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ABSTRACT

Machine learning is increasingly used in security-critical applications,
such as malware detection, face recognition, and autonomous driving.
However, learning methods are vulnerable to different types of attacks
that thwart their secure application. So far, most research has focused
on attacks in the feature space of machine learning, that is, the vector
space underlying the learning process. Although this has led to a
thorough understanding of the possible attack surface, considering the
feature space alone ignores the environment machine learning is ap-
plied in. Inputs are usually given as real-world objects from a problem
space, such as malicious code or PDF files. Hence, an adversary has
to consider both the problem and the feature space. This is not trivial,
as both spaces have no one-to-one relation in most application areas
and feature-space attacks are thus not directly applicable in practice.
As a result, a more thorough examination is required to understand
the real-world impact of current attacks against machine learning.

In this thesis, we explore the relation between the problem and the
feature space regarding the attack surface of learning-based systems.
First, we analyze attacks in the problem space that create real objects
and that mislead learning methods in the feature space. A frame-
work is developed to examine the challenges, constraints, and search
strategies. To gain practical insights, we examine a problem-space
attack against source code attribution. An empirical evaluation shows
that the generated adversarial examples mislead the attribution in the
majority of cases. Second, we analyze the mapping from problem to
feature space. Using the example of image scaling, we study attacks
that exploit the mapping and that are agnostic to the learning model
or training data. After identifying the root cause of these attacks, de-
fenses for prevention are developed and empirically evaluated against
adversaries of different strengths.

Furthermore, the feature space also has an inherent connection to
the media space of digital watermarking. This space is a vector space in
which watermarks are embedded and detected. As adversaries target
this process, attacks and defenses have been extensively studied here
as well. Linking both spaces allows us to transfer attacks, defenses, and
knowledge between machine learning and watermarking. Two case
studies empirically demonstrate that defenses from watermarking can
mitigate model-extraction attacks and, similarly, that defenses from
machine learning can fend off watermarking attacks.

Taken together, this thesis provides a novel view on the security of
machine learning beyond the feature space by including the problem
space and the media space into the security analysis.
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ZUSAMMENFASSUNG

Maschinelles Lernen wird zunehmend in sicherheitskritischen An-
wendungen eingesetzt, zum Beispiel im Bereich der Schadsoftware-
Erkennung, der Gesichtserkennung und des autonomen Fahrens. Al-
lerdings konnen Angreifer Lernmethoden selbst gezielt umgehen oder
tauschen. Hierbei hat sich bislang ein Grofiteil der Forschung auf
Angriffe im Merkmalsraum von Lernmethoden beschrankt. In die-
sem Vektorraum findet der Lernprozess statt, sodass der Fokus auf
diesen Raum zu einem soliden Verstdandnis tiber die Angriffsflache
im maschinellen Lernen gefiihrt hat. Jedoch ist die alleinige Betrach-
tung des Merkmalsraums nicht ausreichend. In der Regel bestehen
die Eingaben im maschinellen Lernen aus realen Objekten aus einem
Problemraum, wie beispielsweise schddlichen Programmcode- oder
PDEF-Dateien. Ein Angreifer muss daher sowohl diesen Problemraum
als auch den Merkmalsraum beriicksichtigen. Dies ist nicht trivial,
da beide Rdume hdufig keine 1:1-Beziehung aufweisen und somit
Angriffe aus dem Merkmalsraum in der Praxis nicht direkt anwend-
bar sind. Um ein besseres Verstdndnis tiber die realen Auswirkungen
moglicher Angriffe im maschinellen Lernen zu erlangen, sind daher
weiterfithrende Untersuchungen nétig.

Diese Dissertation untersucht dazu die Beziehung zwischen Pro-
blemraum und Merkmalsraum hinsichtlich der Angriffsfldche lernba-
sierter Systeme. Es werden zuerst Angriffe im Problemraum betrach-
tet, welche reale Objekte erzeugen und gleichzeitig Lernmethoden im
Merkmalsraum tduschen. Die mit dem Angriff verbundenen Heraus-
forderungen, Nebenbedingungen und Suchstrategien werden hierbei
systematisch festgehalten. Die dabei gewonnenen Erkenntnisse werden
praktisch am Beispiel eines Angriffs gegen Identifikationsmethoden,
welche Entwickler basierend auf Programmcode erkennen, eingesetzt.
Eine empirische Evaluation zeigt, dass manipulierter Programmcode
die korrekte Identifikation in der Mehrheit der Félle verhindert. Als
zweiter Kernpunkt der Analyse wird konkret die Abbildung aus dem
Problemraum in den Merkmalsraum betrachtet. Am Beispiel von Bild-
skalierungen wird ein Angriff untersucht, welcher die Vorverarbeitung
in dieser Abbildung gezielt ausnutzt. Der Angriff hangt somit weder
vom Lernmodell noch von den Trainingsdaten ab. Eine Analyse der
Angriffsursachen fiihrt anschlieffend zur Entwicklung mehrerer Ver-
teidigungsstrategien, die einen Angriff praventiv verhindern. Diese
werden mit verschiedenen Angreifermodellen empirisch tiberpriift.

Abschliefsend stellt diese Dissertation eine Abbildung zwischen dem
Merkmalsraum aus dem maschinellen Lernen und dem Medienraum
digitaler Wasserzeichenverfahren her. Der Medienraum ist hierbei ein



Vektorraum, in dem die Einbettung und Erkennung von Wasserzei-
chen stattfindet. Auch hier versuchen Angreifer diesen Prozess zu
umgehen, weshalb verschiedene Angriffe und Verteidigungen eben-
falls im Kontext von Wasserzeichen erforscht worden sind. Das Her-
stellen einer Abbildung zwischen Merkmalsraum und Medienraum
erlaubt somit den Transfer von Angriffen, Verteidigungen und ge-
wonnenen Erkenntnissen aus beiden Forschungsdisziplinen. Zwei
Experimente belegen den Wissenstransfer empirisch. Erstens kann
eine Verteidigung aus dem Wasserzeichen-Kontext die Extraktion ei-
nes Lernmodells erschweren. Zweitens verhindert eine Verteidigung
aus dem maschinellen Lernen erfolgreich Wasserzeichen-Angriffe.

Zusammengefasst stellt diese Dissertation eine neue Sicht auf die
Sicherheit von maschinellen Lernen her, indem zuséatzlich zum Merk-
malsraum auch der Problemraum und der Medienraum in die Sicher-
heitsanalyse miteinbezogen werden.
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INTRODUCTION

1.1 MOTIVATION

Machine learning is nowadays a key component in computer science
and engineering. It has paved the way for breakthroughs in various
areas [120], such as the recognition of image content [190, 201] and
speech [97], as well as the translation of natural languages [15, 199].
Similarly, machine learning has also become a key enabler in computer
security, spawning multiple learning-based security systems, such as
for intrusion detection [145, 173], authorship attribution [2, 36], and
malware analysis [10, 174, 235]. For example, machine learning has
advanced the state-of-the-art in source-code authorship attribution
which allows identifying developers based on their coding style [2, 36].
Likewise, several detection systems for malicious software integrate
learning methods for analyzing data more effectively [10, 174, 235].

Despite great potential, machine learning itself can introduce a
considerable attack surface—at all stages of a learning pipeline. At
training time, poisoning and backdoor attacks allow an adversary to
manipulate the training process to change the classifier’s behavior [24,
128]. As an example, consider the recognition of traffic signs, a core
component for autonomous driving [122, 234]. With access to the
training data, an adversary can easily inject a backdoor into a learning
model by adding a trigger, for instance a small symbol, into a few
training images of her target class [92]. If pixels are directly used for
the learning process, a learning algorithm unnoticeably associates
the trigger with the target class. At deployment time, the classifier
correctly recognizes traffic signs in the absence of the trigger. Yet,
once the trigger is provided, the classifier returns the target label
irrespective of the actual traffic sign.

Moreover, a wide range of attacks are also possible after training at
deployment time. Adversarial examples and evasion attacks mislead the
prediction of a trained classifier by modifying the input only [26, 200].
These attacks typically operate in the classifier’s feature space which is
a vector space where the training and the classification are performed.
The objective is to find manipulations of the feature vector in this space,
so that the target prediction is returned. In the image domain, these
attacks have been successfully applied against deep neural networks
and they demonstrated that small changes of the feature vector already
lead to an arbitrary target prediction [38, 200]. Due to the one-to-
one relation between pixels and features, the found modifications
can be directly mapped back to images. As the changes are often
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imperceptible for human beings, these attacks raised questions about
the usage of deep learning for image recognition [38, 200].

Although attacks in the feature space provide a good understanding
of the vulnerability of learning methods [12, 38, 39], they are only
applicable if the feature manipulations can be mapped back to the
problem space which is the input space to machine learning. This is
straightforward with digital images if pixels from the problem space
have a direct relation to features. However, most application areas
with inputs such as text, source code, or PDF files do not have a one-
to-one relation between problem and feature space. Thus, there is no
inverse mapping and the real-world impact of feature-space attacks
on machine learning is rather unclear.

Let us consider source code as example. An adversary might identify
a promising feature vector for an attack, but this vector does not
necessarily consider the syntax and semantics of source code and thus
might not be realizable as code in the problem space. If an attack,
for instance, required adding more opening brackets than closing
brackets, this would directly violate the syntax. Moreover, the direction
from problem to feature space can also introduce a notable hurdle.
Due to side effects, the impact of a change in the source code on its
feature representation can be hard to predict. Renaming a variable, for
example, requires adapting all its usages which can also have an effect
on other features.

Most prior work has also overlooked the vulnerability of the map-
ping from problem to feature space. This mapping typically consists of
a preprocessing and the feature-extraction part. Both together are the
basis for the learning pipeline, so that the mapping can introduce a
considerable attack surface. Image-scaling attacks, for instance, exploit
the preprocessing [225]. They slightly modify an input such that the
mapping creates an arbitrary output. This enables an adversary to
conceal backdoors in training data, so that the trigger only appears
after the mapping during the training process [166]. The mapping
can also be tricked into returning an arbitrary output, which allows
controlling the prediction—similar to adversarial examples [171].

All these examples underline the complexity that the problem space
introduces—most of it neglected by prior work. While first pioneering
steps have been taken to integrate the problem space into the security
analysis [see 162, 169, 236], a thorough analysis of the relation between
the problem and the feature space regarding the attack surface has
been missing in research so far. In this thesis, we explore their relation
from two perspectives. First, we examine adversaries that mislead
learning methods in the feature space and that create real objects in
the problem space. Second, we take a closer look on the mapping itself.

The preceding insights highlight that we ought to look at more than
just the feature space for a comprehensive view on secure learning. In
fact, the feature space also has an inherent connection to the media
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space of digital watermarking. This space is a vector space where
the watermarking process is carried out. Similarly to secure learning,
watermarking also needs to deal with adversaries who seek to extract
or remove the watermark from a signal [60]. Therefore, this field has
also examined attacks and defenses in the media space and derived
lessons learned. These insights can help to apply machine learning
more securely. The other way round, concepts and insights from learn-
ing are also relevant to watermarking. In this thesis, we thoroughly
explore the relation between the feature space of machine learning and
the media space of watermarking. This joint view allows transferring
attacks, defenses, and lessons learned.

1.2 THESIS CONTRIBUTIONS

Taken together, this thesis provides a comprehensive analysis of the
relation between problem, feature, and media space regarding secure
machine learning. In particular, four main contributions are provided.

e Attacks along the learning pipeline. For a comprehensive analysis
of the different spaces, we study the basic concepts of machine
learning along a full learning pipeline before exploring possi-
ble attacks at each component of this pipeline. Ultimately, this
systematic picture of the adversarial environment allows deploy-
ing learning-based systems more securely by considering the
different types of attacks that machine learning can reveal.

e Attack in the problem space. To obtain an understanding of the
real-world implications, we analyze how adversaries can mis-
lead learning methods in the feature space while creating real
objects in the problem space. As these attacks are different to
feature-space attacks, a framework is developed to capture the
unique challenges, constraints, and search strategies. Using the
example of source code attribution, we apply this framework and
practically learn how real adversarial examples of code can be
created. Hence, this thesis does not only examine how an attack
in the problem space is realized, but also reveals weaknesses in
current state-of-the-art authorship attribution methods.

e Attack on the mapping. We further study how an adversary can ex-
ploit the mapping from problem to feature space. In the context
of preprocessing, in particular image scaling, we analyze how an
adversary can control the output of the mapping with impercep-
tible changes to the input image. This attack is agnostic to the
learning model, features, and training data. Moreover, it affects
common libraries, such as OpenCV, Pillow, and TensorFlow. Yet,
a root-cause analysis of this attack allows us to examine defenses
for prevention that do not interfere with the typical pipeline of
machine learning libraries.
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e Linking feature and media space. Finally, we connect learning and
watermarking. The feature and the media space are typically
vector spaces that are divided into subspaces through decision
boundaries. Thus, black-box attacks relying on input-output
queries use similar strategies that are transferable. This leads, for
instance, to novel black-box methods for adversarial examples
or model extraction. Moreover, the similar attack surface allows
transferring defenses, which is practically underlined in two case
studies. In addition, we study lessons learned from each of the
two fields, and how they can serve as guidance for the other.

1.3 STRUCTURE OF THESIS

Figure 1.1 provides an overview of the thesis’ structure. To provide a
foundation, Chapter 2 presents the learning pipeline and attacks at
each component of this pipeline. In Chapter 3, we study the attacks
in the problem space. The results against source code attribution and
parts of the developed framework are based on a paper that was
published at the USENIX Security Symposium in 2019 [169]. Chapter 4
examines the mapping from problem to feature space. The methods
and results around the scaling attacks are based on a paper that
was published at the USENIX Security Symposium in 2020 [171]. In
Chapter 5, we then study the correspondence between feature space
and media space. This chapter is mainly based on a paper published
at the IEEE European Symposium on Security and Privacy (EuroS&P) in
2018 [168], updated with recent work to account for developments in
research since publication. Finally, Chapter 6 provides a summary and
directions for future work. Additional insights and results for each
main chapter are provided in Appendix A, B, C, and D.

Chapter 3: Chapter 5:
Attack in the Linking feature space
problem space & media space

______________
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Chapter 2: Background ‘

Figure 1.1: A schematic overview of the thesis with references to chapters.
The thesis systematically examines the relations between the
problem space Z, feature space F, and media space M.



BACKGROUND

Machine learning has become the tool of choice in a number of areas.
Learning methods are not only applied in classic settings, such as
speech [97] and handwriting recognition [188], but increasingly oper-
ate at the core of security-critical applications, such as autonomous
driving [e.g., 122, 234] and malware detection [e.g., 10, 174, 235]. The
success of machine learning methods is rooted in the capability to
automatically find patterns and relations within given data sets [see 67,
94]. However, this inference is usually not robust against attacks and
thus may be disrupted or deceived by an adversary. In this chapter,
we will first examine the basic concepts in machine learning along a
typical data pipeline. This allows us then to systematically analyze
the threat scenario of machine learning which lays the ground for the
remainder of this thesis.

2.1 MACHINE LEARNING

Machine learning means learning from data automatically [1]. To re-
spond to the diverse problems in our world, a vast set of concepts and
techniques has been developed. To better understand and categorize
this set, we can break down machine learning into three learning
paradigms that deal with different assumptions and situations [1].

SUPERVISED LEARNING In this setting, we have a dataset of objects,
such as PDF files or programs, and a respective target output assigned
to each object. This output can be a numerical value in regression or
a class label in classification tasks. Based on this labeled dataset, the
objective is to automatically learn a prediction function that provides
a value or label for future objects. The main contribution is that this
function generalizes the data to the inherent patterns and relations
instead of just memorizing the dataset. In security-critical applications,
for instance, we are interested in classifying programs into goodware
or malware in order to detect malicious behavior [e.g., 10]. The learning
method extracts the malicious patterns without the need to define or
search for these manually.

UNSUPERVISED LEARNING In this setting, we do not have an out-
put information for the given training data. Yet, we can learn patterns
and relations from the objects themselves [1]. For instance, clustering
methods allow us to assign the input data to groups. In the context
of malware detection, we may be interested in grouping programs
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to malware families to unveil similar malware samples [e.g., 16, 174].
Note that variations are possible. In semi-supervised learning, super-
vision information are available for some of the data [42]. This setting
thus lies between supervised and unsupervised learning.

REINFORCEMENT LEARNING Finally, we have situations where we
may not have output information, but obtain feedback for each action
of a learning method. This allows improving the method by iteratively
asking for feedback. For instance, the paradigm was effectively used
in gaming with AlphaGo [187].

We focus on classification in this thesis, which is of particular rel-
evance in many security applications, such as malware detection [9],
intrusion detection [173] or code authorship attribution [36]. Note that
the discussed concepts in this thesis are also relevant to other learning
paradigms, as we work around the problem and the feature space.

2.1.1  The Learning Task

To begin with, we have to define the actual learning task. Formally, we
have a problem space Z (or input space) that contains the objects z € Z
of a particular application. Each object in Z is associated with a class
label y € ), where ) denotes the space of labels. For example, Z may
represent all possible PDF files. Each file may have two possible classes:
Y = {Benign, Malicious}. In authorship attribution, Z can represent
all possible source codes and ) a set of authors that can be assigned to
source codes. The overall objective is to learn a classification function

crZ2—Y (2.1)

that assigns z € Z to a class label y € V. The learning is based on a
labeled training dataset that contains pairs of objects and labels:

D={(z,yi)|i=1,...,N}, (2.2)

where N is the number of available objects. For the subsequent threat
analysis in Section 2.2, it is helpful to divide the learning process of
the function ¢ into different stages along a pipeline, as Figure 2.1
highlights. In the following, we will examine each stage in more detail.

2.1.2  The Mapping

The direct application of machine learning to problem-space objects
in Z is usually not possible, as a learning algorithm cannot typically
process objects as such [105]. Hence, the first stage for applying ma-
chine learning is the overall mapping of a problem-space object z to a
suitable format. In particular, this stage consists of two steps that are
discussed in the following.
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Figure 2.1: Overview of a typical machine-learning pipeline with three stages:
the mapping, training, and output stage.

PREPROCESSING As a first step, an application-specific preprocess-
ing of objects in Z can be necessary. This depends on the requirements
of the subsequent learning stages. In the case of images, many learning
algorithms require a fixed-size input, where the chosen input dimen-
sions are often small to reduce the computational complexity. For
instance, the deep neural networks for object recognition VGG19 [190]
and Inception-v3 [201] expect inputs of 224 x 224 and 299 x 299 pixels,
respectively. They are only applicable if images are scaled to these
dimensions. As images typically do not match the input dimension
of learning models, image scaling is a mandatory preprocessing step
in most learning-based systems operating on images. In the case of
source code, expanding macros is another example for preprocessing.
As further outlined in Chapter 3, this can be necessary to remove arti-
facts in the dataset [11]. Otherwise, a learning method might use these
artifacts as simple shortcuts instead of learning the authors” actual
programming style.
We formally express this preprocessing step as a function

p:Z2—Z2 (2.3)
that maps each object z € Z to its processed representation in Z.

FEATURE MAPPING The second step consists in the extraction of
suitable features that capture the characteristics of the objects from Z.
As learning methods typically operate on vectorial data [29], we need
a mapping from Z to a vector space using the extracted features.
Formally, this mapping can be expressed as

¢: 2 — F=R? withd e N* (2.4)

where F represents the feature space, a d-dimensional vector space
describing properties of the extracted features. Different techniques
can be applied for constructing this map, which may include the
computation of specific metrics as well as generic embeddings of
features and their relations [67]. An example is the TF-IDF weighting,
which adapts the map to account for the frequency of each feature
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in the dataset [86]. Note that feature spaces in machine learning can
also be constructed implicitly, for example using non-linear maps and
kernel functions [67, 182]. Yet, an equivalent representation is often
possible through vectors.

As an example for a feature mapping, let us consider the application
domain of authorship attribution. We divide source code z € Z into
individual words. The frequency of occurrence of each word is a single
feature and associated with a particular dimension in F. This leads to
the following feature vector,

x=¢(z) = (1(2), 92(2),.. ., ¢a(2)) € F, (2:5)

where ¢;(z) is the feature value for the i-th word. This representation
is also called bag-of-words model [86]. The example in Figure 2.2
illustrates this mapping from source code to a feature vector. The first
dimension is associated with the word foo. As it occurs twice in z,
$1(foo) is 2. The value is zero for a particular dimension if the word is
not present in z. Note that Chapter 3 provides more details on possible
features for source code authorship attribution.

1 | int foo (int a){

2 int b; 2\ foo

3 if (a < 2) ¢ 2| return

4 return 1; 0| typedef

5 b = foo(a - 1); _

6 return a * b; 3| int

71} 0/ long
Input z ¢(z)

Figure 2.2: Bag-of-words model as example for a feature mapping from
source code to a vector space.

Finally, we have a special case if ¢ is the identity function. For digital
images, for instance, pixels from the problem space can have a one-to-
one relation to the features. In this case, ¢ is also invertible, that is, a
digital image can be created from any computed vector in F within
the dynamic range. This is in contrast to various security domains,
such as malware detection or authorship attribution, where ¢ is not
invertible. This introduces a non-trivial hurdle for constructing attacks,
as we will examine in more detail in Chapter 3 when studying the
problem-feature space dilemmas.

suMMARY Taken together, the first stage is the mapping ¢ o p from
problem space Z to feature space F:
pop:Z— F (2.6)

It consists of two steps: the preprocessing p and feature mapping ¢.
Figure 2.1 exemplifies the outcome of this process, where objects
from Z are mapped to a feature vector in F.



2.1 MACHINE LEARNING

2.1.3 Model Training

Equipped with a mapping, we can compute the feature vector for
all objects in the training dataset ID. This allows the actual learning
process in the next stage where a learning algorithm is used to infer
functional dependencies from the training data for classification. These
dependencies are described in a learning model with model parameters 6
that parameterize a discriminant function g. Given a feature vector
x € F, the function g(x) returns scores for all classes:

g: F— RV, (2.7)

The score for a respective class is given by g;(x). This setting has
different advantages: First, we can examine all top-ranked classes. Sec-
ond, we can interpret the returned scores to determine the confidence
for each class. Depending on the model, the confidence can also be
interpreted as probability, as we will see in the next section.

Different learning algorithms can be used to construct the classifier g,
as for example, a support vector machine (SVM) [30, 213], a random
forest [32], and a neural network [29, 120]. It is important to note that
there is no universal learning algorithm that outperforms any other in
general, which is also known as No Free Lunch Theorem [224]. As a
result, we need to consider different algorithms in practice to respect
the nature of the problem and data [67].

Each learning algorithm has different implications on the model
and thus on the resulting attack surface. The differentiability of the dis-
criminant function g, for example, plays an important role for possible
attacks that are discussed in the subsequent chapters. Therefore, we
examine a decision tree and a neural network as examples for learning
algorithms in the following. While a decision tree is not differentiable,
a neural network is. Moreover, both principles are commonly applied
in security-related application areas [e.g., 2, 36, 101, 145]. Both together
thus provide a good intuition on learning algorithms in an adversarial
environment.

DECISION TREE We start with a decision tree [67]. Figure 2.3a
illustrates the principle of a decision tree with numerical features.
Each internal node is associated with a splitting function that takes a
particular feature x; as input and determines the subsequent path to a
child node. In our example, the node is basically an if-else-statement.
As depicted by Figure 2.3a, each leaf contains the number of training
samples of each class that end up there. Class probabilities g, can
be estimated as fraction of training samples of the same class y in
the respective leaf. In Figure 2.3a, for instance, the lower-left leaf has
one training sample of class y* and five samples of y~. Hence, we
obtain the probabilities g(z) = (1/6, 5/6)T for any x ending in this
leaf. At deployment time, given a previously unseen feature vector x,

The training stage
then creates...

...a learning model
in F, that captures
the inferred relations.

To this end, different
learning algorithms
can be applied,...

...suchasa
decision tree...
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Figure 2.3: Decision tree with numerical features. The left figure shows the
tree structure with the number of training samples of each class
in the leaves. The right figure shows the representation in F.

the classification is obtained by traversing the tree from the root to
a leaf node, and returning the class information associated with the
particular leaf. In the previous example, if an input « ends up in the
lower-left leaf, y~ can be assumed as most likely class for x.

Geometrically, each splitting function in the internal nodes recur-
sively partitions the feature space F into disjunct subspaces, as shown
by Figure 2.3b. The finally retrieved subspaces are associated with a
leaf node and thus represent the characteristics of a particular class.
Due to this recursive partitioning, the underlying function g is not
differentiable. In Chapter 5, we will take a closer look on this par-
titioning, when devising a new defense against attacks that aim at
recovering the decision tree by querying it.

Decision trees are a basic element of more advanced learning al-
gorithms, such as random forest [32] and gradient boosted trees [47].
In both cases, multiple decision trees are learned as ensemble. The
final prediction is obtained by aggregating the prediction of each tree.
From an adversary’s perspective, this aggregation can complicate an
attack, as any change in the input z may affect multiple trees at the
same time in possibly contradicting ways. Nevertheless, an attack is
still possible as we will examine in Chapter 3 with an authorship
attribution method that uses a random forest.

FEEDFORWARD NEURAL NETWORK  Another popular learning algo-

.07 a rithm is a feedforward neural network [89]. In the following, we focus

neural network. . on a fully connected network that also illustrates the principle for other
architectures, such as a convolutional neural network (CNN) [119].

Neurons are the building blocks of neural networks. The left part of

Figure 2.4 illustrates a single neuron. It is essentially a linear function

followed by a nonlinear activation function. For the linear part, we

denote a vector of feature weights by w = (wy,...,w;) € R? and

a bias term by b € R. The nonlinear activation function is denoted

by v. The latter part is necessary, as a composition of multiple lin-



2.1 MACHINE LEARNING
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Figure 2.4: Overview of a neural network. The left figure shows a single neu-
ron that is used together with more neurons in a fully connected
neural network (right figure).

ear functions as neural network would only create a linear function
again [89], preventing us from learning nonlinear relations. As a result,
the computed function of a neuron is given as

v(wl - z+0) . (2.8)

Different activation functions can be used, such as a logistic sigmoid
function, the hyperbolic tangent function tanh or a rectified linear unit
(ReLU) [see 89].

One or more neurons form a single layer, as depicted by Figure 2.4.
The computation from Equation 2.8 for all neurons in a respective layer
can be summarized by a single matrix multiplication if we stack all
weight vectors together row-wise. To this end, we use a single matrix
W € R¥*" where k denotes the number of neurons at the current layer,
and 7 is the number of features. We also stack all bias terms together
into a vector b € R¥. As a consequence, the first layer can be expressed
as

RV = () (w(l) x4 b(l)) : (2.9)

Note that the activation function v operates element-wise, so that we
obtain an output vector h(1) € R¥. Each element is the output of a
respective neuron. The output h() is then passed to the next layer,
and the process is repeated for each layer until the last layer I:

h@nzﬁn(wayth+um) (2.10)

RO =0 (WO =D 4 p0) (2.11)

The last layer returns the overall output g(x). In the case of two
classes, a single output neuron can be used (see Figure 2.4). With
multiple classes, we can use a neuron for each class to output its score.

11
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Often, the output of the last layer is converted into probability values
for each class by applying a softmax function [see 89].

As Equations 2.9, 2.10, and 2.11 underline, the layers are connected
in a chain. The information flows from the first to the last layer, hence
the name feedforward network [89]. This network is a composition of
multiple differentiable functions, so that the underlying discriminant
function g is differentiable. Thus, it is possible to compute the gradient
with respect to the input in order to find the direction where an input
must be changed to move it towards a target class. As we will see in
Section 2.2.2 and Chapter 3, this is a key element for gradient-based
attacks.

Extensions in the design of neural networks have enabled break-
throughs in various areas, such as image and speech recognition or
natural language processing [120]. While a fully connected network
treats pixels being close or far away to each other equally, a CNN
considers the spatial structure of the input [119]. It is thus particularly
suitable for images, videos, audio, and speech [119, 120]. In Chapter 4,
a CNN [190] is therefore used to evaluate preprocessing attacks on
images. Another notable type of network is a recurrent neural net-
work (RNN). It allows sequential inputs, such as the subsequent words
in text or speech. The RNN internally keeps a state from previous
inputs to predict the current outcome. Different architectures exist,
such as long short-term memory (LSTM) networks. They have been
also successfully applied in authorship attribution, as we will explore
in Chapter 3. For more information on the extensions, the reader is
referred to LeCun et al. [120].

MODEL PARAMETERS AND HYPERPARAMETERS In theory, we
can have random forests with an arbitrary number of decision trees.
Likewise, neural networks can have an arbitrary number of layers. The
number of trees or layers cannot be learned by the learning algorithm
and have to be set in advance. These parameters belong to the group
of hyperparameters that determine the structure of the learning model
and the learning process of its parameters 6 in general [29].

Note the difference between model parameters 6, such as the neuron
weights W() in neural networks, and hyperparameters, such as the
number of layers [. The learning algorithm automatically determines 0
from the training data. On the contrary, hyperparameters are set in
advance and are not directly learned within the learning algorithms.

Different algorithms exist to determine suitable hyperparameters.
With grid search, for instance, a model is trained and evaluated for mul-
tiple combinations of different hyperparameters. The best combination
is selected. As an example, let us assume we have one hyperparameter:
the total number of layers | = {1,2,3} that a neural network will have.
In this example, the training dataset ID is divided into a validation Dy
and smaller training dataset IDt. For each possible value of [, the
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learning algorithm finds optimal model parameters 6 on Dt and its
performance is evaluated on Dy. The value I from {1,2,3} with the
highest performance on Dy is chosen as hyperparameter to train the
final model on D.

suMMARY The training stage provides us with a learning model 0
and its discriminant function g. This function allows us to obtain
predictions in form of confidence values for each class with a given
feature vector as input. As we in this thesis are primarily interested
in the attack surface of an existing classifier, this section focuses
on the output from the learning process and does not examine the
training itself. Multiple crucial steps have to be considered to train a
learning model, such as defining a loss function to find suitable model
parameters 6 or testing various hyperparameters of learning models.
The reader is referred to Duda et al. [67] for a general introduction,
and to Arp et al. [11] for a security-research-oriented discussion on
avoiding pitfalls during this stage.

2.1.4 Model Output

In the last stage, the model is used and we have different options as
output. This will have a direct impact on possible attacks, as discussed
in Section 2.2.1. To begin with, the discriminant function g that returns
scores for all classes can be directly used. Variations, such as the top-k
scores or only the highest score of all classes, are also possible as model
output. Alternatively, only the final classification can be returned by
computing the decision function f:

f: F—)Y, x+— argmaxgy,(x) . (2.12)
yey

Geometrically, f creates a decision boundary in the feature space F,
that separates the different classes from each other. This is illustrated
in Figure 2.1 with two classes. In general, with k classes y*) € ), the
decision boundary separates  into k subspaces:

F={zeFlf@) =y} v---u {ze Flf2) =y¥}. @)

2.1.5 Putting the Stages Together

We are now ready to deploy the learning-based system by putting
the different stages together. Remember that the overall objective in
classification is to learn the function ¢y from Equation 2.1 that returns
a class label y € Y for an input object z € Z. This chapter shows
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Stage Function Description
Mapping p:Z2— 2 Mapping of problem-space object z € Z to
preprocessed format.
$p:Z— F Mapping of (preprocessed) problem-space ob-
ject to feature space
Training g: F— RV Learning of a discriminant function g to sepa-
rate all classes in a feature space F.
Output f: F—Y or Usage of a decision function f or the discrimi-
g: F — RV nant function g as classification output.

Table 2.1: Summary of a machine-learning pipeline.

that this function can be represented as a composition of multiple
functions:

2 = (f o ¢ 2 p)(a). (214)
Thesis

As outlined before, it is also common to provide scores. In this case,
the classifier ¢y can be simply adjusted by replacing f with g, so that
we obtain cg(z) = (g0 P op)(z).

Table 2.1 summarizes the resulting machine-learning pipeline. It
highlights that the mapping ¢ o p from problem to feature space is of
particular relevance for the whole pipeline. This underscores the need
for the thorough security analysis of the mapping in this thesis.

2.1.6  Classifier Performance

Finally, we are interested in the system’s performance if it is deployed.
To this end, a test dataset is used that is distinct from the training
dataset. A wide range of performance measures exist that provide
different information and are suitable depending on the setting, such
as multiclass problems or imbalanced data [see 11, 72]. Two perfor-
mance measures are relevant in this thesis to evaluate a learning-based
system in an adversarial environment. Note that the evaluation of the
performance is also a crucial step in the training stage as well. We
study the performance evaluation during deployment time, as the
main attacks in this thesis are primarily targeting the final system.

AccURACY To begin with, the accuracy reports the fraction of correct
predictions:

1 N
Acc = — Z [y = cf(zz-) I, (2.15)
N =
where N is the number of tested objects, and [-] denotes the Iverson
bracket. This performance measure can be used with two or multiple
class labels if the class ratio in the given dataset is balanced.
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With a large number of classes, the problem of class ambiguity can
arise [117, 209]. Different classes can be very similar to each other or
even overlap. For instance, the ImageNet ILSVRC 2012 dataset [66,
178] is widely used as benchmark for object recognition. Among
1000 classes, it has the two classes notebook and laptop. Objects of
these classes are hard to distinguish even for human beings [209].
Furthermore, an input may have multiple valid labels, but only one
label is assigned as true label. ImageNet, for example, has the two
distinct classes canoe and paddle. An image showing a canoe in use
naturally contains both classes, as a canoe without paddle is a rather
unfavorable way of moving. As a result, the correct class for an input
can be ambiguous. In this case, evaluating the performance from
only one output might be too restrictive. The top-k accuracy is then
preferred [178]. A correct prediction is reported if the correct class is
one of the k most likely classes from g(x). In other words, the classifier
can make k predictions for each input, and at least one prediction
needs to match the true label for a correct prediction. A value of k =5
is typically used in image classification for the ImageNet dataset [178,
201]. This value is thus also used in Chapter 4 when evaluating scaling
attacks with the ImageNet dataset.

TRUE- AND FALSE POSITIVE RATE  Although the accuracy breaks
down the system’s performance to a compact single value, we may
need a more detailed picture of the performance. In binary classifi-
cation settings, the true positive rate (TPR) and false positive rate (FPR)
depict the tradeoff between two classes more clearly. In malware clas-
sification, for instance, we have two classes where malware is typically
the positive class that needs to be detected. The benign sample repre-
sents the negative class. A true positive is then a correctly classified
malware sample. A false positive occurs if cf(z) classifies a benign
sample as malware. In general, the true positive rate is given as

TPR = ZZN[ Cf(zi) = y+ |y = y* ] _ #true positives (2.16)
N YN yi=y"] ~ #samples of y* :

while the false positive rate is

N N o [ o
— Y [Cf<zzl\1) v lyi=y ] _ t#false POSltl"e_s (2.17)
YN yi=y | # samples of y

with [-] as Iverson bracket. Each nominator is conditioned on the true
class label, so that we only check samples of a respective class. Ideally,
the model has a high TPR and small FPR. Several problems in security
especially have a need for a low FPR, such as intrusion detection or
malware classification [10, 193]. Otherwise, a high FPR will lead to a
large number of false alarms, and users, for example, may not trust a
positive detection anymore.
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Figure 2.5: Attack surface of a typical machine-learning pipeline. Each attack
category (in italics) is connected with the targeted component.

Note that the TPR and FPR need to be interpreted with care if we
have a strong class imbalance and the base rate of the negative class
needs to be considered [see 11]. With a predominant negative class,
even a very low FPR can cause surprisingly high numbers of false
positives. For example, 99% true positives at 1% false positives seem
to provide a good performance. Yet, if we have a malware to benign
class ratio of 1:100, this actually leads to 100 false positives for every
99 true positives.

2.2 ADVERSARIAL MACHINE LEARNING

Originally, learning methods have not been designed with security
in mind. Many methods are vulnerable to different types of attacks
that thwart their successful application. This problem has motivated
the research field of adversarial machine learning which is concerned
with the theory and practice of learning in an adversarial environ-
ment [21, 98, 105].

Figure 2.5 highlights that each component in a machine-learning
pipeline provides an attack possibility. In this section, we examine
the respective attacks at each component, providing a systematic
picture of the adversarial environment. This overview is necessary to
put the relation between problem space and feature space with its
mapping ¢ o p into the context of different attacks. Ultimately, this
overview enables us to consider the security of learning-based systems
at the whole pipeline in order to apply these systems securely. Before
examining each attack, we first define a threat model for the adversary.
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2.2.1 Threat Model

A threat model provides a common understanding of the adversary’s
profile. Different taxonomies are used in the literature to characterize
threats against learning-based systems [e.g., 21, 156, 159, 236]. The
threat model in this thesis is based on the common taxonomy to model
an adversary regarding her knowledge, goals, and capabilities [21].

KNOWLEDGE The adversary’s strategy substantially depends on
the knowledge of the learning-based system. The more the adversary
knows about the different components in the learning pipeline, the
better she can identify and exploit weak spots. The adversary’s knowl-
edge can be characterized by the following four main components of
the pipeline: (i) the training data, (ii) the features, including the prepro-
cessing p and feature mapping ¢, (iii) the kind of learning algorithm,
and (iv) the parameters of the learning model. Based on the known
components, three attack scenarios are typically distinguished [21]
and reflect how a learning-based system is deployed in practice:

o White-Box Attacks. In this setting, the adversary has a perfect
knowledge about the learning-based system, including the train-
ing data, the features and the classifier.

* Gray-Box Attacks. Here, the adversary only knows a subset of
the components. Although different combinations of the com-
ponents are possible, the attacker is typically expected to know
the features and kind of algorithm, but not the model parame-
ters. The original training data are not known, but the attacker
is assumed to collect an own surrogate dataset, ideally from
the same or similar data distribution. Moreover, she may send
queries to the system to augment her data. Overall, this enables
her to learn an own surrogate classifier.

If even the kind of algorithm is unknown, the attacker can rely on
the transferability property. As learning algorithms infer general
statistical patterns and relations from data, it is likely that differ-
ent algorithms will infer similar relations [26, 158, 236]. As a re-
sult, an attack that works on a surrogate classifier based on a dif-
ferent algorithm can transfer to the original classifier [e.g., 236].

* Black-Box Attacks. In this case, the adversary has no knowledge
about the learning-based system. Yet, she can send queries to the
system that acts as oracle by returning an output for any input.
Different options are possible as model output, as introduced
before in Section 2.1.4. The adversary may retrieve the class
label y from cf(z) or class scores from cg(z). Variations, such as
the top-k scores or only the highest score, are also possible.

17

A threat model
defines the
adversary.

Varying levels of
knowledge are
distinguished, ...

...commonly defined
in three attack
scenarios, from...

...white-box with full
knowledge...

...over gray-box with
limited knowledge...

...to black-box with
no knowledge about
the system.



18 BACKGROUND

Classifier
Architecture Features
Classifier Training Oracle
Parameters Data D gorf
Increasing y Decreasing
knowledge A i knowledge
White-Box Gray-Box Black-Box
Attacks Attacks Attacks

Figure 2.6: Threat model: Range of knowledge in the attack scenarios.

However, even in a black-box scenario, we need to assume that the
Yet, even in a adversary can obtain at least an approximation of possible features
black-box setting, an  and training data [21]. For instance, the literature or the application
attacker may gather... 4omain itself can provide valuable information about typical features.
API calls, for example, are common features for malware detection
and are proposed in various publications [10, 140]. With deep neural
networks in the computer vision domain, the features are typically
...some information the pixels [190, 201]. It is also often mandatory to scale images to
about the features,...  apply learning methods. As common open-source libraries have a
limited number of scaling options, it is reasonable to assume that an
adversary can deduce and exploit the preprocessing function p after
a few tests (see Chapter 4). Finally, an attack is possible even if the
features are only partially reconstructed [e.g., 236], or transformations
of the input object in the problem space are rather generic changes

without targeting individual features specifically (see Chapter 3).
Regarding the data, an attacker may exploit the same data source.
For instance, common datasets for Android malware detection are
based on samples from different app market places [10], so that the
guessed dataset may approximate the original dataset reasonably well.
Moreover, even if the adversary cannot narrow down the training
...and the data. data, she can benefit from additional, external data. For instance, the
black-box attack against source code attribution in Chapter 3 also
considers such a scenario. The training data are not known, but two
external example files of the target developer are available. Both files
are not part of the training- or test set and help as external source to
obtain template information, such as recurring custom variable names.
Figure 2.6 summarizes the range of knowledge that the adversary
typically has in the different attack scenarios [21, 156, 159]. Note that
the figure only gives a tendency for the order of knowledge, as an
adversary may know, for example, the classifier and features, but not

the training data.

GOAL Adversaries can have different goals when working against a
learning-based system. We can summarize these goals regarding their
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impact on integrity, availability, and confidentiality [21, 159]. The goal
has a direct implication on the necessary attack procedure.

If the attacker is trying to control the model output without compro-
mising the normal model behavior, her attack aims at the integrity of
the system [21, 159]. An attack that compromises the normal function-
ality of the system for legitimate users is against the availability [21].
Both attacks can be targeted if the output should be a specific class.
Otherwise, an attack is untargeted if any other class different from the
original class should be predicted. Both goals require the adversary
to choose, for instance, adversarial examples or poisoning attacks as
attack procedure.

If the attacker is targeting private information about the model or
data by exploiting the query access, her attack aims at the confidential-
ity [21, 159]. For example, an attacker causes a serious privacy violation
if she finds out that a person participated at a medical study by being
present in the training data [186]. The confidentiality goal can require
model extraction or membership inference as attack procedure.

cAPABILITY The capabilities refer to the possible modifications that
an adversary performs to achieve her goals. Two aspects define the
capabilities [21].

First, it is relevant where an adversary has access in a machine-
learning pipeline and what she can alter. She might be able to modify
the training data or the model. On the contrary, if the model is al-
ready learned and thus fixed, she might only be able to modify the
input sample. Each option leads to a different possible attack proce-
dure, such as poisoning during training, and adversarial examples or
preprocessing attacks against a fixed system.

Second, the capabilities are determined by constraints in Z and F.
For instance, any modification of an object z in Z needs to preserve
its functionality. The feature range in F can also be restricted, such as
for 8-bit images with the pixel range [0,255]. As we will further exam-
ine in Chapter 3, the capabilities are also determined by the relation
between Z and F. In many security-related applications, there is no
one-to-one mapping between Z and F. It is, for instance, impossible
to find a valid source code or PDF file for any feature vector.

Equipped with a definition of the threat model, we continue with
examining the different attack procedures as shown by Figure 2.5. Ad-
versarial examples, model extraction, and adversarial preprocessing
are the main focus of this thesis. The first two attacks are introduced
in detail in the following, while adversarial preprocessing is skipped
here, as it will be thoroughly introduced in Chapter 4. Finally, in this
section, we briefly examine the other attacks: hyperparameter extrac-
tion, poisoning, and membership inference. This overview enables us
to thoroughly understand the attack surface.
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Figure 2.7: Adversarial examples against a deep neural network [38] trained
on the CIFAR-10 [113] dataset. Slight, targeted perturbations cause
a different prediction, although an airplane is still visible only.

2.2.2  Adversarial Example

In this attack setting, the adversary’s goal is to thwart the prediction
of a trained classifier [21, 159]. To this end, she carefully manipulates
characteristics of the object z provided to the classifier to change the
predicted class. The modified object is commonly denoted as adversarial
example® [21, 159]. This attack impacts the integrity of the prediction.
The classifier itself is not changed. Figure 2.7 shows an example in the
image domain where an adversary can control the predicted class with
slight, targeted perturbations. This is a substantial threat, considering
the fact that the used images are small (32 x 32 x 3 pixels) and such
perturbation would be less perceptible for larger images.

In the security domain, the detection of attacks with machine learn-
ing plays a vital role, such as for malware detection [10]. In this context,
using adversarial examples to evade this detection is often referred to
as evasion attack [21, 26, 148]. For example, in the case of spam filtering,
the adversary may omit words from spam emails indicative for unso-
licited content [131]. A common variant of evasion attacks are mimicry
attacks, in which the adversary mimics characteristics of a particular
class to hinder a correct prediction [70, 195]. Evasion and mimicry
attacks have been successfully applied against different learning-based
systems, for example in network intrusion detection [e.g., 71, 195],
malware detection [e.g., 91, 227, 236] and face recognition [185].

THREAT MODEL Depending on the adversary’s knowledge, adversar-
ial examples can be created in different settings. Attacks range from
black-box [e.g., 45, 63, 132, 158, 220] to white-box settings [e.g., 26, 38,
88, 156, 200].

Note that multiple terms are used to refer to the manipulated object. Attack sample [26]
or evasive sample [227] are used in security-related domains. The term adversarial
example was initially coined by Szegedy et al. [200] for attacks in the image domain
with minimal modifications against deep neural networks. Yet, at the time of writing,
adversarial example also became the established term in security, with any learning al-
gorithm, and for high-confidence attacks (explained in this section) [38, 91, 124, 162].
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Regarding the capabilities, we need to differentiate between problem-
space and feature-space attacks. The latter attacks only operate in F
and find suitable feature vectors that change the prediction as wanted.
Feature-space attacks provide us with an understanding of the vul-
nerability of learning-based classifiers. They unveil, for instance, the
number or amount of features that need to be changed for an adversar-
ial example [21]. Besides, an adversarial example in F is a necessary
condition for an adversarial example in Z [162]. Yet, as F and Z
have no one-to-one relation in general, feature-space attacks cannot
guarantee that a real-world object z can be created with the discovered
feature vector. In this case, problem-space attacks are necessary. They
additionally consider realizing an object in Z while misleading the
classifier in F.

In the special case where F and Z have a one-to-one relation, the
feature-space attack is able to realize z € Z. A prominent example
are digital images where pixels often correspond to features [38].
The pixels in the image z can then be directly changed according
to the computed feature vector. Compared to problem-space attacks,
this special case has received a lot of attention that led to a good
understanding of possible attacks in F [12, 38, 208]. To also gain more
insights on problem-space attacks, we will study them in detail in
Chapter 3 as part of the relation between Z and F.

In the following, we study feature-space attacks. They are help-
ful as background for problem-space attacks, and become relevant
when we examine the relation between F and the media space M of
watermarking in Chapter 5.

OBJECTIVE OF FEATURE-SPACE ATTACKS Given a fixed feature
vector x € F, the adversary wants to find a modification § € F,
so that the classifier predicts the adversary’s target class y* € ) for
' = (x + 9). Here o' is the adversarial example. Geometrically, the
adversary wants to obtain a feature vector ' that lies in the subspace
of y*, as illustrated by Figure 2.8 with two classes. In the case of
an untargeted attack, y* represents any other class than the original,
source class v°, that is, y* # y°. In the case of a targeted attack, y* is
defined as a particular target class y'. This attack is more powerful
than the untargeted variant by explicitly choosing the target. Without
loss of generality, we examine the targeted variant in the following.
Finding an adversarial example can be described as an optimization
problem. In the literature, two formulations are mainly used:

* High-confidence attack. The adversary aims at increasing the clas-
sifier’s confidence in y'.

* Minimum-modification attack. The adversary aims at minimizing
the required modifications to obtain y'.
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Figure 2.8: Goal of adversarial examples in F. The adversary manipu-
lates a sample to change its classification (@ high-confidence
or ® minimum-modification).

Figure 2.8 illustrates both versions. The minimum-modification attack
just tries to cross the decision boundary to obtain a different prediction
while the high-confidence variant increases the confidence with a
position that lies more in the target region.

For the high-confidence formulation, the following attack objective
function can be used to optimize the confidence [21, 38]:

g(2) = Ig;a;f{gk(w’)} — gy (). (2.18)

If {(z') < 0, the score for y' is higher than for any other class, so
that the classifier usually predicts y'. The lower {(z'), the higher the
confidence in y' is. The overall attack is then [21]:

arg rr%in (x+9) (2.19)
s.t. D(x,x+9d) < dmax (2.20)
(x +0) € [z, Tw), (2.21)

where D is a distance metric and dpax sets a bound on the maximum
modification. In addition, the modifications need to remain within the
possible feature range, given by xj, and . Regarding D, the Lo, L,
or L., norm are commonly used as distance metrics for feature-space
attacks [38, 88, 156]. Appendix A provides a short introduction to
these distance metrics for readers who are unfamiliar with them.

The adversary can ensure high-confidence adversarial examples by
adding the constraint {(z') < —k, where ¥ € R is a desired confi-
dence [38]. In this way, the classifier’s confidence score for y' must be
larger by at least xk compared to any other class.

In the second formulation, the adversary tries to minimize the
required modifications for her adversarial example [e.g., 156, 200]:

{(z") = D(z,x'). (2.22)

The attack is then given by
arg m(sin C(x+9) (2.23)
s.t. flx+6) =1y (2.24)

(x+6) € [T, Tuw). (2.25)
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In this way, the adversary minimizes § while achieving her target
classification.

Note that further objective functions { are possible for both formu-
lations [e.g., 26, 38, 88, 200, 208]. Equation 2.18 and Equation 2.22 can
also be combined to optimize both formulations together [see 38].

Each formulation has its pros and cons. High-confidence attacks
allow us to measure the worst-case vulnerability of a classifier for
varying attack strengths dmax [21]. Furthermore, they create stronger
adversarial examples by pushing them further away from the decision
boundary compared to minimum-modification attacks, as depicted
by Figure 2.8. Hence, the attack still succeeds even if the adversarial
example or the learning model’s decision boundary would be slightly
changed. The higher confidence can also increase the transferabil-
ity chances to the original model if the adversary uses a surrogate
model to compute her adversarial example [38]. On the contrary, the
minimum-modification attack can unveil the general sensitivity of a
classifier to input changes. This attack initially led to the insight by
Szegedy et al. [200] that minimal, imperceptible image perturbations
can mislead deep neural networks. Moreover, we will see in Chapter 3
that minimizing modifications can be especially relevant for problem-
space attacks to fulfill their constraints. Adversarial examples in Z
have to preserve the semantics and remain plausible, which can be
easier to realize by minimizing modifications.

FEATURE-SPACE ATTACK STRATEGIES Let us obtain an intuition
how adversaries can find a solution to the previous optimization
problems. This depends on the adversary’s knowledge. In the white-
box setting, gradient descent is the most widely adopted method [208].
The adversary computes the gradient of the objective function ¢ with
respect to the features x:

The gradient gives the direction in F where ¢ changes the most. In
other words, the gradient shows which features need to be changed
and how much they need to be changed to move towards the target
classification. Starting from xy = x, the adversary then basically
follows the gradient in multiple steps [208]:

xiy1 = Proj (; + a - normalize(Vg, {(x;))). (2.27)

Essentially, Proj and normalize are used to control the modifications.
In particular, Proj projects its input to a smaller domain to restrict the
modifications [e.g., 115, 136]. The function normalize is responsible for
a unit-length step size under the used norm, for instance, by applying
a clipping operator sign [e.g., 88]. The parameter « controls the step
size. The process is repeated until a satisfying position in JF is found.
Various feature-space attacks build on this principle [e.g., 26, 38, 88,
115, 136].
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In the gray-box and black-box setting, the adversary is unable to
compute the gradient in the previously described way, since she does
not have full access to the learning model. Nevertheless, two groups
of attacks are possible. The adversary uses either a direct or learning-
based attack. In the first group, she sends queries to the classifier and
directly uses its output to construct an adversarial example [e.g., 33,
45, 100]. In Chapter 5, we will examine such attacks in more detail
when examining a related attack paradigm in watermarking. In the
second group, the adversary uses an own surrogate learning model
to create an adversarial example [e.g., 39, 132, 157, 158]. This allows
her to use a white-box method again. This group of attacks is based
on the transferability property [26, 200]. An adversarial example on
model A often works on a different model B, despite another learning
algorithm or dataset [88, 200, 236]. Hence, an adversarial example
that misleads the adversary’s surrogate model will probably mislead
the original model as well. To obtain a suitable surrogate model, the
adversary typically needs to conduct a model-extraction attack that is
discussed in the next section.

WHITE-BOX DEFENSES The development of defenses against ad-
versarial examples is a vivid research area at the time of writing, so
that a comprehensive overview of all defenses is beyond the scope.
In the following, we rather focus on the main concepts that are re-
quired for this thesis. For a broad overview of defenses, the reader is
referred to Papernot et al. [159] and Xu et al. [228]. Publications that
devise counter-attacks against a large set of defenses also provide a
recommendable overview [see 12, 13, 39, 208]. In the white-box setting,
defenses can be broadly categorized into three groups [21, 228]: model
robustness, classifier ensembles, and detection.

In the first case, the defender learns a more robust model [e.g., 83,
88, 136, 155, 200, 226]. One possibility is to use adversarial training [e.g.,
88, 200]. In this case, the defender creates adversarial examples herself
and adds them to the training dataset together with the ground-truth
labels. Ideally, this allows the learning algorithm to consider its own
Achilles heel. However, the resulting model is only robust against at-
tack algorithms that were used for training. An adaptive attacker with
a different algorithm to create adversarial examples can be successful
again [146]. A stronger variant of this defense principle is based on the
concept of robust optimization. It aims at providing guarantees that the
prediction does not change around an input given a certain amount
of modification [e.g., 83, 136]. Consequently, the adversary will have
to increase the amount of modification. In the case of images, for
instance, this ideally leads to clearly visible modifications that would
also cause misclassifications by humans [136].

The second group of defenses builds on classifier ensembles [e.g.,
22, 23, 28, 142, 161, 220]. The prediction is then retrieved from multiple
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classifiers f() through an aggregation function E:

f(@) = E(fV (@), fD(@),.... fO(@)). (2:28)

For instance, multiple classifiers can be learned where each is built
from a random subset of the feature set [22, 23, 161, 220].

The third group of defenses detects an adversarial example [e.g.,
20, 142, 144, 183, 228]. For instance, an additional detector can be
trained with legitimate samples as one class and adversarial examples
as another class [144]. A subgroup of detection-based defenses tries to
reduce the attack surface by detecting adversarial examples that were
created outside the learning data distribution [21, 142, 179]. These
blind-spot examples can simplify an attack, as it is not necessary to
find plausible features of the target class [179]. In Figure 2.8, the lower-
right corner represents a blind-spot that the adversary could simply
identify by exploring the basis vectors. Blind-spots can be detected,
for instance, by enclosing the learning data tightly [e.g., 28, 179]. In
Chapter 5, we will thoroughly examine this defense against attacks in
the media space of watermarking.

BLACK-BOX DEFENSES In the black-box setting, the classifier is out-
side of the attacker’s control. As a result, a stateful defense becomes
possible in addition, where the defender seeks to identify sequences
of malicious queries [e.g., 46, 168]. This defense exploits the fact that
an adversary will typically have to send multiple queries that follow a
specific strategy. If the classifier only returns class labels, for example,
an adversary may need to use a line search to localize the bound-
ary. This search creates a sequence of queries that differ from benign
queries and thus can be detected. In Chapter 5, we will take a further
look on this defense strategy where stateful defenses from watermark-
ing are demonstrated to be applicable in adversarial learning.

Unfortunately, most defenses are demonstrated to be vulnerable
against counter-attacks at the time of writing [e.g., 12, 39, 208]. Yet, it
is noteworthy that this iterative cat-and-mouse game led to various,
valuable insights on the design and evaluation of defenses against
adversarial examples [12, 39, 40, 208].

REMARK ON EVASION ATTACKS Finally, note that an adversary
can use evasion techniques that do not directly target machine learn-
ing [e.g., 147, 195, 216]. For instance, adversaries can obfuscate the
control flow, data location or data usage and so deceive the feature
extraction from a static analysis [147]. However, this only allows an
untargeted attack in the two-class detection setting. This thesis instead
focuses on the general case with adversarial examples to analyze the
security of machine learning under attack.
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Figure 2.9: Model extraction. Functionally equivalent extraction recovers the
decision boundary f exactly. Fidelity extraction creates f that
matches f on all data points, incl. mistakes. Accuracy extraction
creates f with perfect accuracy, but is less suitable for adversarial
examples (e.g., ' from Figure 2.8 would not be found).

2.2.3 Model Extraction

In this attack setting, the adversary actively probes a learning method
and analyzes the returned output to reconstruct the underlying learn-
ing model [132, 207]. Geometrically, the attack tries to recover the
decision boundary of the learning model (see Figure 2.9). The attack,
denoted as model extraction, impacts the confidentiality of the learning
model. In the following, we focus on attacks that aim at the model
parameters 6. Methods to recover hyperparameters are discussed
separately in the following section as hyperparameter-extraction attacks.

THREAT MODEL The adversary operates in a gray-box or black-box
scenario. Regarding the capabilities, she can send queries to a classifier
and observe the respective output. The query can be the object z € Z
or the feature vector x € F if p and ¢ are conducted on the user
side [207]. The former case requires considering the problem space as
well and thus induces more restrictions. For example, Z is discrete, so
that not every feature vector can be queried.

Regarding the knowledge, the classifier may provide all scores g(-),
the top-k scores, or only the class label y from f(-) [102]. The adver-
sary is typically assumed to initially have a small surrogate training
dataset [107]. Yet, depending on the application domain, she may
be able to exploit more knowledge. For instance, image classifiers
typically make use of the publicly available ImageNet dataset [178,
190, 201]. Hence, the adversary can use this dataset as well, although
she may not know which images were used exactly [102, 152]. In
the gray-box scenario, the adversary may know the kind of learning
algorithm or used hyperparameters [207].

Two motivations can be differentiated to conduct model extrac-
tion [102]. First, an adversary wants to steal the model for her own
usage. For instance, she could leverage an online service’s resources
to train a learning model over a large dataset and then recover the
model parameters with a few queries [207]. Second, model extraction
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can serve as stepping stone for further attacks, such as generating
adversarial examples or conducting membership inference attacks.
Depending on her motivation, the adversary has different goals [102]:

* Accuracy extraction. If she wants to steal a model, the goal is
to obtain a surrogate classifier f that has a similar or even
higher performance on the expected data distribution X in F.
In practice, X is represented by the test set. Taken together, she

maximizes Pr(w,y)NXXy[f(:c) =y

e Fidelity extraction. With the intention for further attacks, the goal
is to obtain a surrogate classifier f whose predictions correspond
to the predictions of f. Thus, f also replicates the mistakes, which
is important for the transferability of adversarial examples or

membership inference. For instance, the adversary can maximize

Pro~x [1(f(x) = f(=))].

* Functionally equivalent extraction. This is the strongest goal where
the surrogate classifier behaves as the original classifier on all
possible samples, including samples off the actual data distribu-
tion. The attacker thus aims at f(x) = f(z) Vz € F.

Figure 2.9 geometrically illustrates the model extraction attack with
the different goals.

ATTACKS  Attacks can be divided into two groups: direct and learning-
based extraction. In the first group, the attacker directly reconstructs
the model parameters 6 based on her queries [e.g., 102, 132, 207]. As
an example, let us assume a linear model w” - x + b with w € RY and
b € R. The model is 6 = [w, b]. Given the output score g(x) for an
input «, the adversary obtains a linear equation g(z) = w! -z + b.
By querying d + 1 linearly independent inputs, the attacker is able to
create a system of linear equations and to calculate w and b exactly.
Direct extraction can lead to an exact reconstruction of 6 [102, 132,
207], as in the previous example. In such case, the functionality or
fidelity goal is achieved by design.

In the second group, the adversary learns a surrogate learning
model [e.g., 41, 102, 107, 152, 158, 207]. This group is primarily used
for accuracy or fidelity extraction [102]. In general, the attack is based
on the following steps [107]. Starting from an initial surrogate model
and dataset, the adversary repeatedly (i) creates new samples (or selects
samples), (ii) collects their predictions from the original classifier, and
(iii) uses the improved dataset to train the surrogate model. Various
strategies are explored to guide the queries [e.g., 152, 158]. For instance,
the adversary iteratively creates new synthetic samples where her
current surrogate model is the most uncertain [158]. In this way,
the model can benefit the most from the queried samples and their
predictions.
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DEFENSES Defenses can be divided into two groups. As first group,
the defender changes the model output. This group, in turn, can be
divided into several sub-groups.

* Output truncation. Instead of detailed prediction scores for all
classes, the model may only return truncated scores [152, 207].
That is, only the top-k scores are returned or the scores are
rounded. In the most vigorous case, the model only returns the
predicted class label. However, research has demonstrated that
this defense sub-group has little impact [152, 207].

* Randomization. Second, the model can use randomized outputs
near the decision boundary [233]. The intuition is that the adver-
sary tries to recover the decision boundary, so that her attacks
will operate around this boundary [e.g., 132, 207]. Zheng et al.
[233] create a security margin around the boundary and return
randomized responses if a query lies in this margin.

* Laying a false trail. Third, the model can intentionally mislead the
adversary’s computations to obtain a surrogate model [121, 153].
Orekondy et al. [153], for example, modify the output scores
in such a way that the attacker’s gradient with respect to 6
maximally deviates from the correct gradient during training.
At the same time, the changed scores still convey the predicted
classes correctly, thereby remaining useful for benign queries.

The next group is based on a stateful defense as active countermea-
sure. Instead of analyzing each query separately, the defender tries to
identify sequences of malicious queries—similar to the stateful defense
against adversarial examples. For instance, a cloud service provid-
ing machine learning as a service may monitor incoming queries for
patterns indicative of model-extraction attacks. Juuti et al. [107], for
example, analyze the distance between queries. If this distance devi-
ates too much from the distribution of benign queries, an attack is
detected. In Section 5.3.2, we examine another strategy that observes
the closeness of queries to the decision boundary to identify malicious
sequences. Note that stateful defenses against adversarial examples
and model extraction share the same conceptual idea, but may have
to identify different attack sequences that are used for adversarial
examples and model extraction.

Finally, adding watermarks to learning models can be seen as an
additional group of defense [e.g., 3, 118, 202, 211, 232]. Yet, this can
only detect a model theft afterwards and not mitigate or prevent
model extraction.

2.2.4 Hyperparameter Extraction

In addition to the model parameters 6, an adversary can also recon-
struct the used hyperparameters [150, 217]. Remember that possible
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hyperparameters are the number of decision trees in a random for-
est or the number of layers in a neural network. For example, Oh
et al. [150] present a method to recover neural network attributes.
The adversary operates in a black-box threat model with the ability
to send queries and observe scores g(-). The training data are also
known by the adversary in the experiments. The idea is to learn a new
metamodel that predicts the hyperparameters given the prediction
vectors from multiple queries to the original model. In particular, the
adversary submits k queries. The outputs of the original model are
concatenated and provided to the metamodel as input, which pre-
dicts the hyperparameters. To increase the success rate, an additional
method is presented where the k query inputs are specifically crafted
to reveal more information about the hyperparameters. This method
is evaluated in the image domain with a one-to-one relation from Z to
F. It is yet open how inputs can be realized in Z in the general case
with no one-to-one relation (as examined in Chapter 3).

2.2.5 Poisoning Attack

In machine learning, the training process is one of the most critical
steps due to the impact on all subsequent applications. At this stage,
poisoning attacks allow an adversary to change the overall model
behavior [e.g., 25, 111] or to obtain targeted responses for specific
inputs [e.g., 92, 128, 184] by manipulating the training data or learning
model. The attack thus impacts the integrity of the training data or
model. Such attacks need to be considered in multiple scenarios. First,
an adversary might have direct access to the data or model as insider
or because the training process is outsourced. Second, a manipulation
is possible in transfer-learning where a pre-trained teacher model is
made publicly available and users re-train it for a new task. Third, a
learning model is trained or continuously updated with external data.

Poisoning attacks can be roughly divided into training-only attacks
and backdoor attacks [87]. In the former case, the training data or the
model is manipulated, so that the changed behavior applies to all
inputs later at deployment time. Thus, there is usually no need to
change an input at deployment time, hence the term training-only [87].
Figure 2.10 illustrates the attack with an example from the malware
domain. By changing the training dataset, the adversary can control
the decision boundary that is learned afterwards. At deployment
time, her actual malware sample is misclassified—without modifying
it. We will examine another example for a training-only attack in
Chapter 4 and Appendix C.1, where the adversary mixes a target
image with training images to change the boundary for this particular
sample. In general, attacks have been successfully applied in multiple
applications, such as network anomaly detection [62, 111], signature
generation [149], and crowdsourcing systems [219].
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Figure 2.10: Training-only poisoning attack. Left: The adversary wants to
evade the detection of her malware sample. Middle: She inserts
new training samples, so that another, more favorable classifica-
tion boundary is created after re-training. Right: The output for
her malware sample is changed without modifying the sample.

Another type of poisoning attacks are backdoor attacks [e.g., 92, 128,
203, 230]. At training time, the adversary injects a backdoor into a
learning model such that this model associates a trigger with a target
label. At deployment time, the model behaves normally for benign
inputs in the absence of the trigger, but returns the target label if (and
only if) the trigger is present in the input. In contrast to training-only
poisoning attacks, a backdoor trigger allows an adversary to switch the
misbehavior on or off at deployment time by adding or not adding the
trigger. Figure 2.11 exemplifies the attack in the image domain with
the backdoor method by Gu et al. [92]. We explore this attack in more
detail in Chapter 4 and Appendix C.1. Nevertheless, multiple defenses
have also been examined against backdoor attacks [e.g., 44, 51, 93,
126, 127, 218]. For instance, the key idea of Wang et al. [218] is that a
hidden backdoor provides a short link to its covered target class with
relatively few modifications. Only a small, bounded pattern needs to
be embedded, as in Figure 2.11. On the contrary, without backdoor,
more substantial modifications are required to obtain the target class
for any input. A backdoor can thus be detected by checking for such a
short link in the learning model.

|
|
Label: 4 Label: 1 : E Label: o
[} |
¢ :
!
Label: 5 Label: 1 ! Label: 1
E | m
|
Training time Deployment time

Figure 2.11: Backdoor attack. By changing a few training samples, the learn-
ing model will also associate a trigger (a cross here) with the
label 1. Without trigger, the learning model behaves normally at
deployment time. With trigger, it predicts the target label 1.
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2.2.6 Membership Inference

An adversary infers if an object was part of the unknown training
dataset of a given classifier—solely by relying on the output of the
classifier [186]. The underlying idea is that classifiers behave differently
on an input that has been used for their training compared to an input
obtained for the first time [186]. Membership inference can cause a
serious privacy violation. For instance, an adversary could infer that
a specific person participated at a medical study by being present in
the training dataset. The primary root cause of membership inference
attacks is overfitting [186, 231].

The adversary operates in a gray-box or black-box threat model [99].
In both cases, she can only send queries to the classifier and typically
obtains the prediction scores g(-). She has no knowledge about the
model parameters. Neither has she access to the original training data.
Yet, she might have a surrogate dataset with the same distribution [99,
180, 186], exploit the query access to collect a synthetic dataset with
the same distribution [186], or even use a dataset with a different
distribution [180]. In the gray-box scenario, she has more information,
such as the kind of learning algorithm or used hyperparameters.

Membership inference attacks were introduced by Shokri et al. [186],
and refined in multiple further works [99, 123, 180, 194]. To obtain an
intuition how membership inference works, let us shortly consider an
attack by Salem et al. [180]. The adversary first derives a threshold
for the usual confidence of non-members. To this end, she creates
random objects that are unlikely members, queries their confidence
values and computes an upper bound as threshold. If the confidence
of an object under investigation is above this threshold, it was likely
used for training.

Defenses can be divided into three groups [99]. First, regularization-
based methods try to counter overfitting [see 123, 180, 186]. Second,
similar to model-extraction defenses, the confidence scores can be
changed [104, 186]. For instance, the output can be truncated [186].
Alternatively, the defender can add noise to the output such that it
specifically deceives the adversary’s system for membership infer-
ence [104]. In other words, the defender herself creates an adversarial
example of the output vector [104]. Third, privacy-preserving machine
learning methods should be robust by construction [see 186].

2.3 SUMMARY

We are now equipped with a basic knowledge of machine learning and
its general attack surface. The following text box shortly summarizes
the main takeaways in this chapter.
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BACKGROUND

Main Takeaways.

1.

Machine learning allows us to automatically find patterns and
relations in data. The data are given as real-world objects z in
a problem space Z. For instance, z might be a source code, Z
contains all possible source codes.

. The learning process takes place along a pipeline with three

stages: mapping, training, and output. The overall classification
function cy is given by c¢(z) = (f o ¢ 0 p)(z). With scores, we
obtain cg(z) = (g0 Ppop)(z).

. The mapping ¢ o p from problem to feature space is the first

stage: p : Z — Z preprocesses z € Z, then ¢ : Z — F gen-
erates a d-dimensional feature vector « in the feature space F.
This stage transforms real-world objects into a suitable format
for machine learning.

. The training stage leads to a learning model 6 with a discrimi-

nant function g : F — R, It takes & and returns the scores
for all classes. The last stage defines the output, for instance,
the scores via g(x) or class labels via f(x),i.e, f: F — ).

. Machine learning itself can be attacked. The research field of

adversarial machine learning is concerned with the theory and
practice of machine learning under an adversary.

. An attack is possible against any component of the learning

pipeline with adversarial examples, model extraction, hyperpa-
rameter extraction, poisoning, adversarial preprocessing, and
membership inference.

. The relation between Z and F (via ¢ o p) lays the ground

for the whole pipeline and is therefore essential to attacks as
well. Yet, it has received little attention in research and is thus
comprehensively explored in this thesis.




ATTACK IN THE PROBLEM SPACE

Equipped with basic knowledge of machine learning and its general
attack surface, we can start to systematically explore the relation
between the problem and the feature space of machine learning in the
security context. Whenever an adversary has to create a real object,
such as a source code or PDF file, she jointly operates in both spaces.
She has to realize the object in the problem space and needs to attack
the classifier in the feature space where the targeted learning model is
located. In most application areas in security, however, the mapping
from problem to feature space is not bijective, i. e., not injective and not
surjective [162]. It means that there is no one-to-one mapping between
problem and feature space. This introduces a non-trivial hurdle for an
attack. For instance, an adversary might identify features that create
the wanted classification. Yet, she cannot simply map this vector back
to a real object in the problem space as the feature mapping is not
invertible. The other way round, although a mapping from problem
to feature space exists, the feature outcome may not be predictable or
controllable due to side effects. To rename a source code variable, for
example, an adversary has to adapt all its locations. This may induce
side effects for the feature vector that cannot be computed in advance.

In this chapter, we thoroughly study this relation between problem
and feature space. We will see that in order to create a real object,
an adversary has to conduct her attack in the problem space, guided
by the feature space. This chapter focuses on creating adversarial
examples, but the gained insights also concern other attack procedures,
such as model extraction and poisoning.

To strengthen the insights, we will analyze and conduct the attacks
in the context of source code attribution. This application domain is
well suited, since the respective constraints and challenges also apply
to other application domains, as discussed in this chapter. The empiri-
cal results show that adversarial examples can imitate the coding style
of developers with high accuracy. Consequently, this chapter does not
only illustrate how adversarial learning can be conducted when the
problem and the feature space are disconnected, but also pinpoints
weaknesses in authorship attribution.

In summary, this chapter discusses the following major aspects:

* Problem-space attack. We systematically explore the creation of
real adversarial examples in security-sensitive domains. The de-
veloped framework includes challenges, constraints, and search
strategies. A strategy based on Monte-Carlo Tree Search (MCTS)
that guides the creation of real adversarial examples is proposed.
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ATTACK IN THE PROBLEM SPACE

* Adversarial learning on source code. We examine the first automatic
attack against authorship attribution of source code, which in-
cludes targeted as well as untargeted attacks against two state-
of-the-art attribution methods.

* Large-scale evaluation. An empirical evaluation on a dataset of
204 programmers demonstrates that manipulating the attribution
of source code is possible in the majority of the considered cases.

Before considering problem-space attacks, let us briefly review the
design of methods for authorship attribution in the following.

3.1 AUTHORSHIP ATTRIBUTION OF SOURCE CODE

The learning task in authorship attribution is given by the problem
space Z that contains all possible source codes and a finite set ) of
authors. These authors have developed programs in Z and need to be
identified. Authorship attribution is then the task of identifying the
author y € Y of a given source code z € Z using the classification
function cs such that cf(z) = y. In line with the majority of previous
work, it is assumed that the programs in Z can be attributed to a
single author, as the identification of multiple authors is an ongoing
research effort [see 64, 143].

Equipped with this basic notation, we proceed to examine the main
building blocks of current methods for authorship attribution along
the machine learning pipeline given by c¢(z) = (f o ¢ 0 p)(z). We start
with the mapping ¢ o p of source code from the problem space Z to
the feature space F, followed by the application of machine learning
with the attribution output f.

3.1.1  Mapping from Code to Features

As described in Section 2.1.2, the mapping consists of two steps: the
preprocessing p : Z — Z and feature mapping ¢ : Z — F.

The preprocessing of source code can be necessary to account for
artifacts. In general, artifacts can create shortcuts for separating classes
without actually solving the learning task and should be prevented
where possible [see 11]. In the case of authorship attribution, the
Google Code Jam (GC]J) programming competition [9o] is commonly
used for evaluation [e.g., 2, 6, 36]. This dataset is reported to have
artifacts [11]. Participants reuse their personalized coding templates
across the challenges, for instance, with C++ macros. Understandably,
this is the result from the nature of the competition, where authors try
to solve challenges quickly. These coding templates are often not used,
but only added in case they are needed. Models are then learned, that
strongly rely on the coding templates as highly discriminative patterns.
In consequence, the code attribution is based on artifacts rather than



3.1 AUTHORSHIP ATTRIBUTION OF SOURCE CODE

on deeper coding style. From an adversarial perspective, artifacts can
also simplify an attack if the adversary can change the classification by
exploiting only a few artifacts that are used for identifying a particular
developer. In this thesis, we are interested in generating adversarial
examples of code where no shortcuts, such as artifacts, are exploitable
to simplify the attack. As a first step to mitigate artifacts, macros are
therefore expanded as preprocessing in the evaluation in Section 3.5.
For the same reason, code formatting tools are used as preprocessing to
normalize source code. Otherwise, layout features would also provide
a simple attack surface for an adversary. This problem becomes clearer
in the paragraph after the next when we examine layout features.

The feature mapping ¢ is the second step. The coding habits of a
developer can manifest in a variety of stylistic patterns. Consequently,
methods for authorship attribution need to extract an expressive set
of features from source code that serve as basis for inferring these
patterns. In the following, we examine the major types of these features
that can be used to define ¢. The code sample in Figure 3.1 is used as
a running example throughout the chapter.

return a * b;

1 | int foo(int a){

2 int b;

3 if (a < 2) // base case
4 return 1;

5 b = foo(a - 1); // recursion
6

7

Figure 3.1: Illustrative code sample as running example in this chapter.

LAYOUT FEATURES Individual preferences of a programmer are
often reflected by the layout of the code. Corresponding features
are thus a simple way to characterize coding style. Examples for
such features are the indentation, the form of comments and the
use of brackets. Figure 3.2 highlights the layout features from the
running code example: Curly braces are opened on the same line, the
indentation width is 4, and comments are provided in C++ style.

1 | int foo(int a){ 5 - Curlybraces Opened
5 int b e on same line
! 1
3 if (a < 2) // base case 1----- Indentation width is 4
4 return 1;
5 b = foo(a - 1); // recursion < - -|- - Comments in C++ Style
6 return a * b;
711

Figure 3.2: Layout features from code sample in Figure 3.1.
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Layout features are trivial to forge by an adversary. For instance,
stylistic patterns in the layout can be easily unified by using tools
for code formatting, such as clang-format [55]. At the same time, the
impact of layout features on the attribution accuracy is marginal, as an
empirical evaluation on the dataset from Section 3.5 shows. Therefore,
a defender can be expected to omit layout features or to apply code
formatting tools herself. Hence, we do not consider layout features in
this thesis. In this way, attacks are examined under a more difficult
scenario where no layout features are exploitable.

LEXICAL FEATURES A more advanced type of features can be de-
rived from the lexical analysis of source code. In this analysis stage,
the source code is partitioned into so-called lexemes, tokens that are
matched against the terminal symbols of the language grammar [4].
These lexemes give rise to a strong set of string-based features jointly
covering keywords and symbols. Figure 3.3 highlights some lexemes
from the running code example: the frequency of the lexeme int is 3,
while it is 2 for the lexeme foo. These features can reflect a developer’s
preference for function names or data types.

1 | int foo (int a){ €-------------- -- #lexeme int =3

2 int b;

3 if (a < 2) // base case

4 return 1; <€-------------- - - #lexeme return =2
5 b= foo(a - 1); // recursion <---- #lexeme foo =2

6 return a * b;

71}

Figure 3.3: Lexical features from code sample in Figure 3.1.

In contrast to code layout, lexical features cannot be easily manipu-
lated, as they implicitly describe the syntax and semantics of the source
code. While the lexeme foo in the running example could be easily
replaced by another string, adapting the lexeme int requires a more in-
volved code transformation that introduces a semantically equivalent
data type. Such a transformation is introduced in Section 3.4.3.

SYNTACTIC FEATURES The use of syntax and control flow also
reveals individual stylistic patterns of programmers. These patterns
are typically accessed using the abstract syntax tree (AST), a basic
data structure of compiler design [4]. As an example, Figure 3.4 shows
a simplified AST of the running code example. The AST provides
the basis for constructing an extensive set of syntactic features. These
features can range from the specific use of syntactic constructs, such
as unary and ternary operators, to generic features characterizing the
tree structure, such as the frequency of adjacent nodes. In Figure 3.4,
there exist 21 pairs of adjacent nodes including, for example, (func
foo)—>(arg int) and (return)—(1).
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[decl int [ if ] [ assign ] return ]

\ﬁ (Copar< ) (Crotarm ) \j (caito0) ( T )
G (2 G (5

Figure 3.4: Abstract syntax tree (AST) for code sample in Figure 3.1 [169].

Manipulating features derived from an AST is challenging, as even
minor tweaks in the tree structure can fundamentally change the
program semantics. As a consequence, transformations to the AST
need to be carefully designed to preserve the original semantics and to
avoid unintentional side effects. For example, removing the node pair
(decl int)—(b) from the AST in Figure 3.4 requires either replacing
the type or the name of the variable without interfering with the
remaining code. In practice, such transformations are often non-trivial
and we examine the details of manipulating the AST in Section 3.4.3.

FROM CODE TO VECTORS The three feature types (layout, lexical,
syntactic) provide a broad view on the characteristics of source code
and are used by many attribution methods as the basis for apply-
ing machine-learning techniques [e.g., 2, 6, 36, 64]. The extracted
features can then be used for the mapping of code to a vector space:
¢ : Z — F = R% As example for such a mapping, recall the example
in Figure 2.2 in Section 2.1.2. Furthermore, the mapping may include
the usage of the TF-IDF weighting which adapts the map to account
for the frequency of each feature in the training dataset [2, 36]. More-
over, feature selection algorithms can be used to reduce the number of
possible features afterwards [2, 36].

3.1.2  Multiclass Classification

After defining the overall mapping ¢ o p, we can apply machine learn-
ing for identifying the author of a source code. Typically, this is done by
training a multiclass classifier g(x) that returns scores for all authors ).
Different learning algorithms have been used for constructing the
multiclass classifier g, as for example, support vector machines [160],
random forests [36], and recurrent neural networks [2, 6]. As output,
author scores can be returned with g(x). Alternatively, the final label
is only returned with f(z) by computing the author with the highest
score. Figure 3.5 visualizes the resulting multiclass setting in F.
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Figure 3.5: Multiclass classification in authorship attribution.

Putting all stages together, the overall attribution system is finally
given by c.(z) that takes z as source code and returns scores for all
authors, or by cf(z) that takes z and returns the finally predicted
label y for z.

Attacking each of the possible learning algorithms individually is
a tedious task and thus we examine a black-box attack for misleading
authorship attribution in this chapter. This attack does not require
any knowledge of the employed learning algorithm and operates with
the output c¢(z) only. Consequently, the approach is agnostic to the
learning algorithm as the evaluation in Section 3.5 demonstrates.

3.2 PROBLEM-FEATURE SPACE DILEMMAS

With a basic understanding of authorship attribution, we are ready
to investigate the creation of real adversarial examples. An adversary
has to jointly operate in two spaces. On the one hand, she aims at
attacking a classifier in the feature space. On the other hand, she
requires an object z to be valid in the problem space. Both spaces
are connected by ¢ o p. This situation creates several challenges that
an adversary has to consider for the design of her attack. In the
following, we examine these challenges and use authorship attribution
as representative example.

To begin with, the preprocessing p can complicate an attack. Yet, this
depends on p and is application-specific. For source code, for instance,
expanding macros can change the code considerably and thus override
adversarial modifications. However, an attacker could expand macros
herself before computing the necessary modifications and in this way
avoid problems around the preprocessing. In other words, she can
work with a sample where no preprocessing is necessary.

The major challenge is, however, the feature mapping ¢. In most
application areas, ¢ is not bijective. In other words, there is no one-
to-one correspondence between the problem space Z and the feature
space F. Hence, the adversary encounters multiple dilemmas that we
examine in the following. The dilemmas are illustrated by Figure 3.6.
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3.2.1  Problem Space ~+ Feature Space

Let us start with the problems in the direction from Z to F.
Dilemma 1. Modifications in Z and thus in F are limited.

For instance, the modification of source code is limited. Any change
in Z needs to preserve the syntax and semantics of the program.
Arbitrarily removing or rewriting instructions is not possible, as this
might produce invalid code. Moreover, we cannot always change a
value to any target value without violating the language definition.
The problem space defines possible values in F. For instance, take
a function-call node in the AST. The depth of this node cannot be
changed to 1 if the call needs to be located under a function or method
block, as for example for C++. In this case, a feature in F that measures
the depth of a function call cannot be 1.

Dilemma 2. Target-oriented modification of z is difficult. Each change in z
can impact a set of features in ¢(z) as side effect.

Figure 3.6 exemplifies the challenge that the targeted feature vec-
tor might not be achievable. Three reasons can be identified for the
underlying dilemma.

¢ The smallest possible unit of change in Z can require multiple
consolidation operations across z to ensure the validity. Conse-
quently, multiple changes affect multiple features as side effect.
If an attacker, for example, adapts the function name foo in the
running code example in Figure 3.1, she has to consider all us-
ages of the function, such as in line 5. Multiple features are then
affected, such as the lexeme foo or the subtree under the node
assign in the AST in Figure 3.4.

¢ Another reason is the inherent feature correlation if multiple
features are (partly) extracted from the same source. At this time,
changing only a single statement affects multiple features as side
effect. The exact amount of change is generally not controllable.
For example, various lexical and syntactic features are extracted
from the variable declaration b in line 2 of the code example in
Figure 3.1. This includes the frequency of the lexeme b or the
subtree under the node comp in the AST in Figure 3.4.

¢ Even if an attacker managed to change a single feature only, post-
processing steps in ¢, such as a TF-IDF weighting, can again
affect multiple features due to the normalization.

In general, such side effects cannot be computed in advance, which
further complicates an attack [162].
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Figure 3.6: Problem-feature space dilemmas: Difficulty of moving in both
directions between Z and F. The grid in Z exemplifies its discrete
nature.

Dilemma 3. The same transformation in Z may modify different correlated
features depending on the changed location in z.

A source code, for example, can contain multiple for loops that differ
in their neighborhood, body, and iteration variables. A transformation
changing a for loop can thus modify different correlated features with
each loop. This increases the number of possibly changed features and
makes it hard to compute the impact of a transformation in advance.

Taken together, Figure 3.6 illustrates the challenges: the attack op-
erates in a discrete space with limited modifications, and it can be
difficult to obtain any targeted feature vector. Appendix B.1 provides
more insights on the dilemmas with a detailed example.

3.2.2  Feature Space ~+ Problem Space

Any change to a feature vector ¢(z) must ensure that there exists a
valid object z in the problem space. Unfortunately, ¢ is not invertible
in general and we encounter the following dilemma.

Dilemma 4. Determining z from ¢(z) is intractable for non-bijective feature
maps, and it is impossible to directly apply techniques from adversarial
learning that operate in the feature space.

If we calculate the difference of two vectors ¢(u) = ¢(z) — ¢(z'), we
have no means for determining the resulting source code u. Even
worse, it might be impossible to construct u, as the features in ¢(u)
can violate the underlying programming language specification, for
example, due to feature combinations inducing impossible AST edges.
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3.2.3 Generalization of Dilemmas

These dilemmas have received little attention so far and a significant
fraction of work on attacks has focused on scenarios where the prob-
lem and the feature space are mainly identical [see 26, 38, 156]. In these
scenarios, changes in the problem space, such as the modification of
an image pixel, have a one-to-one effect on the feature space, so that
sophisticated gradient-based attacks can be applied (see Section 2.2.2).
By contrast, a one-to-one mapping between problem and feature
space cannot be constructed in most security-sensitive areas, such
as for text [7, 68, 79, 80, 124, 154], PDF [63, 137, 206, 227, 236], Win-
dows Portable Executable (PE) [8, 112, 175, 176, 197], Android [48,
65, 91, 162, 229], and JavaScript [69]. Consequently, the previously
discussed dilemmas are rather the rule than the exception—beyond
source code attribution. To underline this insight, let us take a look
at the following two application areas. To begin with, consider an
attack with PDF files [236]: The file cannot be arbitrarily changed
(Dilemma 1). Srndi¢ and Laskov [236] report the problem of feature
correlation (Dilemma 2 and Dilemma 3). An inverse feature mapping
does not exist (Dilemma 4). As another example, consider the text do-
main. An adversary cannot change text arbitrarily (Dilemma 1). She
needs to preserve the grammar and meaning. Side effects can occur, for
instance, if adding or modifying a single word requires adapting the
whole sentence to consider the grammar (Dilemma 2 and Dilemma 3).
The feature mapping may not be invertible (Dilemma 4) [e.g., 124].

3.3 FORMALIZATION OF PROBLEM-SPACE ATTACKS

The previous dilemmas show the difficulty to conduct an attack when
problem and feature space are disconnected. Yet, an attack is possible,
but the adversary has to realize her attack in the problem space Z
while being guided from the feature space F. Figure 3.7 illustrates

pop(z o p(zk)

) pop(
Feature space ¢ z f ®
eature w y '\ /

RN\

Transformations

Problem space
(e. g. source code)

Figure 3.7: Schematic depiction of attack procedure in problem and feature
space: The attack is realized by moving in the problem space
while being guided from the feature space.
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this two-sided attack procedure. In this thesis, we refer to this attack
as problem-space attack [162] due to the focus on Z and to differentiate
it from approaches focusing on the feature space only. Note that a
problem-space attack is also referred to as physically realizable attack in
the context of physical objects [185].

Let us take a closer look at how an adversary can realize a problem-
space attack. She has to rely on modifications in Z that we formally
define as follows.

Definition 1. A transformation T : Z — Z, z — Z takes a problem-
space object z and generates a transformed version z'.

A transformation can have the intention to add, remove or change a
single feature or multiple ones. In general, multiple transformations
can be necessary for an attack. To chain them together, we define a
transformation sequence as follows:

Definition 2. A transformation sequence T = Ty o -- -0 T, o Ty is the subse-
quent application of multiple transformations to a problem-space object z € Z.

Given the problem-feature space dilemmas, an adversary has to
consider two components when searching for a suitable sequence T:
constraints and a search strategy. In the following, we explore both
components that have been developed in the context of source code
attribution by Quiring et al. [169], and further extended and formalized
in a broader context by Pierazzi et al. [162].

3.3.1 Constraints of Problem-Space Attacks

A valid and realistic adversarial example needs to fulfill multiple
constraints [162, 169]. They define the allowed movements in the
problem space. In particular, five constraints are relevant, which are
examined in the following. Table 3.1 provides an overview.

PRESERVED SEMANTICS  An attack should not change the behavior
of an object z. As an example, a modified malware should keep its
functionality. In the case of code attribution, the generated source code
by an attack should be semantically equivalent to the original code.
That is, the two codes produce identical outputs given the same input.
In general, semantic equivalence is undecidable [191]. As a result, an
adversary has to rely on the following two methods.

First, a transformation T can preserve the semantics by construc-
tion. For instance, a for loop can be transformed into a semantically-
equivalent while loop. Moreover, an adversary can exploit a semantic
gap and add content in a PDF file such that it does not affect PDF
viewers [236]. We will take a closer look on this technique with the
fifth constraint later in this section. In general, the impact of transfor-
mations that change used content can be difficult to assess due to the
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Constraint Description

® Preserved semantics Modifications do not change the behavior

® Plausibility Modifications are inconspicuous

o Robustness to Adversarial example is robust against changes in
preprocessing preprocessing p

o No exploitation of Adversarial example remains intact if semantic gaps
semantic gap are mitigated or closed

° Available Possible modifications of object z in problem space
transformations

Table 3.1: Summary of constraints for problem-space attacks. The filled circle
@ denotes a mandatory constraint, the circle O specifies a recom-
mended constraint for advanced adversarial examples.

complexity of the application domain. If unexpected cases are possible
due to modifications, an attacker can also use automated tests to verify
the semantics after a transformation.

Second, an attacker can use random manipulations and only keeps
mutated objects that pass functionality tests [e.g., 227]. In this case,
invalid objects are possible by design and tests have to ensure the
semantic equivalence.

If automated tests are used, we need to be aware of their limita-
tion. Although they can reasonably check the semantics, they cannot
guarantee strict equivalence in all possible cases. For instance, ex-
changed API functions that provide the same functionality can differ
in unexpected corner cases, such as when the memory is exhausted.

PLAUSIBILITY Depending on the application area, it can be neces-
sary that an adversarial example is inconspicuous for a human user
or analyst. In the context of source code, plausibility is important
whenever the adversary wants to hide the modification of a source file,
for instance, when blaming another developer. Trivial attacks, such as
simply copying code snippets from one developer for impersonation
or heavily obfuscating source code to avoid any attribution, generate
implausible code and are easy to detect. When adversarial examples
are generated in the image domain [38], plausibility corresponds to
the aspect of imperceptibility. The predicted target class should not be
visible in the attack image to avoid raising suspicion. A special note
is necessary for malware that naturally contains suspicious modifica-
tions. In this case, plausibility for an adversarial example can mean
that the modifications do not raise further suspicion.

Plausibility as a subjective constraint can be hard to measure au-
tomatically. The visibility of a perturbation in images depends on
the respective content (see Section 4.5). Human analysts may judge
differently if a code transformation is suspicious. To verify plausibility,
an empirical user study can be conducted [e.g., 156, 169, 185].
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ROBUSTNESS TO PREPROCESSING A strong adversarial example is
robust to changes in the preprocessing p, that is, the attack should not
fail if p is changed [162]. Therefore, an additional constraint can be to
not exploit fragile features that are affected by p. Consider a digital
image as example. A strong adversarial example should resist a change
in the preprocessing, such as another denoising filter, compression or
scaling algorithm [162]. As another example, layout features of source
code can be easily normalized with tools for code formatting and a
stronger adversarial example does not use them (see Section 3.1.1).

NO EXPLOITATION OF SEMANTIC GAP  An adversary can exploit a
semantic gap, that is, a different view on z between the learning-based
system and the actual application that uses z. In other words, she
exploits a discrepancy between the feature mapping ¢ from Z to F
and the actual application. A stronger adversarial example, however,
does not rely on a semantic gap.

To understand this constraint, we first have to examine the different
variations of a semantic gap. To begin with, an adversary exploits a
semantic gap if she modifies z such that features cannot be correctly
extracted by ¢ [48, 103, 206]. For example, Tong et al. [206] exploit
that the PDF 1.2 standard also allows a hexadecimal ANSI-code to
represent a character. This creates a semantic gap if the feature map-
ping does not consider this possibility, but PDF viewers handle it. As
another type of semantic gap, the adversary can exploit the difference
between the used part of z and extracted features ¢ [236]. This means
the classifier either extracts too little or too much from z. In the for-
mer case, if the feature extraction skips areas in z, an adversary can
add malicious functionality into these areas [e.g., 137]. In the latter
case, the classifier extracts features from areas that are not relevant
for the functionality of z. This allows an adversary to add content
there [e.g., 112, 197, 236]. Figure 3.8 exemplifies this semantic gap for
PDF files [236]. An adversary can inject specifically-crafted content
between the reference table and trailer of a PDF file. This content is
not used by the PDF reader, but by the feature extraction for machine
learning. Finally, a semantic gap is also possible if the feature extrac-
tion does not consider the semantic difference between various parts
of z, such as the difference between a code and debug section in a PE
file [112]. This can allow simpler modifications.

A semantic gap simplifies an attack considerably, since content
can be added or changed with more degrees of freedom. Problem-
space constraints become easier to realize. For instance, semantics
are preserved automatically, if the changed area is not executed by
the actual application. A semantic gap also has an impact on the
search strategy which is introduced in the next section. Following a
gradient from F can be easier, since less constraints from Z have to
be considered [112]. Informally speaking, Z and F are moving closer
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Header
Body ——— Used by PDF
Used by
machine
learning Reference Table
Injected Semantic Gap
content
Trailer :'7 Used by PDF

Figure 3.8: Visualization of a simplified PDF file structure and a possible
semantic gap. The injected content does not influence the program
functionality, but the learning-based system.

to each other. Appendix B.2 provides further insights why a semantic
gap simplifies a problem-space attack.

While it can be necessary to exploit a semantic gap to unveil weak
spots in learning-based systems, a stronger attack does not rely on
a semantic gap, similar to the preprocessing constraint. Although
fixing a semantic gap is by no means trivial [103], a defender can be
expected to consider this gap when improving the robustness of a
learning-based system. Appended bytes, for example, can be mitigated
by identifying the real end of a PE file [172].

Therefore, we consider a fifth constraint in this thesis which has
not been formalized in the literature so far: An adversarial example
remains intact if semantic gaps are mitigated or closed. This constraint
can involve considerable work for an adversary. The used parts of
an object need to be transformed in such a way that the syntax and
semantics are preserved. However, this constraint leads to a strong
adversarial example, as characteristics deeper nested and relevant for
the functionality of an object z are manipulated.

Remark. The constraints on the preprocessing and semantic gap
do not mean that we should not evaluate the whole attack surface.
In fact, attacks based on the preprocessing or semantic gap can
indicate severe weaknesses of a learning-based system. In Chapter 4,
for instance, this thesis demonstrates that preprocessing attacks
on the mapping from problem to feature space are simple, but
considerably effective attacks. Furthermore, an adversary can be
expected to exploit simpler weak spots first. As an example, adver-
saries started with examining semantic gaps in adversarial learning
competitions [172]. Therefore, Table 3.1 marks both constraints as
optional. Still, for a thorough security analysis, we need to consider
advanced adversarial examples that also fulfill these constraints.
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Finally, let us examine the relation between preprocessing and se-
mantic gaps. Preprocessing can help to mitigate a semantic gap, for
instance, by removing appended bytes. Yet, it cannot generally fix
a different view on z between the learning-based system and actual
application. For instance, adjusting the feature mapping can also be
necessary if areas—relevant for the functionality—are not extracted as
features or if the semantic difference is not considered enough.

AVAILABLE TRANSFORMATIONS This constraint defines the pos-
sible modifications of z € Z. These changes are limited, as outlined
in Dilemma 1. In the source code domain, for instance, the available
transformations are restricted by the programming language speci-
fication. A modification can add or replace variables or data types,
but not misspell any token. In contrast, misspelling a word or using
homoglyphs is possible for normal text [124].

In addition, the available transformations are restricted by the other
previously outlined constraints. For instance, adding a large number
of comments does not violate the language specification, but leads
to implausible code and thus might not be possible to exploit. Using
too many spelling mistakes in a text can also raise suspicion or even
hinder its actual usage.

Transformations can be divided into three groups, depending on
whether they add, remove or change parts in z. A prevalent strategy de-
scribed in the literature is to use transformations that add content [e.g.,
112, 236]. This has the advantage of preserving the semantics. Remov-
ing or changing content is more difficult to achieve, as it requires
an understanding of the meaning and relevance of the content. For
example, adding never-executed program code is guaranteed to not
change the semantics, while rewriting code can destroy the program’s
functionality. However, adding a large amount of unused content can
decrease the plausibility and be removable by preprocessing. On the
contrary, equivalent content as replacement, such as synonyms in text
or equivalent APIs in source code, may not raise further suspicion.
These trade-offs further underline the interplay between the different
constraints.

3.3.2  Search Strategy of Problem-Space Attacks

The last needed piece for a problem-space attack is the search strategy
that guides the transformations in the problem space Z towards the
targeted classification. As the feature mapping ¢ is not invertible, we
cannot directly use common gradient-based methods that proceed in
the feature space F only. Therefore, we require a strategy that finds
a solution in Z guided by F. This strategy should account for side
effects which are the additional features that were not intended to be
changed (see Dilemma 2 and Dilemma 3).
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Problem-driven Feature-driven
L Search is done in F to find a
Derivative- — target direction by relying on
based derivatives (e. g. gradient).
o Search is primarily conducted Search is conducted in F to find
Derivative- | i, z ysing the classifier as a target point or direction with-
free black-box oracle. out relying on derivatives.

Table 3.2: Categorization of search strategies.

Different strategies are possible that differ in the way how they
are guided by F. Pierazzi et al. [162] categorize possible strategies
into two types: problem-driven and gradient-driven. In this thesis, this
categorization is extended and a second dimension is added: the usage
of derivative information. This allows us to further capture the key
characteristics of search strategies. Table 3.2 provides an overview of
the categorization that we examine in the following.

PROBLEM-DRIVEN, DERIVATIVE-FREE SEARCH  The search primar-
ily operates in the problem space. It performs various transformations
in Z while the classifier is used as a black-box oracle to obtain feed-
back for each transformation. The attack only relies on the output
value of the classifier without explicitly using derivative information,
such as the gradient. Figure 3.9a illustrates the basic procedure. The
attack repeatedly conducts a transformation in Z and observes the
classifier output. It then follows one or multiple directions where the
output is promising. In this way, side effects are implicitly considered,
as the attack is mainly driven by the problem space.

A wide range of optimization techniques are applicable, such as
hill climbing, tabu search, simulated annealing, or genetic program-
ming [see 82]. They provide different advantages. For instance, genetic
programming as a population-based approach improves multiple
candidate objects at the same time. On the contrary, hill climbing
improves a single object only. It is thus more affected by local minima
than genetic programming, but may find a solution faster.

To obtain some intuition, let us consider how genetic programming
can be leveraged to find adversarial examples of PDF [227]. The strat-
egy starts with randomly mutating the initial malicious PDF file, so
that a population of mutated PDF files are created. A functionality test
is then used to check if the semantics are preserved. Each valid file z’
is passed to the classifier cy(z’) to obtain a malware score. A smaller
score indicates a promising direction. Thus, the subsequent selection
step only keeps the files with smaller scores for the population. In the
next round, the kept files are again mutated and the previous steps
are repeated. This strategy provides adversarial examples after a few
rounds by following multiple promising directions.
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(b) Feature-driven, derivative-based attack

Figure 3.9: Comparison of search strategies. The triangle denotes the selected
object in Z. The problem-driven search first performs transforma-
tions in Z with the classifier as oracle, while the feature-driven
approach first computes the gradient and then selects transforma-
tions in Z. The feature-driven, derivative-free search is omitted.

In Section 3.4.4, we will explore MCTS as a novel search strategy for
problem-space attacks. It allows evaluating multiple transformations
in advance before deciding on the next move. This makes it particularly
suitable for problem-space attacks, where the impact of a transforma-
tion may only be visible after multiple other transformations due to
side effects or a piecewise constant classification function.

Finally, note that there is no problem-driven strategy that explicitly
uses derivative information. In this case, the strategy would auto-
matically be feature-driven, since it operates in F where derivative
information are available only.

FEATURE-DRIVEN, DERIVATIVE-BASED SEARCH A feature-driven
strategy is explicitly using information from the feature space’. It
computes a target direction in F, and then tries to find a way in Z
towards this point or direction. Most feature-driven search strategies
are derivative-based (see related work in Section 3.7). Commonly, they
make use of the gradient in F to identify and select promising manip-
ulations in Z. Figure 3.9b illustrates the basic principle. The strategy
first computes the gradient in F which represents the target direction.
As ¢ is not invertible, the attack needs to work in the opposite direc-
tion: It tries various transformations in Z and selects the one where
its mapped point in F is close to the gradient in F. The distance can
be measured, for instance, with different p-norms (see Appendix A).

Pierazzi et al. [162] originally used the term gradient-driven which is here extended
to feature-driven, derivative-based.
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As an example for a gradient-based search, let us shortly consider
an attack against text classification [154]. In a nutshell, for a given
word in the text, the adversary computes the gradient in F to find
the direction where the classifier score changes the most. Next, she
iterates over a dictionary of words in Z to find the word whose feature
vector is closest to the gradient. This word is then used to replace the
original word.

FEATURE-DRIVEN, DERIVATIVE-FREE SEARCH  Alternatively, an
attack can also perform a derivative-free search in F to identify a target
point or direction. A mimicry attack, for example, first identifies a
target feature point from an already-existing object and then performs
transformations in Z to obtain this point approximately [e.g., 236].
The classification score for this new object can be used to check how
well the target region was reached.

3.3.3 Choice of Search Strategy

Let us proceed with a closer look at when each strategy can be used. To
begin with, the choice of the search strategy is restricted by the threat
model and the differentiability of the learning model. In a black-box
scenario, no knowledge about the learning-based system is available
and consequently no direct derivative information can be used. A
problem-driven search strategy is commonly used in this case [63,
124, 169, 227]. Yet, a feature-driven, derivative-based search strategy
is also possible by relying on input-output queries. Even if only class
predictions cf(z) are available, a gradient along the decision boundary
can be approximated [45, 57]. Such an attack will be discussed in more
detail in Chapter 5.

In a white-box scenario, the adversary has full knowledge. In this
case, the search strategy further depends on the differentiability of the
learning model. If no gradient can be computed, a derivative-based
approach is not applicable—even in a white-box scenario. A derivative-
free strategy is then required. On the contrary, with available derivative
information, all three kinds of search strategy are possible.

As a remedy for the black-box and non-differentiable white-box
case, an attacker can also learn an own surrogate model that mimics
the original model and is differentiable. In this way, she can make use
of feature-driven attacks even in a black-box scenario or with a non-
differentiable original model. Srndi¢ and Laskov [236], for instance,
learn a differentiable surrogate SVM model to approximate a non-
differentiable random forest, and conduct the attack on this surrogate
model. Yet, there is a crux. A surrogate-based attack relies on the
transferability property. That is, an adversarial example that misleads
the surrogate model will probably mislead the original model as
well [26, 200]. Hence, the success crucially depends on the quality of
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the surrogate model [102, 158] (remember the example in Figure 2.9
where the reconstructed decision boundary that optimizes the accuracy
is less suited to find adversarial examples).

Last but not least, the choice of the search strategy can depend on
whether multiple, different classifiers have to be attacked. A problem-
driven strategy has the advantage of being agnostic of the used classi-
fier. For instance, we examine a problem-driven attack against author-
ship attribution in Section 3.4 that is able to attack different classifiers,
as the evaluation in Section 3.5 shows. On the contrary, a derivative-
based strategy needs to be adapted to the used learning model.

Taken together, the search strategy needs to be selected with respect
to the application scenario. The choice depends on various aspects,
such as the threat model, differentiability of the learning model, and
the goal to attack multiple classifiers.

3.3.4 Refining the Search Strategy for Side Effects

Furthermore, search strategies can be adjusted to account for side
effects. First, a strategy can alternately switch between Z and F. For
instance, it first computes a gradient in F, decides on the transfor-
mation in Z, and then computes the feature vector in F. Due to side
effects, the novel feature vector will be shifted. As the search process
is then conducted from this position, side effects are considered by
correcting the feature vector in each step. Alternatively, given a target
feature vector, the mimicry attack from Srndi¢ and Laskov [236] con-
ducts all transformations at once. As a result, the impact of the feature
dependencies has to be considered only once. Yet, the outcome is less
predictable, so that the attack is repeated with multiple feature vectors
as target.

Second, a search strategy can measure some side effects of each
transformation on a minimal test object in advance [162]. Although
the exact side effects will depend on the respective object, this pre-
assessment can uncover related features. Hence, an attacker can better
prioritize transformations that are tested or selected due to a more
realistic mapping to F [162].

3.3.5 Final Definition of Problem-Space Attacks

We are now ready to put together the different pieces by formally
defining a problem-space attack. Given a real object z € Z, the adver-
sary wants to find a transformation sequence T, so that the classifier cf
predicts the target label y* for T(z).

This attack has to fulfill the previously introduced problem-space
constraints (see Table 3.1). Let I' denote the set of these constraints. To
specify that a transformation sequence T creates a valid problem-space
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object z with respect to the constraints I', the following notation is
used: T(z) =T [162].

Similar to feature-space attacks (see Section 2.2.2), a problem-space
attack can be defined as optimization problem. Without loss of gener-
ality, we again focus on the targeted variant in the following, where
the classifier predicts the adversary’s target class y* = y'. Comparable
to the feature-space setting, two formulations can be differentiated.
They primarily define the attack objective function J that specifies the
direction of optimization for the search strategy.

HIGH-CONFIDENCE ATTACK The adversary aims at increasing the
classifier’s confidence in y’. The same objective functions { can be
used as for feature-space attacks. For instance, Equation 2.18 becomes:

¢(T(z)) = rkr;e%{gk(w’)} — gy () (3.1)

with 2’ = ¢ o p(T(z))

As long as all constrains I' are fulfilled, there is no need to define a
distance metric D as additional constraint as done for feature-space
attacks with Equation 2.20.

MINIMUM-MODIFICATION ATTACK The adversary aims at mini-
mizing the required modifications to obtain y’. As a result, this version
requires the definition of a meaningful distance metric. If we mea-
sure the modifications in the problem space, the commonly used L,
distance is no longer applicable, since we do not operate in a vec-
tor space anymore. Although a meaningful distance in Z is rather
application-specific, multiple options exist. If z is represented by a
discrete structure, it is possible to use kernels [95], such as string ker-
nels [129], tree kernels [56, 173], and graph kernels [81, 96]. Moreover,
the edit distance can be used to compare strings in a text [106]. Finally,
a general possibility is to count the number of transformations:

D(z,T(z)) =|T|=|Txo---oTy| = k. (3-2)

This distance is a simple approximation for the amount of change and
can be used as attack objective function { with

¢(T(2)) =D(zT(2)). (3-3)

OPTIMIZATION PROBLEM Both formulations can be summarized
as the following optimization problem.

arg min ¢ (T(z)) (3-4)

s.t. cf(T(z) =,
T(z) =T.
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Taken together, the goal is to find a transformation sequence T that
optimizes {(-) by manipulating the object z in such a way that the
classifier c; predicts the target label y' and the problem-space con-
straints I' are satisfied. The high-confidence version is obtained with
Equation 3.1 as objective function, while the minimum-modification
variant can be obtained with Equation 3.3. In order to find a solution
to Equation 3.4, the adversary applies one of the three search strategies
defined in Section 3.3.2. The choice of the search strategy depends
on multiple aspects as defined in Section 3.3.3. The strategy can also
account for side effects (Section 3.3.4).

3.4 ATTACKING AUTHORSHIP ATTRIBUTION

To strengthen our insights on problem-space attacks, let us now apply
the previous formalization in the context of authorship attribution. We
start with the threat model, as the concrete design of a problem-space
attack depends on the assumed goals, knowledge and capabilities.

3.4.1 Threat Model

The adversary is assumed to operate in a black-box scenario (see Sec-
tion 2.2.1). That is, she has black-box access to an attribution method.
She can send an arbitrary source code z to the method and retrieve
the corresponding prediction cg(z). The training data, the extracted
features, and the employed learning algorithm, however, are unknown
to the adversary, and hence the attack can only be guided by iter-
atively probing the attribution method and analyzing the returned
prediction scores. As part of the threat model, let us consider two
types of attacks—untargeted and targeted attacks—that require different
capabilities of the adversary and have distinct implications for the
involved programmers.

UNTARGETED ATTACKS In this setting, the adversary tries to mis-
lead the attribution of source code by changing the classification into
any other developer. This attack is also denoted as dodging [185] and
impacts the correctness of the attribution. As an example, a benign
developer might use this attack strategy for concealing her identity
before publishing the source code of a program.

TARGETED ATTACKS The adversary tries to change the classification
into a chosen target developer. This attack resembles an impersonation
and is technically more advanced, as we need to transfer the stylis-
tic patterns from one developer to another. A targeted attack has
more severe implications: A malware developer, for instance, could
systematically change her source code to blame a benign developer.
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In particular, two scenarios are considered for targeted attacks: In
the first scenario, the adversary has no access to source code from the
target developer and thus certain features, such as variable names and
custom types, can only be guessed. In the second scenario, the adver-
sary is assumed to have access to two files of source code from the
target developer. Both files are not part of the training or test dataset
and act as external source for extracting template information, such
as custom variable names. The number of two files is a conservative
choice, since two is the minimal number that allows identifying a
recurring pattern, for instance, in variable names.

In addition, a scenario is considered where the targeted attack solely
rests on a separate training set, without access to the output of the
original classifier. This might be the case, for instance, if the attribution
method is secretly deployed, but code samples are available from
public code repositories. In this scenario, the adversary can learn a
surrogate model with the aim that her adversarial example—calculated
on the surrogate—also transfers to the original classifier.

3.4.2 Attack Constraints

Misleading the attribution of an author can be achieved with different
levels of sophistication. For example, an adversary may heavily obfus-
cate source code for dodging. This trivial attack, however, generates
implausible code and is easy to detect. As a consequence, let us define
the problem-space constraints from Section 3.3.1 such that it should
be hard to identify manipulated source code. An overview over the
defined constraints in the following is given by Table 3.3.

PRESERVED SEMANTICS The source code generated by the attack
needs to be semantically equivalent to the original code. The two
codes should produce identical outputs given the same input. The
developed code transformations in this thesis try to achieve this by
construction. As they are based on the compiler frontend Clang [55],
they have a full view on the source code. Still, unexpected cases are
possible that are detected by using automated tests.

PLAUSIBILITY All transformations should change the source code
such that the result is readable and plausible. The adversarial example
should not be detectable as such under review by a human being. For
this reason, no junk code or unusual syntax is included that normal
developers would not use. Furthermore, a user study with domain
experts is conducted with the finally created adversarial examples to
verify that they comply with the plausibility constraint.
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Constraint Description

Preserved semantics The adversarial source code remains semantically equiv-
alent to the original code, achieved by the design of
transformations and by automated tests.

Plausibility The changed source code is readable and plausible. No
junk code or unusual syntax is used. Plausibility is veri-
fied afterwards with a user study.

Robustness to Transformations do not change layout, as a defender
preprocessing could easily omit adversarially changed layout features.
No exploitation of Transformations directly alter the used source code.
semantic gap Comments are not used to add features.

Available Targeted transformations in problem space, that only
transformations change minimal aspects of source code, and enable

adding, removing, or changing features.

Table 3.3: Summary of constraints for adversarial examples of source code.

ROBUSTNESS TO PREPROCESSING  Layout features of source code,
such as the tendency to start lines with spaces or tabs, can be easily
normalized with tools for code formatting. If p is changed to normalize
source code, an attack relying on layout transformations would fail.
For this reason, the code transformations are restricted to the forgery
of lexical and syntactic features. This leads to a stronger adversarial
example, as no fragile layout features are exploitable to mislead the
attribution.

NO EXPLOITATION OF SEMANTIC GAP The code transformations
do not exploit a semantic gap, as they directly modify the used source
code. Comments are not exploited. This leads to a stronger adversarial
example, as deeper stylistic patterns are modified.

We continue with the code transformations as last constraint in their
own section, as they require a comprehensive introduction.

3.4.3 Available Code Transformations

The automatic modification of code is a well-studied problem in com-
piler engineering and source-to-source compilation [4]. Consequently,
we can build code transformations on top of the compiler frontend
Clang [55], which provides all necessary primitives for parsing, trans-
forming and synthesizing C/C++ source code. Note that code obfus-
cation methods are not used, since their changes are (i) clearly visible,
and (ii) cannot mislead a classifier to a targeted programmer.
Following Definition 1, we denote a code transformation by T. It
takes a source code x and generates a transformed version x’. While
code transformations can serve various purposes in general [4], the fo-
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Figure 3.10: Control-flow graph (CFG) with use-define chains (UDCs) for the
code sample in Figure 3.1 [169]. The control flow is shown in
red (solid), use-define chains in blue (dashed).

cus lies on targeted transformations that modify only minimal aspects
of source code. If multiple source locations are applicable for a trans-
formation, the adversary is assumed to use a pseudo-random seed
to select one location. To chain together targeted transformations, we
denote a code transformation sequence by T—as defined in Definition 2.

To efficiently perform transformations, an attacker can use different
program representations, where the AST is the most important one.
To ease the realization of involved transformations, however, two
additional program representations are usable that augment the view
on the source code.

CONTROL-FLOW GRAPH WITH USE-DEFINE CHAINS The con-
trol flow of a program is typically represented by a control-flow
graph (CFG) where nodes represent statements and edges the flow
of control. Using the CFG, it is convenient to analyze the execution
order of statements. For the attack, the CFG provided by Clang is
further extended with use-define chains (UDCs). These chains unveil
dependencies between usages and the definitions of a variable. With
the aid of UDCs, it is possible to trace the flow of data through the pro-
gram and to identify data dependencies between local variables and
function arguments. Figure 3.10 shows a CFG with use-define chains.

DECLARATION-REFERENCE MAPPING In addition, a declaration-
reference mapping (DRM) extends the AST by linking each declaration
to all usages of the declared variable. As an example, Figure 3.11 shows
a part of the AST together with the respective DRM for the running
code example from Figure 3.1. This code representation enables navi-
gation between declarations and variables, which allows an adversary
to efficiently rename variables or to check for the sound transforma-
tion of data types. Note the difference between use-define chains and
declaration-reference mappings. The former connects variable usages
to variable definitions, while the latter links variable usages to variable
declarations.
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body

[ decl int [ assign

) ( )
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Figure 3.11: Abstract syntax tree (AST) with declaration-reference mapping

(DRM) for the code sample in Figure 3.1 [169]. Declaration refer-
ences are shown in green (dashed).

Transformation family # AST CFG UDC DRM
Control transformations 5 . . .
Declaration transformations 13 . .
API transformations 9 . . .
Template transformations 4 . .
Miscellaneous transformations 4 °

Table 3.4: Implemented families of code transformations.

Based on these program representations, we can develop a set of
generic code transformations that are suitable for changing different
stylistic patterns. In this thesis, 35 transformers are implemented that
are organized into five families. Table 3.4 provides an overview of
each family together with the program representation used by the
contained transformers. In the following, let us briefly examine each
of the five families. For a detailed listing of all 35 transformations, the
reader is referred to Table B.1 in Appendix B.3.

CONTROL TRANSFORMATIONS  The first family of source-to-source
transformations rewrites control-flow statements or modifies the con-
trol flow between functions. In total, the family contains 5 transforma-
tions. For example, the control-flow statements while and for can be
mutually interchanged by two transformers. These transformations
address a developer’s preference to use a particular iteration type.
As another example, Figure 3.12 shows the automatic creation of a
function. The transformer moves the inner block of the for-statement
to a newly created function. This transformation involves passing
variables as function arguments, updating their values and changing
the control flow of the caller and callee.

DECLARATION TRANSFORMATIONS The next family consists of
13 transformers that modify, add or remove declarations in source
code. For example, in a widening conversion, the type of a variable is
changed to a larger type, for example, float to double. This rewriting
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1| for (int j = i; j <1+ k; j++) {
2 if (s[§] == "-") o
3 s3] = "+'; .
4 else | '
5 s[jl = "-"; o !
6|} !
:
1 | inline void setarray(string& s, int& j) { '
2 if (s[jl == "-") \
3 s[il = "+"; :
4 else <------ _0_ ——————— |
5 s[il = "-"; :
6|} :
7|01 !
8 | for (int j =1i; j < i + k; j++) o !
9 setarray(s, j); €---------------

Figure 3.12: Example of a control transformation. @ moves the compound
statement into an own function and passes all variables defined
outside the block as parameters. ® calls the new function at the
previous location.

mimics a programmer’s preference for particular data types. Declara-
tion transformations make it necessary to update all usages of variables
which can be elegantly carried out using the DRM representation. Re-
placing an entire data type is a more challenging transformation, as we
need to adapt all usages to the type, including variables, functions and
return values. Figure 3.13 shows the replacement of the C++ string
object by a conventional char array, where the declaration and also API
functions, such as size, are modified. Note that in the implementation
of the transformer for this thesis, the char array has a fixed size and
thus is not strictly equivalent to the C++ string object.

API TRANSFORMATIONS  The third family contains 9 transforma-
tions and exploits the fact that various APIs can be used to solve the
same problem. Programmers are known to favor different APIs and

string s; 00 memmmsm------------ '
cin >> s; X
for (int i = 0; i < s.size(); i++) X
if (s[i] == '+') !
1
1

AW N R

char s[1000]; € mmmmm e - 1
cin >> s; o
for (int 1 = 0; 1 < strlen(s); i++) <----—-

’

if (s[i] == "+")

AW N R

Figure 3.13: Example of a declaration transformation. @ replaces the decla-
ration of the C++ string object with a char array, ® adapts all
uses of the object.
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1 | cout << fixed << setprecision(10); <---

2 ([...] :

3 | for (long long t = 0; 0!

4 t < (long long)(T); t++) { !

5 [...] I

6 cout << "Case #" <<t + 1 << ": " '_;___: ______

7 <<d/ 1 << '\n’; o !

811} I
I

1 | for (long long t = 0; '

2 t < (long long)(T); t++) { X

4 printf("Case #%lld: %.10f\n", <“-------- !

5 t+1,d/1);

6 |}

Figure 3.14: Example of an API transformation. @ determines the current
precision for output; ® replaces the C++ API with a C-style
printf. The format specifier respects the precision and the data
type of the variable.

thus tampering with API usage is an effective strategy for changing
stylistic patterns. For instance, we can choose between various ways
to output information in C++, such as printf, cout, or ofstream.

As an example, Figure 3.14 depicts the replacement of the object
cout by a call to printf. The transformer first checks for the decimal
precision of floating-point values that cout employs. To this end, the
CFG is used to find the last executed fixed and setprecision statement.
Next, the transformer uses the AST to resolve the final data type of
each cout entry and creates a respective format string for printf.

TEMPLATE TRANSFORMATIONS  The fourth family contains 4 trans-
formations that insert or change code patterns based on given template
information (remember the threat model in Section 3.4.1). For example,
developers tend to reuse specific variable names, constants, and type
definitions. If two template files are given for a target developer, infor-
mation are extracted and used for transformations. Otherwise, default
values that represent general style patterns are employed. For instance,
variable names can be iteratively renamed into default names like i, j,
or k until a developer’s tendency to declare control statement variables
is lost (dodging attack) or gets matched (impersonation attack).

MISCELLANEOUS TRANSFORMATIONS The last family contains
4 transformations that conduct generic changes of code statements.
For example, the use of curly braces around compound statements is
a naive but effective stylistic pattern for identifying programmers. The
compound statement transformer thus checks if the body of a control
statement can be enclosed by curly braces or the other way round. In
this way, a compound statement in the AST can be added or removed.
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Another rather simple stylistic pattern is the use of return state-
ments, where some programmers omit these statements in the main
function and others differ in whether they return a constant, integer
or variable. Consequently, a transformer is available that manipulates
return statements.

3.4.4 Search Strategy

Equipped with different code transformations for changing stylistic
patterns, we are ready to determine a sequence of these transforma-
tions for untargeted and targeted attacks. We aim at a short sequence,
which makes the attack less likely to be detected. Thus, the minimum-
modification formulation is applied. The number of transformations is
used for the attack objective function. Formally, we adjust the general
optimization problem from Equation 3.4 as follows:

i T
arg min [T

s.t. c(T(z)) =y",
T(z) £T.

For an untargeted attack, y* is any other developer than the original
developer y°. For a targeted attack, y* is a particular target author y'.
Due to the black-box threat model, a problem-driven derivative-free
search strategy is used. As we explore attacks against multiple learning
algorithms in the evaluation, this approach also has the advantage of
being agnostic to the learning algorithm.

A challenge for a problem-space attack can be that the impact of a
single transformation is only visible after multiple other transforma-
tions due to side effects or a (nearly) piecewise constant classification
function. In the latter case, this means that a single transformation does
not necessarily change the score of the classifier. This can happen un-
intentionally or intentionally, for instance, due to regularization [155]
or the choice of learning model, such as a random forest. As a result,
simple approximation techniques like Hill Climbing that only eval-
uate the neighborhood of a sample can fail to provide appropriate
solutions.

As a remedy, in this thesis, we explore a novel search strategy
for problem-space attacks around the concept of Monte-Carlo Tree
Search (MCTS)—a strong search algorithm that has proven effective
in Al gaming with AlphaGo [187]. Similar to a game tree, the variant
of MCTS in this thesis creates a search tree for the attack, where each
node represents a state of the source code and each edge corresponds
to a transformation T. By moving in this tree, we can evaluate the
impact of different transformation sequences before deciding on the
next move. It is thus particularly suitable for problem-space attacks,
as side effects and constant classifier scores are implicitly considered.

(3-5)
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Selection Simulation Backpropagation
and Expansion

Figure 3.15: Basic steps of Monte-Carlo Tree Search (MCTS).

Figure 3.15 depicts the four basic steps of the algorithm: selection,
simulation, expansion, and backpropagation.

SELECTION As the number of possible paths in the search tree
grows exponentially, we require a selection policy to identify the next
node for expansion. This policy balances the tree’s exploration and
exploitation by alternately selecting nodes that have not been evaluated
much (exploration) and nodes that seem promising to obtain a better
result (exploitation). Following this policy, we start at the root node
and recursively select a child node until we find a node u which was
not evaluated before. The left plot in Figure 3.15 illustrates this process.
Appendix B.4 gives more information about the used selection policy.

SIMULATION & EXPANSION We continue by generating a set of
unique transformation sequences with varying length that start at u.
The length of each sequence is bounded by a predefined value. The ex-
periments in Section 3.5 create sequences with up to 5 transformations.
For each sequence, we determine the classifier score ¢, (-) by providing
the modified source code to the attribution method. The middle plot
in Figure 3.15 exemplifies the step: three sequences are created where
two have the same first transformation. Next, the respective tree nodes
are created. As two sequences start with the same transformation, they
also share a node in the search tree.

BACKPROPAGATION Finally, we propagate the obtained classifier
scores from the leaf node of each sequence back to the root. During
this propagation, we update two statistics in each node on the path.
First, we increment a counter that keeps track of how often a node has
been part of a transformation sequence. In Figure 3.15, we increase the
visit count of node u and the nodes above by 3. Second, we store the
classifier scores in each node that have been observed in its subtree.
For example, node u in Figure 3.15 stores the scores from sq, s, and s3.
Both statistics are used by the selection policy and enable us to balance
the exploration and exploitation of the tree in the next iterations.
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ITERATION These four basic steps are repeated until a predefined
iteration constraint is reached. After obtaining the resulting search tree,
we identify the root’s child node with the highest average classifier
score and make it the novel root node of the tree. We then repeat the
entire process again. The attack is stopped if we succeed, if we reach
a previously fixed number of iterations, or if we do not obtain any
improvement over multiple iterations.

Appendix B.4 provides more implementation details on the devel-
oped variant of MCTS. Note that the algorithm is a black-box attack,
as the inner working of the classifier Cg is not considered. Moreover,
the proposed search strategy is not bounded to source code. It can also
be applied to other application areas, as it is only based on generic
transformations that correspond to the edges in the search tree.

3.5 EVALUATION

We proceed with an empirical evaluation of the developed problem-
space attack and investigate the robustness of source code authorship
attribution in a series of experiments. In particular, the impact of
untargeted and targeted attacks on two recent attribution methods is
investigated (Section 3.5.2 & 3.5.3). Finally, the attack constraints are
verified in Section 3.5.4.

3.5.1 Experimental Setup

The empirical evaluation builds on the attribution methods developed
by Caliskan et al. [36] and Abuhamad et al. [2], two recent approaches
that operate on a diverse set of features and provide superior perfor-
mance in comparison to other attribution methods. For the evaluation,
the same experimental setup of the authors is used, their methods are
re-implemented and a similar dataset is applied.

DATASET & SETUP  The dataset consists of C++ files from the 2017
Google Code Jam (GCJ) programming competition [9o]. This contest is
divided into various rounds where several participants solve the same
programming challenges. This setting enables us to learn a classifier
for attribution that separates stylistic patterns rather than artifacts of
the different challenges. Moreover, for each challenge, a test input is
available that can be used to check the program semantics. Similar to
previous work, eight challenges are selected and the respective source
codes from all authors who solved these challenges are collected.

In contrast to prior work [2, 36], however, more stringent restrictions
on the source code are set, that is, files are filtered out that contain
incomplete or broken solutions. Furthermore, a preprocessing step
formats each source code with clang-format and expands macros. The
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latter aims at removing artifacts that some authors introduce to write
code more quickly during the contest. The final dataset consists of
1,632 files of C++ code from 204 authors solving the same 8 program-
ming challenges of the competition.

The evaluation is based on a stratified and grouped k-fold cross-
validation where the dataset is divided into k — 1 challenges for train-
ing and 1 challenge for testing. This ensures that training is conducted
on different challenges than testing. For each of the k folds, feature
selection on the extracted features is performed before the respective
classifier is trained as described in the original publications. Averaged
results over all 8 folds are reported in the following.

IMPLEMENTATION The attribution methods and the attack are im-
plemented on top of Clang [55], an open-source C/C++ frontend for
the LLVM compiler framework. For the method of Caliskan et al. [36],
the AST extraction is re-implemented and the proposed random for-
est classifier is used for attributing programmers. The approach by
Abuhamad et al. [2] uses lexical features that are passed to a LSTM
neural network for attribution. Table 3.5 provides an overview of both
methods. For further details on the feature extraction and learning
process, the reader is referred to the respective publications [2, 36].

As a sanity check, the experiments conducted by Caliskan et al. [36]
and Abuhamad et al. [2] are reproduced on the previously described
final dataset. Table 3.5 shows the average attribution accuracy and
standard deviation over the 8 folds. The re-implementation enables
differentiating the 204 developers with an accuracy of 90% and 88%
on average, respectively. Both accuracies come close to the reported
results with a difference of less than 6%, which can be attributed to
omitted layout features and the stricter dataset.

3.5.2 Untargeted Attack

In the first experiment, let us investigate whether an adversary can
leverage the developed problem-space attack to manipulate source
code such that the original author is not identified. To this end, an
untargeted attack is applied to each correctly classified developer from
the 204 authors. The attack is repeated for all 8 challenges. Aggregated
results are reported.

Method Lex Syn Classifier Accuracy
Caliskan et al. [36] ° ° Random Forest 90.4% + 1.7%
Abuhamad et al. [2] . LSTM network 88.4% + 3.7%

Table 3.5: Implemented attribution methods and their reproduced accuracy.
(Lex = Lexical features, Syn = Syntactic features)
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Success rate of attack

Method Untargeted ‘ Targeted T+ Targeted T-
Caliskan et al. [36] 99.2% 77.3% 71.2%
Abuhamad et al. [2] 99.1% 81.3% 69.1%

Table 3.6: Performance of attack as average success rate. The targeted at-
tack is conducted with template (T+) and without template (T-)
information.

ATTACK PERFORMANCE Table 3.6 presents the performance of the
attack as the ratio of successful evasion attempts. The attack has
a strong impact on both methods and misleads the attribution in
99% of the cases, irrespective of the considered features and learning
algorithm. As a result, the source code of almost all authors can be
manipulated such that the attribution fails.

ATTACK ANALYSIS To investigate the effect of the attack in more
detail, let us examine the ratio of changed features per adversarial
sample. Figure 3.16 depicts the distribution over all samples. The
method by Caliskan et al. [36] exhibits a bimodal distribution. The
left peak shows that a few changes, such as the addition of include
statements, are often sufficient to mislead attribution. For the majority
of samples, however, the attack alters 50% of the features, which
indicates the tight correlation between different features—as outlined
by the problem-feature space dilemmas in Section 3.2. A key factor to
this correlation is the TF-IDF weighting that distributes minor changes
over a large set of features.

In comparison, less features are necessary to evade the approach
by Abuhamad et al. [2], possibly due to the higher sparsity of the
feature vectors. Each author has 12.11% non-zero features on average,
while 53.12% are set for the method by Caliskan et al. [36]. Thus, less
features need to be changed and in consequence each changed feature
impacts fewer other features that remain zero.

10 \ \
Caliskan et al. [36]

F‘: B Abuhamad et al. [2]

0 20 40 60 80 100

Density

S N b= O
[

Changed features per evasive sample [%]

Figure 3.16: Untargeted attack: Histogram over the number of changed fea-
tures per successful evasive sample for both attribution methods.
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Figure 3.17: Untargeted attack: Stacked histogram over the number of
changed lines of code (LOC) per successful evasive sample for
both attribution methods. The original source files have 74 lines
on average (std: 38.44).

Although we can observe a high number of changed features, the
corresponding changes to the source code are minimal. Figure 3.17
shows the number of added, changed and removed lines of code
(LOC) determined by a context-diff with difflib [163] for each source
file before and after the attack. For the majority of cases in both
attribution methods, less than 5 lines of code are added, removed
or changed. This low number exemplifies the targeted design of the
code transformations that selectively alter characteristics of stylistic
patterns.

SsUMMARY The results from this experiment demonstrate that the
untargeted attack severely impacts the performance of the methods
by Caliskan et al. [36] and Abuhamad et al. [2]. We can conclude that
other attribution methods employing similar features and learning
algorithms also suffer from this problem and hence cannot provide a
reliable attribution in presence of an adversary.

3.5.3 Targeted Attack

We proceed to study the targeted variant of the attack. Thus, pairs
of programmers are considered in the following, where the code of
the source author is transformed until it is attributed to the target
author. Due to the quadratic number of pairs, this experiment is
performed on a random sample of 20 programmers. This results in
380 source-target pairs each covering the source code of 8 challenges.
Table B.2 in Appendix B.5 provides a list of the selected authors. Let
us start with the scenario where the adversary has access to template
information. That is, she retrieves two samples of source code for each
of the 20 programmers from various GC]J challenges—not part of the
fixed 8 train-test challenges.
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Figure 3.18: Impersonation matrix for the attribution method by Caliskan
et al. [36]. Each cell indicates the number of successful attack
attempts for the 8 challenges. The results for Abuhamad et al. [2]
are presented in Figure B.2 in Appendix B.6.

ATTACK PERFORMANCE Table 3.6 depicts the success rate of the
attack for both attribution methods. An adversary can transfer the
prediction from one to another developer in 77% and 81% of all cases,
respectively, indicating that more than three out of four programmers
can be successfully impersonated.

In addition, for the attribution method by Caliskan et al. [36], Fig-
ure 3.18 presents the results as a matrix, where the number of success-
ful impersonations is visually depicted. Note that the value in each
cell indicates the absolute number of successful impersonations for
the 8 challenges associated with each author pair. The matrix shows
that a large set of developers can be imitated by almost every other
developer. Their stylistic patterns are well reflected by the developed
transformers and thus can be easily forged. By contrast, only the devel-
opers I and P have a small impersonation rate, yet 68% and 79% of the
developers can still imitate the style of I and P in at least one challenge.
The results for the attribution method by Abuhamad et al. [2] are sim-
ilar. Figure B.2 in Appendix B.6 presents the respective impersonation
matrix.

ATTACK ANALYSIS The number of altered lines of code also re-
mains small for the targeted attacks. For both attribution methods,
Figure 3.19 shows that in most cases only o to 10 lines of code are
affected. At the same time, the feature space is substantially changed.
Figure 3.20 depicts that both attribution methods exhibit a similar
distribution as before in the untargeted attack—except that the left
peak vanishes for the method of Caliskan et al. [36]. This means that
each source file requires more than a few targeted changes to achieve
an impersonation.
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(a) Caliskan et al. [36] (b) Abuhamad et al. [2]
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Figure 3.19: Targeted attack: Stacked histogram over the number of changed
lines of code (LOC) per successful impersonation for both at-
tribution methods. The original source files have 74 lines on
average (std: 38.44).
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Figure 3.20: Targeted attack: Histogram over the number of changed features
per successful impersonation for both attribution methods.

In addition, Table 3.7 shows the contribution of each transformation
family to the impersonation success. All transformations are necessary
to achieve the reported attack rates. A closer look reveals that the
method by Abuhamad et al. [2] strongly rests on the usage of template
transformations, while the families are more balanced for the approach
by Caliskan et al. [36]. This difference can be attributed to the feature
sets. The former method relies on simple lexical features only. Hence,
custom declaration names, imported libraries or typedefs are more
important than for the method by Caliskan et al. [36] that extracts
more involved features from the AST.

To give further intuition for a successful impersonation attack, Ap-
pendix B.6 provides a case study from the evaluation.

ATTACK WITHOUT TEMPLATE INFORMATION  Let us additionally
examine the scenario when the adversary has no access to template
information of the target developer. In this case, the template trans-
formers can only try common patterns, such as the iteration variables
i, j, ..., k or typedef 11 for the type long long. Table 3.6 shows the
results of this experiment as well. Still, an adversary can achieve an
impersonation rate of 71% and 69%—solely by relying on the feedback



3.5 EVALUATION

Transformation Family Caliskan et al. Abuhamad et al.
Control Transformers 8.43% 9.72%
Declaration Transformers 14.11% 17.88%
API Transformers 29.90% 19.60%
Template Transformers 38.42% 48.04%
Miscellaneous Transformers 9.15% 4.76%

Table 3.7: Usage of transformation families for impersonation with both
attribution methods.

from the classifier. The number of altered lines of code and features
correspond to Figure 3.19 and Figure 3.20.

Contrary to expectation, without template information, the ap-
proach by Abuhamad et al. [2] is harder to fool than the method
by Caliskan et al. [36]. As the lexical features rest more on simple
declaration names and included libraries, they are harder to guess
without template files. However, if template files are available, this
approach is considerably easier to evade.

ATTACK WITH SURROGATE MODEL Last but not least, let us evalu-
ate the scenario when the adversary has no access to the prediction of
the original classifier, only relying on a surrogate model trained from
separate data. To this end, the training set is divided into disjoint sets
with three files per author to train the original and surrogate model,
respectively. The attack is tested on the method by Caliskan et al. [36],
which is the more robust attribution under attack. By the nature of
this scenario, the adversary can use two files to support the template
transformations. Furthermore, to improve the transferability rate from
the surrogate to the original model, we switch to a high-confidence
attack by slightly adapting the search strategy. The search does not
stop after the first successful adversarial example. Instead, it collects
multiple samples and chooses the one with the highest score on the
surrogate to be tested on the original classifier (see Appendix B.4 for
more information).

Adversarial examples—created with the surrogate model—transfer
to the original model in 79% of the cases. That is, attacks successful
against the surrogate model are also effective against the original in
the majority of the cases. This indicates that the attack successfully
changes indicative features for a target developer across models. The
success rate of the attack on the original model is 52%. Due to the
reduced number of training files in this experiment, the attack is
harder, as the coding habits are less precisely covered by the original
and surrogate models. Still, an adversary is able to impersonate every
second developer with no access to the original classifier.
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suMMARY The findings show that the developed problem-space
attack allows an adversary to automatically impersonate a large set
of developers. The attack successfully resolves the challenges due to
the problem-feature space dilemmas and a restrictive black-box threat
scenario. We can conclude that both considered attribution methods
can be abused to trigger false allegations—rendering a real-world
application dangerous.

3.5.4 Verification of Attack Constraints

The last group of experiments verifies that the generated adversarial
code samples comply with the attack constraints specified in Sec-
tion 3.4.2. It is empirically checked that (i) the semantics of the trans-
formed source code are preserved, and (ii) the generated code is
plausible to a human developer.

PRESERVED SEMANTICS Automated tests are used to verify the
semantics of the transformed source code. In particular, a test file
from each challenge of the GCJ competition is used to check that the
transformed source code provides the same solution as the original
code. In all experiments, the output remains unchanged for each
manipulated source code sample before and after the attack.

PLAUSIBILITY To check that the transformations lead to plausible
code, a discrimination test with 15 human subjects is conducted. The
group consists of 4 undergraduate students, 6 graduate students and
5 professional computer scientists. The structure of the test follows
an AXY-test: Every participant obtains g files of source code—each
from a different author but for the same GCJ challenge. These 9 files
consists of 3 unmodified source codes as reference (A) and 6 sources
codes (XY) that need to be classified as either original or modified. The
participants are informed that 3 of the samples are modified. Then,
each participant is asked to identify the unknown samples and to
provide a short justification.

Table 3.8 provides the results of this empirical study. On average,
the participants are able to correctly classify 60% of the provided files
which is only marginally higher than random guessing. This result
highlights that it is hard to decide whether source code has been
modified by the attack or not. In several cases, the participants falsely
assume that unused typedef statements or an inconsistent usage of
operators are modifications.



3.6 LIMITATIONS

Participant Group Accuracy Std
Undergraduate students 66.7%  23.6%
Graduate students 55.6% 15.7%
Professionals 60.0%  24.9%
Total 60.0% 21.8%
Random guessing 50.0% —

Table 3.8: Study on plausibility of transformed source code.

3.6 LIMITATIONS

The previous experiments demonstrate the impact of the developed
problem-space attack on program authorship attribution. Nonetheless,
the approach has limitations that are discussed in the following.

VERIFICATION OF SEMANTICS Two programs are assumed to be
semantically equivalent if they return the same output for a given
input. In particular, the test cases provided by the GCJ competition
are applied to verify that the transformed source code is semantically
equivalent. As discussed in Section 3.3.1, this approach is reasonable
in our setting, but it cannot guarantee strict semantic equivalence in
all possible cases.

HARDCODED CODE TRANSFORMATIONS  Although Clang as a com-
piler frontend can be leveraged to obtain a systematic view on source
code, the developed code transformations need to be implemented
manually. Nevertheless, this approach also has considerable advan-
tages: it allows defining targeted code modifications that change exe-
cuted source code. They preserve semantics by design, are plausible
and readable, and do not exploit any preprocessing vulnerability or
semantic gap by adding unused code only. The user study demon-
strates that it is hard to differentiate between original and modified
source code.

MISSING CODE TRANSFORMATIONS  Although the attack enables
misleading the attribution of programmers in the majority of cases, it
is not able to establish a targeted evasion from any author to any other
author. This can be attributed to missing code transformations and is
not a limitation of the developed approach in general. The developed
transformations focus on frequent, generic coding habits. It is possible
to extend the set of transformations in such a way that source code
from one author can be better transformed to match another author.
While we should not rule out that there exist untransferable patterns in
lexical and syntactic features, such patterns were not observed during
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the experiments. Identifying untransferable stylistic patterns is thus a
promising direction for future research.

ADVERSARIAL EXAMPLES 7 ANONYMIZATION The attack en-
ables a programmer to hide her identity in source code by mislead-
ing an attribution. While such an attack protects the privacy of the
programmer, it is not sufficient for achieving anonymity. Note that
k-anonymity would require a set of k developers that are equally likely
to be attributed to the source code. In our setting, the code of the pro-
grammer is transformed to match a different author and an anonymity
set of sufficient size is not guaranteed to exist. Still, anonymization
is a promising direction for further research, which can build on the
concepts of code transformations developed in this chapter.

3.7 RELATED WORK

Conducting problem-space attacks and in particular creating adver-
sarial examples against source code authorship attribution touches
different areas of security research. In this section, we review related
methods and concepts.

ADVERSARIAL MACHINE LEARNING The security of machine
learning techniques is a vivid research field that has unveiled a broad
range of possible attacks. In this chapter, we examine the attack surface
when the adversary has to create a real adversarial example in Z. A
significant fraction of work on adversarial examples has focused on
scenarios where the problem and feature space are mainly identical
or only focused on the feature space [e.g., 12, 26, 27, 33, 38, 39, 45, 88,
110, 136, 156, 200]. With digital images, for example, pixels in Z have
a one-to-one relation to the feature vector in . Also related is the
approach by Sharif et al. [185] that misleads face recognition systems
using painted eyeglasses. The recognition operates in ., but the input
image is coming from the real world by taking a photograph of a
person. Thus, Z and F have no exact but still similar representation.
The proposed attack operates in F but ensures practical feasibility in
Z by refining the optimization problem. In particular, the calculated
adversarial perturbations are required to match the form of eyeglasses,
to be printable, and to be invariant to slight head movements. The
created perturbation in F thus likely transfers to a person in Z who
wears the eyeglasses.

In most security-sensitive application areas, however, Z has a very
different representation from F, such as for source code, text, PDF,
Windows PE, Android, and JavaScript. Table 3.9 lists published problem-
space attacks grouped by the application domain. The introduced
problem-feature space dilemmas in this thesis are of particular rele-
vance for all these areas.
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Application References

Source code This thesis
Matyukhina et al. [141] and Quiring et al. [169]

Text Alzantot et al. [7], Ebrahimi et al. [68], Gao et al. [79], Garg and
Ramakrishnan [80], Li et al. [124], and Papernot et al. [154]

PDF Dang et al. [63], Maiorca et al. [137], Tong et al. [206], Xu et al.
[227], and Srndi¢ and Laskov [236]

Windows PE Anderson et al. [8], Kolosnjaji et al. [112], Rosenberg et al. [175,
176], and Suciu et al. [197]

Android Chen et al. [48], Demontis et al. [65], Grosse et al. [91], Pierazzi
et al. [162], and Yang et al. [229]

JavaScript Fass et al. [69]

Table 3.9: List of published problem-space attacks per application domain.

The discussed framework of problem-space attacks in Section 3.3
is based on Quiring et al. [169] and Pierazzi et al. [162]. It allows us
to categorize and compare the attacks from the different application
domains by highlighting their key concepts, strengths and weaknesses.
It also allows researchers and practitioners to guide the design of
novel problem-space attacks, since necessary and optional constraints
together with a search strategy and threat model are pointed out.
Table 3.10 shows the categorization of multiple attacks with this frame-
work. Note that the assessment regarding the fulfilled constraints
does not imply that an attack relies on advanced methods or not. In
fact, a simple attack might fulfill more constraints than a more ad-
vanced approach. Appendix B.7 provides detailed information about
the categorization of each work in Table 3.10.

Two aspects regarding the research on problem-space attacks are
highlighted by Table 3.10. First, a semantic gap is often exploited to
create adversarial examples [e.g., 112, 141, 197, 236]. For example,
Srndi¢ and Laskov [236] add content into a PDF file between the cross-
reference table and the trailer. A PDF viewer will skip this area, but the
attacked classifier extracts features from there (remember Figure 3.8).
Suciu et al. [197] add content into slack spaces between sections in a
Windows PE file. These slack spaces are not relevant for executing the
program, but again extracted as features.

Second, a prevalent concept is to use transformations that only add
content, so that problems with the semantics are avoided [e.g., 91,
112, 162, 197]. For instance, a rather simple, yet effective approach
appends bytes at the end of a file to mislead malware detection [112,
197]. A more advanced method adds plausible content to Android
applications from benign applications through automated code trans-
plantation [162]. By using opaque predicates, a static analysis cannot
find out that the added code is not executed at runtime. On the other
side, removing or changing used parts is less considered in the litera-
ture so far, as it requires an application-specific understanding of the
meaning and relevance of modified content. For example, removing
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= =Y
= ©
-
E 2 E ¢
Application ~ Work ©w B& & Z Transformers Search
Strategy
Source This Thesis, ® O @ @ Rewritesource code with targeted PD (MCTS)
Code Quiring et al. [169] changes (see Section 3.4.3)
Matyukhina et al. ® O O O Rewritecode by exploiting layout, FD-df
[141] comments, control-flow flattening
Text Lietal. [124] © © O© @ Rewrite text with spelling mistakes FD-db, PD
and synonyms
Papernot et al. [154] O O @ @ Replace word with another word FD-db
from a dictionary
Windows Kolosnjaji et al. [112] ® © O O Append bytes at the end FD-db
Suciu et al. [197] ® © O O Append bytes at the end, add bytes FD-db, PD
within file in unused slack spaces
PDF Srndi¢ and Laskov ® © O O Addcontentin unused area between FD-df, FD-db
[236] cross-reference table and trailer
Xu et al. [227] [ ] O © @ Rewrite PDF tree representation PD
with random mutations
Android Grosse et al. [91] ® © O© @ Addunused contentin manifest FD-db
header file
Pierazzi et al. [162] [ ] ® O @ Addunused code via code FD-db

transplantation, not detectable with
static analysis

Table 3.10: Overview of representative problem-space attacks for each appli-
cation domain with considered constraints and search strategy.
PD = problem-driven, FD-db = feature-driven, derivative-based,
FD-df = feature-driven, derivative-free. The filled circle @ denotes
a fulfilled constraint, © a constraint that is partly fulfilled, and
O a constraint that is not fulfilled.

code can destroy the functionality of a program, while adding a never-
executed code statement is not changing the semantics. Using the
example of source code, this chapter demonstrates that an attack can
automatically change used parts such that the semantics are preserved.
A case study further shows that such an attack can well preserve the
plausibility—even under review by domain experts who are aware of
an attack. To this end, the attack relies on targeted transformations.
The downside is that these transformations are implemented manually.

Last but not least, this chapter also introduces MCTS as a novel con-
cept in the portfolio of creating real adversarial examples, previously
examined by Wicker et al. [223] in the image context only.

AUTHORSHIP ATTRIBUTION OF SOURCE CODE Identifying the
author of a program is a challenging task that has attracted a large
body of work. Starting from early approaches experimenting with
hand-crafted features [114, 135], the techniques for examining source
code have constantly advanced, for example, by incorporating expres-
sive features, such as n-grams [e.g., 2, 35, 73] and ASTs [e.g., 6, 36,
160]. Similarly, techniques for analyzing native code and identifying
authors of compiled programs have advanced in the last years [e.g., 5,

37, 143, 177].
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Two notable examples for source code are the approach by Caliskan
et al. [36] and by Abuhamad et al. [2]. The former inspects features
derived from code layout, lexical analysis and syntactic analysis. This
work can be considered as the state of the art regarding comprehen-
siveness at the time of writing. The work by Abuhamad et al. [2]
focuses on lexical features as input for recurrent neural networks.
Their work covers a large set of authors and makes use of advances in
deep learning. Table 3.11 shows the related approaches.

Method Lay Lex Syn Authors Results
*Abuhamad et al. [2] ) 8903 92%
*Caliskan et al. [36] ) ° . 250 95%
Alsulami et al. [6] ° 70 89%
Frantzeskou et al. [73] ° ° 30 97%
Krsul and Spafford [114] ° . ° 29 73%
Burrows et al. [35] . . 10 77%

Table 3.11: Comparison of approaches for source code authorship attribution.
Lay = Layout features, Lex = Lexical features, Syn = Syntactic
features. *Attacked in this chapter.

Previous work, however, has mostly ignored the problem of untar-
geted and targeted attacks. The empirical study by Simko et al. [189]
examines how programmers can mislead the attribution by Caliskan
et al. [36] by mimicking the style of other developers. While this
study provides valuable insights into the risk of forgeries, it does not
consider automatic attacks and is thus limited to manipulations by
humans. The work by Matyukhina et al. [141] finds adversarial exam-
ples automatically, but relies on a rather simple greedy-based search
strategy. As transformations, layout features are primarily targeted by
manipulating brackets, spaces, and empty lines. Comments are added
from the target developer or transformed to another style. Hence, this
attack does not fulfill the plausibility, preprocessing, and semantic gap
constraint (see Table 3.10). This thesis demonstrates that attacks can
be fully automated—on different feature sets and learning algorithms
as given by two attribution methods. Plausible, semantics-preserving
samples are created which are robust against preprocessing and do
not exploit a semantic gap.

38 CHAPTER SUMMARY

This chapter thoroughly analyzes attacks against machine learning
that have to proceed in the problem space. The domain of source code
attribution provides us with practical insights. The text box on the
next page shortly summarizes the main takeaways.
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Main Takeaways.

1.

Adversaries face multiple dilemmas, because the problem and
the feature space have no one-to-one correspondence. This is
the case in most security-sensitive application domains, such
as for source code, text, PDF, Windows PE, or Android files.

An attack is possible, but an adversary has to operate in the
problem space while being guided by the feature space. For-
mally, a problem-space attack can be defined as optimization
problem that is given by constraints and a search strategy.

. Five constraints have to be considered: (i) semantics, (ii) plausi-

bility, (iii) preprocessing, (iv) semantic gap, and (v) available
transformations.

The search strategy finds a solution to the optimization prob-
lem. The strategy guides the transformations and is (i) problem-
driven, derivative-free, (ii) feature-driven, derivative-based, or
(iif) feature-driven, derivative-free. The choice depends on the
threat model and differentiability of the learning model.

. The search strategy based on MCTS provides an effective way

to find real adversarial examples. It examines various decision
paths before deciding on the next modification, similar to an
advanced chess player.

The empirical evaluation shows that authorship attribution
methods can be undermined. With an untargeted attack, the
accuracy drops from over 88% to 1%. With a targeted attack,
each developer can be impersonated by 77% to 81% of the
others on average. The current state-of-the-art in authorship
attribution is insufficient for achieving a robust classification.




ATTACK ON THE MAPPING

We proceed to examine the relation between the problem and the fea-
ture space of machine learning. In this chapter, we analyze the attack
surface that the mapping ¢ o p from problem to feature space can
provide. This mapping is of substantial relevance for the whole ma-
chine learning pipeline, as it is the first step and thus lays the ground
for the subsequent learning process. Consequently, if the adversary
can exploit the mapping, she can take over control of the learning
pipeline, allowing different attacks during training and deployment.
To understand this attack surface, we examine the preprocessing p in
the context of image scaling in this chapter.

The scaling operation suffers from vulnerabilities that allow an ad-
versary to manipulate an image such that it changes its appearance
after downscaling [225]. As an example, Figure 4.1 depicts an attack
against the scaling operation of the popular TensorFlow library. The
manipulated image (left) changes to the output (center) when scaled
to a specific dimension. This image is then used for the subsequent
learning process. Attacks on image scaling pose a major threat to
machine learning: First, scaling is omnipresent in computer vision,
as learning algorithms typically require fixed input dimensions. Sec-
ond, scaling attacks are agnostic to the learning model, features, and
training data. Third, the attacks can be used for poisoning data during
training as well as misleading classifiers during deployment. In the
previous example from Figure 4.1, a self-driving car might enter a
street by falsely assuming a restricted parking area only, causing a risk
of collision due to possible opposing traffic. In contrast to adversarial
examples that also mislead predictions, image-scaling attacks do not
depend on a particular model or feature set, as the downscaling can
create a perfect image of the target class. Thus, scaling attacks would
remain effective even if neural networks were robust against adversar-
ial examples. Overall, scaling attacks unveil a novel attack category
that was coined as adversarial preprocessing by Quiring et al. [171].

\
I | “
Bl | | w
PARKING ! | - :
p: Downscaling g . ¢: Feature | |
| | f
|

Extraction

Manipulated image Output image |

Figure 4.1: Example of an image-scaling attack. Left: a manipulated image
showing a do not enter traffic sign. Scaling produces the center
image with a no parking sign, used for feature extraction then.
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ATTACK ON THE MAPPING

Fortunately, this chapter also shows that the well-defined structure
of scaling algorithms allows identifying the root cause of scaling at-
tacks and developing effective defenses for prevention. This is in stark
contrast to the problem-space attacks in the previous chapter which
are hard to analyze and defend due to the complexity of learning
models. All in all, this chapter demonstrates that an attack on the
mapping from Z to F can have a considerable impact on machine
learning, but can also be understood and mitigated given a thorough
root-cause analysis due to the well-defined structure of the mapping.

In summary, this chapter discusses the following major aspects:

e Attack on the mapping. We analyze image-scaling attacks as exam-
ple for an attack on the mapping from Z to F. The vulnerability
underlying scaling attacks is identified in theory and confirmed
in practical implementations.

¢ Effective Defenses. We develop a theoretical basis for assessing
the robustness of scaling algorithms and designing effective
defenses. We also study a novel defense that protects from all
possible attack variants.

* Comprehensive Evaluation. Scaling algorithms of popular imaging
libraries are empirically analyzed under attack. The effectivity
of the defenses are demonstrated against adversaries of different
strengths.

Before starting the theoretical analysis, let us review the background
of image scaling and image-scaling attacks. Note that all figures in
this chapter with examples of scaling attacks use real attack images.
Thus, a PDF viewer that displays this chapter can be partly affected.

4.1 IMAGE SCALING IN MACHINE LEARNING

Image scaling is a standard procedure in computer vision and a
common preprocessing step in machine learning [159]. A scaling
algorithm takes a source image S and resizes it to a scaled version D.
As many learning algorithms require a fixed-size input, scaling is a
mandatory step in most learning-based systems operating on images.
For instance, deep neural networks for object recognition, such as
VGG19 [190] and Inception V3/V4 [201], expect inputs of 224 x 224
and 299 x 299 pixels, respectively. They can only be applied in practice
if images are scaled to these dimensions.

Generally, we can differentiate upscaling and downscaling, where the
first operation enlarges an image by extrapolation, while the latter
reduces it through interpolation. In practice, images are typically larger
than the input dimension of learning models and thus adversaries
can be expected to focus on downscaling. Table 4.1 lists the most
common scaling algorithms. Although these algorithms address the
same task, they differ in how the content of the source S is weighted



4.2 IMAGE-SCALING ATTACKS

Framework Caffe PyTorch  TensorFlow
Library OpenCV  Pillow tf.image
Library Version 4.1 6.0 1.14
Nearest . (1) °
Bilinear o(*) o(*) o(*)
Bicubic . . °
Lanczos d o

Area . ° °

Table 4.1: Scaling algorithms in deep learning frameworks. (*) denotes the
default algorithm, and () the default algorithm if Pillow is used
directly without PyTorch.

and smoothed to form the scaled version D. For example, nearest-
neighbor scaling simply copies pixels from a grid of the source to
the destination, while bicubic scaling interpolates pixels using a cubic
function. We examine these algorithms in more detail in Section 4.3
when analyzing the root cause of scaling attacks.

Due to the central role in computer vision, scaling algorithms are an
inherent part of several deep learning frameworks. For example, Caffe,
PyTorch, and TensorFlow implement all common algorithms, as shown
in Table 4.1. Technically, TensorFlow uses its own implementation
called tf.image, whereas Caffe and PyTorch use the imaging libraries
OpenCV and Pillow, respectively. Other libraries for deep learning
either build on these frameworks or use the imaging libraries directly.
For instance, Keras uses Pillow, and DeepLearninggj uses OpenCV.
As a consequence, the analysis in this chapter focuses on these major
imaging libraries.

4.2 IMAGE-SCALING ATTACKS

Xiao et al. [225] show that scaling algorithms are vulnerable to attacks
and can be misused to fool machine learning systems. The proposed at-
tack carefully manipulates an image, so that it changes its appearance
when scaled to a specific dimension. In particular, the attack generates
an image A by slightly perturbing the source image S such that its
scaled version matches a target image T. This process is illustrated in
Figure 4.2, which also serves as a running example throughout this
chapter. In addition, Table 4.2 provides an overview of the notation.

4.2.1  Threat Model

The attack is agnostic to the employed learning model and does not
require knowledge of the training data or extracted features. Yet, the
adversary needs to know two parameters: (i) the used scaling algo-
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Source Image S
A~S |

Attack Ima? A Output Image D

= —

=5

scale(A) ~ T

Target Image T

Figure 4.2: Principle of image-scaling attacks: An adversary computes A such
that it looks like S but downscales to T.

Symbol  Size Description

S mxn The source image that is used to create the attack image.

T m' x n' The target image that the adversary wants to obtain after
scaling.

A mxn The attack image, a slightly perturbed version of S

D m’ xn’  The output image of the scaling function scale.

Table 4.2: Table of symbols for scaling attacks.

rithm and (ii) the target size m’ x n’ of the scaling operation. Xiao et al.
describe how an adversary can easily deduce both parameters with
black-box access to the machine learning system by sending specifi-
cally crafted images [see 225]. Moreover, Table 4.1 shows that common
open-source libraries have a limited number of scaling options and
use default algorithms if users are not actively selecting an algorithm.
Taken together, only a few attempts may be necessary to discover the
correct setup. In some settings, a fixed algorithm can even be enforced
by specific image sizes. Section 4.6.1 provides more information about
this attack variant.

Image-scaling attacks allow achieving different goals. As the attack
is targeting the preprocessing p, the image is manipulated before any
feature extraction. Hence, scaling attacks can effectively mislead all
subsequent steps in a machine-learning pipeline, allowing different
attacks during training and deployment time. That is, an attacker
can conceal poisoning attacks or trigger false predictions during the
application of a learning model. Let us review both scenarios in the
following.

DATA POISONING In a general poisoning attack, the adversary tries
to control the learning process by manipulating the training data or
learning model (see Section 2.2.5). Although various training-only
and backdoor poisoning methods are particularly effective with a few
changed training instances, they often have the major shortcoming
that the manipulation is still visible [e.g., 92, 184, 230]. Hence, the
attack can be easily detected if the dataset, for example, is audited
by human beings. Furthermore, backdoor attacks also require adding
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Training Scaled image Input Scaled image
image used for learning image used for prediction
ﬂ

(a) Data poisoning (b) Misleading prediction

Figure 4.3: Applications of scaling attacks. (a) Enhanced poisoning: The green
box as backdoor is only present in the downscaled image used
for training. (b) Controlled predictions: The adversary creates a
perfect image of the target class that is passed to the classifier.

a trigger to an input at deployment time, which can also unveil an
attack. As image-scaling attacks provide a new means for creating
novel content after downscaling, they allow an adversary to create
less visible, data-modifying poisoning attacks. Figure 4.3a exempli-
fies the combination by showing an adapted backdoor attack. The
adversary modifies a training image such that a backdoor trigger is
only present in the downscaled image. The trigger is not visible in the
full-size training image that a human analyst may use. Consequently,
the learning algorithm unnoticeably associates the backdoor trigger
with the stop sign during training. Appendix C.1 provides further
information about the combination of scaling attacks and poisoning,
including the adapted backdoor attack from Figure 4.3a. Finally, note
that the combined attack necessarily inherits the threat model from
the poisoning attack, such as the required access to the training data
or a model.

MISLEADING PREDICTIONS Furthermore, the adversary can con-
trol the predictions during the application of a learning model—
without modifying the training data or model. To this end, she uses
the scaling attack, so that the downscaling leads to an image of an-
other, targeted class. Compared to adversarial examples, both attacks
accomplish the same goal. However, image-scaling attacks consider-
ably differ in the threat model: The attacks are model-independent
and do not depend on knowledge of the learning model, features, or
training data. Furthermore, image-scaling attacks would be effective
even if neural networks were robust against adversarial examples, as
the downscaling can create a perfect image of the target class. Fig-
ure 4.3b exemplifies the usage of scaling attacks to mislead predictions.

Finally, we should note that scaling attacks are of particular concern
in all security-related applications where images are scaled and pro-
cessed automatically. All in all, the discussed attacks underline the
possible security implications if an adversary exploits the mapping from
problem to feature space.
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4.2.2  Attack Strategy

Image-scaling attacks can be implemented with a strong and a weak
strategy [225]. In the strong strategy, the adversary can choose the
source and target image. In the weak version, the adversary can only
choose the target, and the calculated attack image is meaningless and
easily detectable. We thus focus on the stronger attack strategy in the
following, which is relevant for real-world applications.

OBJECTIVES Formally, image-scaling attacks need to pursue the
following two objectives:

Objective O1. The downscaling operation on A needs to produce the target
image: scale(A) ~ T.

Objective Oz. The attack image A needs to be indistinguishable from the
source image: A ~ S

The first objective ensures that the target image T is obtained during
scaling, while the second objective aims at making the attack hard to
detect. We can verify the first objective by checking if the prediction
of a neural network corresponds to the target image’s class. Note
that without the second objective, the attack would be trivial, as the
adversary could simply overwrite S with an upscaled or larger version
of T. In this case, however, the attack would be easily detectable and
thus not effective in practice.

STRONG ATTACK STRATEGY The adversary seeks a minimal per-
turbation A of S such that the downscaling of A + S = A produces an
output similar to T. Both goals can be summarized as the following
optimization problem:

min||52) (41
s.t. ||scale(S+A)—T|le < €.

Additionally, each pixel value of A needs to remain within the fixed
range (e. g., [0,255] for 8-bit images). This optimization problem can
be solved with Quadratic Programming [31]. When successful, the
adversary obtains an image A that looks like the source but matches
the target after scaling.

HORIZONTAL AND VERTICAL OPTIMIZATION Common imaging
libraries, such as OpenCV or Pillow, implement downscaling by first
resizing images horizontally and then vertically. This implementation
technique enables approximating the scaling operation from Equa-
tion 4.1 by a closed-form expression which is based on a simple matrix
multiplication:

D =scale(S+A)=L-(S+A)-R (4.2)
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with L € R"*m R € R™" and D € R™*". The matrices L and R
contain fixed coefficients that depend on the selected scaling algorithm.
Both matrices can be computed in advance and are reusable. The
reader is referred to Xiao et al. [225] for a description how to calculate
L and R.

Based on this matrix multiplication, the attack can also be decom-
posed into a horizontal and vertical manipulation, which are con-
ducted in reverse order to the scaling, as shown in Figure 4.4. The
attack proceeds by first computing a resized version of S, that is,
S’ = scale(S) € R™*"'. Here, we solve Equation 4.1 with S as source
image and T as target. We have A’ = S’ + A’. Due to the decompo-
sition, we only need the coefficient matrix L and thus arrive at the
following optimization problem

min([|A"]3) s.t. L ($"+4A") — Tlw <e. (4-3)

Next, the horizontal direction is considered. To this end, the adversary
calculates the final attack image A with S as source image, but A’ as
target, analogue to Equation 4.3.

Downscaling Direction

!/ !

n n n
Horizontally Vertically m' D
m m
A A’ D

Attack image generation

Figure 4.4: Libraries resize an image horizontally first, and then vertically.
The attack creates A in reverse order: first the intermediate im-
age A’, and then A.

COLUMN-BASED OPTIMIZATION In order to decrease the com-
putational effort, the optimization can be further decomposed into
individual dimensions. We start again with the vertical scaling direc-
tion where we resize S’ € R™*" to D € R™ *" . Instead of considering
the whole matrix, we solve the problem from Equation 4.3 for each
column of S’ separately:

min(||AL;[3) s.t. |L- (s;,j + A;J) ~T.

o €, (4.4)

where the subscript in X, ; specifies the j-th matrix column of a ma-
trix X. This optimization is repeated for the horizontal direction and
finally computed for all color channels.

4.3 ATTACK ANALYSIS

Having this background on image-scaling attacks, we are ready to
investigate their inner workings in more detail. The goal is to find
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Figure 4.5: Example of an undersampled signal s(t). Based on the sampling
points, it is not possible to distinguish between s(t) and 3().

out which vulnerability image-scaling attacks exactly exploit to be
successful. We start off by observing that the presented attacks must
exploit a vulnerability that is shared by many scaling algorithms. As
the implementations of the algorithms differ, this vulnerability needs
to be linked to the general concept of scaling. To better grasp this
concept, we require a broader perspective on image scaling and thus
examine it from the viewpoint of signal processing.

4.3.1  Scaling as Signal Processing

Images can be viewed as a generic signal, similar to audio and video.
While audio is described by a one-dimensional time series, an image
represents a discrete and two-dimensional signal. Typically, images
are encoded in the spatial domain with pixels. However, any signal can
be described by a sum of sinusoids of different frequencies, and hence
images can also be represented in the frequency domain [e.g., 151, 192].

Scaling reduces the dimension of an image. As a result, the fre-
quency mixture of the image changes and higher frequencies are lost.
This process is closely related to downsampling in signal processing,
where a high-frequency signal is transformed to a lower frequency.
A major problem of downsampling is that the reduced resolution
might not be able to describe all relevant frequencies in the image.
According to the Nyquist-Shannon theorem [151], it is only feasible to
reconstruct a signal s(¢) from a discrete number of sampled points if
the sampling rate fr is at least twice as high as the highest frequency
fmax in the signal: fr > 2+ fuuy.

If the frequency fr is below that threshold, the signal cannot be
unambiguously reconstructed. In this case, the sampled points do
not provide enough information to distinguish between the original
signal and other possible signals. Figure 4.5 shows an example of this
phenomenon, where it is impossible to decide which one of the two
signals s(t) and $(t) is described by the sampled points. Ultimately, the
reconstructed signal can differ significantly from the original signal,
which is known as the aliasing effect [151]. As we see in the next
sections, image-scaling attacks build on this very effect by cleverly
manipulating a signal such that its downsampled version becomes a
new signal.
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s and w S*w

1 2 3 4 5 6 7 8

0.5 (s(3) + s(4)) 1-5(7)

Figure 4.6: Scaling with convolution. The triangle illustrates the kernel with
its relative weighting. It has a width of 2 and is shifted by a step
size of B = 3.5.

4.3.2 Scaling and Convolution

It is clear that scaling algorithms do not merely reduce the frequencies
in an image. These algorithms carefully interpolate the pixels of the
source image before downscaling it in order to mitigate the aliasing
effect. This computation can be described as a convolution between
the source signal and a kernel function [151]. For each position in
the scaled image, the kernel combines a set of pixels (samples) from
the source using a specific weighting. All scaling algorithms given in
Table 4.1 can be expressed using this concept. Note that kernels are
weighting functions in the image-scaling context in contrast to kernel
functions in machine learning.

Without loss of generality, let us focus on the horizontal scaling of
a single row in the following, that is, a row s € R"” from the source
image is scaled to d € R". We denote by j the respective scaling ratio:
g=n/ n’. The goal of downscaling is to determine the value for each
pixel in d from a set of samples from s. This process can be described
using a kernel function w as follows

(sxw)(t) = ¥ w(t—u)s(u). (45)

uezZ

Intuitively, w represents a weighting function that is moved over s
as a sliding window. We denote the size of this window as the kernel
width . Each pixel within this window is multiplied by the respective
weight at this position. Figure 4.6 exemplifies this process for a bilinear
kernel with o = 2. The first pixel in d is the aggregated result from
the third and fourth pixel in s, while the second pixel in d is only
estimated from the seventh pixel in s.

As the downscaling of an image produces a smaller number of
pixels, the window of the kernel function needs to be shifted on s by
a specific step size, similar to the process of sampling in signal pro-
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Figure 4.7: Visualization of kernel functions for common scaling algorithms.

cessing. The scaling ratio defines this step size so that each sampling
position is given by

v(p)=p-B (4.6)

where p is the target pixel in d and v(p) a position in s around
which we place the kernel window. Note that the position v(p) is not
necessarily discrete and can also fall between two pixels, as shown in
Figure 4.6. The downscaled output image is then computed as follows:

dy = (s xw)(v(p))

Each scaling algorithm is defined by a particular kernel function.
Figure 4.7 depicts the standard kernels for common scaling algorithms.
For instance, nearest-neighbor scaling builds on the following kernel
function:

p=0,1,...,n" — 1. (4.7)

1 for —05<x<0.5,
w(x) = (4.8)
0 otherwise .

Only the value that is the closest to v(p) is used by this scaling
algorithm. In other words, nearest-neighbor scaling simply copies
pixels from s on a discrete grid to d. Overall, each kernel differs in
the number of pixels that it uses and the respective weighting of the
considered pixels.

4.3.3 Root-Cause Analysis

Based on the insights from signal processing, we can start to investigate
the root cause of image-scaling attacks. We observe that not all pixels
in the source image equally contribute to its scaled version. Only
those pixels close to the center of the kernel receive a high weighting,
whereas all remaining pixels play a limited role during scaling. If the
step size exceeds the kernel width, some pixels are even ignored and
irrelevant for the scaling operation. Figure 4.6 illustrates this situation:
Only three out of nine pixels are considered for computing the scaled
output.
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Figure 4.8: Illustration of scaling attack on previous example from Figure 4.6.

This imbalanced influence of the source pixels provides a perfect
ground for image-scaling attacks. The adversary only needs to modify
those pixels with high weights to control the scaling and can leave the
rest of the image untouched. This strategy is sufficient for achieving
both objectives of the attack: (O1) a modification of pixels with high
weights yields scale(A) ~ T, and (O2) depending on the sparsity of
those pixels the attack image A visually matches the source image S.
Figure 4.8 exemplifies these insights on the scaling example from
Figure 4.6. The adversary creates her attack signal a by only modifying
the three considered pixels in such a way that the downscaled values
are her target values. The other pixels keep their value.

From the perspective of signal processing, image-scaling attacks
can thus be interpreted as malicious aliasing, where the adversary
selectively manipulates those regions of the signal that are sampled
during downscaling. These regions create a high-frequency signal in
the source image that is not visible in the spatial domain but precisely
captures the sampling rate of the downscaling process.

We can deduce that the success of image-scaling attacks depends
on the sparsity of pixels with high weight. If these pixels are dense,
the adversary may still achieve O1 but will fail to satisfy O2, as the
attack becomes visible. Reviewing the general concept of scaling, two
factors determine the sparsity of these pixels: the scaling ratio  and
the kernel width ¢. For images, we can formally bound the ratio r of
pixels that are considered during scaling by

0y Oy
Br Bo

The terms By, B, as well as 03, and ¢, denote the respective scaling
ratio and kernel width horizontally and vertically. If the direction is
irrelevant, quadratic images are considered for the analysis, so that
we can simply use  and ¢ for both axes. Moreover, note that the right
term may exceed one if the windows of the kernels overlap and pixels
in the source are considered multiple times.

r <

(4-9)

SCALING RATIO The larger the ratio §, the fewer pixels are consid-
ered during scaling if the kernel width is bounded. In particular, the
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Figure 4.9: Influence of the scaling ratio and kernel size (see Figure 4.2 for the
setting of this example); § and ¢ are the same horizontally and
vertically. Plot (a)-(c) show manipulated images under varying
ratios. Plot (d)—(f) show manipulated images under varying kernel
sizes. The symbols vand X indicate if the attack is successful.

number of pixels that are discarded growths quadratically with . An
adversary can thus easily control the ratio r by increasing the size of
the source image.

Figure 4.9 (a)-(c) show the influence of the scaling ratio on the attack
for a kernel with o = 1. All images fulfill Objective O1, that is, the
images are scaled down to the “cat” image. Depending on the scaling
ratio, however, their success to Objective O2 changes. For a large ratio
of B =4, the attack image looks like the source, and the cat is not
visible. For a smaller scaling ratio, the manipulated image becomes a
mix of the source and target. For p = 1, the attack obviously fails.

KERNEL WIDTH The smaller the kernel width o, the fewer pixels are
considered during each convolution. While ¢ is typically not controlled
by the adversary, several implementations of scaling algorithms make
use of very small constants for this parameter. For example, the nearest-
neighbor, bilinear, and bicubic kernels of the TensorFlow framework
have a width of 1, 2, and 4, respectively.

Figure 4.9 (d)-(f) depict the influence of the kernel width on the
attack for a fixed scaling ratio of f = 4. Again, all images fulfill Objec-
tive O1 and are scaled down to the “cat” image. For o = 1, the attack
also satisfies Objective Oz and is invisible. If two pixels are considered
by the kernel, however, the cat becomes visible. For ¢ = 4, all pixels
need to be manipulated and the attack fails.

The presented analysis is not limited to the scaling algorithms
that are considered in this chapter. Any algorithm is vulnerable to
image-scaling attacks if the ratio r of pixels with high weight is small
enough. Developers are thus able to check quickly if their algorithms
are vulnerable to these attacks. Overall, this general understanding of
scaling attacks enables us to compare different scaling algorithms and
to develop effective defense strategies in the following.
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4.4 DEFENSES

We continue with the development of defenses that build on the
previous analysis and address the root cause of image-scaling attacks—  This understanding
rather than fixing their symptoms. The developed defenses aim to  ¢of the attack’s
prevent attacks without interfering with the typical pipeline of machine root cause allows...
learning frameworks. They can thus serve as a plug-in for existing
scaling algorithms.
Note that the mere detection of attacks is not sufficient here, as the
scaling operation would need to be able to reject inputs as attack.
This would change the API of imaging libraries. It would also require
adapting existing learning pipelines. Prevention aims at a secure
scaling operation by design—without rejecting inputs.
Consequently, we first derive requirements for secure scaling and
use these to validate the robustness of existing algorithms (Defense 1).  ...developing
As only a few algorithms realize a secure scaling, we proceed to exam-  fwo defenses for
ine a generic defense that reconstructs the source image and thereby 7 revention.
is applicable to any scaling algorithm as preprocessing (Defense 2).

4.4.1  Attacker Model

For the construction and evaluation of the defenses, two types of
adversaries are considered: a non-adaptive adversary who uses existing
image-scaling attacks, and an adaptive adversary who is aware of the
defense and adapts the attack strategy accordingly. Both adversaries
have full knowledge of the scaling algorithm and the target size. In the
adaptive scenario, the adversary additionally has full knowledge of
the applied defense. Finally, the adversary is expected to freely choose
the source and target image so that she can find the best match for
conducting attacks in a given setup.

These assumptions are realistic due to the open-source nature of
deep learning frameworks and the use of several well-known learning
models in practice, such as VGG19 and Inception V3/V4. With black-
box access to the scaling and the learning models, an adversary can
even deduce the scaling algorithm and target size by sending a series
of specially crafted images to the learning system [see 225].

4.4.2 Defense 1: Robust Scaling Algorithms

Let us start with the conception of an ideal robust scaling algorithm
which serves as a prototype for analyzing the properties of existing
algorithms.

AN IDEAL SCALING ALGORITHM In the ideal case, an algorithm in-
vestigates each pixel of the source image at least once for downscaling.
The robustness of the scaling increases further if the employed convo-
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lution kernels overlap, and thus one pixel of the source contributes to
multiple pixels of the scaled version. Technically, this requirement can
be realized by dynamically adapting the kernel width ¢ to the scaling
ratio B such that ¢ > B holds. That is, the larger the ratio between the
source and the scaled image, the wider the convolution kernel needs
to become to cover all pixels of the image.

In addition to processing all pixels, an ideal algorithm also needs to
weight all pixels equally; otherwise, a kernel with small support would
leave pixels untouched if their weights become zero. For example,
pixels close to the edge of the convolution window typically receive a
very low weighting, as shown in Figure 4.7. Hence, the convolution
of an ideal algorithm should be uniform and combine all pixels in the
current kernel window with equal weight.

Although both properties—considering all pixels and a uniform
convolution—can be technically implemented, they introduce chal-
lenges that can limit their practical utility: First, processing all pixels
of an image slows down the scaling process. This is not necessarily
a problem in applications where large neural networks are trained,
and the overhead of scaling is minimal anyway. However, in real-time
settings, it might be prohibitive to go over all pixels during scaling.
Second, the flattened weighting of the convolution can blur the image
content and remove structure necessary for recognizing objects. As
a consequence, we identify a trade-off between security and perfor-
mance in image scaling.

EXISTING SCALING ALGORITHMS Based on the concept of an ideal
algorithm, it is possible to analyze existing scaling algorithms with
respect to the processed pixels and the employed convolution kernels.
Table 4.3 shows the results for the three considered imaging libraries
after examining their source code. In particular, the source code of
OpenCV version 4.1, Pillow 6.0, and tf.image 1.14 from TensorFlow
were analyzed.

Library OpenCV tf.image Pillow
Nearest 1 1 1
Bilinear 2 2 2-B
Bicubic 4 4 4-B
Lanczos 8 — 6-p
Area B B B

Table 4.3: Kernel width ¢ for the scaling algorithms implemented by the
imaging libraries OpenCV, tf.image (TensorFlow), and Pillow.

The results show that several scaling algorithms are implemented
with fixed-size convolution kernels. For example, OpenCV and Tensor-
Flow implement nearest-neighbor, bilinear, and bicubic scaling with
a kernel width of 1, 2, and 4, respectively. Consequently, these algo-
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rithms become vulnerable once the scaling ratio exceeds the kernel
width, and pixels of the source image are omitted during scaling.

Fortunately, one algorithm is implemented with a dynamic kernel
width of B in all libraries: area scaling. This algorithm scales an image by
simply computing the average of all pixels under the kernel window,
which corresponds to a uniform convolution, as shown in Figure 4.7
for B = 4. Moreover, area scaling corresponds to a low-pass filter
which mitigates the aliasing effect. As a result, area scaling provides
strong protection from image-scaling attacks, and the algorithm is a
reasonable defense if the uniform weighting of the convolution does
not impact later analysis steps. The evaluation in Section 4.5 also
empirically demonstrates the robustness of area scaling.

The analysis provides another interesting finding: Pillow stands out
from the other imaging library, as it implements a dynamic kernel
width for all algorithms except for nearest-neighbor scaling. The dy-
namic kernel width ¢ is chosen such that the convolution windows
substantially overlap, for example, for bicubic and Lanczos scaling
by a factor of 4 and 6, respectively. Although the used convolutions
are not uniform for these algorithms, this overlap creates a notable
obstruction for the attacker, as dependencies between the overlapping
windows need to be compensated. Figure 4.10 schematically shows the
dynamic kernel width of Pillow in comparison to the implementations
of OpenCV and TensorFlow.

DISADVANTAGES  While area scaling and the Pillow library provide
a means for robust scaling, they also induce drawbacks. As exemplified
in Figure 4.11, the algorithms cannot entirely remove all traces from
the attacks. Small artifacts can remain, as the manipulated pixels are
not cleansed and still contribute to the scaling, though with limited
impact. The evaluation in Section 4.5 shows that these remnants are
not enough to fool the neural network anymore. The predicted class
for the scaled images, however, is not always correct due to the noise
of the attack remainings. As a remedy, we examine an alternative
defense in the next section that reconstructs the source image and is
thus applicable to any scaling algorithm. This reconstruction removes
attack traces, so that the classifier predicts the original class again.

CV/TE Kernel
|:| Pillow Kernel

1 2 3 4 5 6 7 8 9 10 %
Figure 4.10: Comparison of bilinear scaling for Pillow, OpenCV and Tensor-

Flow. The latter two fix o to 2, while Pillow uses a dynamic
kernel width.
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(a) Nearest (b) Area (c) Pillow

Figure 4.11: Comparison of scaling algorithms: (a) insecure nearest-neighbor
scaling, (b) robust area scaling, and (c) robust scaling from Pillow.
Note the visible attack traces in (b) and (c).

4.4.3 Defense 2: Image Reconstruction

The following defense is constructed around the main working princi-
ple of image-scaling attacks: The attacks operate by manipulating a
small set of pixels that controls the scaling process. With knowledge
of the scaling algorithm, we can precisely identify this set of pixels in
the attack image. A naive defense strategy that removes this set would
effectively block any attack, yet it would corrupt the scaling, as all
relevant pixels are removed. Instead, a better strategy is to identify all
pixels processed by a scaling algorithm and then to reconstruct their
content using the remaining pixels of the image.

Reconstructing pixels in images is a well-known problem in image
processing, and there exist several methods that provide excellent
performance in practice, such as techniques based on wavelets and
shearlets [e.g., 181, 198]. These involved approaches, however, are
difficult to analyze from a security perspective, and their robustness
is hard to assess. Hence, let us examine two simple reconstruction
methods for the considered pixels that possess transparent security
properties: a selective median filter and a selective random filter.

SELECTIVE MEDIAN FILTER Given a scaling algorithm and a target
size, this filter identifies the set of pixels P in the input image that is
processed during scaling. For each of the pixels p € P, it determines a
window W), around p, similar to a convolution kernel, and computes
the median pixel value for this window. To make the computation
robust, the size of this window is defined as 2 , x 2 B,, which ensures
that half of the pixels overlap between the different windows and thus
hinders existing scaling attacks. In addition, other manipulated points
p' € P in W), are considered by excluding them from the computation
of the median. Figure 4.12 depicts the basic principle of the selective
median filter.

In comparison to other approaches for reconstructing the content
of images, this defense builds on the statistical robustness of the
median operation. Small groups of pixels with high or low values are
compensated by the median. On average, the adversary is required
to change about 50% of the pixels in a window to reach a particular
target value for the median. The evaluation demonstrates that non-
adaptive as well as adaptive adversaries are not capable of effectively
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Figure 4.12: Image reconstruction based on a selective median filter.

(a) Nearest (b) Median filter (c) Random filter

Figure 4.13: Examples of second defense: (a) insecure nearest-neighbor scal-
ing, (b) robust scaling via selective median filter, and (c) selective
random filter. Note that attack traces are not visible anymore.

manipulating these median values without introducing strong visible
artifacts (see Section 4.5).

The robustness of the median filter comes at a price: Computing
the median for all pixels in each window W), for all p € P yields a
run-time complexity of O(|P|- By, - Bo). That is, the run-time growths
quadratically with the scaling ratio. While this overhead might be
neglectable when working with large neural networks, there also
exist applications in which more efficient scaling is necessary. Pro-
viding secure and efficient scaling, however, is a challenging task, as
the robustness of a scaling algorithm increases with the number of
considered pixels.

SELECTIVE RANDOM FILTER A selective random filter represents
an alternative that tackles the problem of efficiency by taking a ran-
dom point from each window instead of the median. This method,
however, comes with two problems. First, the reconstruction becomes
non-deterministic. Second, the scaled image might suffer from poor
quality. This filter is therefore suitable for applications that demand a
very efficient run-time performance and can tolerate a loss in visual
quality. Appendix C.2 outlines the filter in more detail.

In summary, two reconstruction methods are presented that tar-
get the core of image-scaling attacks. As exemplified by Figure 4.13,
both restore the pixels that an adversary changes. These methods
prevent the attacks and can be easily used in front of existing scaling
algorithms, so that almost no changes are necessary to the typical
workflow of machine learning systems.
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4.5 EVALUATION

We continue with an empirical evaluation of the defenses against
image-scaling attacks. In Section 4.5.2 and 4.5.3, we study the security
of robust scaling algorithms (Defense 1). In Section 4.5.4 and 4.5.5, we
examine the novel defense based on image reconstruction (Defense 2).
For each defense, we study the evaluation with a non-adaptive adver-
sary that performs regular image-scaling attacks and then proceed
to investigate an adaptive adversary who tries to circumvent the de-
fenses.

4.5.1 Experimental Setup

To evaluate the efficacy of the defenses, we have to consider Objec-
tive O1 and Objective O2 of image-scaling attacks. If a defense is
capable of impeding one of these objectives, the attack fails. For exam-
ple, if the control of the adversary over the source is restricted such
that the classification of the scaled version is not changed, the defense
has foiled O1. Similarly, if the embedded target image becomes clearly
visible, the defense has thwarted O2. Consequently, the experiments
are designed along these two objectives.

DATASET & SETUP The ImageNet dataset [178] with a pre-trained
VGG19 model [190] is used for evaluation. This deep neural network is
a standard benchmark in computer vision and expects input images of
size 224 x 224 x 3. From the dataset, 600 images as an unmodified ref-
erence set and 600 source images for conducting attacks are randomly
sampled. For each source image, a target image from the dataset is
randomly selected, ensuring that both images have different classes
and predictions. To investigate different scaling ratios, the images are
sampled such that 120 images are obtained for each of the following
five intervals of ratios: [2,3),[3,4),[4,5),[5,7.5),[7.5,10). As we have
one ratio for the vertical and one for the horizontal direction for each
image, the minimum of both is considered for this assignment.

The image-scaling attacks are implemented in the strong variant
(cf. Section 4.2.2), but with a slight improvement to the original attacks:
Instead of using a fixed value for ¢, its value is gradually increased
from 1 up to 50 if the quadratic programming solver cannot find a
solution. During the evaluation, cases were observed where single
columns or rows required a larger € to find a feasible solution. In this
way, the attack’s success rate can be increased, if only a single part of
an image may require a higher € value.

As scaling algorithms, the implementations of nearest-neighbor,
bilinear, bicubic, and area scaling from the libraries OpenCV (version
4.1), Pillow (version 6.0), and tf.image (version 1.13) from TensorFlow
are considered. The Lanczos algorithm is omitted, as it provides
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comparable results to bicubic scaling in the experiments due to the
similar convolution kernel and kernel width (see Figure 4.7).

EVALUATION OF O1: PREDICTIONS USING VGG19 It is checked if
the deep neural network VGG19 predicts the same class for the scaled
image scale(A) and the target image T. As there are typically minor
fluctuations in the predicted classes when scaling with different ratios,
the commonly used top-5 accuracy is applied. That is, O1 is fulfilled
if a match exists between the top-5 predictions for the target image T
and the scaled image scale(A).

EVALUATION OF O2: USER sTUDY The second objective is investi-
gated with a user study with 36 human subjects who have different
professional background, ranging from students to teachers and re-
searchers. The participants obtain 3 attack images for each interval of
scaling ratio and are asked to visually identify one or more of three
classes, where one class corresponds to the source image, one to the
embedded target image and the third to an unrelated class. An attack
is considered as successful, if a participant selects the class of the
source image only and does not notice the target image.

EVALUATION OF O2: PSNR  As quantitative measurement, the peak
signal to noise ratio (PSNR), a common metric in image processing [74],
is additionally used to measure the difference between the unmodified
source image and its attack image. Formally, the PSNR for the attack
image A and the source image S is defined as

12
PSNR(A,S) =10 lOglO <1Hz;naXSH2> . (4.10)
N o 2

The denominator represents the mean squared error between both
images with N as the total number of pixels. [y is the maximum
of the pixel range. A high PSNR value (larger than 25 dB) indicates
a strong match between two images. As a conservative choice, the
attack is considered unsuccessful if the PSNR value is below 15 dB.
Experiments were also conducted with more advanced methods for
comparing the quality of images, such as feature matching based on
scale-invariant feature transform (SIFT) analysis [133]. This technique,
however, shows the same trends as the simple PSNR measurement
and is thus omitted in the following.

4.5.2 Defense 1: Non-Adaptive Attacks

In the first experiment, we study the robustness of existing scaling algo-
rithms from OpenCV, TensorFlow, and Pillow against image-scaling at-
tacks. Note that area scaling is examined in the following Section 4.5.3,
as it is not vulnerable to standard image-scaling attacks.
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Figure 4.14: Success rate of image-scaling attacks regarding O1: the number
of classifications with target class after scaling.

EVALUATION O1  Figure 4.14 shows the performance of the attack
as the ratio of classifications with the wanted target class after scaling.
The attack is successful with respect to O1 for all scaling algorithms
from OpenCYV, TensorFlow, and Pillow. An exception is Pillow’s bilin-
ear scaling where the success rate is 87%, as a feasible solution is not
found for all source and target pairs here. Overall, the results confirm
that an attacker can successfully manipulate an image such that its
scaled version becomes a target image, irrespective of the scaling al-
gorithm or library. This manipulation, however, is not sufficient for a
successful attack in practice, as visual traces may clearly indicate the
manipulation and undermine the attack. Thus, Oz is also evaluated in
this experiment.

EVALUATION O2  Figure 4.15 shows the results from the user study
that investigates the visual perception of the generated attack images.
In line with the previous theoretical analysis, the attack is success-
ful against OpenCV and TensorFlow, once a certain scaling ratio is
reached (red bars in Figure 4.15). We can observe that for ratios ex-
ceeding 5, most attack images are not detected by the participants.
However, for the implementations of bilinear and bicubic scaling in
the Pillow library, the participants always spot the attack and identify
the embedded target class in the source image. This result confirms
the analysis of the implementations in Section 4.4.2 and the vital role
of the dynamic kernel width used by Pillow.

In addition, Figure C.2 in Appendix C.3 reports the PSNR values be-
tween the attack and source image over the entire dataset. We observe
the same trend as in the user study. For OpenCV and TensorFlow, the
images become similar to each other with a larger §, reaching PSNR
values above 25 dB. On the contrary, the PSNR values for Pillow’s
bilinear and bicubic scaling algorithm remain below 15 dB irrespective
of B, underlining that O2 is not achieved even with a larger scaling
ratio.

SUMMARY The results confirm that image-scaling attacks are effec-
tive against several scaling algorithms in popular imaging libraries.
The attacks succeed in crafting images that are classified as the target
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Figure 4.15: User study on image-scaling attacks regarding O2. The attack is
successful if only the source image S is visible (red).

class. However, the visibility of the attacks depends on the scaling ratio
and the kernel width. In the case of Pillow, the attack fails to hide the

manipulations from a human viewer for bilinear and bicubic scaling.

Thus, these implementations of scaling algorithms can be considered
robust against a non-adaptive adversary in practice.

4.5.3 Defense 1: Adaptive Attacks

In the second experiment, we consider an adaptive adversary that
specifically seeks means for undermining robust scaling. To this end,
first an attack against the implementation of the Pillow library is
constructed (Section 4.5.3.1) and then attacks against area scaling are
examined (Section 4.5.3.2 and 4.5.3.3).

4.5.3.1 Attacking the Pillow Library

The previous analysis shows that image-scaling attacks fail to satisfy
Objective O2 when applied to the Pillow library. The dynamic kernel
width forces the attack to aggressively change pixels in the source, so
that the target image becomes visible. As a remedy, an adversary can
limit the number of changed pixels. To build on the successful attacks
against OpenCV and TensorFlow, the following adaptive strategy is
tested: 2 pixels in each kernel window are allowed to be freely changed
while using images with B € [4,5). The goal is to find a modification
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for these pixels such that the convolution over the whole kernel yields
the target value. To increase the chances to obtain a feasible solution,
the remaining pixels are allowed to be changed by 10 at most. The
experiment from the previous section is again conducted with this
new constraint and results for 120 image pairs with g € [4,5) for
bilinear and bicubic scaling are reported, respectively.

RESULTS The added constraint severely impacts the success rate of
the attack. The rate drops to 0% for bilinear scaling and to 0.83% for
bicubic scaling. That is, Objective O1 is not reached anymore. In the
majority of cases, no feasible solution exists and several columns of
the source image are not modified. Only in a single case, the attack
is successful for bicubic scaling. However, the attack image shows
obvious traces from the target image, clearly revealing the attack.

4.5.3.2 Attacking Area Scaling

Area scaling stands out from the other algorithms as it employs a
uniform weighting of pixels and operates on rectangular blocks instead
of columns and rows. As a result, the original attack by Xiao et al.
[225] is not applicable to this scaling algorithm. To attack area scaling,
two novel attack strategies are thus examined in the following.

The first strategy aims at slightly changing all pixels of a block to
control its average. That is, the adversary seeks a minimal perturbation
under the L; norm such that the average of the block becomes the tar-
geted value. For a target value ¢, she solves the following optimization
problem:

min(||A]l1) s.t. [Javg(S+A) — |, <€, (4.11)

where § is the current block, A its perturbation and € a small threshold.
The results for the L, norm are equivalent and thus omitted.

The second strategy aims at adapting only a few pixels of a block
while leaving the rest untouched. To this end, the adversary can
optimize the Ly norm, so that only the number of changed pixels
counts. The attack works as follows for a current image block: if the
target value is larger than the current average, the adversary iteratively
sets pixels in the source to Imax until the target is reached. If the target
is smaller, she iteratively sets pixels to 0. Note that the last value
generally needs to be adapted such that the average becomes the
target value.

RESULTS  With respect to Objective O1, both the L1 and L attack are
successful in 100% of the images. However, both variants fail reaching
Objective Oz in all of the cases. A manual inspection of the images
reveals that the source is largely overwritten by both attacks and parts
of the target become visible in all attack images. Figure 4.16a provides
results on this experiment by showing the distribution of PSNR values
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Figure 4.16: Adaptive attack against area scaling: (a) Distribution of PSNR
values and (b) the average number of changed pixels by the
Ly-based attack.

over all source-attack image pairs. The average PSNR is 8.6 dB for L,
and 6.7 dB for Ly, which corresponds to a very low similarity between
the source and the attack image. In addition, Figure 4.16b depicts the
distribution of changed pixels for the Ly attack. While for the majority
around 50% of the pixels are changed, a few images only require
to change 28%. Still, this is too much to achieve O2. Figure C.3 in
Appendix C.3 shows the five best images from the evaluation with
the smallest number of changed pixels. In all cases, the source image
cannot be recognized anymore.

4.5.3.3 Selective Source Image

In addition to the two adaptive attacks, we also examine area scaling
under a more challenging scenario. In this scenario, the adversary
selects the most suitable source image for a fixed target. As a result,
the class of the source image is arbitrary and potentially suspicious,
yet the attack becomes stronger due to the selected combination of
source and target. This strategy is implemented as follows: For each
target image T, the adversary chooses the source image S, for which
the scaled version has the smallest average distance to the target
image. Fewer changes are thus required to obtain a similar output
after scaling. Results are reported for the 100 best novel source-target
pairs in the following.

RESULTS As before, both the L; and Ly attack are successful in
100% of all cases regarding Objective O1. However, the attack again
largely overwrites the source image such that the target is visible in all
cases. The examples from Figure C.4 in Appendix C.3 underline that
the attack fails to keep the changes minimal, although the source and
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target are similar to each other. The average PSNR value is 16 dB for L;
and 12 dB for Ly. Both are slightly higher than in the non-selective
scenario but still far too low compared to successful examples from
Section 4.5.2.

SUMMARY We can conclude that Pillow’s bilinear and bicubic al-
gorithm also withstand an adaptive adversary. Likewise, area scaling
is robust against different adaptive attacks, including the selection of
source images. The attacks in this section are a best effort for assessing
the security of scaling and confirm the theoretical analysis from Sec-
tion 4.4.2. In summary, scaling algorithms in Pillow (except for nearest
scaling) as well as area scaling can be recommended.

4.5.4 Defense 2: Non-Adaptive Attacks

We proceed with evaluating the novel defense for reconstructing im-
ages from Section 4.4.3. In particular, the selective median or random
filter is combined with a vulnerable scaling algorithm and the ro-
bustness of the combination is tested. As attacks, all manipulated
images from Section 4.5.2 that satisfy the objectives O1 and Oz for
one scaling algorithm are considered. This includes attacks against
nearest-neighbor scaling from all imaging libraries as well as attacks
against bilinear and bicubic scaling from OpenCV and TensorFlow.

EVALUATION O1  The two filters prevent all attacks. When they are
employed, no attack image succeeds in reaching Objective O1 for the
respective scaling algorithm. The image reconstruction effectively re-
moves the manipulated pixels and thereby prevents a misclassification
of the images.

EVALUATION O2 As the original image content is reconstructed,
the visual difference between the source and the reconstructed images
are minimal. Figure 4.17 depicts the distribution of PSNR values be-
tween each source and attack image—before and after reconstruction.
The quality considerably increases after restoration and reaches high
PSNR values above 25 dB. Figure C.5 in Appendix C.3 provides some
examples before and after reconstruction.

RECONSTRUCTION ACCURACY Table 4.4 depicts the success rate of
reconstructing the attack image’s original prediction, that is, obtaining
the prediction of the actual source image. The median filter recovers
the predictions in almost all cases successfully. For the random filter,
the success rate is slightly reduced due to the loss in visual quality.
In addition, the impact of both filters on benign, unmodified images
is measured. The median filter runs with almost no loss of accuracy.
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Figure 4.17: PSNR distribution before and after attack image reconstruction
for median and random filter on OpenCV’s scaling algorithms.
Results for the other scaling algorithms are similar and thus
omitted.

The random filter induces a small loss which can be acceptable if a low
run-time overhead of a defense is an important criterion in practice.

All in all, the results show that it is possible to prevent the attack,
and to recover the original prediction in addition.

RUN-TIME EVALUATION  Finally, the run-time performance of both
filters is evaluated. To this end, the median and the random filter are
each applied in combination with nearest-neighbor scaling. For com-
parison, nearest-neighbor scaling alone, area scaling, and a forward
pass of VGG19 are evaluated as well. Each setting is applied to the
same 2,000 images and the average run-time per image is measured.
The test system is an Intel Xeon E5-2699 v3 with 2.4 GHz. Figure 4.18

Library Algorithm Median Random
Attacks Benign Attacks Benign
Nearest 99.6% 99.0% 89.3% 89.1%
OpenCV Bilinear 100.0% 99.4% 97.7% 98.0%
Bicubic 100.0% 99.2% 91.4% 93.4%
Nearest 99.6% 99.0% 88.9% 89.1%
TensorFlow  Bilinear 100.0% 98.9% 97.7% 97.7%
Bicubic 100.0% 99.4% 91.7% 92.0%
Pillow Nearest 100.0% 99.6% 88.1% 90.4%

Table 4.4: Performance of defense in terms of recovering correct outputs from
the attack images, as well as impact on benign, unmodified images.
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Figure 4.18: Run-time performance of nearest-neighbor and area scaling as
well as the reconstruction defenses in combination with nearest-
neighbor scaling. A forward pass of VGG1g9 is also shown.

shows the measurements on a logarithmic scale in microseconds. Area
scaling as well as the median and the random filter introduce a no-
table overhead and cannot compete with the insecure nearest-neighbor
scaling in performance. However, in comparison to a pass through
the VGG19 model, they are almost an order of magnitude faster and
induce a neglectable overhead for deep learning systems.

SUMMARY This experiment shows that both the median and ran-
dom filter provide effective defenses against non-adaptive attacks. In
contrast to robust scaling, the filters prevent the attack and reconstruct
the original prediction.

4.5.5 Defense 2: Adaptive Attacks

Finally, it remains to investigate the robustness of the proposed re-
construction methods against an adaptive adversary who is aware of
the methods and adapts her attack accordingly. We thus analyze two
strategies that aim at misleading the image reconstruction of attack
images. Both strategies attempt to manipulate the reconstruction of
the pixels p € P such that they keep their value after applying the
median or random filter.

MEDIAN FILTER The attack strategy for the median filter is as
follows: Given a window W, around p € P, we denote by m the
current median of W,,. Note that p is not part of W, (see Figure 4.12).
The adversary seeks a manipulation of the pixels in W), so that m = p.
Hence, applying the median filter will not change p and the adversarial
modification remains. Without loss of generality, let us assume that
m < p. In order to increase m, the adversary needs to set more pixels
to the value of p. She starts with the highest pixel value that is smaller
than p and sets it to p. She continues with this procedure until the
median equals p. Appendix C.4 shows that this attack strategy is
optimal regarding the Lo, L1, and L, norm if the windows W, do not
overlap. A smaller number of changes to the image cannot ensure



4.5 EVALUATION

—_ Median Filter Random Filter

3%, 100 7 ‘ ‘ ‘ ‘ ™ 100 [’ ‘ ‘ ‘ ‘

=

C 75¢ 75

2 (0] 6]

5] t |

& 5 5

2 25| 25 |

Q

Q

=} (ON ! . . . | O L: g i ? .

&» o) 20 40 60 8o 100 o) 20 40 6o 8o 100

Allowed pixel changes A [%] Allowed pixel changes A [%]

—— OpenCV—Nearest ---- OpenCV—Linear OpenCV—Cubic
-——- TensorFlow—Nearest ----- TensorFlow—Linear TensorFlow—Cubic

Figure 4.19: Success rate of the adaptive attacks against the reconstruction
defense regarding O1. Note O2 is not satisfied (see Figure 4.20).

that m = p. These results give a first insight on the robustness of
the median filter. A considerable rewriting is necessary to change the
median, even in the overlapping case where an adversary can exploit
dependencies across windows.

In the experiments, the maximum fraction A of changeable pixels per
window is varied. This bound allows measuring the filter’s robustness
depending on the Ly norm.

RANDOM FILTER For the random filter, the attack strategy increases
the probability that the target value in a window W, is selected. To
this end, the adversary is assumed to set a fraction A of all pixels
in W, to p. To minimize the number of changes to the image, she
replaces only those pixels in the window with the smallest absolute
distance to p. This strategy is optimal in the sense that manipulation
with fewer changes would result in a lower probability for hitting the
target value p.

RESULTS Figure 4.19 shows the success rate of the adaptive attacks
regarding Objective O1 for OpenCV and TensorFlow. The results for
Pillow’s nearest-neighbor scaling are similar and thus omitted. The
adaptive attacks need to considerably modify pixels so that the ma-
nipulated images are classified as the target class. The median filter is
robust until 40% of the pixels in each window can be changed. Against
the random filter, a higher number of changed pixels is necessary to
increase the probability of being selected.

With respect to Objective O2, both filters withstand the adaptive
attacks and thus remain secure. Rewriting 20% of the pixels already
inserts clear traces of manipulation, as exemplified by Figure C.6 in
Appendix C.3. In all cases, the attack image is a mix between source
and target class. The results for the random filter are similar.

In addition, Figure 4.20 shows the results from a user study for
the median filter. The participants identify the attacks in the vast
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Figure 4.20: User study to determine the success rate of the adaptive attack
against the median filter with respect to O2. If the source class
was only recognized, the distortion was too strong to determine
the target class (see Figure C.7). Oz is thus violated in any case.

majority of the cases. In a few cases, the participants only recognized
the source class. A closer analysis reveals that the distortion in these
cases is so strong that the detection of particular classes is difficult. As
a result, the participants did not specify the target class. Figure C.7 in
Appendix C.3 shows examples for these cases.

SsUMMARY The results from the adaptive attack provide strong
empirical evidence for the robustness of the defense based on image
reconstruction. If a vulnerable scaling algorithm needs to be used
in a machine learning system or the reconstruction of the original
class is essential, using one of the filters as a preprocessing step is
recommended.

4.6 DISCUSSION

We continue with a discussion of a side effect that allows enforcing
the usage of nearest-neighbor scaling. Then, limitations of the analysis
in this chapter are discussed.

4.6.1  Downgrade Attack to Nearest Scaling

The root-cause analysis also reveals a side effect in the implementation
of v(p) (see Equation 4.6) in OpenCV and TensorFlow. An adversary
can enforce the usage of nearest scaling by choosing a respective
scaling factor although the library is supposed to use bilinear, bicubic
or Lanczos scaling. In particular, if the scaling ratio is an uneven
integer, B = 2x 4+ 1, x € IN, OpenCV is effectively using nearest
scaling. In TensorFlow, each integer with B € IN leads to the same
effect. Thus, if the adversary can control the source image size, she can
resize her image before to obtain the respective scaling factor. This in
turn allows her to perform a more powerful scaling attack by creating
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attack images with less distortion, as the ratio of considered pixels
decreases (see Section 4.3.3). Note that this issue is not exploited in the
evaluation. A variety of scaling factors are evaluated to draw general
conclusions on scaling attacks.

Library ‘ v(:)

OpenCV v(p) = (p+05)-p—05
TensorFlow v(ip)=p-B ()

Pillow v(p) = (p+05)-p

(*) The scaling function in TensorFlow can be changed to the definition from OpenCV. How-
ever, this option is not exposed in tf.image.resize_images, the high level resizing API

Table 4.5: Implementation of v(p) in OpenCV, TensorFlow and Pillow.

To understand the reason for this attack possibility, we need to
consider the mapping v(p) and the kernel w. Table 4.5 shows the
slightly different implementations of v(p) in OpenCV, TensorFlow
and Pillow. For OpenCYV, for instance, if  is an uneven integer, v(p)
will always be an integer. Thus, only one pixel will be used for the
convolution. A closer look on the definition of the kernels in Figure 4.7
reveals the underlying reason. Common kernels w(x) are zero at all
integer positions x € Z\{0}. Hence, if v(p) is an integer and the
kernel is positioned around it, each neighboring pixel obtains a weight
of zero. Thus, only the pixel at position v(p) is used. This behavior
corresponds to nearest scaling and can be well observed in Figure 4.6
with the second window. In practice, the effect is observed for bilinear,
bicubic and Lanczos scaling in OpenCV and TensorFlow. On the
contrary, Pillow makes use of a dynamic kernel width, so that this
behavior is not observed in this case.

4.6.2  Limitations
Next, the limitations of the analysis in this chapter are discussed.

FOCUS ON SCALING We focus on the scaling operation in this
chapter. It gives a general understanding about the security impact of
the mapping from Z to F. Yet, other operations, such as normalization,
data augmentation or file parsing, can also induce an attack surface
and should be explored in future work systematically. The next section
provides a further example from the text domain to underscore that
not only scaling is vulnerable (Section 4.7.1).

SIMILAR SOURCE-TARGET PAIR The findings show that scaling
attacks can be blocked reliably. To circumvent the defenses, an ad-
versary would need to choose a source-target pair where the pixel
difference is sufficiently small. In this case, however, both images
would effectively show the same content, so that the impact of this
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attack is questionable. The main threat of a scaling attack is to create
an unrelated output image after downscaling, so that all further steps
in the learning pipeline can work correctly and do not need to be ex-
ploited. For instance, assume that an adversary creates an adversarial
example and hides the adversarial perturbations with a scaling attack.
This combination misleads the prediction. It also circumvents the pro-
posed scaling-attack defenses, since the source-target pair effectively
shows the same content. However, the threat model is now weaker, as
it substantially depends on the knowledge and capabilities to create
an adversarial example. In this case, the attack becomes dependent on
the feature extraction and learning model.

CONSIDERED SCALING ALGORITHMS Moreover, the analysis in
this chapter focuses on common scaling algorithms that are provided
by the imaging libraries OpenCV, Pillow and TensorFlow (see Ta-
ble 4.1). Yet, the insights are not limited to these scaling algorithms.
Any algorithm is vulnerable if only a subset of pixels is used for
scaling. The root-cause analysis enables developers to quickly access
the risk for other scaling algorithms.

DETECTION DEFENSES This chapter analyzes various defense con-
cepts for preventing scaling attacks. Detection strategies are another
concept that decide if an image under investigation was manipulated
to cause another result after downscaling [225]. This can be used to
find out that an attack is going on. For instance, it allows us to scan a
dataset in advance to spot a poisoning attack. However, for machine
learning systems in a production mode, the rejection of images would
subtly change the API, which might not be acceptable. Defenses that
prevent the attack as proposed in Section 4.4 can thus be more easily
employed. Moreover, prevention blocks an attack by design in any
case while currently developed detection defenses cannot spot attacks
without false negatives or false positives [166, 225].

4.7 FURTHER ATTACK SURFACES IN THE MAPPING

Finally, we examine the security impact of the mapping in further
cases. In particular, we explore another attack on the mapping from
the text domain, and then examine fragile camera fingerprints as novel
perspective on the mapping.

4.7.1  Attack on the Mapping in the Text Domain

The scaling operation is not the only mapping that can induce an
attack surface. Let us consider the following example from the text
domain to obtain a better intuition how the mapping can be relevant
in other applications.
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Figure 4.21: Text stemming as example for an attack on the mapping p in the
text domain. The adversary wants to remove the feature attack
from the text for her adversarial example. Stemming provides
her with two options to achieve this.

Stemming is a preprocessing step to normalize text [130]. It reduces
words to their word stem. For example, the word attacker is reduced
to attack. If learning algorithms, for instance, classify the topic of a
text, they can benefit from stemming, since redundant words and thus
features are unified [e.g., 43].

Although reasonable for text classification, it gives an adversary
more possibilities to manipulate text. Different words are mapped to
the same word stem. Figure 4.21 exemplifies that both words attacking
and attacker are reduced to the same stem. Let us assume that the
adversary has to reduce the occurrence of attack by 1 to create an
adversarial example. Stemming allows her to either replace attacker
or attacking, giving her more degrees of freedom for manipulation.
This can simplify finding inconspicuous locations to replace words, so
that the plausibility constraint can be fulfilled (remember Section 3.3).
Although text stemming does not create a comparable attack surface
to scaling, it simplifies an attack and highlights that other mappings
can also induce an attack surface.

4.7.2  Fragile Camera Fingerprints

Not only the adversary, but also a defender is able to exploit partic-
ularities in the mapping. As example, let us examine the concept of
fragile camera fingerprint in the following. To begin with, a camera fin-
gerprint is a signal that is unnoticeably present in any image taken by
the same camera, but differs between images from different cameras.
It has found widespread applications in forensics to attribute digital
images to their source camera [75]. Recent works have also proposed
to use the fingerprint as a means to link mobile device authentication
to inherent hardware characteristics of the mobile device [14, 212]. In
practice, however, these use cases face the problem of fingerprint copy-
attacks [85, 134]. If a camera owner shares images from her camera with
the public, an adversary can estimate the fingerprint, plant it into her
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own images, and pretend that an arbitrary image was captured by the
owner’s camera. As a proactive defense, Quiring and Kirchner [164]
have introduced the concept of fragile camera fingerprint that exploits
an asymmetry in the quality of accessible data. The camera owner only
shares JPEG-compressed images with the public while retaining her
uncompressed images private. As a result, by using the public JPEG
images, the adversary’s estimate of the camera owner’s fingerprint
will only contain the part that is robust to lossy JPEG compression.
The estimate will lack the component that is fragile to compression.
Quiring et al. [170] analytically and empirically establish that the frag-
ile component cannot be estimated from JPEG-compressed images
with common compression levels.

Therefore, it is possible to apply a mapping that only extracts
the fragile information before deducing the fingerprint. As a result,
the camera owner will always be able to use a fingerprint that the
adversary cannot compute. Taken together, this example shows that
the mapping can also be considered to increase security, for example,
by proactively adjusting the mapping in an asymmetric data scenario.
Such scenario can be relevant in machine learning if data should be
used for private learning, and made publicly available to some extent.
For example, this can be the case with personal information on a
mobile device as discussed by Kurtz et al. [116].

4.8 RELATED WORK

Image-scaling attacks represent a novel threat to the security of ma-
chine learning systems. As a consequence, there exists only a small
body of related approaches that are discussed in the following.

Chen et al. [50] extend the original scaling attack [225] by mainly
studying different norms for Equation 4.1. The attack analysis in Sec-
tion 4.3 shows that this does not affect the attack’s working principle
and thus the proposed defenses. Quiring and Rieck [166] elaborate
on the application of scaling attacks for the poisoning scenario. In
particular, the work shows that scaling attacks allow an adversary to
significantly conceal image manipulations of a backdoor attack [92]
and overlay-poisoning attack [184]. Note that both enhanced attacks
are shortly introduced in Appendix C.1. Moreover, the work examines
the detection defenses by Xiao et al. [225] for scaling attacks. First,
Quiring and Rieck [166] show that the detection methods cannot reli-
ably detect scaling attacks in the backdoor scenario. Second, although
attacks in the overlay-poisoning scenario can be detected, an adaptive
variant for the scaling attack is derived that bypasses the detection
again.

This chapter extends this line of research. We comprehensively study
scaling attacks as an attack on the mapping from Z to F, together
with the root cause of scaling attacks and defenses for prevention.



4.9 CHAPTER SUMMARY

In comparison to prior work in adversarial learning, scaling attacks
differ in two important aspects: (i) They affect all further steps of a
machine learning system. Scaling attacks are thus agnostic to feature
extraction and learning models, giving rise to general adversarial
examples and poisoning. (ii) This chapter shows that the exploited
vulnerability can be effectively mitigated by defenses. This rare success
of defenses in adversarial machine learning is rooted in the well-
defined structure of image scaling that fundamentally differs from
the high complexity of learning models. Finally, note that image-
scaling attacks further bridge the gap between adversarial learning
and multimedia security where the latter also considers adversarial
signal manipulations [18, 168]. We further examine this relation in the
next chapter when linking learning and digital watermarking.

4.9 CHAPTER SUMMARY

The following text box summarizes the main takeaways in this chapter.

Main Takeaways.

1. An attack on the mapping ¢ o p from Z to F can have a
considerable security impact, as the mapping provides the
basis for the whole learning process.

2. Scaling attacks exploit vulnerabilities in the preprocessing p.
An adversary can create arbitrary image outputs after down-
scaling. While humans work with the original image, the learn-
ing method uses a different, downscaled image.

3. As preprocessing attack, scaling attacks are agnostic to the
learning model, features, and training data. They allow con-
cealing poisoning attacks and misleading predictions. Com-
pared to adversarial examples, the threat model is based on
less assumptions.

4. A root-cause analysis shows that the attack is possible if only
a subset of pixels is used for scaling. Only these pixels have
to be modified to control the downscaling output. If the ratio
of modified and unmodified pixels in the input image is large
enough, the modifications become unnoticeable.

5. Two defense mechanisms for prevention are presented. First,
the requirements for secure scaling are analyzed and used to
validate the robustness of existing scaling algorithms. Second,
two filters are developed to make vulnerable algorithms robust.

6. Empirical results show that these defenses are robust even
under an adaptive adversary with full knowledge about them.

7. Further perspectives on the mapping are explored with an at-
tack from the text domain, and a defense based on asymmetric
data access.
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While the previous two chapters underline the major importance of
the problem and the feature space for machine learning, this chapter
demonstrates that the relation to other spaces should also be consid-
ered in adversarial learning. In particular, we will examine that it
is possible to link the feature space F of machine learning with the
media space M of digital watermarking.

This linkage allows us to systematically study the similarities of
attacks against learning and watermarking methods. In fact, both
operate in an adversarial environment. In watermarking, a pattern
is embedded in a signal, such as an image, in the presence of an
adversary [60]. This adversary seeks to extract or remove the informa-
tion from the signal, thereby reversing the watermarking process and
obtaining an unmarked copy of the signal, for example, for illegally
distributing copyrighted content. As a consequence, similar to ma-
chine learning, methods for digital watermarking naturally operate in
an adversarial environment and several types of attacks and defenses
have been proposed for watermarking methods, such as sensitivity
and oracle attacks [e.g., 17, 57, 59, 76].

To illustrate the similarity, let us consider the simplified attacks
shown in Figure 5.1: The middle plot corresponds to an attack that
creates an adversarial example against a learning method, similar to
the method proposed by Papernot et al. [156]. A few pixels of the
target image have been carefully manipulated such that the digit 5
is misclassified as 8. By contrast, the right plot shows an oracle attack
against a watermarking method, similar to the attacks developed by
Westfeld [221] and Cox & Linnartz [59]. Again, a few pixels have been
changed; this time, however, to mislead the watermark detection in
the target image.

Target image Adv. example Oracle attack
with water- (Misclassified (Broken
mark. as 8). watermark).

Figure 5.1: Examples of attacks against learning and watermarking [168].
Middle: the target is modified such that it is misclassified as 8.
Right: the target is modified such that the watermark is destroyed.
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While both attacks address different goals, the underlying attack
strategy is surprisingly similar. Both attacks aim at minimally modify-
ing the target such that a decision boundary is crossed. In the case of
machine learning, this boundary separates different classes, such as
the digits. In the case of digital watermarking, the boundary discrim-
inates watermarked from unmarked signals. Although the previous
example illustrates only a single attack type, it becomes apparent that
there is a conceptual similarity between attacks in machine learning
and attacks in watermarking. In this chapter, we systematically study
the similarities of black-box attacks in F and M. To this end, a unified
notation for these attacks is derived. It enables us to transfer attacks,
defenses, and lessons learned between both fields.

In summary, this chapter discusses the following major aspects:

* Relation between feature space and media space. A novel formal view
on learning and watermarking shows that the respective feature
space F and media space M can be linked. This view exposes
previously unknown similarities between both research fields.

* Transfer of attacks and defenses. Attack strategies and defenses can
be transferred between F and M. This correspondence gives
rise to novel attacks and defenses.

e Transfer of knowledge. The unified notation enables transferring
knowledge. Each field has established lessons learned that are
relevant for the other field as well.

o Two case studies. Based on the unified view, two novel defenses are
derived to hinder model-extraction attacks in machine learning
and oracle attacks in watermarking.

Before examining the relation between F and M, a brief primer on
digital watermarking is provided in the following.

5.1 DIGITAL WATERMARKING

Digital watermarking allows for verifying the authenticity of digital
media, like images, music or videos. Digital watermarks are frequently
used for copyright protection and identifying illegally distributed
content [60]. Technically, a watermark is attached to a medium by
embedding a pattern into the signal of the medium such that the
pattern is imperceptible and inseparable. A particular challenge for this
embedding is the robustness of the watermark, which should persist
under common media processing, such as compression and denoising.
There exist several approaches for creating robust watermarks and the
reader is referred to Cox et al. [60] for a comprehensive overview. To
obtain further intuition, let us examine a simple watermarking scheme
as example in the following.



5.1 DIGITAL WATERMARKING

o
— el

Original Image Watermark Target image with
watermark

Figure 5.2: Example of a digital watermark. A random noise pattern is added
to the image in the spatial domain. The pattern is not observable
but detectable.

5.1.1 Example of a Watermarking Scheme

Figure 5.2 shows a simple watermarking scheme where a random
pattern is added to the pixels of an image. The induced changes
remain (almost) unnoticeable, yet the presence of the watermark can
be detected by correlating the watermarked image with the original
watermark.

Let us consider this scheme in more detail. The watermarking
process can be divided into two phases: embedding and detection. For
the former phase, the additive spread spectrum technique is used. In this
scheme, the watermarking parameter w consists of a pseudorandom
pattern v € RY and a threshold 5. The watermarked version & of a
signal x is then created by adding the watermarking vector v onto x
element-wise, that is,

E=x+4wv. (5.1)

To decide if a signal contains the particular watermark, a linear correla-
tion detector can be employed that uses the following decision function:

fm(@) =2Tv 2y = {1,-1}. (5-2)

The function computes a weighted sum between & and the water-
mark v. If watermark and signal match, the correlation exceeds a
pre-defined threshold # and a positive label is returned. Geometrically,
each signal corresponds to a point in a vector space where the water-
mark induces a decision boundary. The result are two subspaces—one
for the watermark’s presence, one for its absence. The detection thus
works by determining which subspace an input signal is currently in.

5.1.2 Attacks Against Watermarking

Similar to machine learning, watermarking methods need to account
for the presence of an adversary and withstand different forms of
attacks [59, 76]. While there exist several attacks based on information
leaks and embedding artifacts that are unique to digital watermarking
[e.g., 19, 60], two attack classes can be identified, that correspond to
adversarial examples and model-extraction attacks in the black-box
scenario.
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ORACLE ATTACKS In this attack scenario, the adversary has access
to a watermark detector that can be used to check whether a given
media sample contains a watermark [59]. Such a detector can be an
online platform verifying the authenticity of images as well as a media
player that implements digital rights management. Given this detector,
the attacker can launch an oracle attack in which she iteratively modifies
a watermarked signal until the watermark is undetectable. The attack
thus impacts the integrity of the pattern embedded in the signal.
While it is trivial to destroy the pattern and the coupled signal, for
example using massive changes to the signal, carefully removing the
watermark while preserving the original signal is a notable challenge.
As a consequence, a large variety of different attack strategies has
been proposed [e.g., 57, 59, 61, 109]. A prominent example is the Blind
Newton Sensitivity Attack, where no prior knowledge about the detec-
tor’s decision function is required and which has been successfully
applied against several watermarking schemes (see Appendix D.1).

WATERMARK ESTIMATION In the second attack setting, the adver-
sary also has access to a watermark detector, yet her goal is to estimate
the watermark instead of only removing it from the target signal [53,
139]. The attack has an impact on the confidentiality of the watermark.
Consequently, an adversary cannot only remove the watermark from
the signal, but also forge it onto arbitrary other data. This watermark
estimation therefore represents a considerable threat to watermark-
ing methods, as it can undermine security mechanisms for copyright
protection and access control.

5.2 UNIFYING ADVERSARIAL LEARNING AND WATERMARKING

It is evident from the previous section that watermarking methods
share similarities to attacks against machine learning—an observation
that has surprisingly been overlooked by the two research commu-
nities [18]. This section systematically identifies the similarities and
shows that it is possible to transfer knowledge about attacks and de-
fenses from one field to the other. An overview of this systematization
is presented in Figure 5.3. The systematization of machine learning
and digital watermarking is guided along the following five concepts:

1. Data Representation. Machine learning and watermarking make
use of similar data representations, which enables putting corre-
sponding learning and detection methods into the same context
(Section 5.2.1).

2. Problem setting. Watermarking can be seen as a special case
of a binary classification. Consequently, binary classifiers and
watermarking techniques tackle a similar problem (Section 5.2.2).
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Figure 5.3: A unified view on machine learning and digital watermarking.
Top: A machine learning setup including a feature space, a learn-
ing classifier, and corresponding attacks. Bottom: A watermarking
setup including the media space, the watermark detector, and
corresponding attacks. The red dashed line illustrates model ex-
traction/watermark estimation, while the red arrow shows an
adversarial example generation/oracle attack.

3. Attacks. Due to the similar representation and problem setting, at-
tacks overlap between both fields, as we examine for adversarial
examples (Section 5.2.3) and model extraction (Section 5.2.4).

4. Defenses. Defenses developed in one research field often fit the
corresponding attack in the other field and thus can be trans-
ferred due to the similar data representation and problem setting
(Section 5.2.5).

5. Differences. Both fields naturally have differences that—together
with the similarities—yield a clear picture of both research fields
(Section 5.2.6).

In the following, we examine each of these concepts in more detail,
where the concept is first formalized for machine learning and then
for digital watermarking. Note that learning concepts and attack
principles from Chapter 2 are briefly repeated to obtain a compact
systematization in one place. Furthermore, to not exaggerate the usage
of symbols, the notation from machine learning is used when possible.
M and F are then added as subscript to highlight the respective field.
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5.2.1 Feature Space vs. Media Space

To begin with, both fields operate on objects from a problem space Z.
In machine learning, Z consists of, for example, images, source codes
or programs. In watermarking, Z consists of digital media, such as
images or videos. Each object must be converted to a suitable data
representation.

MACHINE LEARNING Problem-space objects are mapped to a fea-
ture space F that captures the characteristics of the objects to be ana-
lyzed and learned. The features in F usually correspond to vectors
x € R? and in the case of classification are assigned to a class label
y € Y that needs to be learned and predicted, such as y™ and y~ in

Figure 5.3(a).

DIGITAL WATERMARKING  Similar to machine learning, digital me-
dia are mapped to a media space M where the watermarking methods
operate on a signal, such as the pixels of an image or the audio sam-
ples of a recording. Without loss of generality, a signal in M can be
described as a vector = € RY and thus the media space corresponds
to the feature space used in machine learning: 7 = M. Note that
advanced watermarking schemes often map the signal to other spaces,
such as frequency or random subspace domains [60, 76]. Still, the
mapped signals can be described as points in a vector space.

Note that the mapping from Z to M is an identity function in the
considered cases of this thesis. For each valid signal, a respective digital
medium can be created. This is similar for digital media in machine
learning where the feature mapping can also be an identity function,
for instance, if pixels are directly used as features (see Section 2.1.2).
Finally, note that 7 = M does not depend on the application context.
For instance, M can work in an audio context while F describes
features for malware detection. We focus on the situation in a vector
space.

5.2.2  Classifier vs. Watermark Detector

MACHINE LEARNING After embedding the training data into a
feature space, the actual learning process is performed using a learning
algorithm, such as a support vector machine or a neural network. In the
case of classification, this learning algorithm tries to infer functional
dependencies from the training data to separate data points of different
classes. These dependencies are captured by a learning model with
model parameters 0. These parameters lead to a decision function.
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Given a vector x, this function predicts a class label based on an
underlying decision boundary in the vector space:

fr:o Fr—{-11}. (53)

To highlight that the decision function f belongs to machine learning,
fr with subscript F is used in the following. Moreover, for a sim-
pler comparison with watermarking, fr is a binary classifier, but the
discussed concepts are also applicable to multiclass classifiers.

DIGITAL WATERMARKING The media space in watermarking is
divided into two separate subspaces as depicted in Figure 5.3(d) where
the marked and unmarked versions of the signal represent the two
classes. Note that a robust watermark should ideally survive signal
processing steps, such as compression and denoising of images or
audio. Therefore, the watermark class implicitly contains variations as
well, just as machine learning captures the variations of objects from a
class through its generalization.

If we denote an unmarked signal as  and a watermarked signal as
&, the relation between x and & is given by a parameter w that defines
the pattern of the watermark. As a consequence, a watermark detector
also employs a function fs(x) to determine which subspace a signal
is in and thus whether it contains the watermark:

far: Mi— {~1,1}. (5.4)

Similar to machine learning, the function f,, may induce a linear or
non-linear decision boundary, such as a polynomial [78] or fractalized
surface [138].

Although the functions fr and fa share similarities, the creation
process of the underlying decision boundary fundamentally differs.
In machine learning, the boundary needs to separate the training data
as good as possible which restricts the boundary’s shape. In contrast,
the boundary in watermarking schemes can be created under more
degrees of freedom as long as the underlying watermark is reliably
detectable. After that the boundary is created, an attacker, however,
faces the same situation in both fields. As Figure 5.3(c)—(d) highlight,
a decision boundary—not necessarily the same in  and M—divides
the respective vector space into two subspaces:

F={eeR|fr@) =y }u{zeRifr@2) =y*} (3

M={z e Rfu(@) =y }U{z R fu@) =y"}  (6)

Consequently, black-box attacks that work through input-output obser-
vations are transferable between machine learning and digital water-
marking. The following sections discuss this similarity and provide a
mapping between machine learning and watermarking attacks, which
lays the ground for transferring defenses from one field to the other.
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5.2.3 Adversarial Example vs. Oracle Attack

As the first attack mapping, we consider the pair of adversarial examples
and oracle attacks in a black-box setting. In this attack scenario, an
adversary targets the integrity of the classifier’s/detector’s response
by inducing a misclassification from an iteratively collected set of
input-output pairs.

MACHINE LEARNING As we have a correspondence between F and
M, we consider only feature-space attacks as introduced in Section 2.2.2.
To obtain an adversarial example, the adversary tries to manipulate a
feature vector x with minimal changes, so that it is misclassified as i’
by the decision function fr. Formally, the attack can thus be described
as an optimization problem,

arg ngin D(x,z+6) s.t fr(x+d)=y", (5.7)
where D is a distance function, and § the modifications.

DIGITAL WATERMARKING In an oracle attack, an adversary tries
to disturb or even remove the watermark embedded in a signal. The
attack setting is closely related to adversarial examples. Formally, the
underlying optimization problem is given by

argrr%in D(&,&+96) s.t. fu(@+0)=y , (5-8)

where D measures the changes on the watermarked signal & and y~
corresponds to no detection.

Note that the constraint (z + d) € [z, @] is neglected in Equa-
tion 5.7 and Equation 5.8 for the sake of a compact comparison. In
both attacks, the final values in the feature and signal vector also need
to remain within a certain range [z, Zyp)-

MACHINE LEARNING <> DIGITAL WATERMARKING The optimiza-
tion problems in Equation 5.7 and Equation 5.8 are equivalent. In
geometrical terms, this allows similar attack strategies in both fields
whenever the adversary aims at crossing the decision boundary in the
vector space towards the wanted class based on binary outputs only
(see Figure 5.3(e)—(f)).

As introduced in Section 2.2.2, black-box attacks against learning
methods can be categorized into direct attacks and learning-based attacks.
In the first category, the attacker directly uses the classifier output to
construct an adversarial example. The watermarking literature has
extensively developed strategies to find signals in this way [e.g., 57,
59, 61, 108, 109]. For example, the Blind Newton Sensitivity Attack
(BNSA) [57] iteratively follows the decision boundary. To this end,
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it computes the decision boundary’s first and second derivative by
observing how the detector’s output varies for minimal changes at a
decision boundary location. This attack is straight applicable against
learning classifiers when we replace the binary output fy, with fr.
Appendix D.1 recaps the attack in more detail. Another example is
the attack by Kalker [108]. It estimates the normal vector to a linear
decision boundary by creating a circle of vectors around a position
on this boundary. Depending on the detector’s output, the vectors
are averaged and the normal vector can be estimated to find a way
towards y~. This attack is also straight applicable against learning
classifiers. Appendix D.2 recaps this attack.

In the context of adversarial learning, direct black-box attacks have
recently been examined as well [33, 45]. Brendel et al. [33] implement
a random walk around the decision boundary. Chen et al. [45] itera-
tively follow the boundary, similar to the BNSA. Yet, they compute the
first derivative by using a circle of vectors around a respective bound-
ary position, similar to Kalker [108]. These attacks are also applicable
against watermark detectors by replacing fr with fu. In summary,
direct black-box attacks in adversarial learning and watermarking use
similar concepts due to the equivalent problem setting. We arrive at
the following insights:

Insight 1. The unification provides new direct black-box attacks in the attack
portfolio of adversarial learning and watermarking. They should also be
considered when attacking a classifier or detector.

Insight 2. Beyond the algorithms, novel concepts can also be transferred,
such as the usage of the second derivative by the BNSA.

The second attack category, the learning-based attack, is based on
a surrogate model and the transferability property: an adversarial
example that misleads the adversary’s surrogate model will proba-
bly also mislead the original model [26, 158, 200]. Due to the same
attack objective and the same geometrical structure, such a strategy
is also possible against watermarking schemes: An adversary learns
a surrogate model to approximate the watermark’s decision function
and then creates an adversarial example on that model instead of the
watermark detector. In this way, the adversary can exploit the full
access to the model to apply white-box attacks. Quiring & Rieck [165]
and Quiring et al. [168] demonstrate the feasibility of this novel attack
against the advanced watermarking scheme Broken Arrows [76]. In
this regard, lessons learned from the adversarial learning community
are also relevant for watermarking. The community concluded that
learning-based attacks can bypass defenses on the original model,
such as gradient masking, due to the transferability property of the
surrogate model [159]. Let us note the following insight:

117



118

Likewise, attacks
that estimate...

...the decision
boundary in F..

...or the decision
boundary in M...

...correspond to
each other and...

LINKING FEATURE AND MEDIA SPACE

Insight 3. Attacks with surrogate models can also be used against watermark
detectors. Such attacks can bypass defenses on the original system.

5.2.4 Model Extraction vs. Watermark Estimation

As the second attack mapping, we consider the pair of model extraction
and watermark estimation. In the black-box scenario, the adversary
aims at compromising the confidentiality of a learning model or
digital watermark by sending specifically crafted queries to a given
classifier/detector and observing the respective binary output over
multiple iterations.

MACHINE LEARNING Model-extraction attacks center on an effec-
tive strategy for querying a classifier such that the underlying model
can be reconstructed with few queries. The adversary can pursue
three different goals (remember Section 2.2.3). For the transfer to wa-
termarking, fidelity and functionally equivalent extraction are relevant.
Geometrically, both goals can be described as finding a function f F
such that its decision boundary is as close as possible to the original
one of fr. Formally, the fidelity goal is to maximize

Pro.x [1(fr(z) = fr(z))], (5.9)

where X is the expected data distribution of the inputs. The function-
ally equivalent extraction is given by

fr(®@) = fr(z) VoweF. (5.10)

DIGITAL WATERMARKING Watermark estimation represents the
counterpart to model extraction. In this attack scenario, the adversary
seeks to reconstruct the watermark from a marked signal &. If suc-
cessful, the adversary is not only capable of perfectly removing the
watermark from the signal &, but also of embedding it in other signals,
thereby effectively creating forgeries. Geometrically, this attack can
again be described by reconstructing a decision boundary, but this
time in the media space:

fM(cc) = fm(z) Vo e M. (5.11)

MACHINE LEARNING > DIGITAL WATERMARKING While learn-
ing models and watermarks are conceptually very different, Equa-
tion 5.9, 5.10, and 5.11 emphasize that the extraction of an underlying
decision boundary in a vector space represents a common adversarial
goal in both research fields. Figure 5.3(e)—(f) illustrates the correspon-
dence.

Both fields examine direct-extraction attacks that aim at a recon-
struction of the model 6 or watermark w. Consequently, both aim at
a functionally equivalent extraction (Equation 5.10 <+ Equation 5.11).
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A commonly used strategy in both fields consists in localizing the
decision boundary through a line search and then combining various
gathered points to reconstruct 6 or w precisely [53, 132, 139]. The
extraction of non-linear classifiers, such as decision trees, also exploits
localized boundary points for reconstruction [207]. The latter attack
is discussed in more detail in Section 5.3 when presenting a novel
defense against it. This defense is inspired by concepts from digital
watermarking. Overall, we arrive at the following insight:

Insight 4. Attacks in both fields directly reconstruct a decision boundary in
a vector space. This leads to new functionally equivalent attacks in the attack
portfolio of adversarial learning and digital watermarking.

The second group of attacks is learning-based and has been primar-
ily investigated in adversarial machine learning for fidelity extraction
(Equation 5.9). An attacker collects a number of input-output pairs
with queries either scattered over the feature space or created adap-
tively [e.g., 41, 102, 107, 152, 158, 207]. These observations allow the
adversary to learn a surrogate model. As previously described, this
approach can be part of an attack to create adversarial examples. The
unified view in this chapter underlines that an adversary can also use
this group of attacks in digital watermarking: She substitutes a water-
marking scheme by a learning model that approximates the decision
boundary of fy. Although this only yields an approximation of the
original watermark, the attacker is able to remove or add digital water-
marks by using white-box attack strategies from adversarial learning,
as demonstrated by Quiring & Rieck [165] and Quiring et al. [168]. To
sum up, learning-based attacks from adversarial learning that aim at
fidelity extraction can also be relevant in watermarking (see Insight 3).

5.2.5 Defenses

The communities of both research fields have extensively worked on
developing defenses to fend off the attacks presented in the previous
sections. However, it is usually much easier to create an attack that
compromises a security goal, than devising a defense that effectively
stops a class of attacks. As a result, several of the developed defenses
only protect from very specific attacks and it is still an open question
how learning methods and watermark detectors can generally be pro-
tected from the influence of an adversary. As the previous sections
highlight, an attacker geometrically works at the decision boundary
in both fields. Moreover, attackers often collect feedback by repeatedly
querying the system in both fields. Consequently, various defense
strategies are not restricted to one particular research field. In this
section, these similarities are formally described, and the implications
as means of novel research directions are outlined (see Table 5.1).
We also consider defenses from adversarial learning that were ini-
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Defense Technique Adv. Learning Watermarking
Ensembles

Multiple classifiers/detectors [22, 23, 161, 220] [52, 214]

Union of watermarks < [76]

Randomized responses

Randomized boundary [233] < > [76, 125]

Boundary modification

Non-parametric boundary < [138]
Non-parametric random. boundary < [167]
Snake traps < [76]

Blind-spot detection

Data enclosing [28, 179] > (CS1)
Stateful analysis

Closeness-to-the-boundary (CsS2) « [17, 204]

Line search detection < [17, 205]

Locality-sensitive hashing < [215]

Learning-based encoding with kNN [46] >

< = Possible transfer from watermarking to machine learning;
> = Possible transfer from machine learning to watermarking;
CS1, CS2 = Defense transfer demonstrated as case study in Section 5.3;

Table 5.1: Transfer of defense techniques introduced by adversarial learning
and digital watermarking.

tially presented against white-box adversaries, but also work when an
adversary acts in a black-box setting.

ENSEMBLES The first joint defense strategy applies multiple learning
classifiers or watermark detectors. In machine learning, for instance, each
classifier can be built from a random subset of the feature set [22, 23,
161, 220]. The binary prediction is then retrieved from the numerical

output of all classifiers f j@ through an aggregation function Ez:

fr@) = Er (@), (P @), @) G2

A corresponding strategy has been examined against oracle attacks.
The binary prediction is obtained from the numerical output of several
detectors fj(\l/% where each is built from a random subset of signal sam-
ples. The final detector output is then obtained from an aggregation
function E 4, for instance the median, which yields [52, 214]:

ful@) = Et (fi4 @) £ @), @) (513)

A comparison of Equation 5.12 and Equation 5.13 reveals that both
fields employ a similar defense strategy with the same intention: An
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adversary has to attack different classifiers/detectors at the same time
and cannot be sure whether a specific feature/sample influences the
returned output.

However, the watermarking literature has already discussed weak-
nesses of this defense by creating a so-called p-boundary that acts as a
surrogate boundary [54]. As a result, such an attack can be relevant to
machine learning as well if multiple classifiers are used.

The watermarking literature also provides further ensemble-based
defenses. The Broken Arrows watermarking scheme creates several
watermarks that form a union of watermarks. During detection, only
the watermark with the smallest distance to the current signal is
applied [76]. This mitigates the risk that an adversary could compare
multiple signals with the same watermark. This defense can also be
applied to learning methods. It would correspond to an ensemble
of classifiers where the aggregation function Er just chooses one
classifier depending on the input.

Insight 5. Ensemble defenses are studied in both fields and can be transferred.

RANDOMIZED RESPONSES A simple yet effective strategy to im-
pede attacks against classifiers and watermark detectors builds on
randomized outputs. While this defense cannot rule out successful
attacks, the induced indeterminism obstructs simple attack strate-
gies and requires more thorough concepts. Against model extraction,
Zheng et al. [233] propose to return randomized responses if a query
lies within a margin around the decision boundary. This randomized
region obstructs the boundary’s reconstruction, since the adversary
cannot exactly localize the boundary. The watermarking field has also
examined this defense idea [76, 125], and has already discussed its
weaknesses [54, 108, 167]. In particular, an adversary can exploit the
p-boundary [54]. Moreover, the attack by Kalker [108] enables an adver-
sary to estimate the normal vector to the decision boundary despite a
randomized region [108, 167]. As most part of the vector circle is out-
side this region, the computations are not affected (see Appendix D.2).
Overall, we should keep in mind the following lessons learned:

Insight 6. Randomization-based defenses have been studied in both fields.

Insight 7. Research in watermarking shows that randomization only miti-
gates an attack. The gained insights should also be considered in adversarial
learning, such as the possibility to bypass a randomized region.

BOUNDARY MODIFICATION Another defense strategy from wa-
termarking increases the decision boundary’s complexity. A linear
boundary, for instance, can be replaced by a non-parametric ver-
sion along the previous boundary so that the new boundary cannot
be estimated with a finite number of known points [138]. The non-
parametric boundary can be implemented, for instance, by using a
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fractal [138]. In addition, Furon and Bas [76] have introduced small
indents called snake traps at the decision boundary in order to stop
attacks based on random walks along the detection region [61, 76].
These defenses are applicable in machine learning as well, as they
replace an existing boundary by a more complex version that lies
along the previous boundary. In this way, the learned separation of
the classifier is not changed, but black-box attacks are obstructed. A
non-parametric boundary, for instance, would increase the difficulty
to conduct a model-extraction attack that has the goal to obtain a
functionally equivalent fr. Attacks from adversarial learning based
on random walks [33] might also be affected by snake traps. Last but
not least, Quiring and Schéttle [167] examined the combination of
non-parametric and randomized boundary, so that the deterministic
outer boundaries of a randomized region cannot be exploited by an
adversary.

However, research in watermarking has also unveiled weaknesses
of these boundary-based defenses. In particular, an adversary can
overcome a non-parametric boundary, such as a fractalized boundary,
by using its envelope [57, 167, 205]. The combination of non-parametric
and randomized boundary also remains vulnerable to this kind of
attack [167].

Insight 8. Research in watermarking also studies defenses to modify the
decision boundary, e. ., by using non-parametric boundaries or adding snake
traps against random walks. They are transferable to adversarial learning.

Insight 9. Yet, research shows that oracle attacks can bypass boundary-based
defenses. These lessons learned are also relevant for adversarial learning.

BLIND-SPOT DETECTION A defense strategy in machine learn-
ing against adversarial examples consists in detecting and rejecting
blind-spot inputs that are outside the expected data distribution in F
(see Section 2.2.2). In the case of malware detection, this defense im-
plies that an evasion attack needs to contain plausible features of
the benign class without losing the malicious functionality. Russu
et al. [179] implement this defense strategy using non-linear kernel
functions, while Biggio et al. [28] realize a tighter and more complex
boundary through the combination of two-class and one-class mod-
els. Although invented against white-box and gray-box attacks, these
countermeasures also tackle black-box attacks that need to probe the
feature space with blind-spot inputs outside the data distribution.
Section 5.3.1 shows that this strategy also addresses an oracle attack,
where an adversary may also probe the watermark detector with
artificial inputs [222].

Insight 10. Preventing the adversary from exploiting blind-spots, as intro-
duced in adversarial learning, can also be used in watermarking.
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STATEFUL ANALYSIS If the learning method or watermark detector
is outside of the attacker’s control, an active defense strategy becomes
possible, in which the defender seeks to identify sequences of mali-
cious queries. For instance, a cloud service providing machine learning
as a service may monitor incoming queries for patterns indicative of
adversarial-example generations or model-extraction attacks. Stateful
analysis of queries has been already thoroughly applied in digital wa-
termarking for detecting oracle and watermark-estimation attacks [17,
204, 205, 215], while this concept has only recently been examined in
adversarial machine learning by Chen et al. [46].

The defenses in both fields exploit the fact that an adversary will
typically follow a specific strategy to locate the decision boundary due
to the inherent binary output restriction. For example, an adversary
may use a line search to localize the boundary or perform several
queries close to the boundary in order to exactly locate its position.
Formally, we have a meta-detector @ that works alongside the usual
decision function. It analyzes the sequence of the current and prior
inputs x;, x;_1,...,x;_; in parallel to infer whether the system is
subject to an attack. For machine learning, we obtain a new classifier
that integrates fr(x;) as follows:

ff(wt) =Y (fr(zt), O, @11, .., 211)) - (5.14)

In watermarking, we obtain a new detector that integrates fu((x¢) as
follows:

]?M(l't) =Y (fm(xe), (e, 1, ..., 241)) - (5.15)

The classifier fr(x;) and detector fu((x;) are not influenced by the
meta-detector. The function ¥ either forwards the true decision value
(from fr(a;) or for(x¢)) or initiates another defense if ¢ detects an
attack. For instance, it may return misleading outputs or block further
access.

A comparison of both equations underlines that the proposed de-
fense strategies from digital watermarking are directly applicable to
machine learning and vice versa. The meta-detector @ can be reused
and just the decision function f s needs to be replaced by fr or vice
versa. Both fields have examined different strategies to implement
the meta-detector which provides an opportunity for transferring con-
cepts (see Table 5.1). Section 5.3 demonstrates this opportunity with
a case study where model-extraction attacks are mitigated with the
closeness-to-the-boundary concept from watermarking. Overall, we
arrive at the following insight:

Insight 11. The unification provides new concepts to implement a stateful
defense in adversarial learning and watermarking.

An important conclusion in watermarking was that stateless defenses
do not prevent an oracle attack and researchers continued with stateful
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defenses [17, 204, 205]. These lessons learned might be relevant for
adversarial learning as well. Thus, we arrive at the following insight:

Insight 12. As stateless defenses mitigate, but do not prevent an attack,
researchers in watermarking continued with stateful defenses. This might
motivate a stronger focus on this defense in adversarial learning as well.

5.2.6  Differences

For successfully transferring concepts between machine learning and
digital watermarking, however, researchers also need to account for
the difference of both areas. First, as described in Section 5.2.2, the
decision boundary in machine learning needs to be adjusted to exist-
ing training data in contrast to digital watermarking. Thus, defenses
from watermarking that introduce a completely new decision bound-
ary [e.g., 77, 78] are not necessarily applicable to machine learning.
Second, the white-box setting from machine learning where an at-
tacker knows internals such as the model or fractions of the training
data is not directly transferable to digital watermarking. If the orig-
inal signal or the watermark are known, an adversary has already
succeeded. Third, specific attacks are unique to the respective field. Re-
constructing the watermark as a noise signal from a set of images, for
example by averaging images, is unique to digital watermarking [e.g.,
60]. The poisoning scenario known from adversarial machine learning
where the attacker manipulates a fraction of the training data is in
turn not transferable to digital watermarking.

In summary, machine learning and digital watermarking have differ-
ent goals and the learning process with real-world data differs to the
artificial watermark embedding process. Nevertheless, both operate in
a corresponding vector space and, although the decision boundary can
be different, the black-box scenario leads to a common attack surface:
An adversary tries to change the vector subspace or to estimate the
boundary just from binary outputs with multiple queries. Therefore,
similar attack strategies and defenses are usable.

5.3 CASE STUDIES

Equipped with a unified notation for black-box attacks and defenses,
we are ready to study the transfer of concepts from one research field
to the other in practical scenarios. In the first case study, a concept for
securing machine learning is applied to a watermark detector, so that
the resulting defense mitigates an oracle attack. In the second case
study, the concept of closeness-to-the-boundary is applied to machine
learning, so that the resulting defense blocks model-extraction attacks.
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Figure 5.4: Transfer from machine learning to watermarking: A 1%-detector
combining a one-class and two-class detection method.

5.3.1 Transfer of Defense: ML — DW

In the first case study, we transfer a defense against evasion attacks
from the area of machine learning. This defense detects blind-spot
inputs by combining a two-class and one-class classifier—a concept
denoted as 1%-classifier [28]. Instead of just discriminating objects into
two classes, the defense additionally learns a one-class model for the
underlying data distribution. The combined classifier discriminates
two classes but also requires all inputs to lie within the learned region
of normality. As a result, evasion attacks become more difficult, as
the adversary cannot exploit blind-spots any longer. She needs to stay
within normal regions when locating and moving towards the decision
boundary.

This simple yet effective idea has not been applied in the context
of digital watermarking so far. While existing watermarking schemes
provide an accurate detection of marked content, they ignore how
signals are distributed in the media space M and hence an adversary
can explore the full space for exploring properties of the watermark.
Broadly speaking, an “image does not have to look nice” [222] in an
attack and thus attack points resemble distorted or implausible media.
For example, many oracle attacks move along random directions or
set samples of a signal to constant values when locating the decision
boundary [57] (see Figure 5.5).

To exploit this characteristic, a 1%-detector is introduced in the fol-
lowing. This detector identifies watermarks but additionally spots
implausible signals, that is, inputs too far away from reasonable vari-
ations of the original signal. The detector rests on the concept of
Biggio et al. [28] and only provides a correct decision if the input lies
within the learned region of normality. If signals outside the region
are provided, the detector returns a random decision, thereby foiling
attack strategies that move along random directions or use constant
values. Figure 5.4 depicts this defense and the resulting combination
of boundaries.

To generate a suitable model of normality, the one-class model in the
detector is trained with examples of common variations of the target
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Adversarial
inputs

Benign inputs

Image on decision
boundary

Gaussian Noise Denoised Image on decision
boundary

Figure 5.5: Distortions of the target image. The left four plots show plausible
image distortions, whereas the right plots depict attack images.

signal. If the media space corresponds to images, different changes
of brightness, scaling, contrast, compression and denoising can be
applied to the target image &. Similarly, other plausible variations of
the signal can be added into the one-class model. Figure 5.5 shows
different variations of a target image that are correctly identified by
the 1%-detector.

EXPERIMENTAL SETUP  For the evaluation, we focus on the image
In an empirical domain. A 1%4-detector is implemented, that uses a linear watermark-
evaluation... ing scheme (see Section 5.1.1) and a one-class model based on the
neighborhood of a signal. Given an image &, this model computes the

distance d to the k-nearest variation of &, that is,

d@) == ¥ llu—a (516)

where N3 are the k-nearest neighbors of &. For normalization pur-
poses, each distance is divided by the maximum distance in the media
space, A. The image is marked as implausible if the distance to its
k-nearest variations reaches a given threshold ¢. For the study, k = 3
is simply used.

As dataset for the evaluation, 50 images from the Dresden Image
Database are selected [84]. All images are converted to grayscale and
cropped to a common size of 128 x 128 pixels and tagged with a digital
watermark. To obtain training data for the one-class model, different
variations of the watermarked images are created by applying common
image processing techniques, such as noise addition, denoising, JPEG
compression, and contrast/brightness variation.

To attack the marked images, the Blind Newton Sensitivity At-
tack (BNSA) is implemented, a state-of-the-art oracle attack that suc-
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Threshold Success of attacks False positive rate
No defense 100% —
¢ =046 6% 0%
¢ =031 6% 0%
¢ =023 0% 0%
¢=0.18 0% 0%
¢ =012 0% 0.14%
¢ =0.03 0% 2.27%
¢ =0.02 0% 4.47%

Table 5.2: Detection performance of the 1%-detector.

cessfully defeats several existing defenses (see Appendix D.1). For
different configurations of the 1'%-detector, the attack is launched
against the selected 50 images and results are averaged over the 50
runs, respectively.

DEFENSE EVALUATION  The results of this experiment are presented
in Table 5.2. If no defense is deployed, the implemented oracle attack
is capable of removing the watermark from all images, thereby demon-
strating the efficacy of the BNSA. However, if the one-class model
in the 1%%-detector is enabled and a threshold below 0.31 is picked,
the attack fails to remove the watermark in all cases. As the defense
returns random decisions outside the normal regions, the attack is not
able to compute the correct gradient and thus does not converge to the
correct watermarking pattern. The correlation between the watermark
extracted from the final attack outcome and the original watermark
is thereby zero in all cases. A threshold ¢ > 0.31 however enlarges
the extent of the normal regions, so that the chances increase that
the attack works on the decision boundary within the normal region
without disturbance again.

FALSE POSITIVES Table 5.2 also shows the false-positive rate in-
duced by the new detector. To this end, variations of the selected
images that have not been used for training are tested. If a low thresh-
old is picked, the learned model is too restrictive and some of the
generated variations lie outside the normal region. Starting with a
threshold of 0.18, however, the defense does not identify any benign
variation as attack and thus allows us to separate legitimate variations
of an image from malicious inputs generated by the BNSA.

SUMMARY In summary, we can identify a range of suitable thresh-
olds where the detector does not misclassify benign variations and
is successfully able to obstruct the watermark removal in all cases.
The proposed defense is generally applicable by other watermarking
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schemes because the objective is to spot adversarially crafted images
without changing the underlying watermark detection process. More-
over, as the defense already impedes the initial boundary localization
process which is not unique to the BNSA, other oracle attacks [e.g., 53,
108] are likely to be affected as well.

5.3.2  Transfer of Defense: DW — ML

In the second case study, the concept of closeness-to-the-boundary
from the area of digital watermarking is transferred to machine learn-
ing. In particular, this case study demonstrates that the resulting de-
fense effectively mitigates the risk of model extraction by identifying
sequences of malicious queries to a learning method.

Before presenting this novel defense, the tree-extraction attack pro-
posed by Tramer et al. [207] is shortly summarized. The attack re-
constructs decision trees by performing targeted queries on the APIs
provided by a platform providing machine learning as a service. The
attack is possible, since the platform does not only return the class
label for a submitted query but also a confidence score for a particular
leaf node. This enables an adversary to distinguish between the leaves.
For each leaf and for each of its features, a recursive binary search
locates the leaf’s decision boundary in that direction. As the binary
search covers the whole feature range, other leaf regions are discov-
ered as well and extracted subsequently. In this way, an adversary
can extract all possible paths of the decision tree. Note that the attack
needs to fix all features except for the one of interest, as otherwise the
attack may miss a leaf during the binary search.

As a countermeasure to this attack, a stateful defense is devised that
observes the closeness of queries to the decision boundary, as already
used in digital watermarking [17, 204]. In this scenario, the system does
not only check for the presence of a watermark, but simultaneously
counts the number of queries falling inside a margin surrounding the
boundary. An attacker conducting an oracle attack—thereby working
around the boundary necessarily—creates an unusually large number
of queries inside this margin. As a result, the analysis of the input
sequences allows the identification of unusual activity. The exact pa-
rameters of the security margin are derived from statistical properties
of the decision function [17].

Although this defense strategy has been initially designed to protect
watermark detectors, it can be extended to secure decision trees as
well. Figure 5.6 illustrates the transferred concept where margins are
added to all boundaries of a decision tree. The width of these margins
is determined for each region separately depending on the statisti-
cal distribution of the data. Overall, this security margin is defined
alongside the original decision tree and does not require changes to
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Figure 5.6: Transfer from watermarking to machine learning: A stateful de-
fense using the closeness-to-the-boundary concept.

its implementation. Appendix D.3 provides more information on the
margin’s creation process.

Formally, a stateful learning-based system f(x;) is built—following
the definition in Equation 5.14: When the decision tree returns the
predicted class fr(x;) for a query x;, a meta-detector ¢ checks if
the query falls inside the security margin. To determine whether the
tree is subject to an attack, ¢ keeps track of a history of queries and
computes the ratio between points inside and outside the margin for
each leaf. The averaged ratio over all leaves, x;, is an indicator for the
plausibility of the current input sequence. As an example, Figure 5.6
shows a typical query sequence from the tree-extraction algorithm
(red squares). The adversary has to work within the margin to localize
the decision boundary, in contrast to the distribution of benign queries
(blue circles).

EXPERIMENTAL SETUP To evaluate this defense in practice, the
publicly available tree-extraction implementation by Tramer et al. [207]
is used. Table 5.3 summarizes the applied datasets. Each dataset is
divided into a training set (50%) and test set (50%), where the first is
used for learning a decision tree and calibrating the security margins.
The meta-detector ¢ identifies an attack if the query ratio x exceeds
the threshold 0.3. The test set is used to simulate the queries of an
honest user. In this way, the risk of false positives can be determined,
that is, declaring an honest input sequence as malicious. Next, the tree-

Dataset Samples Features < Leaves

Iris 150 4 4.6

Carseats 400 8 13.2
College 777 17 18.8
Orange Juice 1,070 11 59.0
Wine Quality 1,599 11 89.4

Table 5.3: Datasets for evaluation. The number of leaves from the learned
decision tree are averaged over the repetitions.
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Dataset Original Blocking Random Adaptive
Q p Q P Q p Q p
Iris 108  100% 38 09% * 09% 4,412  100%
Carseats 871 100% 148 20% * 20% 15,156  46%
College 2,216  100% 244 10% * 10% 8,974 08%
Orange]. 4,804 100% 846 20% * 20% 86,354 48%
Wine Qual. 9,615 100% 978 11% * 11% 37,406 11%

Table 5.4: Effectiveness of the transferred closeness-to-the-boundary defense
based on queries Q and extracted leaves p for different attack
variations and possible reactions after detecting the attack.

extraction attack is applied against the learned tree without and with
the meta-detector ¢. In the latter case, two reactions after detecting an
attack sequence are considered: (a) the system blocks further access
and (b) the system returns random decisions. An attack is stopped
after 1 Million queries (denoted by *). Each experiment is repeated
5 times and aggregated results are presented in the following.

DEFENSE EVALUATION To determine the knowledge gain by the
adversary, Table 5.4 reports the percentage of successfully extracted
leaves p together with the required number of queries Q. Without
any defense, the original attack extracts the whole tree (p = 100%).
In contrast, the blocking strategy based on ¢ allows the system to
block the tree extraction at the very beginning. With random decisions,
the attack’s binary search recursively locates an exponential number
of boundaries erroneously, without any improvement regarding the
extraction. At the same time, the final query ratio x after submitting
an honest sequence was not higher than o.2 in all datasets, so that ¢
does not mark a benign query sequence as an attack by mistake. As
a result, ¢ can effectively separate legitimate from malicious input
sequences.

ADAPTED ATTACK In practice, an adversary will adapt the attack
strategy to the particular defense, so that we study possible attack
variations in the following. The adversary is assumed to create cover
queries outside the margin by selecting random values in the range
of each feature. The intention is to keep the query ratio below the
threshold. Results with 40 cover queries for each tree extraction query
are presented, which highlights the effect of a substantial increase
in queries. Table 5.4 shows the performance of this adapted attack.
Despite the increase in queries, the whole tree can still not be extracted.
Only half of the leaves are recovered before ¢ spots the attack and the
system blocks further access.

There are two practical problems that explain the attack’s failure.
Without knowledge of the training data distribution, the adversary
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Extracted leaves p [%]

Cover
Dataset . ..

Queries Known training data [%]
10 20 30 40 50
1X 17 21 21 21 22
Iris 5X 64 85 89 92 94
40X 76 91 94 97 100
1X 28 29 28 29 30
Carseats 5X 39 60 69 82 89
40X 50 87 97 100 100
1X 12 12 12 12 12
College 5X 17 26 28 29 32
40X 29 64 85 94 100
1X 28 29 29 29 29
Orange Juice 5X 39 63 88 98 99
40X 46 92 100 100 100
1X 20 22 22 23 24
Wine Quality 5X 33 55 88 98 100
40X 43 91 100 100 100

Table 5.5: Percentage of extracted leaves p with an informed attacker knowing
a certain percentage of the training data.

cannot know where a decision boundary could be located and thus
where the margin could be. Another problem is that the adversary
needs to control the ratio in almost each leaf. It is not sufficient to send
just one fixed well-chosen cover query all the time since this query
would only affect one leaf. These problems make the smart selection
of cover queries challenging since the adversary has to perform initial
queries to localize a first set of leaves. Thus, the presented defense
can spot the attack before the adversary collects more information to
formulate smarter cover queries.

WELL-INFORMED ATTACK  We finally consider the situation where
an adversary may even have access to parts of the training data. This
makes a defense clearly challenging since the adversary can already
make assumptions about a possible learning model. The adversary is
assumed to create cover queries from the leaked training data. Table 5.5
summarizes the percentage of extracted leaves p for varying amounts
of known training data and cover queries. The defense can still block
an adversary even if training data are leaked partly. If just 10% of the
data are known, even 40 cover queries between each attack query do
not suffice to extract the whole tree. However, if the adversary knows
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more data points, the cover queries spread more equally over all leaves
and the attack chances increase.

SUMMARY The evaluation demonstrates that the transferred stateful
defense can effectively obstruct model-extraction attacks. It is not
limited to a decision tree and can be applied to models, such as
an SVM, where an attacker tries to locate the decision boundary
through queries. The defense can be easily deployed in practice by
implementing it alongside an existing classifier.

5.4 RELATED WORK

Machine learning and digital watermarking are not the only research
areas that have to deal with an adversary. The identified similarities be-
tween both research fields can be seen as part of a bigger problem: Ad-
versarial Signal Processing as stated by Barni and Pérez-Gonzalez [18].
More fields such as information forensics, multimedia forensics, bio-
metrics, or steganography and steganalysis also deal with an adver-
sary’s presence [18]. By working in parallel, research communities
unnoticeably re-invent similar attack and defense strategies and do
not make use of lessons learned, leading to an avoidable lower pace
in research.

Unfortunately, a unification has not been carried out so far. This
thesis marks a first effort to bring two communities together by es-
tablishing a comprehensive, conceptional link between the feature
space and the media space. This enables us to transfer attacks, de-
fenses, and lessons learned from watermarking to machine learning
and vice versa. Following the effort to bring communities together,
Schéttle et al. [183] establish a link between steganalysis and adversar-
ial examples. In a proof-of-concept, they adjust a steganalysis method
to detect adversarial examples in the image domain. Still, more work
is needed to systematically develop a comprehensive unified view
between the various research fields coping with an adversary, as done
in this thesis. Hopefully, this eventually leads to a common theory of
Adversarial Data Processing”.

5.5 SUMMARY

The text box on the next page shortly summarizes the main takeaways
in this chapter.

1 The term signal processing does not perfectly fit to machine learning, so that the
proposed term here might better convey the unification across the research fields.



5.5 SUMMARY

Main Takeaways.

1.

The feature space F of machine learning can be linked with the
media space M of digital watermarking. 7 and M are a vector
space, respectively. For classification and watermark detection,
decision boundaries divide both spaces into subspaces. If the
classifier and detector only provide the predicted class, we get
a similar black-box attack surface.

Black-box attacks based on input-output queries are transfer-
able between both fields. A correspondence between adver-
sarial examples and oracle attacks, as well as between model
extraction and watermark estimation is shown.

In both fields, attackers work at the decision boundary and
repeatedly query the system. Thus, multiple defenses can be
transferred as well.

Knowledge can also be exchanged, as each field has lessons
learned that are relevant for the other field as well.

Two case studies empirically demonstrate the benefit of the
unified view. First, the transferred concept of blind-spot detec-
tion from adversarial learning successfully prevents an oracle
attack from removing a watermark. Second, a stateful defense
from digital watermarking also blocks model-extraction attacks
in machine learning.
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CONCLUSION

Machine learning has become a key element in computer science
and engineering, with applications ranging from autonomous driving
and speech recognition to more security-oriented applications such
as intrusion detection and malware analysis. Despite great potential,
machine learning itself can pose a security risk if an adversary actively
targets the learning pipeline. The application of machine learning thus
requires reasoning about potential attacks and possible defenses.

This thesis marks a step towards secure learning by having analyzed
the relation between the problem space Z, feature space F, and media
space M. First, we have studied the relation between Z and F. In
particular, we have thoroughly examined problem-space attacks that
create real-world objects in Z while misleading learning methods
in F. In addition, we have analyzed the mapping itself from Z to F.
Using the example of image scaling, we have examined the potential
attack surface, its root cause, and possible defenses. Second, we have
studied the conceptional link between F and M. This has allowed us
to transfer attacks, defenses, and lessons learned between machine
learning and digital watermarking, thereby bundling methods and
insights between various research fields coping with an adversary.

Taken all together, this thesis provides a comprehensive view on the
security of learning-based systems, from the input in Z to the classifi-
cation output in F with its linkable space M. The benefit of this view
and analysis is also practically underlined by the Microsoft Machine
Learning Security Evasion Competition [196]. The knowledge about
problem-space attacks and the mapping allowed Quiring et al. [172]
to develop a learning-based system for malware detection that also re-
sisted evasion attacks from real-world attackers and won the defender
challenge of the competition.

6.1 SUMMARY OF RESULTS

In the following, the main contributions of this thesis towards secure
machine learning are summarized, spanning the Chapters 2—5.

CHAPTER 2 This chapter laid the groundwork for the thesis by
providing two major contributions. First, the basic concepts of machine
learning were introduced along a learning pipeline. This view demonstrated
the importance of the relation between Z and F. Second, attacks at
each component of this pipeline were examined. This allowed us to put
the relation between Z and F into the context of different attacks.
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CHAPTER 3  Although machine learning is often successfully at-
tacked in F, considering Z to realize the attack is equally important.
In most applications, there is no bijective mapping between Z and F.
This complicates an attack, but is often neglected by prior research. As
third contribution, we analyzed the relation between Z and F. In particu-
lar, we explored problem-space attacks that create real objects in Z and that
mislead learning-based systems in F. We studied four dilemmas and five
constraints of these attacks, as well as three types of search strategies
that guide the attacks. Using the example of source code attribution,
we practically learned how attacks can be conducted. A new strategy
based on MCTS was developed to find adversarial examples of source
code. An empirical evaluation showed that adversarial examples can
be successfully created. In the untargeted scenario, the attribution
accuracy drops from over 88% to 1%. In the targeted scenario, more
than three out of four developers can be impersonated.

CHAPTER 4 As next contribution, we proceeded with a security
analysis of the mapping itself from Z to F, also overlooked in most prior
work. In the context of image scaling, we learned that an adversary
can precisely control the scaling output and thus the input to the
subsequent learning pipeline. Yet, based on a root-cause analysis of
this attack, defenses for prevention were developed. First, we studied
requirements for secure scaling and found that some implemented
scaling algorithms in libraries are robust against attacks. Second,
two filters were developed to make vulnerable algorithms robust.
These defenses also withstand an adaptive adversary in the evaluation.
Finally, we studied further attack surfaces in the mapping.

CHAPTER 5  As fifth contribution, we explored the relation between
F and M. We established that 7 = M. In the black-box scenario,
adversaries in both fields also work at the decision boundary in a
vector space and repeatedly query the system. This allowed transferring
attacks, defenses, and lessons learned. These insights were summarized in
twelve takeaways, including novel potential methods for adversarial
examples and model extraction. Two cases studies empirically under-
lined the transfer. First, a defense that spots implausible inputs in F
was transferred to M. Second, a stateful defense from watermarking
was applied against model extraction in machine learning.

6.2 FUTURE WORK

Inherent to research is that further questions remain or arise once
we have explored a problem. Hence, let us finally examine possible
research directions—keeping a concluding remark of Alan Turing in
mind: “We can only see a short distance ahead, but we can see plenty there
that needs to be done” [210].



6.2 FUTURE WORK

PROBLEM-SPACE DEFENSES This thesis focused on problem-space
attacks, so that we can understand the attack surface of learning-based
systems in depth. The next step should also include defenses that
consider the relation between Z and F. Similar to research on attacks,
most prior work on defenses has focused on F. While a feature-space
defense can increase the robustness of a learning-based system against
real-world attacks, it does not have to. As an example, consider a
regularized model that uses many features with evenly-distributed
weights [65]. This model can be harder to evade than a model that
relies on a few features only. Yet, an attack might still be able to create a
real object that changes many features, for instance, due to a semantic
gap. Fortunately, considering the problem space can also provide novel
insights on defenses. Attackers have to fulfill challenging constraints
in Z, such as preserving the plausibility and semantics (see Chapter 3).
This, in turn, can lead to new defenses by considering these constraints
in the feature design. In summary, although researchers have recently
started to explore problem-space defenses [e.g., 49], further studies in
the context of Z and F should follow.

FURTHER ATTACKS ON THE MAPPING Chapter 4 introduced a
novel attack surface in machine learning: the mapping from Z to F.
This surface is rather application-specific, so that this thesis focused
on image scaling, followed by two further examples from the text
and forensic domain to underline the overall threat. Based on these
results, researchers and practitioners ought to analyze the mapping in
every application that makes use of different operations to preprocess
objects and to extract features for machine learning.

TRANSFER OF KNOWLEDGE Chapter 5 showed that concepts and
knowledge between adversarial learning and digital watermarking can
be transferred. Future work should build on this unification and make
use of the linked attacks and defenses. Developed concepts can also
serve as guidance for new methods. Eventually, the two communities
can learn from each other and combine the best of both worlds.

ADVERSARIAL DATA PROCESSING Not only adversarial learning
and digital watermarking deal with an adversary. More research fields
such as multimedia forensics or steganography operate under an ad-
versary’s presence. Hence, it might be possible to link the problem
or feature space from machine learning with spaces from other fields.
This can allow the transfer of concepts and knowledge, as successfully
demonstrated in this thesis. Ultimately, a unified view and coopera-
tion across all these adversarial research fields can bundle resources
and knowledge, thereby allowing us to make more powerful steps
together—increasing the distance we can see ahead.
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ADDITIONAL BACKGROUND INFORMATION

In the following, we shortly examine three common distance metrics
in adversarial learning, that quantify similarity between two vectors
x and z’ [38, 88, 156]. Note that the individual features of a feature
vector € R? are given by x;, thatis, © = (x1,x2,...,%4) € R4,

A distance function D (z, =) can use the L, distance metric that is
given as ||z — '||,, where || - ||, is the p-norm:

1
d p
|MM=(ZWW)- (A1)
i=1
Three common distance metrics are based on a different p-norm:
* The Ly distance is given by
l& —allo = [{7 | xi # xi}]- (A-2)

This distance only counts the elements that differ between « and
x’. It does not consider the amount of each difference. In the
case of two images, for example, it only counts the number of
pixels that are different. If used for adversarial examples, this
distance usually leads to a few, but strong changes [38].

¢ The L, distance is given by

lz — |2 =

(A.3)

This distance corresponds to the Euclidean distance between two
vectors. It penalizes large differences. If used for adversarial ex-
amples, it usually leads to evenly distributed, small changes [38].

* The Lo distance is given by
|z — || = max(|x — x1], ..., |xqs — x}]). (A.g)

This distance only uses the largest difference over all dimensions.
For adversarial examples in the image domain, for instance, the
adversary can use this distance to define a tolerable, maximum
modification. All pixels can be arbitrarily changed up to this
maximum.

Each distance can be used for an attack. Yet, note that none of them
perfectly matches the human perception [38], so that multiple metrics
may have to be evaluated.
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ATTACK IN THE PROBLEM SPACE

This chapter provides additional information about adversarial exam-
ples in the problem space, examined in Chapter 3.

B.1 EXAMPLE FOR PROBLEM-FEATURE SPACE DILEMMAS

The following section provides more insights on the problem-feature
space dilemmas when creating adversarial examples of source code.
To this end, let us use the source code example in Figure B.1. In
the following, 289 features are extracted with the attribution method
by Caliskan et al. [36]. To measure the inherent feature correlation,
the raw frequency of occurrence of each feature is used. The common
TF-IDF-normalization in authorship attribution is not applied [36].
Otherwise, the change of a single feature would automatically affect
other features.

Let us further assume that an adversary needs to decrease only the
value of the AST bigram feature ForStmt-DeclStmt. This feature is part
of the syntactic feature set (see Section 3.1.1). It reflects a developer’s
tendency to declare a variable inside or outside of a for statement. In
order to remove the bigram, the declaration of the iteration variable
needs to be moved out of the for block. Although this is a very
targeted modification, it impacts 17 of 289 features. Figure B.1 shows
the change of a few selected features.

This example underlines the problem that plausible and valid modi-
fications of source code are limited and features are inherently corre-
lated. Hence, it is difficult to obtain a targeted feature vector. In this
example, the adversary wants to decrease ForStmt-DeclStmt by 1 only,
but multiple other features change as well.
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1 | #include <stdio.h>

2 [ int main(){

3 for(int t = 0; t < 10; t++){ ------------ !

4 printf("sd\n",t); '

5 } !

6|} |

i

1 | #include <stdio.h> I

2 [ int main(){ (1) :

3 int t; €-----m---------- oo A

4 for(t = 0; t < 10; t++){ <-------------- '

5 printf("%sd\n",t); 124

6 }

713
Feature Family Before After
ForStmt—DeclStmt AST Node Bigram 1.00 0.00
DeclRefExpr AST Node Type 4.00 5.00
DeclRefExpr Average depth of AST Node Type 6.25 6.00
t Code in AST leaves 4.00 5.00
int Average depth of code in AST leaves 4.50 4.00

Figure B.1: Problem-feature space dilemmas. In order to rewrite the
ForStmt-DeclStmt AST bigram, we need to move the declara-
tion in front of the for statement (steps @ and @). This necessarily
changes other, correlated features. The table shows one randomly
selected feature per family together with its feature value before

and after transformation.
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B.2 SEMANTIC GAP IN CODE ATTRIBUTION

Let us shortly analyze why a semantic gap can simplify an attack
using source code manipulations as example. Assume that the adver-
sary adds lexemes as a comment. They are not used for the program,
but can influence the syntactic feature set. This semantic gap sim-
plifies various constraints. Transformations are easier to implement.
The adversary is relieved from implementing transformations that are
semantics-preserving. Side effects are mitigated, since adding an exist-
ing variable name in a comment, for instance, does not require any
consolidation operations. Taken together, this semantic gap reduces
the gap between problem and feature space.

However, exploiting this semantic gap also has disadvantages: a
defender could easily remove all comments when extracting syntactic
features. Furthermore, the plausibility constraint might suffer, since a
large number of unusual lexemes in the comments or a large amount
of added bytes can directly uncover an attack.

B.3 LIST OF CODE TRANSFORMATIONS

A list of all 35 developed code transformations is presented in Table B.1.
The transformers are grouped accordingly to the family of their imple-
mented transformations, i. e., transformations altering the control flow,
transformations of declarations, transformations replacing the used
API, template transformations, and miscellaneous transformations.
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Transformer

Control Transformations

Description of Transformations

For statement
While statement

Function creator

Deepest block

If statement

Transformer

Replaces a for-statement by an equivalent while-statement.
Replaces a while-statement by an equivalent for-statement.

Moves a whole block of code to a standalone function and creates a
call to the new function at the respective position. The transformer
identifies and passes all parameters required by the new function. It
also adapts statements that change the control flow (e.g. the block con-
tains a return statement that also needs to be back propagated over the
caller).

Moves the deepest block in the AST to a standalone function.

Split the condition of a single if-statement at logical operands (e.g., &&
or | |) to create a cascade or a sequence of two if-statements depending
on the logical operand.

Declaration Transformations

Description of Transformations

Array
String

Floating-point
type

Boolean

Typedef

Include-Remove

Unused code

Init-Decl

Converts a static or dynamically allocated array to a C++ vector object.

Array option: Converts a char array (C-style string) into a C++ string
object. The transformer adapts all usages in the respective scope, for
instance, it replaces all calls to strlen by calling the instance method
size.

String option: Converts a C++ string object into a char array (C-style
string). The transformer adapts all usages in the respective scope, for
instance, it deletes all calls to c_str().

Converts float to double as next higher type.

Bool option: Converts true or false by an integer representation to exploit
the implicit casting.

Int option: Converts an integer type into a boolean type if the integer is
used as boolean value only.

Convert option: Convert a type from source file to a new type via
typedef, and adapt all locations where the new type can be used.
Delete option: Deletes a type definition (typedef) and replace all usages
by the original data type.

Removes includes from source file that are not needed.

Function option: Removes functions that are never called.
Variable option: Removes global variables that are never used.
Move into option: Moves a declaration for a control statement if defined

outside into the control statement. For instance, int i; ...; for(i =
0; i < N; i++) becomes for(int i = 0; i < N; i++).

Move out option: Moves the declaration of a control statement’s initial-
ization variable out of the control statement.

Table B.1: List of code transformations.
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Transformer

API Transformations

Description of Transformations

Input interface

Output interface

Input API

Output API

Sync-with-stdio

Transformer

Stdin option: Instead of reading the input from a file (e.g. by using the
API ifstream or freopen), the input to the program is read from stdin
directly (e.g. with cin or scanf).

File option: Instead of reading the input from stdin, the input is retrieved
from a file.

Stdout option: Instead of printing the output to a file (e.g. with ofstream
or freopen), the output is written directly to stdout (e.g. with cout or
printf).

File option: Instead of writing the output directly to stdout, the output
is written to a file.

C++-Style option: Substitutes C APIs used for reading input (e.g., scanf)
by C++ APIs (e.g., usage of cin).

C-Style option: Substitutes C++ APIs used for reading input (e.g., usage
of cin) by C APIs (e.g., scanf).

C++-Style option: Substitutes C APIs used for writing output (e.g.,
printf) by C++ APIs (e.g., usage of cout).

C-Style option: Substitutes C++ APIs used for writing output (e.g., usage
cout) by C APIs (e.g., printf).

Enable or remove the synchronization of C++ streams and C streams if
possible.

Template Transformations

Description of Transformations

Identifier

Include

Global
tion

declara-

Include-typedef

Transformer

Renames an identifier, i.e., the name of a variable or function. If no
template is given, default values are extracted from the 2016 Code Jam
Competition set that was used by Caliskan et al. [36] and that is not
part of the training and test set. Default values, such as T, t, ..., i, are
then tested.

Adds includes at the beginning of the source file. If no template is given,
the most common includes from the 2016 Code Jam Competition are
used as defaults.

Adds global declarations to the source file. Defaults are extracted from
the 2016 Code Jam Competition.

Inserts a type using typedef, and updates all locations where the new
type can be used. Defaults are extracted from the 2016 Code Jam Com-
petition.

Miscellaneous Transformations

Description of Transformations

Compound state-
ment

Return state-

ment

Literal

Insert option: Adds a compound statement ({...}). The transformer
adds a new compound statement to a control statement (if, while, etc.)
given their body is not already wrapped in a compound statement.

Delete option: Deletes a compound statement ({...}). The transformer
deletes compound statements that have no effect, i.e., compound state-
ments containing only a single statement.

Adds a return statement. The transformer adds a return statement to
the main function to explicitly return 0 (meaning success). Note that
main is a non-void function and is required to return an exit code. If
the execution reaches the end of main without encountering a return
statement, zero is returned implicitly.

Substitutes a return statement returning an integer literal by a state-
ment that returns a variable. The new variable is declared by the trans-
former and initialized accordingly.

Table B.1: List of code transformations (continued).
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B.4 MONTE-CARLO TREE SEARCH

This section provides further details about the developed variant of
Monte-Carlo Tree Search. Algorithm 1 gives an overview of the attack.
The procedure Attack starts with the root node rg that represents the
original source code z. The algorithm then works in two nested loops:

¢ The outer loop in lines 3—5 repetitively builds a search tree for
the current state of source code r, and takes a single move (i.e.
a single transformation). To do so, in each iteration, the child
node with the highest average classifier score is chosen. This
process is repeated until the attack succeeds or a stop criterion
is fulfilled (a fixed number of outer iterations is reached or no
improvement over multiple iterations is observed) (line 3).

* The procedure MCTS represents the inner loop. It iteratively builds
and extends the search tree under the current root node r. As
this procedure is the main building block of the attack, let us
examine the individual steps in more detail in the following.

Algorithm 1 Monte-Carlo Tree Search

1: procedure ATTACK(rp)

2 T4 19

3 while not Success(r) and not STOPCRITERION(7) do

4 MCTS(r) > Extend the search tree under r
5 r <— CHILDWITHBESTSCORE(r) > Perform next move
6: procedure MCTS(r)

7 fori < 1,N do

8 U < SELECTION(r, i)

9 T < SIMULATIONS(u)

10: ExpansioN(u, T)

11 BACKPROPAGATION(T)

SELECTION Algorithm 2 shows the pseudocode to find the next
node which is evaluated. The procedure recursively selects a child
node according to a selection policy. It stops if the current node has no
child nodes or is not marked as visited. The procedure finally returns
the node that will be evaluated next.

As the number of possible paths grows exponentially (we have up
to 35 transformations as choice at each node), we cannot evaluate all
possible paths. The tree creation thus crucially depends on a selection
policy. A simple heuristic is used to approximate the Upper Confidence
Bound for Trees algorithm that is often used as selection policy [see 34].
Depending on the current iteration index 7 of Selection, the procedure
SelectionPolicy alternately returns the decision rule to choose the
child with the highest average score, with the lowest visit count, or
with the highest score standard deviation. This step balances the
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exploration of less-visited nodes and the exploitation of promising nodes
with a high average score.

Algorithm 2 Selection Procedure of MCTS

1: procedure SELECTION(r, 7)
2 D < SerLecTiONPOLICY(Y)
3 U<r
4 while u has child nodes do
5 v < SELECTCHILD (1, D) > Child of u w.r.t. to D
6: if v not marked as visited then
7 Mark v as visited
8 return v
9 else
10: U<+
11: return u

SIMULATIONS Equipped with the node u that needs to be evaluated,
the next step generates a set of transformation sequences 7 that start
at u:

T={T;j|j=1,....k and |Tj| < M}, (B.1)

where |T;| is the number of transformations in T;. The sequences
are created randomly and have a varying length which is, however,
limited by M. The evaluation in Section 3.5 uses M = 5 to reduce the
number of possible branches.

In contrast to the classic game use-case, the returned scores are
available as early feedback, so that we do not need to play out a full
game. In other words, it is not necessary to evaluate the complete path
to obtain feedback. The classifier score is determined for each sequence
by passing the modified source code at the end of the respective
sequence to the attribution method. Note a further difference to the
general MCTS algorithm. Instead of evaluating only one path, the
attack creates a batch of sequences that can be efficiently executed in
parallel. This reduces the computation time while obtaining the scores
for various paths.

EXPANSION  Algorithm 3 shows the pseudocode to insert the respec-
tive transformations from the sequences as novel tree nodes under u.
For each sequence T, the procedure starts with the respective first
transformation. It checks if a child node with the same transformation
already exists under u. If not, a new node v is created and added as
child under u. Otherwise, the already existing node v is used. This
step is repeated with v and the next transformation. Figure 3.15 from
Section 3.4.4 exemplifies this expansion step.

BACKPROPAGATION  Algorithm 4 shows the last step that back-
propagates the classifier scores to the root. For each sequence, the
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Algorithm 3 Expansion Procedure of MCTS

1: procedure ExransioN(u, T)

2 for Tin 7 do > For each sequence
3 Z4 U

4 for Tin T do > For each transformer
5: if z has no child with T then

6: v <— CREATENEWNODE(T)

7 z.add_child(v)

8 else

9 v < z.GETCHILDWITH(T)

10: Z< 0

Algorithm 4 Backpropagation Procedure of MCTS

1: procedure BACKPROPAGATION(T)

2 for Tin 7 do

3 s < GETScorg(T)

4 get n as tree leaf of current sequence

5: while 7 is not None do > Backpropagate to root
6: n.visitCount < n.visitCount + 1 > Increase visit count
7 n.scores = n.scores U s > Append score
8 n <— n.parent > Will be None for root node

procedure first determines the last node n of the current sequence and
the observed classifier score s at node n. Next, all nodes on the path
from n to the root node of the search tree are updated. First, the visit
count of each path node is incremented. Second, the final classifier
score s is added to the score list of each path node. Both statistics are
used by SelectChild to choose the next promising node for evaluation.
Furthermore, ChildwithBestScore uses the score list to obtain the child
node with the highest average score.

VARIATION FOR SURROGATE MODEL A slight variation is used for
the scenario with a surrogate model (see threat model in Section 3.4.1
and evaluation in Section 3.5.3). To improve the transferability rate
from the surrogate to the original model, the attack does not terminate
at the first successful adversarial example. Instead, it collects all suc-
cessful samples and stops the outer loop after a predefined number
of iterations. The sample with the highest score on the surrogate is
tested on the original classifier.

This variation leads to a high-confidence attack instead of the pre-
vious minimum-modification variant in Equation 3.5. Formally, for a
targeted attack, we now optimize the classifier output for class i, so
that the adjusted attack is given as:

arg max [cg(T(2))] (B.2)
s.t. cf(T(z)

T(z) T.
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B.5 LIST OF DEVELOPERS FOR IMPERSONATION

Table B.2 maps the letters to the 20 randomly selected programmers
from the 2017 GC]J contest.

Letter  Author Letter  Author

A 4yn K chocimir
B ACMonster L csegura
C ALOHA .Brcps M eugenus
D Alireza.bh N fragusbot
E DAle @) iPeter

F ShayanH P jiian

G SummerDAway Q liymouse
H TungNP R sdya

I aman.chandna S thatprogrammer
J ccsnoopy T vudduu

Table B.2: List of developers for impersonation.

B.6 ADDITIONAL EVALUATION RESULTS
This section provides further results from the evaluation in Section 3.5.

TARGETED ATTACK Figure B.2 presents the impersonation matrix
for the targeted attack against the attribution method by Abuhamad
et al. [2]. The results are similar to the impersonation results against
the attribution method by Caliskan et al. [36] (see Figure 3.18).
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ol4 878 8 8 8 77 83885 shls 8 8 8
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< A A O A A ¢ - A oo
ABCDEFGHI JKLMNOPQRST

Target author

Figure B.2: Impersonation matrix for the attribution method by Abuhamad
et al. [2]. Each cell indicates the number of successful attack
attempts for the 8 challenges.
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cASE sTUuDY To provide an intuition for a successful impersonation,
Figure B.3 shows a case study from the evaluation. The upper listing
shows the code from the source author in original form, and the
middle listing its modified version that is classified as the target author.
For comparison, the lower listing shows the original source text from
the target author for the same challenge, which is not available to the
attacker. The table lists four conducted transformations. For instance,
the target author has the stylistic pattern to use while statements,
C functions for the output, and particular typedefs. By changing these
patterns, the attack succeeds in misleading the attribution method.
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cout << std::fixed;
for (long long ccr = 1; ccr <= t; ++ccr) {
double d, n, ans = INT_MIN;
cin >> d >> n;
for (double i = 0; i < n; ++i) {
double k, s;
cin >> k >> s;
[...]
}
ans = d / ans;
cout << "Case #" << ccr << ": " << setprecision(7) << ans << "\n";

typedef double td_d; (1)
[...]
long long ccr = 1; - ----mmmmm e e o m - -
while (ccr <= t) { e
td_d d, n, ans = INT_MIN;
cin >> d >> n;
td_d i;
for (i =0; 1 <n; ++1i) {
td_d k, s;
cin >> k >> s;
[...]
}
ans = d / ans;
printf("Case #%l1d: %.7f\n", ccr, ans);
++CcCr; 0 mmmmmmmmss——————-----

int T, cas = 0;
cin >> T;
while (T--) {
int d, n;
cin >> d >> n;
double t = 0;
while (n--) {
int k, s;
cin >> k >> s;
t =max((1.0 xd - k) /s, t);
}
double ans =d / t;
printf("Case #%d: %.10f\n", ++cas, ans);

Transformer Description

O Typedef adds typedef and replaces all locations with previous type by novel
typedef.

® For statement converts for-statement into an equivalent while-statement, as tar-
get tends to solve problems via while-loops.

® Init-Decl moves a declaration out of the control statement which mimics the
declaration behavior of while-statements.

@ Output API substitutes C++ API for writing output by C API printf. To this
end, it determines the precision of output statements by finding
the commands: fixed (line 1) and setprecision (line 11).

Figure B.3: Impersonation example from the evaluation for the GCJ problem

Steed 2: Cruise Control.
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B.7 ADDITIONAL INFORMATION FOR RELATED WORK

This section explains the categorization of constraints for the different
papers in Table 3.10.

We begin with source code. Regarding Matyukhina et al. [141], the
created adversarial examples preserve the semantics. However, most
transformations aim at layout features, for instance, by manipulating
brackets, spaces, and empty lines. Thus, a robustness against prepro-
cessing is not given. Moreover, transformations also add comments
from the target developer. This exploits a semantic gap. Together with
control-flow flattening, this also affects the plausibility. Therefore, the
plausibility, preprocessing, and semantic gap constraints are marked
as not fulfilled.

Let us continue with text. Li et al. [124] create adversarial examples
of text by modifying words. The transformations add spelling mistakes.
For instance, a single character is removed within a word or two
adjacent characters are swapped. Synonyms are also used to replace a
whole word. The former transformation based on mistakes can impact
the semantics and plausibility. As a result, semantics and plausibility
are marked as partly fulfilled. Li et al. [124] show in the evaluation that
spelling mistakes are largely affected by spell checkers while repairing
synonyms is more difficult. Preprocessing is thus marked as partly
fulfilled. As the visible text is directly rewritten, no semantic gap is
exploited. Papernot et al. [154] also create adversarial examples of text.
However, this attack replaces a word by another, arbitrary one from a
dictionary such that the attack moves towards the gradient direction.
Thus, the semantics and plausibility constraints are marked as not
fulfilled. A replaced word is difficult to repair via preprocessing, so
that this constraint is marked as fulfilled. As the visible text is directly
rewritten, no semantic gap is exploited.

We continue with the Windows domain. Kolosnjaji et al. [112] evade
malware detection of Windows PE files. Their approach is to append
bytes at the end of the file. This preserves the semantics. Although
this is not directly visible in the file, a security expert can easily detect
the bytes by checking the end of the file. Plausibility is thus marked
as partly fulfilled. The end of a PE file can also be detected and
removed [172], so that the preprocessing constraint is not fulfilled. The
attack exploits a semantic gap, since the added bytes are not used
for executing the program, but are considered by the learning-based
system. Similarly, Suciu et al. [197] evade detection by appending
bytes. They also add bytes in the slack spaces between the sections
in a PE file. Yet, this can also be detected and removed [172]. The
constraint assignment thus corresponds to Kolosnjaji et al. [112].

We proceed with PDF files. Srndi¢ and Laskov [236] evade PDF
malware detection by adding adversarial content between the cross-
reference table and the trailer of a PDF file. A PDF viewer skips this
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area, so that the semantics are preserved by design, but a semantic
gap is exploited. Although the user does not see this modification,
a security expert could locate this area by analyzing the file. The
plausibility is thus marked as partly fulfilled. The unused area should
be removable, so that the approach is not robust to preprocessing.
Xu et al. [227] evade PDF malware detection by relying on genetic
programming with random mutations. Dynamic tests are used to
check if the modifications preserve the functionality of the malware.
Thus, the semantics constraint is marked as fulfilled. As the attack
rewrites any object in the PDF tree structure, this might lead to visible
modifications in the file. Plausibility was not explicitly tested in the
paper and the constraint is thus marked as not fulfilled. Moreover,
after conducting the attack, Xu et al. [227] find that the attack also
relies on artifacts. For instance, font objects are missing in the malware
dataset, so that a classifier learns that the presence of font objects is
an indicator for a benign input. The attack also makes use of it by
increasing the font count. In principle, such spurious features can be
repaired and removed [162]. Nevertheless, the attack also uses other
transformations. It is thus not clear how well preprocessing affects the
adversarial changes in general. Thus, the preprocessing constraint is
marked as partly fulfilled in Table 3.10. Finally, the approach rewrites
any object in a PDF file and thus does not exploit a semantic gap.

Finally, we examine the Android domain. Grosse et al. [91] evade
Android malware detection by adding content to the Android manifest
file. This preserves the semantics. The added content is visible and
might be implausible, so that this constraint is marked as partly ful-
filled. Yet, a further analysis could check if the added, unused content
is needed and remove it. This might require a dynamic analysis, so that
the preprocessing constraint is marked as partly fulfilled. By rewriting
the manifest file, no semantic gap is exploited. Pierazzi et al. [162]
also evade Android malware detection by adding plausible content to
Android applications from benign samples through automated code
transplantation. By using opaque predicates, a static analysis cannot
find out that the added code is not executed at runtime. Hence, the at-
tack preserves the semantics by design and is robust to preprocessing.
No semantic gap is exploited by changing the code of the Android file.
By using code from other benign samples, the added code is realistic
by construction. In contrast to the code transformations in this thesis,
an analyst could spot the principle behind the opaque predicates if
looking at the code. Yet, Android samples are typically large, so that
this might still be challenging. Plausibility is therefore marked as
fulfilled.
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This chapter provides additional information about the discussed
attacks on the mapping, examined in Chapter 4.

C.1 COMBINING POISONING WITH IMAGE-SCALING ATTACKS

In this section, we examine the combination of poisoning and image-
scaling attacks in more detail. Scaling attacks are suitable for poisoning
attacks in two threat models [166].

e Stealthiness during training time. The adversary manipulates the
training data. If poisoning attacks leave visible traces in the
training data, image-scaling attacks can be useful to conceal
these manipulations during training time.

e Stealthiness during deployment time. The adversary trains the learn-
ing model, for instance, as insider, due to outsourcing or in a
transfer-learning scenario. The adversary can thus arbitrarily
change the training data (or the model). Image-scaling attacks
in this case are not needed (or applicable). However, common
backdoor attacks require adding a visible backdoor trigger in
samples at deployment time [e.g., 92, 128, 230]. If such samples
are examined, a visible backdoor trigger would directly reveal
that a model has been tampered. These attacks can thus benefit
from image-scaling attacks at deployment time.

Both threat models are relevant for backdoor attacks, but only the first
is relevant for training-only poisoning attacks.

In the following, we study both groups of poisoning attacks (back-
door and training-only attack) and their combination with image-
scaling attacks in the different threat models. We start with a backdoor
attack, and then examine a training-only poisoning attack.

BACKDOOR ATTACK As first attack, we study the BadNets backdoor
method from Gu et al. [92]. The adversary chooses a target label and
a small, bounded backdoor trigger, such as a small green square.
This trigger is added to a limited number of training images and the
respective label is changed to the target label. In this way, the learning
algorithm associates this trigger with the target class later at training
time. Another possibility is to add the trigger only to images of the
target class, so that no label changes are necessary.

To hide the backdoor trigger, the adversary can apply an image-
scaling attack. The original image without trigger represents the source
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Standard
overlay poisoning
attack

Poisoning with

image-scaling
attack

Figure C.1: Example of an overlay-poisoning attack [184]: a neural network
learns to classify the particular dog as cat by blending the dog
with multiple cat images—without changing training labels.

image S, its version with the trigger in the network’s input dimensions
is the target image T. By solving Equation 4.1, the adversary obtains
the attack image A that is saved as training image. The trigger is only
present after downscaling. Figure 4.3a in Section 4.2.1 exemplifies the
combination.

Scaling attacks allow more insidious backdoor attacks in both threat
models introduced in this section. At training time, the backdoor
trigger in the training data can be disguised with scaling attacks.
Thus, it is harder for a human analyst to detect the manipulations
based on the full-size images. The learning algorithm, however, uses
the downscaled images and associates the backdoor trigger with a
respective target label. At deployment time, the adversary normally
activates the backdoor with the trigger—with or without scaling attack.
Moreover, scaling attacks are also applicable in the second threat
model alone if a backdoor trigger only needs to be concealed in the
input at deployment time.

A particular advantage of backdoor attacks is that a backdoor trigger
can be easily activated at deployment time in the physical world [92].
In the example of Figure 4.3a, the adversary could put a green post-it
on a road sign. The post-it resembles the green square backdoor trigger
from the training time. This attack can also benefit from scaling attacks.
The trigger is disguised in the training data by using image-scaling
attacks, and activated in the physical world—necessarily without a
scaling attack.

TRAINING-ONLY POISONING ATTACK As second attack, we study
the overlay-poisoning attack by Shafahi et al. [184]. In particular, they
present a clean-label attack, as the label of the modified training sam-
ples is not changed. As a result, this poisoning strategy becomes more
powerful in combination with image-scaling attacks: The manipulated
images keep their correct class label and show no obvious traces of
manipulation.



C.2 SELECTIVE RANDOM FILTER

In particular, the adversary’s objective is that the model classifies
a specific and unmodified sample U as a chosen target class y* at
deployment time. To this end, the adversary chooses a set of images X;
with the class y*. Similar to watermarking, she embeds a low-opacity
version of U into each image X;:

Xi=a-U+(1—a) X (C.1)

If the parameter «, for instance, is set to 0.3, features of U are blended
into X; while the manipulation is less visible. For an image-scaling
attack, the adversary chooses X; as source image S, and creates Xl’
as respective target image T in the network’s input dimensions. The
computed attack image A serves as training image then. The changed
images are finally added to the training set together with their correct
label y*. As a result, the learning algorithm associates U with y*. At
deployment time, U can be passed to the learning system without any
changes and is classified as y*.

As an example, Figure C.1 shows an overlay-poisoning attack on
the popular TensorFlow library. The target class y* is cat, the dog
image is U, and one selected training image X; showing a cat is
visible. The network will learn to classify the particular dog U as
cat if this dog is repeatedly inserted into varying cat-images during
training. In the attack’s standard version, the slight manipulation of
the training image is still noticeable. Yet, image-scaling attacks conceal
the manipulation of the training data effectively. The dog appears only
in the downscaled image which is finally used by the neural network.

Overall, the overlay attack shows a possible combination between
poisoning and scaling attacks if the entire image is slightly changed
instead of adding a small and bounded trigger.

C.2 SELECTIVE RANDOM FILTER

The random filter is identical to the selective median filter, except for
that it takes a random point from each window instead of the median.
That is, given a point p € P, we consider a window W, around p
of size 2 B, x 2 B, and randomly select a point as a reconstruction
of p. Again, we exclude points p’ € P from this window to limit the
attacker’s influence.

Randomly selecting a point for reconstruction comes with two
problems. First, the reconstruction becomes non-deterministic. Second,
the scaled image might suffer from poor quality. The evaluation in
Section 4.5 shows that applying the random filter on benign images
leads to a loss of accuracy between 2% and 10.9%. This might be
acceptable for the benefit of a very efficient run-time performance.
The filter reconstructs an image with a complexity of O(|P|), which is
independent of the scaling ratio. Furthermore, the filter also provides
strong protection from attacks. If an image contains |P| relevant points,
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Figure C.2: Success rate of attack regarding O2: the similarity between source
image and attack image, measured by the PSNR value.

there exist |P| - 4 B Bo possible combinations for its reconstruction. If
we consider a scaling ratio of 5 and a target size of 200 x 200, this
already amounts to 4 million different combinations an attacker needs
to guess from.

C.3 ADDITIONAL EVALUATION RESULTS

Figures C.2 to C.7 give further information and examples from the
evaluation. In particular, they provide visual examples of successful
and failed attacks, thereby highlighting the working principle of image-
scaling attacks.
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Source image

Target image

Attack image

Output image

Figure C.3: Best images of the Ly version of the adaptive attack against area
scaling (plotted here column-wise per example). The attack fails
in all cases with respect to Objective O2, as each attack image is
not similar to the source image anymore.

Source image

Target image

Attack image

Output image

Figure C.4: Selective source scenario against area scaling with the L; attack
(first two columns) and L attack (last three columns). The attack
fails in all cases with respect to Objective O2. While traces from
the source image are visible, the attack image overwrites the
source image considerably.
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Attack image

Output image

Output from restored attack image

Figure C.5: Randomly selected examples before and after restoration with
median filter (first three columns) and random filter (last two
columns). Without restoration, the attack is successful, as the
downscaling of the attack image produces an unrelated target
image (1st and 2nd row). With restoration, the attack fails in all
cases with respect to Objective O1, as the downscaled output
from the restored attack image produces the respective content
and not an unrelated image (3rd and 4th row). Moreover, the
filtering improves quality, as it removes traces from the attack.

Source image

Output image

Figure C.6: Successful examples regarding Objective O1 from the adaptive
attack against the median filter if 20% of the pixels in each block
can be changed. The target class is detected, but the attack image
is a mix between source and target class. The results thus violate
Objective O2.
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Source image

Target image

Figure C.7: Examples from the adaptive attack against the median filter
where the participants from the user study only recognized the
source class. Although the target class was not recognized, it
is visible that the attack image is still a mix between source
and target class which makes it difficult to determine particular
classes. The results thus violate Objective Oz.

C.4 ADAPTIVE ATTACK AGAINST MEDIAN FILTER

In the following, we analyze the adaptive attack against the median-
based defense. It is demonstrated that the attack is optimal regarding
the Lo, Ly, and L, norm if each window W, does not overlap with
other windows. An adversary cannot make less changes to control the
output of the median filter.

For a given attack image and window W,, the adversary seeks
to manipulate the pixels in W, such that the median m over W, still
corresponds to p. In this way, the modifications from the image-scaling
attack remain even after applying the median filter. Without loss of
generality, let us assume that m < p and further unroll W, to a one-
dimensional signal. We consider a signal with uneven length k and
denote the numerical order by brackets, so that the signal is given by:

T Xy M)y gy X e (G2)

Let us denote by x(;) the largest pixel in the sorted signal that is smaller
than p. The objective is to change the signal with the fewest possible
changes so that m = p.

We start by observing that we need to change [ — k%l + 1 pixels
to move the median to p. Less changes do not impact the numerical
order sufficiently. We can thus conclude that the minimal Ly norm for
an attack is given by

Lo=1-*1+1. (C.3)
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Next, it is shown that setting all pixels between m and x;) to p suc-
cessfully moves the median as well as minimizes the L; and L, norm
in addition. First, we observe that if we replace pixels with indices in
[1, (k —1)/2] by a value smaller than m, the median is not changed.
Likewise, replacing pixels larger than x(;) by a value larger than m
does not change the median. Two methods can move the median to p:
(1) We can replace pixels with indices in [1, (k +1)/2] by p. (2) We
can set all pixels with index [(k+1)/2, I] to p. Note that we could
also use a value larger than p in method (1) or (2), but this would
change more than necessary. Comparing both methods, (2) induces
less changes regarding the L;/L, norm, as these values are closer to p.
Thus, the adaptive attack uses the optimal strategy for the L1 /L, norm
by setting all pixels between m and x(;) to p. Furthermore, we can
derive a simple bound for the L, norm:

L= ¥ (xp-p) <Lm—p?. (4

(Hh<igi

Overall, we can exactly compute the number and amount of required
changes for a successful attack. The analysis, however, also shows that
the attack always depends on the concrete pair of a source and a target
image, and there is no notion of a class boundary. Consequently, a
general bound cannot be derived, as achieved with certifiable defenses
against adversarial examples. Yet, the empirical results in Section 4.5.5
demonstrate that the necessary changes are very large if target and
source images show realistic content, so that the median m and the
target value p are not close to each other.



LINKING FEATURE AND MEDIA SPACE

This chapter provides additional information about the relation be-
tween feature space and media space, examined in Chapter 5.

D.1 BLIND NEWTON SENSITIVITY ATTACK

This section briefly recaps the BNSA [57] in a simplified version. This
oracle attack solves Equation 5.8. For simplicity, let us slightly rewrite
this optimization problem as follows:

argm(sin d(é) s.t. fm@+d6) =y, (D.1)

We directly instantiate the distance function D from Equation 5.8 by
using d(+) that quantifies the modifications with the squared Euclidean
norm:

d(8) = |7 - (D.2)

Note that other distance functions could be used for the BNSA as
well [see 57].

The adversary has no access to the real-valued output that fu((&)
internally computes before returning the binary decision. Therefore,
the idea is to rewrite the optimization problem from Equation D.1 into
the following unconstrained version:

argn%in (dobg)(d). (D.3)

The surjection bz (d) reflects the prior constraint to find a solution
in the other subspace. As a position on the boundary is sufficient,
bz(d) maps each input to the boundary. In particular, bz () (i) takes
a vector 4 as input, (ii) finds a scalar a such that & + ad lies on the
decision boundary, (iii) and returns ad as output. To highlight the
dependence on &, it is added as subscript in bg. To implement bz (d),
a bisection algorithm can be used.

However, bz (d) has to map each input vector to the boundary
explicitly by running the bisection algorithm each time. Thus, a closed
form to solve the problem in Equation D.3 is not applicable. Therefore,
numerical iterative methods, such as Newton’s method or gradient
descent, have to be used. The attack consists of the following steps.

1. The attack first needs to find a signal z; on the decision boundary.
Note that x;, does not need to resemble & [59]. For example,
using an image, we can reduce the contrast until the image
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Gradient
calculation

fm

Gradient

Figure D.1: Blind Newton Sensitivity Attack (BNSA). Queries around a

boundary position reveal the function’s gradient at this posi-
tion to minimize the distance between the manipulated signal
and the original one.

crosses the boundary and the detector changes the detector
output [59]. Alternatively, we can employ a bisection algorithm
to find a scalar -y such that y& lies on the decision boundary [57]:

xp = Y. (D.4)

Then, the attack computes the start value dp = (7 — 1) - &.

. Based on the current position, the attack finds the direction in

which the objective in Equation D.3 decreases the fastest. For
example, using the gradient-based version of the BNSA, we can
summarize an update step with the following equation:

6k+1 = dk - Ek,-/ V(d o b@)(ék) . (D5)

step length descent direction

As an analytic calculation of the gradient is not possible, the
gradient needs to be approximated numerically. To this end, the
attack slightly changes J; at one dimension, maps the vector to
the boundary again via bz and records the distance through this
change. By repeating this procedure for each dimension in the
vector space, the attack is able to calculate the gradient. More
formally, the i-th dimension of the gradient is calculated as:

do bj)(ék + /\e,‘) — (d o bi)<5k)
) .
e; is here the i-th vector of the canonical basis, and A a small

positive number. Figure D.1 exemplifies this calculation in the
2-dimensional case.

V(o ba) (8)]; = ¢ D)

. Then, either a new iteration starts in the current position, or

the attack terminates based on a certain criterion. In Figure D.1,
Or+1 already shows the shortest way out of the subspace of
yT. It only needs to be scaled to the decision boundary to get
the minimal modifications, so that the watermark in & is not
detected anymore.



D.2 KALKER’S ATTACK

In summary, the attack does not require a priori knowledge about
the detector’s decision function and works only with a binary output.
The optimal solution is guaranteed for convex boundaries, but suitable
results are also reported for non-linear watermarking schemes—with
e.g. polynomial or fractalized decision boundaries—by following the
boundary’s envelope [57, 58]. Moreover, multiple adjustments are
discussed to decrease the required queries and computation time with
a gradient and Newton’s method [see 57]. Finally, note that Comesafia
and Pérez-Gonzélez [58] present a pseudocode for the attack.

D.2 KALKER’'S ATTACK

Kalker [108] introduces an oracle attack against a normalized corre-
lation detector with a bipolar watermark. With slight modifications,
this attack is applicable to a larger class of watermarking schemes [60],
such as the presented scheme in Section 5.1.1.

The idea is to calculate the normal vector m to the decision bound-
ary in order to find the shortest path out of the subspace of y+.
Figure D.2 exemplifies this attack which can be divided into three
phases [60, 108]:

1. The starting position x; is any random signal on or near the
decision boundary. It can be calculated as for the BNSA.

2. The attacker creates a zero-mean random vector u; with com-
ponents { —k, +k}. By adding u; to x;, the resulting vector ends
either in the y* or y~ subspace. If the detector returns the wa-
termark’s presence, we assume a positive correlation between wu;
and the normal vector m and set a scalar v; = 1. If the detector
returns the watermark’s absence, u; points to the opposite direc-
tion of m (negative correlation) and we set v; = —1. The attacker
repeats this process to generate a certain number of such random
vectors. As each vector has only two possible component values,

Linear decision boundary
& I Positive correlation
Negative correlation

Figure D.2: Geometric view of Kalker’s attack [108].
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all random vectors have equal length. Effectively, we create a
circle of vectors around the starting position xy,.

3. By averaging over all random vectors, the attacker can estimate
the normal vector m:

m = Zvi R TH (D.7)

Due to the scalar v;, each random vector lies on the side with the
positive correlation. By averaging over all vectors, the normal
vector as middle can be computed.

In the case of a linear decision boundary, (—m) represents the
direction of the shortest path towards y~. Thus, we subtract m
with a scaling factor a from & such that we obtain a position on
the boundary. In doing so, we obtain an unwatermarked signal
with minimal distortion. In other words, a(—m) represents the
optimal modification § in Equation 5.8.

Originally, Kalker [108] interprets m as watermark vector. To esti-
mate a bipolar watermark, m is scaled such that its quantized com-
ponents are in the target set {—1,0,1}. However, using the normal
vector interpretation, this attack also deals with other watermarking
schemes, for which the normal vector provides information about the
shortest path towards y~ [60].

Furthermore, this attack can circumvent defenses that build on a ran-
domized region around the boundary (see Section 5.2.5), since it can
create a vector circle whose largest part is outside of the randomized
region.

D.3 SECURITY MARGIN CONSTRUCTION

The construction of the security margin works as follows: First, we
choose a tree region and select the training data that fall inside this
particular region. Next, we estimate the distribution of the selected
training data at each dimension through a kernel-density estimation. In
this way, no a priori assumptions about their distribution are required.
Finally, the distribution in each dimension is used to define the margin
at the boundary in this dimension. To this end, we set the margin to
the feature value where the probability of occurrence is smaller than
a certain threshold. In Figure 5.6, for example, the lower-right tree
region has a smaller security margin, since more training data are near
the boundary. On the contrary, the region on the very left exhibits
fewer training samples near the boundary, so that a larger margin can
be defined. By defining the security margin in this statistical way, we
can control the false positive rate that an honest query falls inside the
margin. We repeat the process for each tree region.



BIBLIOGRAPHY

[1]

6]

[10]

[11]

Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin. Learning
from Data: A Short Course. AMLBook, 2012.

M. Abuhamad, T. AbuHmed, A. Mohaisen, and D. Nyang.
“Large-Scale and Language-Oblivious Code Authorship Identi-
fication.” In: Proc. of ACM Conference on Computer and Communi-
cations Security (CCS). 2018.

Y. Adi, C. Baum, M. Cisse, B. Pinkas, and J. Keshet. “Turning
Your Weakness Into a Strength: Watermarking Deep Neural
Networks by Backdooring.” In: Proc. of USENIX Security Sym-
posium. 2018.

A. V. Aho, R. Sethi, and ]J. D. Ullman. Compilers Principles,
Techniques, and Tools (2nd Edition). Addison-Wesley, 2006.

S. Alrabaee, P. Shirani, L. Wang, M. Debbabi, and A. Hanna.
“On Leveraging Coding Habits for Effective Binary Authorship
Attribution.” In: Proc. of European Symposium on Research in
Computer Security (ESORICS). 2018.

B. Alsulami, E. Dauber, R. E. Harang, S. Mancoridis, and R.
Greenstadt. “Source Code Authorship Attribution Using Long
Short-Term Memory Based Networks.” In: Proc. of European
Symposium on Research in Computer Security (ESORICS). 2017.

M. Alzantot, Y. Sharma, A. Elgohary, B.-]. Ho, M. Srivastava,
and K.-W. Chang. “Generating Natural Language Adversarial
Examples.” In: Proc. of the Conference on Empirical Methods in
Natural Language Processing (EMNLP). 2018.

H. S. Anderson, A. Kharkar, B. Filar, D. Evans, and P. Roth.
Learning to Evade Static PE Machine Learning Malware Models via
Reinforcement Learning. arXiv:1801.08917. 2018.

D. Arp. “Efficient and Explainable Detection of Mobile Malware
with Machine Learning.” PhD thesis. TU Braunschweig, 2019.

D. Arp, M. Spreitzenbarth, M. Hiibner, H. Gascon, and K.
Rieck. “Drebin: Efficient and Explainable Detection of Android
Malware in Your Pocket.” In: Proc. of Network and Distributed
System Security Symposium (NDSS). 2014.

D. Arp, E. Quiring, F. Pendlebury, A. Warnecke, F. Pierazzi,
C. Wressnegger, L. Cavallaro, and K. Rieck. “Dos and Don’ts of
Machine Learning in Computer Security.” In: Proc. of USENIX
Security Symposium. 2022 (to appear).



168

BIBLIOGRAPHY

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

A. Athalye, N. Carlini, and D. Wagner. “Obfuscated Gradients
Give a False Sense of Security: Circumventing Defenses to

Adversarial Examples.” In: Proc. of Int. Conference on Machine
Learning (ICML). 2018.

A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok. “Synthesizing
Robust Adversarial Examples.” In: Proc. of Int. Conference on
Machine Learning (ICML). 2018.

Z. Ba, S. Piao, X. Fu, D. Koutsonikolas, A. Mohaisen, and K.
Ren. “ABC: Enabling Smartphone Authentication with Built-in
Camera.” In: Proc. of Network and Distributed System Security
Symposium (NDSS). 2018.

D. Bahdanau, K. Cho, and Y. Bengio. “Neural Machine Trans-
lation by Jointly Learning to Align and Translate.” In: Interna-
tional Conference on Learning Representations (ICLR). 2015.

M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian,
and J. Nazario. “Automated Classification and Analysis of
Internet Malware.” In: Proc. of International Symposium on Recent
Advances in Intrusion Detection (RAID). 2007.

M. Barni, P. Comesana-Alfaro, F. Pérez-Gonzélez, and B. Tondi.
“Are you threatening me?: Towards smart detectors in water-
marking.” In: Proceedings of SPIE 9028 (2014).

M. Barni and F. Pérez-Gonzélez. “Coping with the enemy:
Advances in adversary-aware signal processing.” In: IEEE In-
ternational Conference on Acoustics, Speech, and Signal Processing
(ICASSP). 2013.

P. Bas and A. Westfeld. “Two Key Estimation Techniques for
the Broken Arrows Watermarking Scheme.” In: Proc. of the
Workshop on Multimedia and Security (MM&Sec). 2009.

A. Bendale and T. Boult. “Towards Open Set Deep Networks.”
In: Proc. of IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR). 2016.

B. Biggio and F. Roli. “Wild patterns: Ten years after the rise of
adversarial machine learning.” In: Pattern Recognition 84 (2018).

B. Biggio, G. Fumera, and F. Roli. “Adversarial pattern clas-
sification using multiple classifiers and randomisation.” In:
Structural, Syntactic, and Statistical Pattern Recognition. Springer,
2008.

B. Biggio, G. Fumera, and F. Roli. “Multiple classifier systems
for robust classifier design in adversarial environments.” In: In-
ternational Journal of Machine Learning and Cybernetics 1.1 (2010).

B. Biggio, B. Nelson, and P. Laskov. “Support Vector Machines
Under Adversarial Label Noise.” In: Proc. of Asian Conference
on Machine Learning (ACML). 2011.



[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]
[33]

[34]

[35]

[36]

BIBLIOGRAPHY

B. Biggio, B. Nelson, and P. Laskov. “Poisoning Attacks against
Support Vector Machines.” In: Proc. of Int. Conference on Machine
Learning (ICML). 2012.

B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Srndi¢, P. Laskov,
G. Giacinto, and F. Roli. “Evasion Attacks against Machine
Learning at Test Time.” In: Machine Learning and Knowledge
Discovery in Databases. Springer, 2013.

B. Biggio, G. Fumera, and E. Roli. “Security Evaluation of Pat-
tern Classifiers under Attack.” In: IEEE Transactions on Knowl-
edge and Data Engineering (TKDE) 26.4 (2014).

B. Biggio, I. Corona, Z. He, P. P. K. Chan, G. Giacinto, D. S.
Yeung, and F. Roli. “One-and-a-Half-Class Multiple Classifier
Systems for Secure Learning Against Evasion Attacks at Test
Time.” In: Proc. of International Workshop on Multiple Classifier
Systems (MCS). 2015.

C. M. Bishop. Pattern Recognition and Machine Learning. Springer-
Verlag, 2006.

B. E. Boser, I. M. Guyon, and V. N. Vapnik. “A Training Algo-
rithm for Optimal Margin Classifiers.” In: Proc. of the Annual
ACM Workshop on Computational Learning Theory (COLT). 1992.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, 2009.

L. Breiman. “Random Forests.” In: Machine Learning 45.1 (2001).

W. Brendel, J. Rauber, and M. Bethge. “Decision-Based Ad-
versarial Attacks: Reliable Attacks Against Black-Box Machine
Learning Models.” In: International Conference on Learning Rep-
resentations (ICLR). 2018.

C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. L
Cowling, P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis,
and S. Colton. “A Survey of Monte Carlo Tree Search Methods.”
In: IEEE Transactions on Computational Intelligence and Al in
Games 4.1 (2012).

S. Burrows, A. L. Uitdenbogerd, and A. Turpin. “Application
of Information Retrieval Techniques for Source Code Author-
ship Attribution.” In: Proc. of Conference on Database Systems for
Advanced Applications (DASFAA). 2009.

A. Caliskan, R. Harang, A. Liu, A. Narayanan, C. R. Voss, E.
Yamaguchi, and R. Greenstadt. “De-anonymizing Programmers
via Code Stylometry.” In: Proc. of USENIX Security Symposium.
2015.

169



170

BIBLIOGRAPHY

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

A. Caliskan, F. Yamaguchi, E. Tauber, R. Harang, K. Rieck, R.
Greenstadt, and A. Narayanan. “When Coding Style Survives
Compilation: De-anonymizing Programmers from Executable
Binaries.” In: Proc. of Network and Distributed System Security
Symposium (NDSS). 2018.

N. Carlini and D. A. Wagner. “Towards Evaluating the Ro-
bustness of Neural Networks.” In: Proc. of IEEE Symposium on
Security and Privacy (S&P). 2017.

N. Carlini and D. Wagner. “Adversarial Examples Are Not
Easily Detected: Bypassing Ten Detection Methods.” In: Proc.
of ACM Workshop on Artificial Intelligence and Security (AISEC).
2017.

N. Carlini, A. Athalye, N. Papernot, W. Brendel, ]J. Rauber, D.
Tsipras, I. Goodfellow, A. Madry, and A. Kurakin. On Evaluat-
ing Adversarial Robustness. arXiv:1902.06705. 2019.

V. Chandrasekaran, K. Chaudhuri, I. Giacomelli, S. Jha, and
S. Yan. “Exploring Connections Between Active Learning and
Model Extraction.” In: Proc. of USENIX Security Symposium.
2020.

O. Chapelle, B. Scholkopf, and A. Zien. Semi-Supervised Learn-
ing. MIT Press, 2006.

L. Charlin and R. S. Zemel. “The Toronto paper matching
system: an automated paper-reviewer assignment system.” In:
ICML Workshop on Peer Reviewing and Publishing Models. 2013.

H. Chen, C. Fu, J. Zhao, and F. Koushanfar. “Deeplnspect: A
Black-box Trojan Detection and Mitigation Framework for Deep
Neural Networks.” In: Proc. of International Joint Conference on
Artificial Intelligence (IJCAI). 2019.

J. Chen, M. L. Jordan, and M. J. Wainwright. “HopSkipJumpAt-
tack: A Query-Efficient Decision-Based Attack.” In: Proc. of
IEEE Symposium on Security and Privacy (S&P). 2020.

S. Chen, N. Carlini, and D. Wagner. “Stateful Detection of
Black-Box Adversarial Attacks.” In: Proc. of the ACM Workshop
on Security and Privacy on Artificial Intelligence (SPAI). 2020.

T. Chen and C. Guestrin. “XGBoost: A Scalable Tree Boosting
System.” In: Proc. of the ACM SIGKDD International Conference
On Knowledge Discovery and Data Mining (KDD). 2016.

X. Chen, C. Li, D. Wang, S. Wen, J. Zhang, S. Nepal, Y. Xiang,
and K. Ren. “Android HIV: A Study of Repackaging Malware
for Evading Machine-Learning Detection.” In: IEEE Transactions
on Information Forensics and Security (TIFS) 15 (2020).



[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[571

[58]

[59]

[60]

[61]

BIBLIOGRAPHY

Y. Chen, S. Wang, D. She, and S. Jana. “On Training Robust PDF
Malware Classifiers.” In: Proc. of USENIX Security Symposium.
2020.

Y. Chen, C. Shen, C. Wang, Q. Xiao, K. Li, and Y. Chen. “Scaling
Camouflage: Content Disguising Attack Against Computer
Vision Applications.” In: IEEE Transactions on Dependable and
Secure Computing (TDSC) (2020).

E. Chou, F. Tramer, and G. Pellegrino. “SentiNet: Detecting
Localized Universal Attacks Against Deep Learning Systems.”
In: Deep Learning and Security Workshop (DLS). 2020.

M. E. Choubassi and P. Moulin. “On the fundamental tradeoff
between watermark detection performance and robustness
against sensitivity analysis attacks.” In: Proceedings of SPIE 6072
(2006).

M. E. Choubassi and P. Moulin. “Noniterative Algorithms for
Sensitivity Analysis Attacks.” In: IEEE Transactions on Informa-
tion Forensics and Security (TIFS) 2.2 (2007).

M. E. Choubassi and P. Moulin. “On Reliability and Security of
Randomized Detectors Against Sensitivity Analysis Attacks.”
In: IEEE Transactions on Information Forensics and Security (TIFS)
4.3 (2009).

Clang: C Language Family Frontend for LLVM. LLVM Project,
https://clang.llvm.org. Last visited June 2021. 2021.

M. Collins and N. Duffy. “Convolution Kernels for Natural Lan-
guage.” In: Advances in Neural Information Proccessing Systems
(NIPS). Vol. 14. 2002.

P. Comesaiia, L. Pérez-Freire, and F. Pérez-Gonzalez. “Blind
Newton sensitivity attack.” In: IEE Proceedings — Information
Security 153.3 (2006).

P. Comesafa and F. Pérez-Gonzalez. “Breaking the BOWS Wa-

termarking System: Key Guessing and Sensitivity Attacks.” In:
EURASIP Journal on Information Security 2007.1 (2007).

I.]J. Cox and J.-PM. G. Linnartz. “Public watermarks and resis-
tance to tampering.” In: IEEE International Conference on Image
Processing (ICIP). 1997.

I. J. Cox, M. Miller, J. Bloom, J. Fridrich, and T. Kalker. Digital
watermarking and steganography. Morgan Kaufmann Publishers,
2002.

S. Craver and J. Yu. “Reverse-engineering a detector with false
alarms.” In: Proceedings of SPIE 6505 (2007).

171


https://clang.llvm.org

172

BIBLIOGRAPHY

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

G. E Cretu, A. Stavrou, M. E. Locasto, S. J. Stolfo, and A. D.
Keromytis. “Casting out Demons: Sanitizing Training Data for

Anomaly Sensors.” In: Proc. of IEEE Symposium on Security and
Privacy (S&P). 2008.

H. Dang, Y. Huang, and E.-C. Chang. “Evading Classifiers by
Morphing in the Dark.” In: Proc. of ACM Conference on Computer
and Communications Security (CCS). 2017.

E. Dauber, A. Caliskan, R. Harang, G. Shearer, M. Weisman, F.
Nelson, and R. Greenstadt. “Git Blame Who?: Stylistic Author-
ship Attribution of Small, Incomplete Source Code Fragments.”
In: Proceedings on Privacy Enhancing Technologies (PETS) 2019.3
(2019).

A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck,
I. Corona, G. Giacinto, and F. Roli. “Yes, Machine Learning Can
Be More Secure! A Case Study on Android Malware Detection.”
In: IEEE Transactions on Dependable and Secure Computing (TDSC)
PP.g99 (2017).

J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei.
“ImageNet: A large-scale hierarchical image database.” In: Proc.
of IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2009.

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern classification.
Second. John Wiley & Sons, 2000.

J. Ebrahimi, A. Rao, D. Lowd, and D. Dou. “HotFlip: White-Box
Adversarial Examples for Text Classification.” In: Proc. of the

Annual Meeting of the Association for Computational Linguistics
(ACL), (Short Papers). 2018.

A. Fass, M. Backes, and B. Stock. “HideNoSeek: Camouflaging
Malicious JavaScript in Benign ASTs.” In: Proc. of ACM Confer-
ence on Computer and Communications Security (CCS). 2019.

P. Fogla and W. Lee. “Evading Network Anomaly Detection
Systems: Formal Reasoning and Practical Techniques.” In: Proc.
of ACM Conference on Computer and Communications Security
(CCS). 2006.

P. Fogla, M. Sharif, R. Perdisci, O. Kolesnikov, and W. Lee.
“Polymorphic Blending Attacks.” In: Proc. of USENIX Security
Symposium. 2006.

G. Forman. “A Pitfall and Solution in Multi-class Feature Se-
lection for Text Classification.” In: Proc. of Int. Conference on
Machine Learning (ICML). 2004.

G. Frantzeskou, E. Stamatatos, S. Gritzalis, and S. Katsikas.
“Effective identification of source code authors using byte-level
information.” In: Proc. of International Conference on Software
Engineering (ICSE). 2006.



[74]

[75]

[76]

(771

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

BIBLIOGRAPHY

J. Fridrich. Steganography in Digital Media: Principles, Algorithms,
and Applications. Cambridge University Press, 2010.

J. Fridrich. “Sensor Defects in Digital Image Forensic.” In: Digi-
tal Image Forensics: There is More to a Picture Than Meets the Eye.
Ed. by H. T. Sencar and N. Memon. Springer, 2013, pp. 179-218.

T. Furon and P. Bas. “Broken arrows.” In: EURASIP Journal on
Information Security 2008 (2008).

T. Furon, I. Venturini, and P. Duhamel. “Unified approach of
asymmetric watermarking schemes.” In: Proceedings of SPIE
4314 (2001).

T. Furon, B. Macq, N. Hurley, and G. Silvestre. “JANIS: Just an-
other N-order side-informed watermarking scheme.” In: IEEE
International Conference on Image Processing (ICIP). 2002.

J. Gao, J. Lanchantin, M. L. Soffa, and Y. Qi. “Black-Box Gener-
ation of Adversarial Text Sequences to Evade Deep Learning
Classifiers.” In: IEEE Security and Privacy Workshops (SPW).
2018.

S. Garg and G. Ramakrishnan. “BAE: BERT-based Adversarial
Examples for Text Classification.” In: Proc. of the Conference on
Empirical Methods in Natural Language Processing (EMNLP). 2020.

H. Gascon, E. Yamaguchi, D. Arp, and K. Rieck. “Structural
Detection of Android Malware Using Embedded Call Graphs.”
In: Proc. of ACM Workshop on Artificial Intelligence and Security
(AISEC). 2013.

M. Gendreau and ].-Y. Potvin. Handbook of Metaheuristics, 3rd
ed. Springer International Publishing, 2019.

A. Globerson and S. Roweis. “Nightmare at Test Time: Robust
Learning by Feature Deletion.” In: Proc. of Int. Conference on
Machine Learning (ICML). 2006.

T. Gloe and R. Bohme. “The Dresden Image Database for Bench-
marking Digital Image Forensics.” In: Journal of Digital Forensic
Practice 3.2—4 (2010).

T. Gloe, M. Kirchner, A. Winkler, and R. Bohme. “Can we
Trust Digital Image Forensics?” In: International Conference on
Multimedia. 2007.

Y. Goldberg. Neural Network Methods in Natural Language Pro-
cessing. Morgan & Claypool Publishers, 2017.

M. Goldblum, D. Tsipras, C. Xie, X. Chen, A. Schwarzschild,
D. Song, A. Madry, B. Li, and T. Goldstein. Dataset Security for
Machine Learning: Data Poisoning, Backdoor Attacks, and Defenses.
arXiv:2012.10544Vv2. 2020.

173



174

BIBLIOGRAPHY

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

I. J. Goodfellow, J. Shlens, and C. Szegedy. “Explaining and
harnessing adversarial examples.” In: International Conference
on Learning Representations (ICLR). 2015.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT
Press, 2016.

Google Code Jam. https://codingcompetitions.withgoogle.
com/codejam. Last visited June 2021. 2021.

K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. Mc-
Daniel. “Adversarial Examples for Malware Detection.” In:

Proc. of European Symposium on Research in Computer Security
(ESORICS). 2017.

T. Gu, B. Dolan-Gavitt, and S. Garg. BadNets: Identifying Vul-
nerabilities in the Machine Learning Model Supply Chain. arXiv:
1708.06733. 2017.

W. Guo, L. Wang, Y. Xu, X. Xing, M. Du, and D. Song. “To-
wards Inspecting and Eliminating Trojan Backdoors in Deep
Neural Networks.” In: Proc. of the International Conference on
Data Mining (ICDM). 2020.

T. Hastie, R. Tibshirani, and ]. Friedman. The Elements of Sta-
tistical Learning: Data Mining, Inference and Prediction. Springer
series in statistics. New York, N.Y.: Springer, 2001.

D. Haussler. Convolution Kernels on Discrete Structures. Tech. rep.
UCSC-CRL-g9-10. UC Santa Cruz, 1999.

S. Hido and H. Kashima. “A Linear-Time Graph Kernel.” In:
Proc. of the International Conference on Data Mining (ICDM). 2009.

G. Hinton et al. “Deep Neural Networks for Acoustic Modeling
in Speech Recognition.” In: IEEE Signal Processing Magazine 29.6
(2012).

L. Huang, A. D. Joseph, B. Nelson, B. I. P. Rubinstein, and
J. D. Tygar. “Adversarial Machine Learning.” In: Proc. of ACM
Workshop on Artificial Intelligence and Security (AISEC). 2011.

B. Hui, Y. Yang, H. Yuan, P. Burlina, N. Z. Gong, and Y. Cao.
“Practical Blind Membership Inference Attack via Differential
Comparisons.” In: Proc. of Network and Distributed System Secu-
rity Symposium (NDSS). 2021.

A. Ilyas, L. Engstrom, A. Athalye, and J. Lin. “Black-box Ad-

versarial Attacks with Limited Queries and Information.” In:
Proc. of Int. Conference on Machine Learning (ICML). 2018.

U. Igbal, P. Snyder, S. Zhu, B. Livshits, Z. Qian, and Z. Shafiq.
“AdGraph: A Graph-Based Approach to Ad and Tracker Block-
ing.” In: Proc. of IEEE Symposium on Security and Privacy (S&P).
2020.


https://codingcompetitions.withgoogle.com/codejam
https://codingcompetitions.withgoogle.com/codejam

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

BIBLIOGRAPHY

M. Jagielski, N. Carlini, D. Berthelot, A. Kurakin, and N. Paper-
not. “High Accuracy and High Fidelity Extraction of Neural
Networks.” In: Proc. of USENIX Security Symposium. 2020.

S. Jana and V. Shmatikov. “Abusing File Processing in Malware
Detectors for Fun and Profit.” In: Proc. of IEEE Symposium on
Security and Privacy (S&P). 2012.

J. Jia, A. Salem, M. Backes, Y. Zhang, and N. Z. Gong. “Mem-
Guard: Defending against Black-Box Membership Inference
Attacks via Adversarial Examples.” In: Proc. of ACM Conference
on Computer and Communications Security (CCS). 2019.

A. D. Joseph, B. Nelson, B. I. P. Rubinstein, and J. D. Tygar.
Adversarial Machine Learning. Cambridge, UK: Cambridge Uni-
versity Press, 2019.

D. Jurafsky and J. H. Martin. Speech and Language Processing
(2nd Edition). Prentice-Hall, Inc., 2009.

M. Juuti, S. Szyller, S. Marchal, and N. Asokan. “PRADA:
Protecting Against DNN Model Stealing Attacks.” In: Proc. of
IEEE European Symposium on Security and Privacy (EuroS&DP).
2019.

T. Kalker. “Watermark estimation through detector observa-
tions.” In: Proc. of IEEE Benelux Signal Processing Symposium.
1998.

T. Kalker, J.-PM. G. Linnartz, and M. van Dijk. “Watermark
estimation through detector analysis.” In: IEEE International
Conference on Image Processing (ICIP). 1998.

A. Kantchelian, J. D. Tygar, and A. Joseph. “Evasion and Hard-
ening of Tree Ensemble Classifiers.” In: Proc. of Int. Conference
on Machine Learning (ICML). 2016.

M. Kloft and P. Laskov. “Online Anomaly Detection under Ad-
versarial Impact.” In: JMLR Workshop and Conference Proceedings,
Volume 9: AISTATS. 2010.

B. Kolosnjaji, A. Demontis, B. Biggio, D. Maiorca, G. Giacinto,
C. Eckert, and F. Roli. “Adversarial Malware Binaries: Evad-
ing Deep Learning for Malware Detection in Executables.” In:
European Signal Processing Conference (EUSIPCO). 2018.

A. Krizhevsky and G. Hinton. Learning multiple layers of features
from tiny images. Tech. rep. 2009.

I. Krsul and E. H. Spafford. “Authorship analysis: identifying
the author of a program.” In: Computers & Security 16.3 (1997).

A. Kurakin, I. J. Goodfellow, and S. Bengio. “Adversarial ex-
amples in the physical world.” In: International Conference on
Learning Representations (ICLR) (Workshop Track). 2017.

175



176

BIBLIOGRAPHY

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

A. Kurtz, H. Gascon, T. Becker, K. Rieck, and F. Freiling. “Fin-
gerprinting Mobile Devices Using Personalized Configura-
tions.” In: Proceedings on Privacy Enhancing Technologies (PETS)
2016.1 (2016).

M. Lapin, M. Hein, and B. Schiele. “Top-k Multiclass SVM.” In:
Advances in Neural Information Proccessing Systems (NIPS). 2015.

E. Le Merrer, P. Pérez, and G. Trédan. “Adversarial frontier
stitching for remote neural network watermarking.” In: Neural
Computing and Applications 32.13 (2020).

Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W.
Hubbard, and L. Jackel. “Handwritten Digit Recognition with a
Back-Propagation Network.” In: Advances in Neural Information
Proccessing Systems (NIPS). 1990.

Y. LeCun, Y. Bengio, and G. Hinton. “Deep Learning.” In:
Nature 521.7553 (2015).

T. Lee, B. Edwards, I. Molloy, and D. Su. “Defending Against
Neural Network Model Stealing Attacks Using Deceptive Per-
turbations.” In: Deep Learning and Security Workshop (DLS). 2019.

J. Levinson et al. “Towards fully autonomous driving: Systems
and algorithms.” In: Proc. of IEEE Intelligent Vehicles Symposium
(IV). 2011.

J. Li, N. Li, and B. Ribeiro. “Membership Inference Attacks and
Defenses in Classification Models.” In: Proc. of ACM Conference
on Data and Applications Security and Privacy (CODASPY). 2021.

J. Li, S. Ji, T. Du, B. Li, and T. Wang. “TextBugger: Generating
Adversarial Text Against Real-world Applications.” In: Proc.
of Network and Distributed System Security Symposium (NDSS).
2019.

J.-PM. G. Linnartz and M. van Dijk. “Analysis of the sensitivity
attack against electronic watermarks in images.” In: Proc. of
Information Hiding Conference. Vol. 1525. 1998.

K. Liu, B. Dolan-Gavitt, and S. Garg. “Fine-Pruning: Defending
Against Backdooring Attacks on Deep Neural Networks.” In:
Proc. of Symposium on Research in Attacks, Intrusions, and Defenses
(RAID). 2018.

Y. Liu, Y. Xie, and A. Srivastava. “Neural Trojans.” In: IEEE
International Conference on Computer Design (ICCD). 2017.

Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X.
Zhang. “Trojaning Attack on Neural Networks.” In: Proc. of Net-
work and Distributed System Security Symposium (NDSS). 2018.

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C.
Watkins. “Text classification using string kernels.” In: Journal of
Machine Learning Research (JMLR) 2 (2002).



[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

BIBLIOGRAPHY

J. B. Lovins. “Development of a stemming algorithm.” In: Me-
chanical Translation and Computational Linguistics 11.1-2 (1968).

D. Lowd and C. Meek. “Good Word Attacks on Statistical Spam
Filters.” In: Conference on Email and Anti-Spam (CEAS). 2005.

D. Lowd and C. Meek. “Adversarial Learning.” In: Proc. of the
ACM SIGKDD International Conference On Knowledge Discovery
and Data Mining (KDD). 2005.

D. G. Lowe. “Distinctive Image Features from Scale-Invariant
Keypoints.” In: International Journal of Computer Vision 60.2
(2004).

J. Lukas, J. Fridrich, and M. Goljan. “Digital Camera Identi-

fication from Sensor Pattern Noise.” In: IEEE Transactions on
Information Forensics and Security (TIFS) 1.2 (2006).

S. MacDonell, A. Gray, G. MacLennan, and P. Sallis. “Software
forensics for discriminating between program authors using
case-based reasoning, feed-forward neural networks and multi-
ple discriminant analysis.” In: Proc. of International Conference
on Neural Information Processing (ICONIP). 1999.

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu.
“Towards Deep Learning Models Resistant to Adversarial At-

tacks.” In: International Conference on Learning Representations
(ICLR). 2017.

D. Maiorca, I. Corona, and G. Giacinto. “Looking at the Bag
is Not Enough to Find the Bomb: An Evasion of Structural
Methods for Malicious PDF Files Detection.” In: Proc. of ACM
Asia Conference on Computer and Communications Security (ASIA
CCS). 2013.

M. F. Mansour and A. H. Tewfik. “Improving the security of
watermark public detectors.” In: Proc. of International Conference
on Digital Signal Processing (DSP). 2002.

M. F. Mansour and A. H. Tewfik. “LMS-based attack on wa-
termark public detectors.” In: IEEE International Conference on
Image Processing (ICIP). 2002.

E. Mariconti, L. Onwuzurike, P. Andriotis, E. D. Cristofaro,
G. Ross, and G. Stringhini. “MaMAaDRoi1p: Detecting Android
Malware by Building Markov Chains of Behavioral Models.”
In: Proc. of Network and Distributed System Security Symposium
(NDSS). 2017.

A. Matyukhina, N. Stakhanova, M. Dalla Preda, and C. Perley.
“Adversarial Authorship Attribution in Open-Source Projects.”

In: Proc. of ACM Conference on Data and Applications Security and
Privacy (CODASPY). 2019.

177



178

BIBLIOGRAPHY

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

D. Meng and H. Chen. “MagNet: A Two-Pronged Defense
against Adversarial Examples.” In: Proc. of ACM Conference on
Computer and Communications Security (CCS). 2017.

X. Meng, B. P. Miller, and K.-S. Jun. “Identifying Multiple
Authors in a Binary Program.” In: Proc. of European Symposium
on Research in Computer Security (ESORICS). 2017.

J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff. “On De-
tecting Adversarial Perturbations.” In: International Conference
on Learning Representations (ICLR). 2017.

Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai. “Kitsune:
An Ensemble of Autoencoders for Online Network Intrusion
Detection.” In: Proc. of Network and Distributed System Security
Symposium (NDSS). 2018.

S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. “DeepFool: A
Simple and Accurate Method to Fool Deep Neural Networks.”
In: Proc. of IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR). 2016.

A. Moser, C. Kruegel, and E. Kirda. “Limits of static analysis
for malware detection.” In: Proc. of Annual Computer Security
Applications Conference (ACSAC). 2007.

B. Nelson, B. I. P. Rubinstein, L. Huang, A. D. Joseph, S. J. Lee,
S. Rao, and J. D. Tygar. “Query Strategies for Evading Convex-
Inducing Classifiers.” In: Journal of Machine Learning Research
(JMLR) 13 (2012).

J. Newsome, B. Karp, and D. Song. “Paragraph: Thwarting
Signature Learning by Training Maliciously.” In: Proc. of In-
ternational Symposium on Recent Advances in Intrusion Detection
(RAID). 2006.

S. J. Oh, M. Augustin, M. Fritz, and B. Schiele. “Towards
Reverse-Engineering Black-Box Neural Networks.” In: Inter-
national Conference on Learning Representations (ICLR). 2018.

A. V. Oppenheim, J. R. Buck, and R. W. Schafer. Discrete-Time
Signal Processing; 2nd ed. Prentice-Hall, 1999.

T. Orekondy, B. Schiele, and M. Fritz. “Knockoff Nets: Stealing
Functionality of Black-Box Models.” In: Proc. of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 2019.

T. Orekondy, B. Schiele, and M. Fritz. “Prediction Poisoning:
Towards Defenses Against DNN Model Stealing Attacks.” In:
International Conference on Learning Representations (ICLR). 2020.

N. Papernot, P. McDaniel, A. Swami, and R. Harang. “Crafting
adversarial input sequences for recurrent neural networks.” In:
IEEE Military Communications Conference (MILCOM). 2016.



[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

BIBLIOGRAPHY

N. Papernot, P. D. McDaniel, X. Wu, S. Jha, and A. Swami.
“Distillation as a Defense to Adversarial Perturbations Against

Deep Neural Networks.” In: Proc. of IEEE Symposium on Security
and Privacy (S&P). 2016.

N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami. “The Limitations of Deep Learning in Adversarial
Settings.” In: Proc. of IEEE European Symposium on Security and
Privacy (EuroS&P). 2016.

N. Papernot, P. McDaniel, and I. Goodfellow. Transferability
in Machine Learning: from Phenomena to Black-Box Attacks using
Adversarial Samples. arXiv:1605.07277. 2016.

N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. Berkay Celik,
and A. Swami. “Practical Black-Box Attacks against Machine
Learning.” In: Proc. of ACM Asia Conference on Computer and
Communications Security (ASIA CCS). 2017.

N. Papernot, P. McDaniel, A. Sinha, and M. P. Wellman. “SoK:
Security and Privacy in Machine Learning.” In: Proc. of IEEE
European Symposium on Security and Privacy (EuroS&P). 2018.

B. N. Pellin. Using Classification Techniques to Determine Source
Code Authorship. Tech. rep. Department of Computer Science,
University of Wisconsin, 2000.

R. Perdisci, G. Gu, and W. Lee. “Using an Ensemble of One-
Class SVM Classifiers to Harden Payload-based Anomaly De-
tection Systems.” In: Proc. of the International Conference on Data
Mining (ICDM). 2006.

F. Pierazzi, F. Pendlebury, J. Cortellazzi, and L. Cavallaro. “In-
triguing Properties of Adversarial ML Attacks in the Problem
Space.” In: Proc. of IEEE Symposium on Security and Privacy
(S&P). 2020.

Python Software Foundation. difflib — Helpers for computing
deltas. https://docs.python.org/3/library/difflib.html.
Last visited June 2021.

E. Quiring and M. Kirchner. “Fragile Sensor Fingerprint Cam-
era Identification.” In: IEEE International Workshop on Informa-
tion Forensics and Security (WIFS). 2015.

E. Quiring and K. Rieck. “Adversarial Machine Learning Against
Digital Watermarking.” In: European Signal Processing Conference
(EUSIPCO). 2018.

E. Quiring and K. Rieck. “Backdooring and Poisoning Neural
Networks with Image-Scaling Attacks.” In: Deep Learning and
Security Workshop (DLS). 2020.

179


https://docs.python.org/3/library/difflib.html

180

BIBLIOGRAPHY

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

E. Quiring and P. Schéttle. “On the Combination of Random-
ized Thresholds and Non-Parametric Boundaries to Protect
Digital Watermarks against Sensitivity Attacks.” In: Proc. of the
ACM Workshop on Information Hiding and Multimedia Security
(IH&MMSec). 2014.

E. Quiring, D. Arp, and K. Rieck. “Forgotten Siblings: Unify-
ing Attacks on Machine Learning and Digital Watermarking.”
In: Proc. of IEEE European Symposium on Security and Privacy
(EuroS&P). 2018.

E. Quiring, A. Maier, and K. Rieck. “Misleading Authorship
Attribution of Source Code using Adversarial Learning.” In:
Proc. of USENIX Security Symposium. 2019.

E. Quiring, M. Kirchner, and K. Rieck. “On the Security and
Applicability of Fragile Camera Fingerprints.” In: Proc. of Eu-
ropean Symposium on Research in Computer Security (ESORICS).
2019.

E. Quiring, D. Klein, D. Arp, M. Johns, and K. Rieck. “Ad-
versarial Preprocessing: Understanding and Preventing Image-
Scaling Attacks in Machine Learning.” In: Proc. of USENIX
Security Symposium. 2020.

E. Quiring, L. Pirch, M. Reimsbach, D. Arp, and K. Rieck.
Aguainst All Odds: Winning the Defense Challenge in an Evasion
Competition with Diversification. arXiv:2010.09569. 2020.

K. Rieck. “Machine Learning for Application-Layer Intrusion
Detection.” PhD thesis. Berlin Institute of Technology (TU
Berlin), 2009.

K. Rieck, T. Holz, C. Willems, P. Diissel, and P. Laskov. “Learn-
ing and Classification of Malware Behavior.” In: Proc. of Con-

ference on Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA). 2008.

I. Rosenberg, A. Shabtai, L. Rokach, and Y. Elovici. “Generic
Black-Box End-to-End Attack Against State of the Art API Call
Based Malware Classifiers.” In: Proc. of Symposium on Research
in Attacks, Intrusions, and Defenses (RAID). 2018.

I. Rosenberg, A. Shabtai, Y. Elovici, and L. Rokach. “Query-
Efficient Black-Box Attack Against Sequence-Based Malware
Classifiers.” In: Proc. of Annual Computer Security Applications
Conference (ACSAC). 2020.

N. E. Rosenblum, X. Zhu, and B. P. Miller. “Who Wrote This
Code? Identifying the Authors of Program Binaries.” In: Proc. of
European Symposium on Research in Computer Security (ESORICS).
2011.



[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

BIBLIOGRAPHY

O. Russakovsky et al. “ImageNet Large Scale Visual Recog-
nition Challenge.” In: International Journal of Computer Vision
(IICV) 115.3 (2015).

P. Russu, A. Demontis, B. Biggio, G. Fumera, and F. Roli. “Se-
cure Kernel Machines Against Evasion Attacks.” In: Proc. of
ACM Workshop on Artificial Intelligence and Security (AISEC).
2016.

A. Salem, Y. Zhang, M. Humbert, P. Berrang, M. Fritz, and M.
Backes. “ML-Leaks: Model and Data Independent Membership
Inference Attacks and Defenses on Machine Learning Models.”
In: Proc. of Network and Distributed System Security Symposium
(NDSS). 2019.

S. Sardy, P. Tseng, and A. G. Bruce. “Robust Wavelet Denois-
ing.” In: IEEE Transactions on Signal Processing 49 (2001).

B. Scholkopf and A. J. Smola. Learning with Kernels. Cambridge,
MA: MIT Press, 2002.

P. Schottle, A. Schlogl, C. Pasquini, and R. Bohme. “Detecting
Adversarial Examples - a Lesson from Multimedia Security.”
In: European Signal Processing Conference (EUSIPCO). 2018.

A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T.
Dumitras, and T. Goldstein. “Poison Frogs! Targeted Clean-
Label Poisoning Attacks on Neural Networks.” In: Advances in
Neural Information Proccessing Systems (NIPS). 2018.

M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter. “Acces-
sorize to a Crime: Real and Stealthy Attacks on State-of-the-Art
Face Recognition.” In: Proc. of ACM Conference on Computer and
Communications Security (CCS). 2016.

R. Shokri, M. Stronati, C. Song, and V. Shmatikov. “Member-
ship Inference Attacks against Machine Learning Models.” In:
Proc. of IEEE Symposium on Security and Privacy (S&P). 2017.

D. Silver et al. “Mastering the game of Go with deep neural
networks and tree search.” In: Nature 529 (2016).

P. Simard, D. Steinkraus, and J. Platt. “Best practices for convo-
lutional neural networks applied to visual document analysis.”
In: Proc. of International Conference on Document Analysis and
Recognition. 2003.

L. Simko, L. Zettlemoyer, and T. Kohno. “Recognizing and Imi-
tating Programmer Style: Adversaries in Program Authorship
Attribution.” In: Proceedings on Privacy Enhancing Technologies
(PETS) 2018.1 (2018).

K. Simonyan and A. Zisserman. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. arXiv:1409.1556. 2014.

181



182

BIBLIOGRAPHY

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

M. Sipser. Introduction to the Theory of Computation, 2nd ed. Thom-
son Course Technology, 2006.

S. W. Smith. The Scientist and Engineer’s Guide to Digital Signal
Processing. California Technical Publishing, 1997.

R. Sommer and V. Paxson. “Outside the Closed World: On
Using Machine Learning For Network Intrusion Detection.” In:
Proc. of IEEE Symposium on Security and Privacy (S&P). 2010.

C. Song and V. Shmatikov. “Auditing Data Provenance in Text-
Generation Models.” In: Proc. of the ACM SIGKDD International
Conference On Knowledge Discovery and Data Mining (KDD). 2019.

Y. Song, M. E. Locasto, A. Stavrou, and S. J. Stolfo. “On the
infeasibility of modeling polymorphic shellcode.” In: Proc. of
ACM Conference on Computer and Communications Security (CCS).
2007.

J. Stanley. Machine Learning Security Evasion Competition 2020
Invites Researchers to Defend and Attack. https://msrc-blog.
microsoft.com/2020/06/01/machine - learning - security -
evasion-competition-2020-invites-researchers-to-defend-
and-attack/. Last visited June 2021. 2020.

O. Suciu, S. E. Coull, and J. Johns. “Exploring Adversarial
Examples in Malware Detection.” In: IEEE Security and Privacy
Workshops (SPW). 2019.

C. Sun, C. Tang, X. Zhu, X. Li, and L. Wang. “An efficient
method for salt-and-pepper noise removal based on shearlet
transform and noise detection.” In: AEUE - International Journal
of Electronics and Communications 69.12 (2015).

I. Sutskever, O. Vinyals, and Q. V. Le. “Sequence to Sequence
Learning with Neural Networks.” In: Advances in Neural Infor-
mation Proccessing Systems (NIPS). 2014.

C. Szegedy, W. Zaremba, 1. Sutskever, J. Bruna, D. Erhan, I. J.
Goodfellow, and R. Fergus. Intriguing properties of neural net-
works. arXiv:1312.6199. 2013.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.
“Rethinking the Inception Architecture for Computer Vision.”
In: Proc. of IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR). 2015.

S. Szyller, B. G. Atli, S. Marchal, and N. Asokan. DAWN:
Dynamic Adversarial Watermarking of Neural Networks. arXiv:
1906.00830. 2019.

R. Tang, M. Du, N. Liu, E. Yang, and X. Hu. “An Embarrassingly
Simple Approach for Trojan Attack in Deep Neural Networks.”
In: Proc. of the ACM SIGKDD International Conference On Knowl-
edge Discovery and Data Mining (KDD). 2020.


https://msrc-blog.microsoft.com/2020/06/01/machine-learning-security-evasion-competition-2020-invites-researchers-to-defend-and-attack/
https://msrc-blog.microsoft.com/2020/06/01/machine-learning-security-evasion-competition-2020-invites-researchers-to-defend-and-attack/
https://msrc-blog.microsoft.com/2020/06/01/machine-learning-security-evasion-competition-2020-invites-researchers-to-defend-and-attack/
https://msrc-blog.microsoft.com/2020/06/01/machine-learning-security-evasion-competition-2020-invites-researchers-to-defend-and-attack/

[204]

[205]

[206]

[207]

[208]

[209]

[210]

[211]

[212]

[213]

[214]

[215]

[216]

BIBLIOGRAPHY

B. Tondi, P. Comesana-Alfaro, F. Pérez-Gonzélez, and M. Barni.
“On the effectiveness of meta-detection for countering oracle
attacks in watermarking.” In: IEEE International Workshop on
Information Forensics and Security (WIFS). 2015.

B. Tondi, P. Comesana-Alfaro, F. Pérez-Gonzélez, and M. Barni.
“Smart Detection of Line-Search Oracle Attacks.” In: IEEE Trans-
actions on Information Forensics and Security (TIFS) 12.3 (2017).

L. Tong, B. Li, C. Hajaj, C. Xiao, N. Zhang, and Y. Vorobey-
chik. “Improving Robustness of ML Classifiers against Realiz-
able Evasion Attacks Using Conserved Features.” In: Proc. of
USENIX Security Symposium. 2019.

F. Tramer, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart.
“Stealing Machine Learning Models via Prediction APIs.” In:
Proc. of USENIX Security Symposium. 2016.

E. Tramer, N. Carlini, W. Brendel, and A. Madry. “On Adaptive
Attacks to Adversarial Example Defenses.” In: Advances in
Neural Information Proccessing Systems (NeurIPS). 2020.

D. Tsipras, S. Santurkar, L. Engstrom, A. Ilyas, and A. Madry.
From ImageNet to Image Classification: Contextualizing Progress on
Benchmarks. arXiv:2005.11295. 2020.

A. M. Turing. “I—Computing Machinery and Intelligence.” In:
Mind LIX.236 (1950).

Y. Uchida, Y. Nagai, S. Sakazawa, and S. Satoh. “Embedding
Watermarks into Deep Neural Networks.” In: Proc. of the ACM
on International Conference on Multimedia Retrieval (ICMR). 2017.

D. Valsesia, G. Coluccia, T. Bianchi, and E. Magli. “User Au-
thentication via PRNU-Based Physical Unclonable Functions.”
In: IEEE Transactions on Information Forensics and Security (TIFS)
12.8 (2017).

V. N. Vapnik. Estimation of Dependences Based on Empirical Data
[in Russian]. (English translation: Springer Verlag, New York,
1982). Moscow: Nauka, 1979.

R. Venkatesan and M. H. Jakubowski. “Randomized detection
for spread-spectrum watermarking: Defending against sensi-
tivity and other attacks.” In: IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP). Vol. 2. 2005.

L. Venturini. “Oracle attacks and covert channels.” In: Proc. of
International Workshop on Digital Watermarking. Vol. 3710. 2005.

D. Wagner and P. Soto. “Mimicry attacks on host based intru-
sion detection systems.” In: Proc. of ACM Conference on Computer
and Communications Security (CCS). 2002.

183



184

BIBLIOGRAPHY

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

[229]

B. Wang and N. Z. Gong. “Stealing Hyperparameters in Ma-
chine Learning.” In: Proc. of IEEE Symposium on Security and
Privacy (S&P). 2018.

B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and
B. Y. Zhao. “Neural Cleanse: Identifying and Mitigating Back-
door Attacks in Neural Networks.” In: Proc. of IEEE Symposium
on Security and Privacy (S&P). 2019.

G. Wang, T. Wang, H. Zheng, and B. Y. Zhao. “Man vs. Machine:
Practical Adversarial Detection of Malicious Crowdsourcing
Workers.” In: Proc. of USENIX Security Symposium. 2014.

K. Wang, J. J. Parekh, and S. J. Stolfo. “Anagram: A Content
Anomaly Detector Resistant To Mimicry Attack.” In: Proc. of
International Symposium on Recent Advances in Intrusion Detection
(RAID). 2006.

A. Westfeld. “A Workbench for the BOWS Contest.” In: EURASIP
Journal on Information Security 2007.1 (2008).

A. Westfeld. “Fast Determination of Sensitivity in the Presence
of Countermeasures in BOWS-2.” In: International Workshop on
Information Hiding. 2009.

M. Wicker, X. Huang, and M. Kwiatkowska. “Feature-Guided
Black-Box Safety Testing of Deep Neural Networks.” In: Tools
and Algorithms for the Construction and Analysis of Systems. 2018.

D. H. Wolpert. “The Lack of a Priori Distinctions between
Learning Algorithms.” In: Neural Computation (1996).

Q. Xiao, Y. Chen, C. Shen, Y. Chen, and K. Li. “Seeing is Not
Believing: Camouflage Attacks on Image Scaling Algorithms.”
In: Proc. of USENIX Security Symposium. 2019.

H. Xu, C. Caramanis, and S. Mannor. “Robustness and Regu-
larization of Support Vector Machines.” In: Journal of Machine
Learning Research (JMLR) 10 (2009).

W. Xy, Y. Qi, and D. Evans. “Automatically Evading Classifiers:
A Case Study on PDF Malware Classifiers.” In: Proc. of Network
and Distributed System Security Symposium (NDSS). 2016.

W. Xu, D. Evans, and Y. Qi. “Feature Squeezing: Detecting
Adversarial Examples in Deep Neural Networks.” In: Proc.
of Network and Distributed System Security Symposium (NDSS).
2018.

W. Yang, D. Kong, T. Xie, and C. A. Gunter. “Malware Detec-
tion in Adversarial Settings: Exploiting Feature Evolutions and
Confusions in Android Apps.” In: Proc. of Annual Computer
Security Applications Conference (ACSAC). 2017.



[230]

[231]

[232]

[233]

[234]

[235]

[236]

BIBLIOGRAPHY

Y. Yao, H. Li, H. Zheng, and B. Y. Zhao. “Latent Backdoor
Attacks on Deep Neural Networks.” In: Proc. of ACM Conference
on Computer and Communications Security (CCS). 2019.

S. Yeom, I. Giacomelli, M. Fredrikson, and S. Jha. “Privacy Risk
in Machine Learning: Analyzing the Connection to Overfit-
ting.” In: IEEE Computer Security Foundations Symposium (CSF).
2018.

J. Zhang, Z. Gu, J. Jang, H. Wu, M. P. Stoecklin, H. Huang,
and I. Molloy. “Protecting Intellectual Property of Deep Neural
Networks with Watermarking.” In: Proc. of ACM Asia Conference
on Computer and Communications Security (ASIA CCS). 2018.

H. Zheng, Q. Ye, H. Hu, C. Fang, and J. Shi. “BDPL: A Boundary
Differentially Private Layer Against Machine Learning Model
Extraction Attacks.” In: Proc. of European Symposium on Research
in Computer Security (ESORICS). 2019.

Z.Zhu, D. Liang, S. Zhang, X. Huang, B. Li, and S. Hu. “Traffic-
Sign Detection and Classification in the Wild.” In: Proc. of IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).
2016.

N. Srndi¢ and P. Laskov. “Detection of Malicious PDF Files
Based on Hierarchical Document Structure.” In: Proc. of Network
and Distributed System Security Symposium (NDSS). 2013.

N. Srndi¢ and P. Laskov. “Practical Evasion of a Learning-
Based Classifier: A Case Study.” In: Proc. of IEEE Symposium on
Security and Privacy (S&P). 2014.

185



	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Thesis Contributions
	1.3 Structure of Thesis

	2 Background
	2.1 Machine Learning
	2.1.1 The Learning Task
	2.1.2 The Mapping
	2.1.3 Model Training
	2.1.4 Model Output
	2.1.5 Putting the Stages Together
	2.1.6 Classifier Performance

	2.2 Adversarial Machine Learning
	2.2.1 Threat Model
	2.2.2 Adversarial Example
	2.2.3 Model Extraction
	2.2.4 Hyperparameter Extraction
	2.2.5 Poisoning Attack
	2.2.6 Membership Inference

	2.3 Summary

	3 Attack in the Problem Space
	3.1 Authorship Attribution of Source Code
	3.1.1 Mapping from Code to Features
	3.1.2 Multiclass Classification

	3.2 Problem-Feature Space Dilemmas
	3.2.1 Problem Space  Feature Space
	3.2.2 Feature Space  Problem Space
	3.2.3 Generalization of Dilemmas

	3.3 Formalization of Problem-Space Attacks
	3.3.1 Constraints of Problem-Space Attacks
	3.3.2 Search Strategy of Problem-Space Attacks
	3.3.3 Choice of Search Strategy
	3.3.4 Refining the Search Strategy for Side Effects
	3.3.5 Final Definition of Problem-Space Attacks

	3.4 Attacking Authorship Attribution
	3.4.1 Threat Model
	3.4.2 Attack Constraints
	3.4.3 Available Code Transformations
	3.4.4 Search Strategy

	3.5 Evaluation
	3.5.1 Experimental Setup
	3.5.2 Untargeted Attack
	3.5.3 Targeted Attack
	3.5.4 Verification of Attack Constraints

	3.6 Limitations
	3.7 Related Work
	3.8 Chapter Summary

	4 Attack on the Mapping
	4.1 Image Scaling in Machine Learning
	4.2 Image-Scaling Attacks
	4.2.1 Threat Model
	4.2.2 Attack Strategy

	4.3 Attack Analysis
	4.3.1 Scaling as Signal Processing
	4.3.2 Scaling and Convolution
	4.3.3 Root-Cause Analysis

	4.4 Defenses
	4.4.1 Attacker Model
	4.4.2 Defense 1: Robust Scaling Algorithms
	4.4.3 Defense 2: Image Reconstruction

	4.5 Evaluation
	4.5.1 Experimental Setup
	4.5.2 Defense 1: Non-Adaptive Attacks
	4.5.3 Defense 1: Adaptive Attacks
	4.5.4 Defense 2: Non-Adaptive Attacks
	4.5.5 Defense 2: Adaptive Attacks

	4.6 Discussion
	4.6.1 Downgrade Attack to Nearest Scaling
	4.6.2 Limitations

	4.7 Further Attack Surfaces in the Mapping
	4.7.1 Attack on the Mapping in the Text Domain
	4.7.2 Fragile Camera Fingerprints

	4.8 Related Work
	4.9 Chapter Summary

	5 Linking Feature and Media Space
	5.1 Digital Watermarking
	5.1.1 Example of a Watermarking Scheme
	5.1.2 Attacks Against Watermarking

	5.2 Unifying Adversarial Learning and Watermarking
	5.2.1 Feature Space vs. Media Space
	5.2.2 Classifier vs. Watermark Detector
	5.2.3 Adversarial Example vs. Oracle Attack
	5.2.4 Model Extraction vs. Watermark Estimation
	5.2.5 Defenses
	5.2.6 Differences

	5.3 Case Studies
	5.3.1 Transfer of Defense: ML  DW
	5.3.2 Transfer of Defense: DW  ML

	5.4 Related Work
	5.5 Summary

	6 Conclusion
	6.1 Summary of Results
	6.2 Future Work

	A Additional Background Information
	B Attack in the Problem Space
	B.1 Example for Problem-Feature Space Dilemmas
	B.2 Semantic Gap in Code Attribution
	B.3 List of Code Transformations
	B.4 Monte-Carlo Tree Search
	B.5 List of Developers for Impersonation
	B.6 Additional Evaluation Results
	B.7 Additional Information for Related Work

	C Attack on the Mapping
	C.1 Combining Poisoning with Image-Scaling Attacks
	C.2 Selective Random Filter
	C.3 Additional Evaluation Results
	C.4 Adaptive Attack Against Median Filter

	D Linking Feature and Media Space
	D.1 Blind Newton Sensitivity Attack
	D.2 Kalker's Attack
	D.3 Security Margin Construction

	 Bibliography

