of at-
tacks against learning-based systemes, it is essential to understand the
decision-making process of the underlying models. However, while
explaining the decision of linear models is straightforward [8, 168],
it is difficult to derive meaningful explanations for decisions made
by non-linear classifiers. Therefore, different approaches have been
proposed to close this gap [e.g. 17, 19, 118, 141, 165]. As an example,
Koh et al. [118] utilized influence functions from statistics to iden-
tify training points that had the highest impact on the resulting deci-
sion. Instead of deriving explanation from the training data, Ribeiro
et al. [165] used interpretable approximations of a classifier to under-
stand its decisions. Similarly, Bach et al. [17] proposed a solution that
allows understanding the decisions of non-linear image classification

65 CHAPTER SUMMARY

systems, including SVM-based systems. Specifically, their approach
produces heatmaps that visualize the contribution of single pixels to
the overall decision, thus enabling human experts to verify the deci-
sions of the machine learning system.

Furthermore, there exist several works that focus specifically on
improving the explainability in the Android malware domain [e.g.,
80, 153, 220]. In particular, Pandita et al. presented the framework
WHYPER [153], which employs Natural Language Processing (NLP)
techniques to improve application descriptions. To this end, it auto-
matically identifies sentences in an application description that justify
the requested permissions of the considered application. Remotely
related, Zhu et al. described their system FeatureSmith, which auto-
matically engineers proper feature sets for Android malware detec-
tion by mining scientific papers for relevant malware features. Using
these features, they were able to build a classifier that has a detection
performance comparable to DREBIN. Moreover, Feng et al. presented
the tool ASTROID [80]. ASTROID constructs signatures for the detec-
tion of malware families automatically. For this purpose, it identifies
common subgraphs within the inter-component call graphs of mal-
ware family members [79]. Similar to DREBIN, the authors showed
that these signatures allowed them to conclude about inherent char-
acteristics of these families. Most recently, Melis et al. [141] proposed
a gradient-based method that determines the most relevant features
even for non-linear models, i.e., generalizing the approach presented
in Section 6.1.

6.5 CHAPTER SUMMARY

In this chapter, we have conducted an extensive analysis of the under-
lying classification model of DrREBIN, including the interpretability of
its decisions and the overall stability of its underlying classification
model. Besides, we have discussed attacks on the model and also pre-
sented suitable defenses. In the following, we summarize the results
of each of these aspects individually.

At the beginning of this chapter, we have analyzed the features
that had the highest impact on the classifier’s decision. For this pur-
pose, we have used two popular malware datasets, namely DREBIN
and AMD, and have examined the decisions of the classifier for sev-
eral popular malware families. Overall, we notice that the features
selected by the classifier for its decision, resemble common knowl-
edge about these families in many cases. However, even though the
features can already be useful for malware analysts, further research
is needed to improve the explanations of the classifier further.

In the second step, we have inspected the overall model stability
along with the number of features selected by the classifier. We find
that the SVM provides good detection results, while requiring only a

123

124

MODEL ANALYSIS AND EXPLAINABILITY

small amount of support vectors to achieve this performance. Thus,
we conclude that the method is indeed suitable for detecting Android
malware in general. Besides, we find that the number of required fea-
tures can be reduced further by using an L1-regularization, without
significantly affecting the overall detection performance of the classi-
fier. Therefore, the size of the required classification model remains
small, even when derived from a dataset containing hundred of thou-
sands of data points.

Finally, we have also examined the classifier’s robustness towards
evasion attacks. Throughout our experiments, we have noticed that
attackers can spoof the learning model by changing certain features
of a malicious samples such that it gets misclassified as benign. For-
tunately, an attacker requires precise knowledge of the underlying
model or training data, which should often be infeasible in practice.
Moreover, we could identify other constraints that attackers are faced
with. Still, we aimed to improve the robustness of the underlying al-
gorithm towards this kind of attack. As part of a thorough analysis,
we have found that the unequal distribution of feature weights fa-
vors the success of an attacker. As a corollary to this finding, we have
modified the SVM algorithm such that it distributes its weights more
evenly, leading to a classification model that is more robust than the
original version of the algorithm.

CONCLUSION

Mobile malware poses a threat to the security and privacy of smart-
phone users. In recent years, the number of malware for the Android
operating system has grown significantly, thus rendering common
signature-based approaches often ineffective in detecting new mal-
ware instances reliably. Research on novel technologies to effectively
counter this threat is therefore of paramount importance for the secu-
rity of mobile devices.

In this thesis, we have provided insights into recent developments
in the Android malware landscape, especially discussing a new mal-
ware that uses an ultrasonic side channel to spy on unwitting smart-
phone users. Based on the knowledge we have gained during our
research, we were able to develop a new method for malware detec-
tion that does not suffer from typical drawbacks of signature-based
approaches. Specifically, our proposed method combines concepts of
static analysis and machine learning, thus allowing the automatic
derivation of suitable detection patterns from a large number of appli-
cations. As a result, the approach can even detect unknown malware
instances in many cases.

Throughout an extensive evaluation, we have shown that the pro-
posed method outperforms several related approaches, including pop-
ular anti-virus scanners. In particular, it offers high detection rates
with only a few false positives and, contrary to other learning-based
approaches, runs directly on the mobile device. Another advantage of
the proposed method is that it is not a black-box system, but instead
provides explanations of its decisions to the user.

In summary, we have shown that machine learning techniques can
help to improve the security of mobile devices. Although our ap-
proach cannot completely prevent the threat of mobile malware, it
raises the bar for malicious actors to compromise mobile devices sig-
nificantly. Still, more research is needed to improve malware detec-
tion systems further.

7.1 SUMMARY OF RESULTS
In the following section, we summarize the main results of this thesis
in more detail. Afterward, we discuss open questions that require

further research.

CHAPTER 1 The first chapter provides information about the sig-
nificant increase in the number of Android malware samples found

125

In this thesis, we
have proposed a new
method...

...that detects mobile
malware with
machine learning
techniques.

126

Chapter 1 discusses
the motivation of
this thesis.

Chapter 2 provides
some background
information.

Chapter 3 discusses
an ultrasonic side
channel...

...that has already
been misused by
malware.

CONCLUSION

in recent years. While in the early days of Android, malware for this
platform was rare and thus mainly of academic interest [175], anti-
virus vendors nowadays find thousands of malicious samples every
day. Unfortunately, existing solutions for Android malware detection
can often not identify unknown samples, and thus turn out to be inef-
fective in many cases. In consequence, there is an urgent need for new
methods that allow reliable detection and provide the ability to han-
dle large amounts of data. A promising research direction is therefore
the utilization of machine learning techniques, as these allow the au-
tomatic derivation of characteristic structures and patterns from large
datasets. The development of such a learning-based method has been
the ultimate goal of this thesis.

CHAPTER 2 In this chapter, we have equipped ourselves with the
necessary background knowledge to stepwise develop a learning-
based method for Android malware detection. Specifically, we have
introduced basic concepts of the Android operating system in the first
part of this chapter, mainly focussing on some of the considerations
behind its security design. Moreover, we have discussed current so-
lutions for Android malware detection along with their benefits and
drawbacks. In the second part of the chapter, we have presented basic
concepts of machine learning theory, including the idea of regulariza-
tion and the mathematical fundamentals behind the SVM algorithm.

CHAPTER 3 Equipped with the necessary background knowledge,
we have presented our findings on ultrasonic side channels in An-
droid applications. In particular, we have investigated three commer-
cial solutions that use ultrasonic beacons for various purposes. Dur-
ing the inspection of the inner workings of different apps, we have
been able to identify several malicious characteristics within the track-
ing technology of one of these companies. Most importantly, these
applications carry the functionality to listen for ultrasonic beacons in
the background without the user’s knowledge or consent. Therefore,
they can potentially monitor users” TV viewing habits, track their vis-
ited locations, or deduce other devices of a user.

To examine the prevalence of this technology in the wild, we have
developed two different tools. The first tool allows scanning for ap-
plications that carry the ultrasonic tracking functionality; the second
tool detects ultrasonic signals in common media, such as audio and
video files. We have used these tools to analyze several hours of mul-
timedia data and more than 1.3 million applications. While we have
been able to identify 234 applications that carry the respective track-
ing functionality to spy on unwitting users, we could not find any ul-
trasonic beacons of the respective company. Instead, we have found
ultrasonic beacons from the two other companies in various media
files and 4 European stores. However, in contrast to the illicit use of

7.1 SUMMARY OF RESULTS

this technology, users are aware of the tracking in these cases. In sum-
mary, the results of our study show that the technology has already
been actively used and still offers potential to be misused by malware
authors in the future.

It is noteworthy that the tool we used for scanning the applications
has a serious drawback. Although it is very efficient in detecting spe-
cific code regions within a large number of applications, it requires
manual effort to identify the necessary code regions in advance. Con-
sequently, it is not feasible for detecting Android malware in general.

CHAPTER 4 To overcome the limitations of the detection method
discussed in Chapter 3, we have proposed a new method in this chap-
ter. Our method, called DREBIN, is based on concepts of static analysis
and machine learning, which enables it to keep better pace with mal-
ware development than signature-based methods. In addition, it runs
directly on the mobile device. To detect mobile malware, DREBIN first
extracts various static information from an application, including, for
instance, the permissions that an app requests. In the second step, it
maps the application into a high-dimensional vector space. Finally,
it classifies the app as malicious or benign by applying a detection
model on the app’s vector representation. For this purpose, it uses a
high-dimensional hyperplane as a classification model that separates
benign and malicious data in that vector space. In contrast to many
other common detection methods, DREBIN provides explanations for
its decisions, which can help users to understand its assessment on
analyzed applications.

CHAPTER 5 This chapter provides an extensive evaluation of the
detection capabilities and the run-time performance of DrReBIN. For
the evaluation, we have used several datasets, which contain more
than 400,000 different Android applications in total.

In the first part of this chapter, we have examined the detection per-
formance of DREBIN and compared it against various other solutions
for Android malware detection, including popular anti-virus scan-
ners. DREBIN outperforms related approaches in most cases, achiev-
ing detection rates between 92% and 99% at a low false positive rate
of only 1%. Interestingly, the approach achieves a detection rate of
99% for the malware family discussed in Chapter 3, thus proving its
effectiveness in deriving useful detection patterns automatically. We
have only noticed that the approach has problems in detecting mal-
ware families if no members of a malware family are available during
training. In this case, the learning algorithm is unable to extract cru-
cial detection patterns from the training data. However, the detection
performance significantly increases in most cases, as soon as only a
few samples of a malware family become available for training.

127

In Chapter 4, we
present a new

method to detect
mobile malware.

We evaluate its
detection and
run-time
performance in
Chapter 5.

128

In Chapter 6, we
have examined its
interpretability...

..., generalization
capabilities,...

...and how to harden
it against attacks.

CONCLUSION

In the second part of the chapter, we have evaluated the run-time
performance of DReBIN. To this end, we have implemented a proto-
type application, which has enabled us to measure the average time
DREBIN needs to output a decision. In an experiment in which we
have tested the analysis time of 100 different applications on five dif-
ferent devices, we have found that it takes less than 15 seconds on
average to output a decision for an application. Moreover, even on
very outdated devices, it never takes longer than a minute. We con-
sider these run-times to be sufficient for practical usage.

CHAPTER 6 In this chapter, we have performed a comprehensive
analysis of the detection model of DREBIN. Specifically, we have ana-
lyzed the interpretability and robustness of the underlying classifier.

In the first part, we have examined the most relevant features of
different malware families selected by the learning algorithm, and
have compared them with common knowledge about these families.
Overall, we have found that the selected features often reflect impor-
tant characteristics of the considered families, and pose a promising
direction for future research.

In the second part of the chapter, we have analyzed the general-
ization capabilities of the detection model. In particular, we have es-
timated the generalization performance of the classifier by analyz-
ing the selected number of support vectors. The SVM only selects
roughly 10% of the data points as support vectors, thus indicating an
excellent generalization performance. By using an Li-regularizer, we
have been able to reduce the number of features further, i.e., the SVM
only selects about 0.3% of the available features when adapting the
optimization problem accordingly.

In the third part, we have examined the robustness of the under-
lying model towards possible attacks. For this purpose, we have as-
sumed an attacker who tries to evade the detection system by modi-
fying the features of a malicious application, such that it gets classi-
fied as benign. In multiple experiments, we have demonstrated that a
strong attacker with perfect knowledge of the underlying model only
needs to modify a small number of features to circumvent the classi-
tier. To prevent the success of such an attacker, we have shown that
the feature weights of the classification model need to be distributed
more equally. Therefore, we have discussed how the optimization
problem of the SVM can be modified accordingly, resulting in the
Sec-SVM formulation. The Sec-SVM shows much higher robustness
and still detects about 62% of the malware even if many features have
been modified by the attacker.

7.2 LIMITATIONS AND FUTURE WORK

7.2 LIMITATIONS AND FUTURE WORK

In this thesis, we have shown that machine learning techniques can
help to significantly improve malware detection systems. However,
while the obtained results are promising, there is still space for im-
provement and future research. We discuss some possible research
directions in the following section.

CROSS-PLATFORM TRANSFER While we have solely focussed on
the Android operating system throughout this thesis, it should be
possible to adapt the proposed methods to other operating systems.
This is of particular importance, as malware authors and advertis-
ing companies already target users across different platforms and de-
vices (see Chapter 2 and Chapter 3). Hence, transferring technologies
between different operating systems is crucial to ensure a comprehen-
sive protection of mobile device users.

SOFTWARE VULNERABILITIES More research is needed to enhance
the security of the Android operating system in general, as this can
significantly lower the risks induced by malware. For instance, sev-
eral critical vulnerabilities in the Android operating system have been
identified by researchers in the past [e.g., 66, 78, 86], and many oth-
ers are most likely still undetected. These vulnerabilities are, in turn,
used by malicious applications to escalate their privileges on infected
devices [94]. This is possible, as Android still suffers from strong frag-
mentation and thus vulnerabilities often remain unpatched (see Chap-
ter 2). In recent years, various methods have been proposed to speed
up the finding of vulnerabilities [e.g., 14, 158, 178, 216]. However, only
few consider the peculiarities of Android [e.g., 86].

DYNAMIC ANALYSIS Throughout the evaluation, we were able to
show the efficacy of our method in detecting malware on the Android
platform. However, DREBIN cannot generally prevent infections with
malicious applications, as it builds on concepts of static analysis and
lacks dynamic inspection. By extending the approach with dynamic
analysis techniques, it should even be possible to detect malicious be-
haviour despite the use of advanced obfuscation techniques, such as
Java reflection or dynamic code loading. Several researchers [e.g., 130,
224] have already successfully shown that a combination of static and
dynamic analysis techniques can improve the detection performance
of such a system. Moreover, several sophisticated de-obfuscation tech-
niques have been proposed, which could also help to improve the
detection capabilities of DREBIN [e.g., 46, 85, 162].

Unfortunately, the run-time overhead induced by these techniques
is currently still too high to run such a method directly on the device.
In the future, however, smart devices will most likely offer enough

129

130

CONCLUSION

computational power to extend DReBIN with this functionality. Until
then, the problem can at least be alleviated by adding proper features
that are difficult to hide by malicious applications, as has already
been demonstrated by other researchers [e.g., 6, 89, 184].

MODEL ROBUSTNESS As we have discussed in Chapter 5, malware
continuously changes over time, thus leading to changes in the under-
lying distributions. In machine learning, this phenomenon is referred
to as concept drift. The reasons for the occurrence of concept drift are
manifold, ranging from malware evolution (e.g., adaption to new An-
droid versions) to even targeted evasion attacks against the detection
systems of mobile devices.

To lower the impact of concept drift, the detection model of DREBIN
requires periodic retraining to keep pace with the development of mo-
bile malware. However, the number of retraining steps should be min-
imized mainly for two reasons. Firstly, retraining a learning model is
often computationally expensive. Secondly, users have to download
updated models every time, thus possibly resulting in high costs for
the user. To alleviate the impact of concept drift, Jordaney et al. [112]
have proposed a framework that allows detecting when a classifica-
tion model has become outdated. While detecting concept drift is an
important step, further research is needed to build more robust mod-
els that stay up-to-date for longer periods of time, like, for instance,
the approach proposed by Mariconti et al. [137]. Extending DREBIN
with more robust features therefore remains essential future work.

The extension of DREBIN with more robust features will, however,
not be sufficient to solve this problem completely, as also the robust-
ness of the underlying learning-algorithms needs to be examined and
improved further. We have demonstrated that targeted attacks against
the detection model are possible and might become a serious threat
for learning-based systems in the near future. While we have shown
that it is possible to improve the robustness of the models against
evasion attacks significantly, we did not, for instance, consider poison-
ing attacks in this thesis. Furthermore, it remains an open questions
whether and how the use of non-linear classification models can im-
prove the security of these systems.

EXPLAINABILITY The last point concerns the explainability of the
underlying detection model. Specifically, as learning-based systems
often suffer from false positives, it is essential that users understand
their decisions. Otherwise, users are unable to decide whether or not
an application might indeed exhibit malicious characteristics. Unlike
other learning-based detection systems, DREBIN already provides ex-
planations for its decisions to the user. However, these are likely still
too technical for regular users in many cases. A promising research di-
rection to produce more intuitive explanations might, for instance, of-

7.2 LIMITATIONS AND FUTURE WORK 131

fer the field of topic modeling. By using techniques like Latent Dirich-
let Allocation (LDA) [29], it might become possible to output possible
behaviors of an application, instead of just presenting individual fea-
tures to the user.

APPENDIX

A.1 SUSPICIOUS APPLICATIONS

This table contains the list of samples analyzed for the experiments
in Section 5.2.6.

MALICIOUS SAMPLES Analyzed samples that have been flagged
by less than 10 anti-virus scanners.

02575e14ae866a42d36b23a0d30567dd0ath630a06bf0d6297655Ffa08f7abccl
0272c5e34168d2d4d960fdbf8212dbdd51aelc7961b7bcb113ad2be9909392e9
0475c2f3f0d5bff8bc2f056a8ab44f7d5eb13260cc425946¢c2863c19af794a82
04945815665388ba455b129d0ff4bf17ad63f8b990bec1534794a0f5aa28181c
05350bd8feeec42ec586f94e9accd330f553bdbcc3cbb714c6b1598032aa79ac
05c179ff9e579efdc6cc4266e27618136€2983e31372b156278149befb6clcha7
061f3db64723727d1bf68344311fb85cf668cf9aeacdb69584af621fe38108b5e
07be6853d8071133098224e8ele4ed29ee8080b598113b76d506T98648b385b9
07ea68f0ecabe5e05dc6f12c9b0cb37f3368700f66c64a25283765414271de2b
09197ce2875d7fa37b437d84d59f5d5e550e9ff6500ach38a07b9aal5bf45bc5
Oae9a3ab5el23ec3005e9e8bc5023157a890b71493b095e48878de681f21d28aa
0b4d3e416a60f663e8edcc4a566023220bd795bbd7d3318cda3f2c9871f8c357
0bdb7f20af2ab6a2a6139d18b16b50e47a1799845b36ccd3399cd7c385aa352f
0c1c27b6d1c22dccO03f8f2cddfbe25a59cc3b599669e8eleb08aae4d39a972e2
0d80a4d42e383a2080895b5b0ab2c78360081bc9bc9247d083efab62b268c976b
10aace8e5f1f555087fb44001521b67817917bb8d83e0dfe679d9fc526007ad7

BENIGN SAMPLES Analyzed samples that have not been flagged
by any anti-virus scanner.

9ecle7cfb035524e85chbc049a123d8f9afch41979d56d967elca7c22c1e94009
b45400124c4137a6e6e4207901b7ffec96ea5048a41d6a07698fa80d31d803f8
e4b985cda2832eaf4al9f6fe85084fb76a734742b5d4b5eb40912ea8cd9ce9la

133

BIBLIOGRAPHY

[1]

[2]

Yousra Aafer, Wenliang Du, and Heng Yin. “Droid APIMiner:
Mining API-Level Features for Robust Malware Detection in
Android.” In: Proc. of Int. Conference on Security and Privacy in
Communication Networks (SECURECOMM). 2013.

Yousra Aafer, Guanhong Tao, Jianjun Huang, Xiangyu Zhang,
and Ninghui Li. “Precise Android API Protection Mapping
Derivation and Reasoning.” In: Proc. of ACM Conference on
Computer and Communications Security (CCS). 2018.

Yaser S. Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien
Lin. Learning From Data. AMLBook, 2012.

Yasemin Acar, Michael Backes, Sven Bugiel, Sascha Fahl, Pa-
trick D. McDaniel, and Matthew Smith. “SoK: Lessons Learned
from Android Security Research for Appified Software Plat-
forms.” In: Proc. of IEEE Symposium on Security and Privacy
(S&P). 2016.

Tomi T. Ahonen. Installed base of smartphones by operating system
from 2015 to 2017 (in million units). https://www.statista.
com/statistics/385001/smartphone-worldwide-installed-
base-operating-systems/. (last visited Mar. 13, 2019). 2018.

Shahid Alam, Zhengyang Qu, Ryan Riley, Yan Chen, and Vaib-
hav Rastogi. “DroidNative: Automating and optimizing detec-
tion of Android native code malware variants.” In: Computers
& Security 65 (2017).

Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves
Le Traon. “Are Your Training Datasets Yet Relevant? - An In-
vestigation into the Importance of Timeline in Machine Learn-
ing-Based Malware Detection.” In: Engineering Secure Software
and Systems (ESS0S). 2015.

Daniel Arp, Michael Spreitzenbarth, Malte Hiibner, Hugo Gas-
con, and Konrad Rieck. “Drebin: Efficient and Explainable De-
tection of Android Malware in Your Pocket.” In: Proc. of Net-
work and Distributed System Security Symposium (NDSS). 2014.

Daniel Arp, Erwin Quiring, Christian Wressnegger, and Kon-
rad Rieck. “Privacy Threats through Ultrasonic Side Channels
on Mobile Devices.” In: Proc. of IEEE European Symposium on
Security and Privacy (EuroS&P). 2017.

135

https://www.statista.com/statistics/385001/smartphone-worldwide-installed-base-operating-systems/
https://www.statista.com/statistics/385001/smartphone-worldwide-installed-base-operating-systems/
https://www.statista.com/statistics/385001/smartphone-worldwide-installed-base-operating-systems/

136

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

BIBLIOGRAPHY

Daniel Arp, Erwin Quiring, Tammo Krueger, Stanimir Dragiev,
and Konrad Rieck. “Privacy-Enhanced Fraud Detection with
Bloom filters.” In: Proc. of Int. Conference on Security and Pri-
vacy in Communication Networks (SECURECOMM). 2018.

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden,
Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien Oct-
eau, and Patrick McDaniel. “FlowDroid: Precise Context, Flow,
Field, Object-sensitive and Lifecycle-aware Taint Analysis for
Android Apps.” In: Proc. of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI). 2014.

Anish Athalye, Nicholas Carlini, and David Wagner. “Obfus-
cated Gradients Give a False Sense of Security: Circumventing
Defenses to Adversarial Examples.” In: Proc. of Int. Conference
on Machine Learning (ICML). 2018.

Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie.
“PScout: Analyzing the Android Permission Specification.” In:
Proceedings of the 2012 ACM Conference on Computer and Com-
munications Security. Proc. of ACM Conference on Computer
and Communications Security (CCS). 2012.

Thanassis Avgerinos, Sang Kil Cha, Brent Lim Tze Hao, and
David Brumley. “AEG: Automatic Exploit Generation.” In: Proc.
of Network and Distributed System Security Symposium (NDSS).
2011.

Avira. Android.SmsAgent.YW.Gen. https://www.avira. com/
en/support-threats-summary/tid/145007/threat/Android.
SmsAgent.YW.Gen. (last visited Mar. 13, 2019). 2016.

John Aycock. Computer Viruses and Malware. Springer Publish-
ing Company, Incorporated, 2010.

Sebastian Bach, Alexander Binder, Grégoire Montavon, Freder-
ick Klauschen, Klaus-Robert Miiller, Wojciech Samek, and Os-
car Deniz Suarez. “On Pixel-Wise Explanations for Non-Linear
Classifier Decisions by Layer-Wise Relevance Propagation.” In:
PLOS ONE 10.7 (2015).

Michael Backes, Sven Bugiel, Erik Derr, Patrick McDaniel, Da-
mien Octeau, and Sebastian Weisgerber. “On Demystifying the
Android Application Framework: Re-visiting Android Permis-
sion Specification Analysis.” In: Proc. of USENIX Security Sym-
posium. 2016.

David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki
Kawanabe, Katja Hansen, and Klaus-Robert Miiller. “How to
Explain Individual Classification Decisions.” In: Journal of Ma-
chine Learning Research (JMLR) 11 (2010).

https://www.avira.com/en/support-threats-summary/tid/145007/threat/Android.SmsAgent.YW.Gen
https://www.avira.com/en/support-threats-summary/tid/145007/threat/Android.SmsAgent.YW.Gen
https://www.avira.com/en/support-threats-summary/tid/145007/threat/Android.SmsAgent.YW.Gen

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

BIBLIOGRAPHY

Marco Barreno, Blaine Nelson, Russell Sears, Anthony D. Jos-
eph, and J. D. Tygar. “Can Machine Learning Be Secure?” In:
Proc. of ACM Symposium on Information, Computer and Commu-
nications Security (ASIACCS). 2006.

Marco Barreno, Blaine Nelson, Anthony D. Joseph, and J. D.
Tygar. “The security of machine learning.” In: Machine Learn-
ing 81.2 (2010).

David Barrera, H. Giines Kayacik, Paul C. van Oorschot, and
Anil Somayaji. “A methodology for empirical analysis of per-
mission-based security models and its application to Android.”
In: Proc. of ACM Conference on Computer and Communications Se-
curity (CCS). 2010.

J. Bergeron, M. Debbabi, J. Desharnais, M. M. Erhioui, Y. Lavoie,
and N. Tawbi. “Static detection of malicious code in executable
programs.” In: International Journal of Requirements Engineering
(2001).

A. Bianchi, J. Corbetta, L. Invernizzi, Y. Fratantonio, C. Kruegel,
and G. Vigna. “What the App is That? Deception and Coun-
termeasures in the Android User Interface.” In: Proc. of IEEE
Symposium on Security and Privacy (S&P). 2015.

Battista Biggio, Blaine Nelson, and Pavel Laskov. “Poisoning
Attacks against Support Vector Machines.” In: Proc. of Int. Con-
ference on Machine Learning (ICML). 2012.

Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson,
Nedim Srndi¢, Pavel Laskov, Giorgio Giacinto, and Fabio Roli.
“Evasion Attacks against Machine Learning at Test Time.” In:
Machine Learning and Knowledge Discovery in Databases (ECML
PKDD). 2013.

Christopher M. Bishop. Pattern Recognition and Machine Learn-
ing (Information Science and Statistics). Springer-Verlag, 2006.

David M. Blei. “Probabilistic Topic Models.” In: Communication
of the ACM (CACM) 55.4 (2012).

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. “Latent
Dirichlet Allocation.” In: Journal of Machine Learning Research
(JMLR) (2003).

B.H. Bloom. “Space/time trade-offs in hash coding with al-
lowable errors.” In: Communication of the ACM (CACM) 13.7
(1970).

Hristo Bojinov, Dan Boneh, Yan Michalevsky, and Gabi Naki-

bly. Mobile Device Identification via Sensor Fingerprinting. arXiv
preprint. 2014.

137

138

[32]

[33]

[34]

[35]
[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

BIBLIOGRAPHY

Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vap-
nik. “A Training Algorithm for Optimal Margin Classifiers.”
In: Proc. of the Annual Workshop on Computational Learning The-
ory (COLT). 1992.

Andrew P. Bradley. “The use of the area under the ROC curve
in the evaluation of machine learning algorithms.” In: Pattern
Recognition 30.7 (1997).

Leo Breiman. “Bagging Predictors.” In: Machine Learning 24.2
(1996).

Leo Breiman. “Random Forests.” In: Machine Learning 45 (2001).

Bill Brenner. Android malware anti-emulation techniques. https:
//news.sophos.com/en-us/2017/04/13/android-malware-an
ti-emulation-techniques/. (last visited Mar. 13, 2019). 2017.

Christopher J. C. Burges. “A Tutorial on Support Vector Ma-
chines for Pattern Recognition.” In: Data Mining and Knowledge
Discovery 2 (1998).

Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. “Cr-
owdroid: Behavior-Based Malware Detection System for An-
droid.” In: Proc. of the ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices (SPSM). 2011.

Zhenquan Cai and Roland H.C. Yap. “Inferring the Detection
Logic and Evaluating the Effectiveness of Android Anti-Virus
Apps.” In: Proc. of ACM Conference on Data and Applications
Security and Privacy (CODASPY). 2016.

Alejandro Calleja, Alejandro Martin, Héctor D. Menéndez, Juan
E. Tapiador, and David Clark. “Picking on the family: Disrupt-
ing android malware triage by forcing misclassification.” In:
Expert Systems with Applications 95 (2018).

Nicholas Carlini and David Wagner. “Adversarial Examples
Are Not Easily Detected: Bypassing Ten Detection Methods.”
In: Proc. of ACM Workshop on Artificial Intelligence and Security
(AISEC). 2017.

Nicholas Carlini and David Wagner. “Towards Evaluating the
Robustness of Neural Networks.” In: Proc. of IEEE Symposium
on Security and Privacy (S&P). 2017.

S. Chakradeo, B. Reaves, P. Traynor, and W. Enck. “MAST:
Triage for Market-scale Mobile Malware Analysis.” In: Proc.
of the ACM Conference on Security and Privacy in Wireless and
Mobile Networks (WISEC). 2013.

https://news.sophos.com/en-us/2017/04/13/android-malware-anti-emulation-techniques/
https://news.sophos.com/en-us/2017/04/13/android-malware-anti-emulation-techniques/
https://news.sophos.com/en-us/2017/04/13/android-malware-anti-emulation-techniques/

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

BIBLIOGRAPHY 139

Kai Chen, Peng Wang, Yeonjoon Lee, XiaoFeng Wang, Nan
Zhang, Heqing Huang, Wei Zou, and Peng Liu. “Finding Un-
known Malice in 10 Seconds: Mass Vetting for New Threats
at the Google-Play Scale.” In: Proc. of USENIX Security Sympo-
sium. 2015.

Mihai Christodorescu and Somesh Jha. “Static Analysis of Ex-
ecutables to Detect Malicious Patterns.” In: Proc. of USENIX
Security Symposium. 2003.

Andrea Continella, Yanick Fratantonio, Martina Lindorfer, Al-
essandro Puccetti, Ali Zand, Christopher Kruegel, and Gio-
vanni Vigna. “Obfuscation-Resilient Privacy Leak Detection
for Mobile Apps Through Differential Analysis.” In: Proc. of
Network and Distributed System Security Symposium (NDSS). 2017.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.
Introduction to Algorithms. MIT Press, 1990.

Corinna Cortes and Vladimir Vapnik. “Support-Vector Net-
works.” In: Machine Learning. 1995.

Paul Covington, Jay Adams, and Emre Sargin. “Deep Neu-
ral Networks for YouTube Recommendations.” In: Proc. of the
ACM Conference on Recommender Systems (RECSYS). 2016.

G. Cretu, A. Stavrou, M. Locasto, S.J. Stolfo, and A.D. Keromy-
tis. “Casting out Demons: Sanitizing Training Data for Anoma-
ly Sensors.” In: Proc. of IEEE Symposium on Security and Privacy
(S&P). 2008.

Charlie Curtsinger, Benjamin Livshits, Benjamin Zorn, and
Christian Seifert. “Zozzle: Fast and Precise In-Browser JavaScr-
ipt Malware Detection.” In: Proc. of USENIX Security Sympo-
sium. 2011.

Nilesh Dalvi, Pedro Domingos, Mausam, Sumit Sanghai, and
Deepak Verma. “Adversarial Classification.” In: Proc. of the
ACM SIGKDD International Conference On Knowledge Discovery
and Data Mining (KDD). 2004.

Damballa. State of Infections Report: Q4 2014. Tech. rep. Damballa,
2015.

Hung Dang, Yue Huang, and Ee-Chien Chang. “Evading Clas-
sifiers by Morphing in the Dark.” In: Proc. of ACM Conference
on Computer and Communications Security (CCS). 2017.

Anupam Das, Nikita Borisov, and Matthew Caesar. “Do You
Hear What I Hear? Fingerprinting Smart Devices Through Em-
bedded Acoustic Components.” In: Proc. of ACM Conference on
Computer and Communications Security (CCS). 2014.

Martin D. Davis. Computability and Unsolvability. McGraw-Hill,
1958.

140

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

BIBLIOGRAPHY

A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck,
I. Corona, G. Giacinto, and F. Roli. “Yes, Machine Learning
Can Be More Secure! A Case Study on Android Malware De-
tection.” In: IEEE Transactions on Dependable and Secure Comput-
ing (TDSC) (2017).

Ambra Demontis, Paolo Russu, Battista Biggio, Giorgio Fu-
mera, and Fabio Roli. “On Security and Sparsity of Linear
Classifiers for Adversarial Settings.” In: Structural, Syntactic,
and Statistical Pattern Recognition - Joint IAPR International Work-
shop (5+SSPR). 2016.

Amit Deo, Santanu Kumar Dash, Guillermo Suarez-Tangil, Vo-
lodya Vovk, and Lorenzo Cavallaro. “Prescience: Probabilistic
Guidance on the Retraining Conundrum for Malware Detec-
tion.” In: Proc. of ACM Workshop on Artificial Intelligence and
Security (AISEC). 2016.

Luke Deshotels. “Inaudible Sound as a Covert Channel in Mo-
bile Devices.” In: Proc. of USENIX Workshop on Offensive Tech-
nologies (WOOT). 2014.

Anthony Desnos. Androguard. https://github.com/androgua
rd. (last visited Mar. 13, 2019). 2018.

Anthony Desnos and Geoffroy Gueguen. “Android: From Re-
versing to Decompilation.” In: Proc. of Black Hat Abu Dhabi.
2011.

Google Developers. Requesting Permissions at Run Time. http:
//developer.android.com/training/permissions/requesti
ng.html. (last visited Mar. 13, 2019).

Quang Do, Ben Martini, and Kim-Kwang Raymond Choo. “Ex-
filtrating Data from Android Devices.” In: Computers and Secu-
rity 48 (2015).

Joshua J. Drake, Zach Lanier, Collin Mulliner, Pau Oliva Fora,

Stephen A. Ridley, and Georg Wicherski. Android Hacker’s Hand-
book. Wiley Publishing, 2014.

Joshua Drake. Stagefright: Scary Code in the Heart of Android.
Black Hat USA. 2015.

Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern
Classification (2nd Edition). Wiley-Interscience, 2000.

Peter Eckersley. “How Unique is Your Web Browser?” In: Pro-
ceedings on Privacy Enhancing Technologies (PETS). 2010.

Bradley Efron. “Bootstrap Methods: Another Look at the Jack-
knife.” In: The Annals of Statistics 7.1 (1979).

Nikolay Elenkov. Android Security Internals: An In-Depth Guide
to Android’s Security Architecture. No Starch Press, 2014.

https://github.com/androguard
https://github.com/androguard
http://developer.android.com/training/permissions/requesting.html
http://developer.android.com/training/permissions/requesting.html
http://developer.android.com/training/permissions/requesting.html

[71]

[72]

[73]

[74]

[75]

[76]

(771

[78]

[79]

[80]

[81]

[82]

BIBLIOGRAPHY

William Enck, Machigar Ongtang, and Patrick Drew McDaniel.
“On lightweight mobile phone application certification.” In:
Proc. of ACM Conference on Computer and Communications Se-
curity (CCS). 2009.

William Enck, Peter Gilbert, Byung gon Chun, Landon P. Cox,
Jaeyeon Jung, Patrick McDaniel, and Anmol Sheth. “TaintDro-
id: An Information-Flow Tracking System for Realtime Privacy
Monitoring on Smartphones.” In: Proc. of USENIX Symposium
on Operating Systems Design and Implementation (OSDI). 2010.

William Enck, Damien Octeau, Patrick McDaniel, and Swarat
Chaudhuri. “A Study of Android Application Security.” In:
Proc. of USENIX Security Symposium. 2011.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang,
and Chih-Jen Lin. “LIBLINEAR: A Library for Large Linear
Classification.” In: Journal of Machine Learning Research (JMLR)
9 (2008).

Tom Fawecett. “An introduction to ROC analysis.” In: Pattern
Recognition Letters 27.8 (2006).

Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steve Ha-
nna, and David Wagner. “A Survey of Mobile Malware in the
Wild.” In: Proc. of the ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices (SPSM). 2011.

Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song,
and David Wagner. “Android permissions demystified.” In:
Proc. of ACM Conference on Computer and Communications Se-
curity (CCS). 2011, pp. 627-638.

Adrienne Porter Felt, Helen J. Wang, Alexander Moshchuk,
Steven Hanna, and Erika Chin. “Permission Re-delegation: At-
tacks and Defenses.” In: Proc. of USENIX Security Symposium.
2011.

Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. “Apposco-
py: Semantics-based Detection of Android Malware Through
Static Analysis.” In: Proceedings of the ACM Symposium on Foun-
dations of Software Engineering (FSE). 2014.

Yu Feng, Osbert Bastani, Ruben Martins, Isil Dillig, and Saswat
Anand. “Automated Synthesis of Semantic Malware Signatures
using Maximum Satisfiability.” In: Proc. of Network and Dis-
tributed System Security Symposium (NDSS). 2017.

Kevin Finisterre. SilverPushUnmasked. https://github.com/M
AVProxyUser/SilverPushUnmasked. (last visited Mar. 13, 2019).

Prahlad Fogla and Wenke Lee. “Evading Network Anomaly
Detection Systems: Formal Reasoning and Practical Techni-
ques.” In: Proc. of ACM Conference on Computer and Communica-
tions Security (CCS). 2006.

141

https://github.com/MAVProxyUser/SilverPushUnmasked
https://github.com/MAVProxyUser/SilverPushUnmasked

142

[83]

[84]

[85]

[86]

(871

[88]

[89]

[90]

[91]

[92]

[93]
[94]
[95]

BIBLIOGRAPHY

Prahlad Fogla, Monirul Sharif, Roberto Perdisci, Oleg Kolesni-
kov, and Wenke Lee. “Polymorphic Blending Attacks.” In: Proc.
of USENIX Security Symposium. 2006.

Fortinet. Android/Fakelnst.Cltr. http://fortiguard.com/encyc
lopedia/virus/3928646. (last visited Mar. 13, 2019). 2012.

Y. Fratantonio, A. Bianchi, W. Robertson, E. Kirda, C. Kruegel,
and G. Vigna. “TriggerScope: Towards Detecting Logic Bombs
in Android Applications.” In: Proc. of IEEE Symposium on Secu-
rity and Privacy (S&P). 2016.

Yanick Fratantonio, Chenxiong Qian, Simon Chung, and Wenke
Lee. “Cloak and Dagger: From Two Permissions to Complete
Control of the UI Feedback Loop.” In: Proc. of IEEE Symposium
on Security and Privacy (S&P). 2017.

Jesus Freke. Smali - A disassembler for Android’s DEX format. ht
tps://github.com/JesusFreke/smali/wiki. (last visited Mar.
13, 2019).

Jessica Fridrich. “Sensor Defects in Digital Image Forensic.” In:
Digital Image Forensics: There is More to a Picture Than Meets the
Eye. Springer, 2013.

Joshua Garcia, Mahmoud Hammad, and Sam Malek. “Light-
weight, Obfuscation-Resilient Detection and Family Identifica-

tion of Android Malware.” In: ACM Transactions on Software
Engineering and Methodology (TOSEM) (2018).

Gartner. Global mobile OS market share in sales to end users from
1st quarter 2009 to 2nd quarter 2018. https://www.statista.
com/statistics /266136 /global - market - share - held - by -
smartphone-operating- systems/. (last visited Mar. 13, 2019).
2018.

Hugo Gascon, Fabian Yamaguchi, Daniel Arp, and Konrad
Rieck. “Structural Detection of Android Malware using Em-
bedded Call Graphs.” In: Proc. of ACM Workshop on Artificial
Intelligence and Security (AISEC). 2013.

I. Gashi, B. Sobesto, S. Mason, V. Stankovic, and M. Cukier. “A
study of the relationship between antivirus regressions and
label changes.” In: IEEE International Symposium on Software
Reliability Engineering (ISSRE). 2013.

AV-TEST GmbH. Security Report 2015/16. 2017.

Kaspersky Lab GmbH. Mobile Malware Evolution 2016. 2017.

Carlos A. Gomez-Uribe and Neil Hunt. “The Netflix Recom-
mender System: Algorithms, Business Value, and Innovation.”
In: ACM Transactions on Management Information Systems (TMIS)
6 (2015).

http://fortiguard.com/encyclopedia/virus/3928646
http://fortiguard.com/encyclopedia/virus/3928646
https://github.com/JesusFreke/smali/wiki
https://github.com/JesusFreke/smali/wiki
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

BIBLIOGRAPHY

Google/Ipsos. How people discover, use, and stay engaged with
apps. https://think.storage.googleapis.com/docs/how-us
ers-discover-use-apps-google-research.pdf. (last visited
Mar. 13, 2019). 2016.

Michael Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and
Xuxian Jiang. “RiskRanker: scalable and accurate zero-day an-
droid malware detection.” In: Proc. of International Conference
on Mobile Systems, Applications, and Services (MOBISYS). 2012.

Isabelle Guyon and André Elisseeff. “An Introduction to Vari-
able and Feature Selection.” In: Journal of Machine Learning Re-
search (JMLR) 3 (2003).

Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir
Vapnik. “Gene Selection for Cancer Classification using Sup-
port Vector Machines.” In: Machine Learning 46 (2002).

Thiago S. Guzella and Walmir M. Caminhas. “A review of ma-
chine learning approaches to Spam filtering.” In: Expert Sys-
tems with Applications 36.7 (2009).

Petter Hallmo, Arne Sundby, and Iain WS Mair. “Extended
High-frequency Audiometry: Air- and Bone-conduction Thresh-
olds, Age and Gender Variations.” In: Scandinavian Audiology

23.3 (1994)-
Michael Hanspach and Michael Goetz. “On Covert Acousti-
cal Mesh Networks in Air.” In: Journal of Communications 8.11

(2013).

Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S. Sathiya Keerthi,
and S. Sundararajan. “A Dual Coordinate Descent Method for
Large-scale Linear SVM.” In: Proc. of Int. Conference on Machine
Learning (ICML). 2008.

Ling Huang, Anthony D. Joseph, Blaine Nelson, Benjamin I. P.
Rubinstein, and J. Doug Tygar. “Adversarial Machine Learn-
ing.” In: Proc. of ACM Workshop on Artificial Intelligence and Se-
curity (AISEC). 2011.

Thomas Hupperich, Davide Maiorca, Marc Kiihrer, Thorsten
Holz, and Giorgio Giacinto. “On the Robustness of Mobile De-
vice Fingerprinting: Can Mobile Users Escape Modern Web-
Tracking Mechanisms?” In: Proc. of Annual Computer Security
Applications Conference (ACSAC). 2015.

Médéric Hurier, Kevin Allix, Tegawendé F. Bissyandé, Jacques
Klein, and Yves Le Traon. “On the Lack of Consensus in Anti-
Virus Decisions: Metrics and Insights on Building Ground Tru-
ths of Android Malware.” In: Proc. of Conference on Detection
of Intrusions and Malware & Vulnerability Assessment (DIMVA).
2016.

143

https://think.storage.googleapis.com/docs/how-users-discover-use-apps-google-research.pdf
https://think.storage.googleapis.com/docs/how-users-discover-use-apps-google-research.pdf

144

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

BIBLIOGRAPHY

Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu,
Cristina Nita-Rotaru, and Bo Li. “Manipulating Machine Learn-
ing: Poisoning Attacks and Countermeasures for Regression
Learning.” In: Proc. of IEEE Symposium on Security and Privacy
(S&P). 2018.

Xuxian Jiang. Security Alert: New Android Malware — GoldDream
— Found in Alternative App Markets. https://www.csc2.ncsu.
edu/faculty/xjiang4/GoldDream/. (last visited Mar. 13, 2019).
2011.

Xuxian Jiang. Security Alert: New DroidKungFu Variant — AGAIN!
— Found in Alternative Android Markets. https ://www . csc2 .
ncsu.edu/faculty/xjiang4/DroidKungFu3/. (last visited Mar.
13, 2019). 2011.

Xuxian Jiang. Security Alert: New DroidKungFu Variants Found
in Alternative Chinese Android Markets. https://www.csc2.ncs
u.edu/faculty/xjiang4/DroidKungFu2/. (last visited Mar. 13,
2019). 2011.

Xuxian Jiang. Security Alert: New Sophisticated Android Malware
DroidKungFu Found in Alternative Chinese App Markets. https:
//www.csc2.ncsu.edu/faculty/xjiang4/DroidKungFu.html.
(last visited Mar. 13, 2019). 2011.

Roberto Jordaney, Kumar Sharad, Santanu K. Dash, Zhi Wang,
Davide Papini, Ilia Nouretdinov, and Lorenzo Cavallaro. “Tran-
scend: Detecting Concept Drift in Malware Classification Mod-
els.” In: Proc. of USENIX Security Symposium. 2017.

Alex Kantchelian, Sadia Afroz, Ling Huang, Aylin Caliskan
Islam, Brad Miller, Michael Carl Tschantz, Rachel Greenstadyt,
Anthony D. Joseph, and J. D. Tygar. “Approaches to Adversar-
ial Drift.” In: Proc. of ACM Workshop on Artificial Intelligence and
Security (AISEC). 2013.

Alexandros Kapravelos, Yan Shoshitaishvili, Marco Cova, Chr-
istopher Kruegel, and Giovanni Vigna. “Revolver: An Auto-
mated Approach to the Detection of Evasive Web-based Mal-
ware.” In: Proc. of USENIX Security Symposium. 2013.

Karen Kay. Fancy that hat Rihanna’s wearing on TV? Shazam
wants to help you track it down. https://www . theguardian .
com/ technology /2013 /mar /30 / shazam- app - tv - viewers -
advertisers. (last visited Mar. 13, 2019).

Quentyn Kennemer. Spammy ads in the notification bar die this
week as Google’s latest Play Store changes take effect. http://ph
android.com/2013/09/30/google-play-notification- ads-
policy/. (last visited Mar. 13, 2019). 2013.

https://www.csc2.ncsu.edu/faculty/xjiang4/GoldDream/
https://www.csc2.ncsu.edu/faculty/xjiang4/GoldDream/
https://www.csc2.ncsu.edu/faculty/xjiang4/DroidKungFu3/
https://www.csc2.ncsu.edu/faculty/xjiang4/DroidKungFu3/
https://www.csc2.ncsu.edu/faculty/xjiang4/DroidKungFu2/
https://www.csc2.ncsu.edu/faculty/xjiang4/DroidKungFu2/
https://www.csc2.ncsu.edu/faculty/xjiang4/DroidKungFu.html
https://www.csc2.ncsu.edu/faculty/xjiang4/DroidKungFu.html
https://www.theguardian.com/technology/2013/mar/30/shazam-app-tv-viewers-advertisers
https://www.theguardian.com/technology/2013/mar/30/shazam-app-tv-viewers-advertisers
https://www.theguardian.com/technology/2013/mar/30/shazam-app-tv-viewers-advertisers
http://phandroid.com/2013/09/30/google-play-notification-ads-policy/
http://phandroid.com/2013/09/30/google-play-notification-ads-policy/
http://phandroid.com/2013/09/30/google-play-notification-ads-policy/

BIBLIOGRAPHY 145

[117] Dhilung Kirat, Giovanni Vigna, and Christopher Kruegel. “Bare-
Cloud: Bare-metal Analysis-based Evasive Malware Detection.”
In: Proc. of USENIX Security Symposium. 2014.

[118] Pang Wei Koh and Percy Liang. “Understanding Black-box
Predictions via Influence Functions.” In: Proc. of Int. Conference
on Machine Learning (ICML). 2017.

[119] Platon Kotzias, Srdjan Matic, Richard Rivera, and Juan Ca-
ballero. “Certified PUP: Abuse in Authenticode Code Sign-
ing.” In: Proc. of ACM Conference on Computer and Communi-
cations Security (CCS). 2015.

[120] L. F. Kozachenko and N. N. Leonenko. “Sample Estimate of
the Entropy of a Random Vector.” In: Problems of Information
Transmission 23.2 (1987).

[121] Balachander Krishnamurthy and Walter Willinger. “What Are
Our Standards for Validation of Measurement-based Network-
ing Research?” In: ACM SIGMETRICS Performance Evaluation
Review (PER) 36.2 (2008).

[122] Christopher Kriigel, Thomas Toth, and Engin Kirda. “Service
Specific Anomaly Detection for Network Intrusion Detection.”
In: Proc. of ACM Symposium on Applied Computing (SAC). 2002.

[123] Andreas Kurtz, Hugo Gascon, Tobias Becker, Konrad Rieck,
and Felix Freiling. “Fingerprinting Mobile Devices Using Per-
sonalized Configurations.” In: Proceedings on Privacy Enhancing
Technologies (PETS) 2016.1 (2016).

[124] Google LLC. Android Security 2016 Year In Review. 2017.

[125] Google LLC. Android version market share distribution among
smartphone owners as of September 2018. https://www.statista.
com/statistics/271774/share-of-android-platforms-on-
mobile - devices - with - android - os/. (last visited Mar. 13,
2019). 2018.

[126] Hyewon Lee, Tae Hyun Kim, Jun Won Choi, and Sunghyun
Choi. “Chirp Signal-Based Aerial Acoustic Communication for
Smart Devices.” In: IEEE Conference on Computer Communica-
tions (INFOCOM). 2015.

[127] Jesse Levinson et al. “Towards fully autonomous driving: Sys-
tems and algorithms.” In: Proc. of IEEE Intelligent Vehicles Sym-
posium (IV). 2011.

[128] Peng Li, Limin Liu, Debin Gao, and Michael K. Reiter. “On
Challenges in Evaluating Malware Clustering.” In: Proc. of In-
ternational Symposium on Recent Advances in Intrusion Detection
(RAID). 2010.

https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os/
https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os/
https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os/

146

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

BIBLIOGRAPHY

Xiaojing Liao, Kan Yuan, XiaoFeng Wang, Zhou Li, Luyi Xing,
and Raheem A. Beyah. “Acing the IOC Game: Toward Auto-
matic Discovery and Analysis of Open-Source Cyber Threat
Intelligence.” In: Proc. of ACM Conference on Computer and Com-
munications Security (CCS). 2016.

Martina Lindorfer, Matthias Neugschwandtner, and Christian
Platzer. “"MARVIN: Efficient and Comprehensive Mobile App
Classification through Static and Dynamic Analysis.” In: Proc.
of the IEEE Annual Computer Software and Applications Confer-
ence (COMPSAC). 2015.

Martina Lindorfer, Matthias Neugschwandtner, Lukas Weich-
selbaum, Yanick Fratantonio, Victor van der Veen, and Chris-
tian Platzer. “Andrubis - 1,000,000 Apps Later: A View on Cur-
rent Android Malware Behaviors.” In: Proc. of the Int. Workshop
on Building Analysis Datasets and Gathering Experience Returns
for Security (BADGERS). 2014.

Daniel Lowd and Christopher Meek. “Adversarial Learning.”
In: Proc. of the ACM SIGKDD International Conference On Knowl-
edge Discovery and Data Mining (KDD). 2005.

Christian Lueg. Cyberangriffe auf Android-Geriite nehmen stark zu.
https://www.gdata.de/blog/2018/11/31254-cyberangriffe-
auf-android-gerate-nehmen- stark- zu. (last visited Mar. 13,
2019). 2018.

Federico Maggi, William Robertson, Christopher Kruegel, and
Giovanni Vigna. “Protecting a Moving Target: Addressing Web
Application Concept Drift.” In: Proc. of International Symposium
on Recent Advances in Intrusion Detection (RAID). 2009.

Davide Maiorca, Giorgio Giacinto, and Igino Corona. “A Pat-
tern Recognition System for Malicious PDF Files Detection.”
In: Proc. of the Int. Conference on Machine Learning and Data Min-
ing in Pattern Recognition (MLDM). 2012.

Davide Maiorca, Davide Ariu, Igino Corona, Marco Aresu,
and Giorgio Giacinto. “Stealth attacks: An extended insight
into the obfuscation effects on Android malware.” In: Comput-
ers & Security 51.C (2015).

Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis,
Emiliano De Cristofaro, Gordon J. Ross, and Gianluca Stringh-
ini. “MaMaDroid: Detecting Android Malware by Building
Markov Chains of Behavioral Models.” In: Proc. of Network and
Distributed System Security Symposium (NDSS). 2017.

Philip Marquardt, Arunabh Verma, Henry Carter, and Patrick
Traynor. “(Sp)iPhone: Decoding Vibrations from Nearby Key-
boards Using Mobile Phone Accelerometers.” In: Proc. of ACM
Conference on Computer and Communications Security (CCS). 2011.

https://www.gdata.de/blog/2018/11/31254-cyberangriffe-auf-android-gerate-nehmen-stark-zu
https://www.gdata.de/blog/2018/11/31254-cyberangriffe-auf-android-gerate-nehmen-stark-zu

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

BIBLIOGRAPHY

Vasilios Mavroudis, Shuang Hao, Yanick Fratantonio, Federico
Maggi, Christopher Kruegel, and Giovanni Vigna. “On the Pri-
vacy and Security of the Ultrasound Ecosystem.” In: Proceed-
ings on Privacy Enhancing Technologies (PETS) (2017).

McAfee. Android/Fakelnstaller.L. https://home .mcafee. com/
virusinfo/. (last visited Aug. 1, 2018). 2012.

Marco Melis, Davide Maiorca, Battista Biggio, Giorgio Giac-
into, and Fabio Roli. “Explaining Black-box Android Malware

Detection.” In: European Signal Processing Conference (EUSIPCO).

2018.

Yan Michalevsky, Dan Boneh, and Gabi Nakibly. “Gyrophone:
Recognizing Speech from Gyroscope Signals.” In: Proceedings
of USENIX Security Symposium. 2014.

Brad Miller et al. “Reviewer Integration and Performance Mea-
surement for Malware Detection.” In: Proc. of Conference on
Detection of Intrusions and Malware & Vulnerability Assessment
(DIMVA). 2016.

N. Miramirkhani, M. Appini, N. Nikiforakis, and M. Poly-
chronakis. “Spotless Sandboxes: Evading Malware Analysis
Systems Using Wear-and-Tear Artifacts.” In: Proc. of IEEE Sym-
posium on Security and Privacy (S&P). 2017.

Andreas Moser, Christopher Kruegel, and Engin Kirda. “Lim-
its of Static Analysis for Malware Detection.” In: Proc. of An-
nual Computer Security Applications Conference (ACSAC). 2007.

“Multiple classifier systems for robust classifier design in ad-
versarial environments.” In: Int. Journal of Machine Learning and
Cybernetics (IIMLC) 1.1 (2010).

Simone Mutti, Yanick Fratantonio, Antonio Bianchi, Luca Inv-
ernizzi, Jacopo Corbetta, Dhilung Kirat, Christopher Kruegel,
and Giovanni Vigna. “BareDroid: Large-Scale Analysis of An-
droid Apps on Real Devices.” In: Proc. of Annual Computer Se-
curity Applications Conference (ACSAC). 2015.

Naked Security. http://www.naked- security.com/malware/
Android.Gappusin/. (last visited Mar. 13, 2019). 2012.

Arvind Narayanan and Vitaly Shmatikov. “Robust De-anony-
mization of Large Sparse Datasets.” In: Proc. of IEEE Sympo-
sium on Security and Privacy (S&P). 2008.

Blaine Nelson, Marco Barreno, Fuching Jack Chi, Anthony D.
Joseph, Benjamin I. P. Rubinstein, Udam Saini, Charles Sut-
ton, J. D. Tygar, and Kai Xia. “Exploiting Machine Learning
to Subvert Your Spam Filter.” In: Proc. of USENIX Workshop on
Large-Scale Exploits and Emergent Threats (LEET). 2008.

147

https://home.mcafee.com/virusinfo/
https://home.mcafee.com/virusinfo/
http://www.naked-security.com/malware/Android.Gappusin/
http://www.naked-security.com/malware/Android.Gappusin/

148

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

BIBLIOGRAPHY

James Newsome, Brad Karp, and Dawn Xiaodong Song. “Para-
graph: Thwarting Signature Learning by Training Maliciously.”
In: Proc. of International Symposium on Recent Advances in Intru-
sion Detection (RAID). 2006.

Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen, Chr-
istopher Kruegel, Frank Piessens, and Giovanni Vigna. “Cook-
ieless Monster: Exploring the Ecosystem of Web-Based Device
Fingerprinting.” In: Proc. of IEEE Symposium on Security and
Privacy (S&P). 2013.

Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck, and
Tao Xie. “WHYPER: Towards Automating Risk Assessment of
Mobile Applications.” In: Proc. of USENIX Security Symposium.
2013.

Nicolas Papernot, Patrick Drew McDaniel, Xi Wu, Somesh Jha,
and Ananthram Swami. “Distillation as a Defense to Adversar-
ial Perturbations Against Deep Neural Networks.” In: Proc. of
IEEE Symposium on Security and Privacy (S&P). 2016.

Nicolas Papernot, Patrick D. McDaniel, Arunesh Sinha, and
Michael P. Wellman. “SoK: Security and Privacy in Machine
Learning.” In: Proc. of IEEE European Symposium on Security
and Privacy (EuroS&P). 2018.

Hao Peng, Christopher S. Gates, Bhaskar Pratim Sarma, Nin-
ghui Li, Yuan Qi, Rahul Potharaju, Cristina Nita-Rotaru, and
Ian Molloy. “Using probabilistic generative models for ranking
risks of Android apps.” In: Proc. of ACM Conference on Com-
puter and Communications Security (CCS). 2012.

R. Perdisci, D. Dagon, W. Lee, P. Fogla, and M.I. Sharif. “Mis-
leading Worm Signature Generators Using Deliberate Noise
Injection.” In: Proc. of IEEE Symposium on Security and Privacy
(S&P). 2006.

Henning Perl, Sergej Dechand, Matthew Smith, Daniel Arp,
Fabian Yamaguchi, Konrad Rieck, Sascha Fahl, and Yasemin
Acar. “VCCFinder: Finding Potential Vulnerabilities in Open-
Source Projects to Assist Code Audits.” In: Proc. of ACM Con-
ference on Computer and Communications Security (CCS). 2015.

Thanasis Petsas, Giannis Voyatzis, Elias Athanasopoulos, Mi-
chalis Polychronakis, and Sotiris Ioannidis. “Rage Against the

Virtual Machine: Hindering Dynamic Analysis of Android Mal-
ware.” In: Proc. of the European Workshop on System Security (EU-
ROSEC). 2014.

Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi, Chr-
istopher Kruegel, and Giovanni Vigna. “Execute This! Analyz-
ing Unsafe and Malicious Dynamic Code Loading in Android

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

BIBLIOGRAPHY

Applications.” In: Proc. of Network and Distributed System Secu-
rity Symposium (NDSS). 2014.

G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos.
“Paranoid Android: Versatile Protection For Smartphones.” In:
Proc. of Annual Computer Security Applications Conference (AC-
SAC). 2010.

Siegfried Rasthofer, Steven Arzt, Marc Miltenberger, and Eric
Bodden. “Harvesting Runtime Values in Android Applications
That Feature Anti-Analysis Techniques.” In: Proc. of Network
and Distributed System Security Symposium (NDSS). 2016.

V. Rastogi, Y. Chen, and W. Enck. “AppsPlayground: Auto-
matic Security Analysis of Smartphone Applications.” In: Proc.

of ACM Conference on Data and Applications Security and Privacy
(CODASPY). 2013.

Vaibhav Rastogi, Yan Chen, and Xuxian Jiang. “DroidChamele-
on: Evaluating Android Anti-malware against Transformation
Attacks.” In: Proc. of ACM Asia Conference on Computer Com-
puter and Communications Security (ASIA CCS). 2013.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Why
Should I Trust You?: Explaining the Predictions of Any Classi-
tier.” In: Proc. of the ACM SIGKDD International Conference On
Knowledge Discovery and Data Mining (KDD). 2016.

Henry Gordon Rice. “Classes of recursively enumerable sets
and their decision problems.” In: Transactions of the American
Mathematical Society (AMS) 74.2 (1953).

Konrad Rieck. “Machine learning for application layer intru-

sion detection.” PhD thesis. Berlin Institute of Technology, 2009.

Konrad Rieck, Tammo Krueger, and Andreas Dewald. “Cujo:
Efficient Detection and Prevention of Drive-by-download At-
tacks.” In: Proc. of Annual Computer Security Applications Con-
ference (ACSAC). 2010.

Konrad Rieck, Thorsten Holz, Carsten Willems, Patrick Diissel,
and Pavel Laskov. “Learning and Classification of Malware
Behavior.” In: Proc. of Conference on Detection of Intrusions and
Malware & Vulnerability Assessment (DIMVA). 2008.

Christian Rossow, Christian Dietrich, Chris Gier, Christian Kr-
eibich, Vern Paxson, Norbert Pohlmann, Herbert Bos, and Ma-
arten van Steen. “Prudent Practices for Designing Malware
Experiments: Status Quo and Outlook.” In: Proc. of IEEE Sym-
posium on Security and Privacy (S&P). 2012.

149

150

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

BIBLIOGRAPHY

Sankardas Roy, Jordan DeLoach, Yuping Li, Nic Herndon, Do-
ina Caragea, Xinming Ou, Venkatesh Prasad Ranganath, Hong-
min Li, and Nicolais Guevara. “Experimental Study with Real-
world Data for Android App Security Analysis using Machine
Learning.” In: Proc. of Annual Computer Security Applications
Conference (ACSAC). 2015.

Fernando Ruiz. ‘Fakelnstaller” Leads the Attack on Android Phones.
https://securingtomorrow.mcafee.com/mcafee- labs/fake
installer - leads - the - attack - on - android - phones/. (last
visited Mar. 13, 2019). 2012.

Bhaskar Pratim Sarma, Ninghui Li, Chris Gates, Rahul Potha-
raju, Cristina Nita-Rotaru, and Ian Molloy. “Android permis-
sions: a perspective combining risks and benefits.” In: Proc. of
ACM symposium on Access Control Models and Technologies (SAC-
MAT). 2012.

Badrul Sarwar, George Karypis, Joseph Konstan, and John Ri-
edl. “Item-based Collaborative Filtering Recommendation Al-
gorithms.” In: Proc. of the International World Wide Web Confer-
ence (WWW). 2001.

Aubrey-Derrick Schmidt, Rainer Bye, Hans-Gunther Schmidt,
Jan Hendrik Clausen, Osman Kiraz, Kamer Ali Yiiksel, Seyit
Ahmet Camtepe, and Sahin Albayrak. “Static Analysis of Exe-
cutables for Collaborative Malware Detection on Android.” In:
Proc. of IEEE International Conference on Communications (ICC).
2009.

Bernhard Scholkopf and Alexander J. Smola. Learning with Ker-
nels: Support Vector Machines, Regularization, Optimization, and
Beyond. MIT Press, 2001.

Qinfeng Shi, James Petterson, Gideon Dror, John Langford,

Alex Smola, and S.V.N. Vishwanathan. “Hash Kernels for Struc-
tured Data.” In: Journal of Machine Learning Research (JMLR) 10

(2009).

Y. Shoshitaishvili et al. “SOK: (State of) The Art of War: Offen-
sive Techniques in Binary Analysis.” In: 2016 IEEE Symposium

on Security and Privacy (SP). 2016.

Zarah Simon. Adwares. Are they viruses or not? http://androi
dmalwareresearch.blogspot.de/2012/07/adwares-are-they-
viruses-or-not.html. (last visited Mar. 13, 2019). 2012.

Anshuman Singh, Andrew Walenstein, and Arun Lakhotia.
“Tracking Concept Drift in Malware Families.” In: Proc. of ACM
Workshop on Artificial Intelligence and Security (AISEC). 2012.

https://securingtomorrow.mcafee.com/mcafee-labs/fakeinstaller-leads-the-attack-on-android-phones/
https://securingtomorrow.mcafee.com/mcafee-labs/fakeinstaller-leads-the-attack-on-android-phones/
http://androidmalwareresearch.blogspot.de/2012/07/adwares-are-they-viruses-or-not.html
http://androidmalwareresearch.blogspot.de/2012/07/adwares-are-they-viruses-or-not.html
http://androidmalwareresearch.blogspot.de/2012/07/adwares-are-they-viruses-or-not.html

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

BIBLIOGRAPHY

Charles Smutz and Angelos Stavrou. “When a Tree Falls: Us-
ing Diversity in Ensemble Classifiers to Identify Evasion in
Malware Detectors.” In: Proc. of Network and Distributed System
Security Symposium (NDSS). 2016.

R. Sommer and V. Paxson. “Outside the Closed World: On
Using Machine Learning for Network Intrusion Detection.” In:
Proc. of IEEE Symposium on Security and Privacy (S&P). 2010.

Michael Spreitzenbarth, Felix Freiling, Florian Echtler, Thomas
Schreck, and Johannes Hoffmann. “Mobile-sandbox: Having
a Deeper Look into Android Applications.” In: Proc. of ACM
Symposium on Applied Computing (SAC). 2013.

Guillermo Suarez-Tangil, Santanu Kumar Dash, Mansour Ah-
madi, Johannes Kinder, Giorgio Giacinto, and Lorenzo Caval-
laro. “DroidSieve: Fast and Accurate Classification of Obfus-
cated Android Malware.” In: Proc. of ACM Conference on Data
and Applications Security and Privacy (CODASPY). 2017.

Octavian Suciu, Radu Marginean, Yigitcan Kaya, Hal Daumé
III, and Tudor Dumitras. “When Does Machine Learning FAIL?
Generalized Transferability for Evasion and Poisoning Attacks.”
In: Proc. of USENIX Security Symposium. 2018.

Mingshen Sun, Xiaolei Li, John C.S. Lui, Richard T.B. Ma, and
Zhenkai Liang. “Monet: A User-oriented Behavior-based Mal-
ware Variants Detection System for Android.” In: IEEE Trans-
actions on Information Forensics and Security (TIFS) (2016).

Symantec. Android.Golddream. https://www . symantec . com/
security_response/writeup.jsp?docid=2011-070608-4139-
99&tabid=2. (last visited Mar. 13, 2019). 2011.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Br-
una, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. “In-
triguing properties of neural networks.” In: International Con-
ference on Learning Representations (ICLR). 2014.

Peter Szor. The Art of Computer Virus Research and Defense. Add-
ison-Wesley Professional, 2005.

Kimberly Tam, Salahuddin Khan, Aristide Fattori, and Lorenzo
Cavallaro. “CopperDroid: Automatic Reconstruction of Andro-
id Malware Behaviors.” In: Proc. of Network and Distributed Sys-
tem Security Symposium (NDSS). 2015.

O. Tange. “GNU Parallel - The Command-Line Power Tool.”
In: ;login: The USENIX Magazine (2011).

New York Times. That Game on Your Phone May Be Tracking
What You're Watching on TV. https://www.nytimes.com/2017/
12/28/business/media/alphonso-app- tracking.html. (last
visited Mar. 13, 2019). 2017.

151

https://www.symantec.com/security_response/writeup.jsp?docid=2011-070608-4139-99&tabid=2
https://www.symantec.com/security_response/writeup.jsp?docid=2011-070608-4139-99&tabid=2
https://www.symantec.com/security_response/writeup.jsp?docid=2011-070608-4139-99&tabid=2
https://www.nytimes.com/2017/12/28/business/media/alphonso-app-tracking.html
https://www.nytimes.com/2017/12/28/business/media/alphonso-app-tracking.html

152

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

BIBLIOGRAPHY

Florian Tramer, Fan Zhang, Ari Juels, Michael K. Reiter, and
Thomas Ristenpart. “Stealing Machine Learning Models via
Prediction APIs.” In: Proc. of USENIX Security Symposium. 2016.

Timon Van Overveldt, Christopher Kruegel, and Giovanni Vi-
gna. “FlashDetect: ActionScript 3 Malware Detection.” In: Proc.
of Symposium on Research in Attacks, Intrusions, and Defenses
(RAID). 2012.

V.N. Vapnik. Estimation of Dependences Based on Empirical Data
[in Russian]. Nauka, 1979.

V.N. Vapnik and A.Y. Chervonenkis. Theory of Pattern Recogni-
tion: Statistical Problems of Learning [in Russian]. Nauka, 1974.

Shobha Venkataraman, Avrim Blum, and Dawn Song. “Lim-
its of Learning-based Signature Generation with Adversaries.”
In: Proc. of Network and Distributed System Security Symposium
(NDSS). 2008.

Kaveh Waddell. Your Phone Is Listening — Literally Listening — to
Your TV. http://www.theatlantic.com/technology/archive/
2015/11/your - phone- is - literally - listening- to - your -
tv/416712/. (last visited Mar. 13, 2019). 2015.

Avery Li-Chun Wang. “An Industrial-Strength Audio Search
Algorithm.” In: International Symposium on Music Information
Retrieval (ISMIR). 2003.

Binghui Wang and Neil Zhengiang Gong. “Stealing Hyperpa-
rameters in Machine Learning.” In: Proc. of IEEE Symposium on
Security and Privacy (S&P). 2018.

Ke Wang, Janak J. Parekh, and Salvatore J. Stolfo. “Anagram: A
Content Anomaly Detector Resistant To Mimicry Attack.” In:
Proc. of International Symposium on Recent Adances in Intrusion
Detection (RAID). 2006.

Fengguo Wei, Yuping Li, Sankardas Roy, Xinming Ou, and
Wu Zhou. “Deep Ground Truth Analysis of Current Android
Malware.” In: Proc. of Conference on Detection of Intrusions and
Malware & Vulnerability Assessment (DIMVA). 2017.

Fengguo Wei, Yuping Li, Sankardas Roy, Xinming Ou, and
Wu Zhou. Trojan-Spy.Mecor.1. http://amd.arguslab.org/fami
lies/Mecor/varietyl.html. (last visited Mar. 13, 2019). 2017.

Primal Wijesekera, Arjun Baokar, Ashkan Hosseini, Serge Egel-
man, David Wagner, and Konstantin Beznosov. “Android Per-
missions Remystified: A Field Study on Contextual Integrity.”
In: Proc. of USENIX Security Symposium. 2015.

Michelle Wong and David Lie. “Tackling runtime-based ob-
fuscation in Android with TIRO.” In: Proc. of USENIX Security
Symposium. 2018.

http://www.theatlantic.com/technology/archive/2015/11/your-phone-is-literally-listening-to-your-tv/416712/
http://www.theatlantic.com/technology/archive/2015/11/your-phone-is-literally-listening-to-your-tv/416712/
http://www.theatlantic.com/technology/archive/2015/11/your-phone-is-literally-listening-to-your-tv/416712/
http://amd.arguslab.org/families/Mecor/variety1.html
http://amd.arguslab.org/families/Mecor/variety1.html

[206]

[207]

[208]

[209]

[210]

[211]

[212]

[213]

[214]

[215]

BIBLIOGRAPHY

Christian Wressnegger, Frank Boldewin, and Konrad Rieck.
“Deobfuscating Embedded Malware Using Probable-Plaintext
Attacks.” In: Proc. of Symposium on Research in Attacks, Intru-
sions, and Defenses (RAID). 2013.

Christian Wressnegger, Guido Schwenk, Daniel Arp, and Kon-
rad Rieck. “A Close Look on n-Grams in Intrusion Detection:
Anomaly Detection vs. Classification.” In: Proc. of ACM Work-
shop on Artificial Intelligence and Security (AISEC). 2013.

Christian Wressnegger, Kevin Freeman, Fabian Yamaguchi, and
Konrad Rieck. “Automatically Inferring Malware Signatures
for Anti-Virus Assisted Attacks.” In: Proc. of ACM Asia Confer-
ence on Computer Computer and Communications Security (ASIA
CCS). 2017.

Dong-Jie Wu, Ching-Hao Mao, Te-En Wei, Hahn-Ming Lee,
and Kuo-Ping Wu. “DroidMat: Android Malware Detection
through Manifest and API Calls Tracing.” In: Proc. of the Asia
Joint Conference on Information Security (ASIA JCIS). 2012.

M. Xia, L. Gong, Y. Lyu, Z. Qi, and X. Liu. “Effective Real-Time
Android Application Auditing.” In: Proc. of IEEE Symposium on
Security and Privacy (S&P). 2015.

Xingyu Xing, Wei Meng, Dan Doozan, Alex C. Snoeren, Nick
Feamster, and Wenke Lee. “Take This Personally: Pollution
Attacks on Personalized Services.” In: Proc. of USENIX Security
Symposium. 2013.

Weilin Xu, David Evans, and Yanjun Qi. “Feature Squeezing:
Detecting Adversarial Examples in Deep Neural Networks.”
In: Proc. of Network and Distributed System Security Symposium
(NDSS). 2018.

Weilin Xu, Yanjun Qi, and David Evans. “Automatically Evad-
ing Classifiers: A Case Study on PDF Malware Classifiers.”
In: Proc. of Network and Distributed System Security Symposium
(NDSS). 2016.

Lei Xue, Yajin Zhou, Ting Chen, Xiapu Luo, and Guofei Gu.
“Malton: Towards On-Device Non-Invasive Mobile Malware
Analysis for ART.” In: Proc. of USENIX Security Symposium.
2017.

Yinxing Xue, Guozhu Meng, Yang Liu, Tian Huat Tan, Hongxu
Chen, Jun Sun, and Jie Zhang. “Auditing Anti-Malware Tools
by Evolving Android Malware and Dynamic Loading Tech-
nique.” In: IEEE Transactions on Information Forensics and Secu-
rity (TIFS) 12.7 (2017).

153

154

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

BIBLIOGRAPHY

Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck.
“Modeling and Discovering Vulnerabilities with Code Prop-
erty Graphs.” In: Proc. of IEEE Symposium on Security and Pri-
vacy (S&P). 2014.

Lok-Kwong Yan and Heng Yin. “DroidScope: Seamlessly Re-
constructing OS and Dalvik Semantic Views for Dynamic An-
droid Malware Analysis.” In: Proc. of USENIX Security Sympo-
sium. 2012.

Guoming Zhang, Chen Yan, Xiaoyu Ji, Tianchen Zhang, Taimin
Zhang, and Wenyuan Xu. “DolphinAttack: Inaudible Voice
Commands.” In: Proc. of ACM Conference on Computer and Com-
munications Security (CCS). 2017.

Mu Zhang, Yue Duan, Heng Yin, and Zhiruo Zhao. “Semantics-
Aware Android Malware Classification Using Weighted Con-
textual API Dependency Graphs.” In: Proc. of ACM Conference
on Computer and Communications Security (CCS). 2014.

Mu Zhang, Yue Duan, Qian Feng, and Heng Yin. “Towards
Automatic Generation of Security-Centric Descriptions for An-
droid Apps.” In: Proc. of ACM Conference on Computer and Com-
munications Security (CCS). 2015.

Yuan Zhang, Min Yang, Bingquan Xu, Zhemin Yang, Guofei
Gu, Peng Ning, X. Sean Wang, and Binyu Zang. “Vetting Un-
desirable Behaviors in Android Apps with Permission Use
Analysis.” In: Proc. of ACM Conference on Computer and Com-
munications Security (CCS). 2013.

Min Zheng, Patrick P. C. Lee, and John C. S. Lui. “ADAM:
An Automatic and Extensible Platform to Stress Test Android
Anti-virus Systems.” In: Proc. of Conference on Detection of Intru-
sions and Malware & Vulnerability Assessment (DIMVA). 2013.

Yajin Zhou and Xuxian Jiang. “Dissecting Android Malware:
Characterization and Evolution.” In: Proc. of IEEE Symposium
on Security and Privacy (S&P). 2012.

Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. “Hey, You,
Get off of My Market: Detecting Malicious Apps in Official
and Alternative Android Markets.” In: Proc. of Network and Dis-
tributed System Security Symposium (NDSS). 2012.

Zhe Zhou, Wenrui Diao, Xiangyu Liu, and Kehuan Zhang.
“Acoustic Fingerprinting Revisited: Generate Stable Device ID
Stealthily with Inaudible Sound.” In: Proc. of ACM Conference
on Computer and Communications Security (CCS). 2014.

Zhe Zhu, Dun Liang, Songhai Zhang, Xiaolei Huang, Baoli Li,
and Shimin Hu. “Traffic-Sign Detection and Classification in
the Wild.” In: Proc. of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 2016.

[227]

[228]

BIBLIOGRAPHY

eMarketer. Number of smartphone users worldwide from 2014 to
2020 (in billions). https://www . statista.com/statistics
/330695 / number - of - smartphone - users - worldwide/. (last
visited Mar. 13, 2019). 2019.

Nedim Srndic and Pavel Laskov. “Practical Evasion of a Learn-
ing-Based Classifier: A Case Study.” In: Proc. of IEEE Sympo-
sium on Security and Privacy (S&P). 2014.

155

https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/

	Abstract
	Publications
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Structure of this Thesis

	2 Background
	2.1 Android
	2.1.1 Applications
	2.1.2 Fragmentation
	2.1.3 Malware
	2.1.4 Anti-Virus Scanners
	2.1.5 Application Analysis

	2.2 Machine Learning
	2.2.1 The Learning Problem
	2.2.2 Generalization and Regularization
	2.2.3 Training and Testing
	2.2.4 From Applications to Vectors
	2.2.5 Support Vector Machines
	2.2.6 Evaluation Metrics

	2.3 Chapter Summary

	3 Ultrasound-Based Tracking Malware
	3.1 Mobile Device Tracking
	3.2 Privacy Threats
	3.3 Technical Background
	3.3.1 Audible and Inaudible Sound
	3.3.2 Encoding of Information
	3.3.3 Sending and Receiving

	3.4 Methodology
	3.4.1 Detecting Mobile Applications
	3.4.2 Detecting Ultrasonic Beacons
	3.4.3 Discussion

	3.5 Empirical Study
	3.5.1 Case Study SilverPush
	3.5.2 Case Study Lisnr
	3.5.3 Discussion

	3.6 Evaluation
	3.6.1 Controlled Experiment
	3.6.2 Audio Beacons in the Wild
	3.6.3 Applications in the Wild

	3.7 Discussion
	3.7.1 Limits and Challenges
	3.7.2 Countermeasures
	3.7.3 Limitations
	3.7.4 Conclusion and Outlook

	3.8 Related Work
	3.9 Chapter Summary

	4 Learning-Based Malware Detection
	4.1 Methodology
	4.1.1 Static Analysis of Applications
	4.1.2 Embedding in Vector Space
	4.1.3 Learning-based Detection
	4.1.4 Explanation

	4.2 Discussion
	4.3 Related Work
	4.3.1 Further Related Work

	4.4 Chapter Summary

	5 Performance Evaluation
	5.1 Evaluation Data
	5.1.1 Discussion

	5.2 Detection Performance
	5.2.1 Comparison with Related Approaches
	5.2.2 Comparison with Anti-Virus Scanners
	5.2.3 Detection of Malware Families
	5.2.4 Detection of Unknown Families
	5.2.5 Detection of Malware over Time
	5.2.6 Detection of Suspicious Applications
	5.2.7 Discussion

	5.3 Run-time Performance
	5.4 Limitations
	5.5 Related Work
	5.6 Chapter Summary

	6 Model Analysis and Explainability
	6.1 Explainability
	6.1.1 Feature Analysis of Malware Types
	6.1.2 Feature Analysis of Malware Families
	6.1.3 Discussion

	6.2 Model Analysis
	6.2.1 Support Vector Analysis
	6.2.2 Regularization
	6.2.3 Discussion

	6.3 Attacks against Machine Learning
	6.3.1 Attack Scenarios
	6.3.2 Evasion Attacks
	6.3.3 Defenses against Evasion Attacks
	6.3.4 Discussion

	6.4 Related Work
	6.5 Chapter Summary

	7 Conclusion
	7.1 Summary of Results
	7.2 Limitations and Future Work

	A Appendix
	A.1 Suspicious Applications

	Bibliography

