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ABSTRACT

Video calls have become an essential part of today’s business life,
especially due to the Corona pandemic. Several industry branches
enable their employees towork from home and collaborate via video
conferencing services. While remote work offers benefits for health
safety and personal mobility, it also poses privacy risks. Visual
content is directly transmitted from the private living environment
of employees to third parties, potentially exposing sensitive infor-
mation. To counter this threat, video conferencing services support
replacing the visible environment of a video call with a virtual
background. This replacement, however, is imperfect, leaking tiny
regions of the real background in video frames.

In this paper, we explore how these leaks in virtual backgrounds
can be exploited to reconstruct regions of the real environment.
To this end, we build on recent techniques of computer vision and
derive an approach capable of extracting and aggregating leaked
pixels in a video call. In an empirical study with the services Zoom,
Webex, and Google Meet, we can demonstrate that the exposed
fragments of the reconstructed background are sufficient to spot
different objects. From 114 video calls with virtual backgrounds,
35% enable to correctly identify objects in the environment. We
conclude that virtual backgrounds provide only limited protection,
and alternative defenses are needed.

CCS CONCEPTS

• Security and privacy → Privacy protections; • Networks →
Network privacy and anonymity; • Computing methodologies→
Computer vision.
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1 INTRODUCTION

Video calls have become an integral part of modern business life,
enabling remote collaboration and personal mobility. This devel-
opment has been further driven by the Corona pandemic. Several
industry branches have established remote working environments
and allow their employees to work from home regularly [35, 36].
This remote work has contributed to limiting the risk of infections
and ensuring the health safety of employees. While home-based
video conferencing introduces new problems to the workplace, its
benefits in terms of remote collaboration render it increasingly
indispensable for business processes.

So far, research has focused on security problems of this devel-
opment, such as unexpected intrusions into video calls [26] or the
inference of keystrokes from audio and video [2, 13, 31]. However,
video calls from home also pose a privacy threat, as they transmit
visual content from the personal living environment to third par-
ties. Unlike office work in presence, co-workers and employers may
unintentionally gain insights into personal living conditions, rela-
tionships and preferences. This situation is exacerbated when video
conferencing is mixed with home activities, creating a constant
switch between personal and business life.

To alleviate this problem, several operators of video conferencing
services have integrated algorithms for creating virtual backgrounds
into their software. These algorithmsmake it possible to identify the
background behind a person automatically and replace it with an
image—a task known as image matting in computer vision. While
recent approaches for matting provide excellent quality [e.g., 25, 32],
they are currently not employed in video conferencing software,
likely due to the limited resources of desktop systems. Consequently,
tiny parts of the real background occasionally become visible in
video frames, in particular when a person moves.

In this paper, we explore whether these minor imperfections in
virtual backgrounds can be exploited to reconstruct parts of the real
environment. This reconstruction is a non-trivial task, as we seek to
identify pixels in video frames that neither belong to the foreground
nor the virtual background. To address this challenge, we build on
techniques of computer vision that we combine into an approach for
extracting and aggregating leaked pixels. Our approach proceeds
in three steps, where we first remove the virtual background, then
eliminate the foreground, and finally assemble the remaining pixels
over multiple frames. While this approach cannot simply dissolve
the virtual background, it enables spying through small regions
and iteratively reconstructing parts of the environment.

We empirically evaluate our approach on the services Zoom,
Webex, and Google Meet. For each service, we perform 38 video
calls with changing environments and virtual backgrounds. To
ensure a controlled setup, we position various objects in the back-
ground, such as a guitar, a poster, or a fan. Since our approach
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often only exposes parts of these objects, we conduct a user study
to determine whether they can be identified. In particular, we ask
70 participants to assess our reconstructions and spot visible ob-
jects. Overall, our attack allows the participants to correctly identify
objects in the background in 35% of the video calls with only a mi-
nor differences between Zoom, Webex, and Google Meet. We thus
conclude that virtual backgrounds, as used in current software,
provide only limited privacy protection, and there is a need for
alternative defenses, improving the quality of image matting in
video conferencing software.

In summary, we make the following contributions in this paper:
• Spying through virtual backgrounds. We demonstrate that
adversaries can reconstruct parts of the visual environment
despite a virtual background, allowing them to uncover sen-
sitive information of users.

• General attack strategy. Our approach builds on general com-
puter vision techniques. It is agnostic to the employed mat-
ting algorithm as long as pixels of the real environment leak
at the transition of the virtual background.

• Real-world evaluation. We evaluate the efficacy of our attack
on the services Zoom, Webex, and Google Meet, and demon-
strate that objects can be identified in the background in a
third of the conducted video calls.

The remainder of this paper is structured as follows. In Section 2,
we introduce the threat scenario for our attack. We then present
our approach for spying through virtual backgrounds in Section 3
and evaluate its performance in Section 4. We discuss limitations,
defenses, and related works in Section 5, 6, and 7, respectively. We
conclude in Section 8.

2 THREAT SCENARIO

Before presenting our attack, let us briefly introduce the technical
background and threat model. Although most readers are probably
familiar with video calls and virtual backgrounds, it is necessary to
define a concrete threat model in order to study the impact of our
attack and reason about possible defenses.

2.1 Virtual Backgrounds

Separating the foreground and background of an image is a classic
problem of computer vision and referred to as image matting. Vari-
ous approaches have been proposed over the last two decades for
tackling this problem, covering methods based on sampling of re-
gions [e.g., 12, 21, 39], propagation of alpha values [e.g., 16, 24, 34],
and recently deep learning [e.g., 1, 11, 25, 32, 43, 45]. By now, several
forms of matting are widely used in video editing, such as chroma
keying, and hence this technique provides a perfect fit for creating
virtual backgrounds in video calls.

Nonetheless, the automatic removal of an image background
is still an involved process. Several approaches require additional
information to achieve high-quality mattings, such as manual an-
notations or a clear view of the background, rendering them less
suitable for video calls. Although technical details of the algorithms
used by video conferencing services are not publicly available, it is
evident that they employ algorithms that operate without external
input, such as portrait matting [45] or soft segmentation [1]. These

approaches, however, often cannot produce accurate mattings, espe-
cially with the limited computational resources of desktop systems.
As a result, minor imperfections in virtual backgrounds are cur-
rently unavoidable in video calls.

At first glance, small artifacts in a virtual background that only
appear occasionally do not seem to pose a notable privacy problem.
Yet, the amount of leaked information from the real background
increases with the duration of a video call, when a person moves
and exposes further areas for the attack. We exploit this very accu-
mulation of information to develop a working attack against virtual
backgrounds in the following.

2.2 Threat Model

To provide a basis for the design and evaluation of our attack, we
introduce a threat model that reflects conditions necessary for our
attack to succeed.

(1) The employed algorithm for image matting does not provide
a perfect separation between foreground and background,
thereby exposing privacy-sensitive information in the tran-
sitions of these regions.

(2) The person in the video moves before relevant objects in the
background, for example, by waving their hands or arms. As
a result, pixels of the objects become visible at the transition
of foreground and background.

(3) Objects in the background can be identified, even if they are
partially occluded. Due to the first condition, it is unlikely
that full objects are reconstructed and hence we assume that
already a partial view induces a privacy violation.

(4) The virtual background is employed for privacy reasons.
That is, the user aims at hiding sensitive objects visible in the
home environment instead of using the virtual background
for convenience only.

We argue that these conditions are often met when working
from home via video conferencing. First, current software for video
calls lacks perfect separation of foreground and background, as
discussed in Section 2.1. Second, nonverbal communication, such
as gestures with hands, is a natural behavior of people and often
observed in conversations. Finally, a home environment regularly
contains objects that reveal private information, such as photos of
friends, religious items, posters related to personal preferences, or
simply battered furniture. Although some of these sensitive objects
can be removed from the camera’s view, the risk of inadvertently
exposing them increases when video conferencing is constantly
mixed with personal activities.

3 ATTACKING VIRTUAL BACKGROUNDS

Despite a wealth of approaches for image matting, spying through
a virtual background is a non-trivial task. In contrast to previous
research, we do not aim at extracting the foreground or background
but rather pixels in their transition. Consequently, conventional
approaches for matting are not directly applicable. The problem is
further aggravated by the blend of image content at the transition
region. We cannot make any assumption on the texture or color of
the real background, which would help us discriminate it from the
other regions in the video.
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Figure 1: Spying through a virtual background: (1) Removal of the virtual background, (2) removal of the person in the

foreground, and (3) aggregation of extracted pixels.

As a result of this situation, we need to devise a novel approach
for extracting leaked pixels from virtual backgrounds. Given the
extensive research in computer vision, we decide to not develop an
approach from scratch—“reinventing thewheel”—but rather explore
how the attack can be realized by combining and extending existing
methods. To this end, we divide the task into three subproblems
(consecutive steps) that successively reveal leaked information.
Figure 1 shows a schematic overview of these steps.

In the first step, we aim to identify the virtual background and
remove it from each video frame. This removal needs to be con-
ducted with care, not accidentally deleting the content of the real
environment. In the second step, we identify the person in the fore-
ground and remove the respective pixels. Again, this step needs
to be carefully tuned not to include pixels outside the foreground
region. After both steps, we obtain a series of frames that contain
data neither belonging to the background nor the person in the
foreground. By assembling these pixels over all video frames and
aggregating them in an image, our approach reconstructs a part of
the real background in the third step.

In the following, we present these steps in detail. In particular, we
first discuss the challenges for each step and then explore methods
from computer vision that are suitable to solve the underlying
problem. To construct an effective approach, we evaluate each
step individually on a small calibration video and select the best-
performing methods for our attack. An empirical evaluation on real
video calls is presented later in Section 4.

3.1 Removal of Virtual Background

Let us start with removing the virtual background from a given
video. This is a delicate task because any information lost at this
stage cannot be recovered in later steps and will reduce the quality
of the reconstructed background. Therefore, we first identify the
technical challenges in this step.

3.1.1 Challenges. At first glance, removing a virtual background
seems like a straightforward task: Often, people directly employ
the default backgrounds of the video conferencing software. If the
virtual background is known, its subtraction from the individual
frames should theoretically yield sufficiently good results. Unfortu-
nately, this simple strategy is impeded by different factors.

First, virtual backgrounds are more than a privacy protection
and often custom images are used to personalize video calls. If the
chosen image, however, is unknown to the adversary, a simple sub-
traction approach becomes impossible. Second, we find that video
conferencing software reduces visible artifacts in the transition
region using image processing, such as brightness adjustments. As
a result, pixels from the environment are blended into the virtual

background, requiring advanced separation techniques. Finally, the
matting algorithms used by the software are not publicly known
and hence exact technical details are missing.

3.1.2 Methods. To overcome these challenges, we seek a method
that carefully removes a virtual background andmakes conservative
decisions to avoid inadvertently cutting out relevant information.
Therefore, we consider the following five methods of computer vi-
sion as candidates, ranging from simple to more complex concepts.

Match. As our first method, we consider the naive approach of
simply subtracting a known virtual background from each frame.
The method is only applicable if the adversary has knowledge of
the chosen image and thus serves as a reference for this scenario in
our experiments. Specifically, we use the Structural Similarity Index
Measure (SSIM) introduced byWang et al. [40] to match each frame
against a database of known virtual backgrounds. When a match
is identified, the background is removed by identifying regions of
high structural similarity to the virtual background.

WaterShed. As the next method, we examine a variant of the
Watershed Transformation, a popular algorithm for image segmenta-
tion proposed by Beucher & Lantuéjoul [6]. The algorithm operates
on the gradient image of a video frame and treats it as a topological
map, where the intensity of each pixel is interpreted as its height.
The algorithm initializes a separate region at each local minimum
(i.e., each valley) and then enlarges those (i.e., floods the valleys)
until they collide. The borders between the regions can be used to
identify the virtual background. In our experiments, we employ an
enhanced variant of the algorithm proposed by Meyer [27].

Amber+ and𝑈 2
-Net. Virtual backgrounds often differ from the

foreground of a video in several properties, such as resolution,
lighting, texture, sharpness, and white balance. As a result, regions
belonging to the background are generally less noticeable to people
than the rest of an image. This visual difference can be identified
with methods for saliency detection that allow locating prominent
objects in an image and thereby derive an implicit segmentation of
foreground and background.

For our attack, we thus examine two methods for saliency de-
tection. The first approach by Wang & Dudek [37, 38] considers
the temporal characteristics of each pixel to learn a background
model that captures regions in the video with the lowest saliency.
We refer to this method as Amber+. The second method,𝑈 2-Net,
uses a deep neural network with residual connections for saliency
detection that is trained on a dataset of manually annotated images.
The method has been recently proposed by Qin et al. [29] and is
state of the art for detecting salient regions in images.



GrabCut. As the last method, we consider an approach proposed
by Boykov & Jolly [7] that rests on graph theory and separates the
foreground of an image using a graph cut. For this purpose, neigh-
boring pixels are connected by weights representing their similarity
and every pixel is linked to an anchor point for the foreground and
background. By conducting a minimal cut on this graph, it becomes
possible to segment the image.We employ a variant of this approach
by Rother et al. [30] that can be guided with external information,
such as a separation determined by another algorithm.

3.1.3 Comparison. We compare the performance of the considered
methods on a calibration video with ground-truth information. This
calibration video consists of 182 frames for which we manually de-
termine the pixels that belong to the virtual foreground. Using this
ground-truth, we evaluate the performance using the F1-score (F1).
That is, we determine a binary mask on the calibration sequence
for each method, where all pixels that are assigned to the virtual
background are set to 1 and the rest to 0. With this mask and the
ground-truth information, the F1-score is then calculated as the
harmonic mean of the precision and the recall.

Table 1: Performance of virtual background removal.

Method Precision Recall F1-score Run-time

Amber+ 0.49 0.69 0.57 0.16 s
WaterShed 0.90 0.59 0.72 0.69 s
Match 0.98 0.79 0.88 0.73 s
𝑈 2-Net 0.92 0.99 0.96 1.11 s
Ours 0.99 0.99 0.99 1.18 s

Table 1 shows the performance of the different methods on the
calibration sequence, where the run-time is given as the average
time per video frame. If the image used for the virtual background
is known to the adversary, Match already provides good results
with an F1-score of 0.88. Yet, 𝑈 2-Net achieves an even better sepa-
ration of the background with an F1-score of 0.96 without the need
for knowing the underlying image. Consequently, we select this
method as the basis for the first step of our attack.

The method GrabCut is not directly applicable in this experi-
ment, as it requires an initial annotation of the background. How-
ever, it can be guided by another separation method providing
this annotation. We experiment with this capability and combine
𝑈 2-Net and GrabCut into a single approach. Figure 2 shows an
example of this combination for a video frame of the calibration
sequence. Interestingly, the combined methods further improve
the performance of the background removal, as shown in Table 1
(Ours), yielding an F1-score of 0.9935. We thus employ this combi-
nation in the following experiments for the first step.

Finally, we investigate the run-time of the different methods in
Table 1. Our combined approach induces the largest run-time for
the analysis, as it employs two separation methods. Still, it only
requires 1.18 seconds to process a video frame on a desktop system
(AMD Ryzen 5 3600; 32 GB memory; GPU not used). As this process
can be easily parallelized on a multi-core system, we consider this
performance suitable for practical application. Note that we omit a
corresponding experiment because not all of the five methods can
be parallelized equally well on the same system.

(a)𝑈 2-Net (b)𝑈 2-Net + GrabCut

Figure 2: Combining GrabCut with 𝑈 2
-Net yields the best

results for background removal.

3.2 Removal of Foreground

After we have successfully removed the virtual background from a
video, we can proceed to locate the person in the foreground and
separate it from the extracted parts of the underlying environment.
Again, we require a conservative approach and avoid associating
pixels of the environment with the foreground and deleting them
accidentally in this step.

3.2.1 Challenges. Removing a person from a video is at least as
difficult as for a background. First, the area associated with a person
can have a complex structure with varying texture, brightness, and
color. Hair, clothing, and other individual accessories add to this
complexity. Second, a person typically moves during a video call,
so the foreground region becomes dynamic, requiring an adaptive
separation approach. Finally, we observe that differentiating pixels
from the environment at the border of the foreground region is
hard and often challenging even for a human.

3.2.2 Methods. We address these challenges by exploring different
methods from the field of computer vision. However, in contrast to
the removal of backgrounds, we now focus on techniques that allow
us to localize dynamic regions and persons in videos. In addition,
we devise an own three-step method that integrates knowledge of
the video call setup into the analysis.

𝑈 2
-Net. As the first method, we consider𝑈 2-Net again, as it is

a general-purpose approach for saliency detection and provides the
best results in the previous step. Due to the different setting, how-
ever, it serves as a baseline to illustrate the difficulty of separating
a person in comparison to a background image.

Mask R-CNN. The task of locating a person in a video is closely
related to object recognition in computer vision. Thus, we consider
region-based convolutional neural networks as proposed by Girshick
et al. [15] for this task. These networks are designed to localize
regions of interest in images and can be combined with a machine-
learning classifier for object recognition. As a result, it becomes
possible to identify regions labeled as person in the video frames and
remove them in this step. In particular, we make use of the method
Mask R-CNN by He et al. [18] in our experiments that provides an
efficient and effective localization of persons.

k-NN. As an alternative strategy, we consider the statistical
method by Zivkovic & van der Heijden [46]. This method builds
on the concept of kernel density estimation for determining fore-
ground and background regions in a video. It classifies a pixel as
being background when it is inside a kernel among historical val-
ues of that pixel. The kernel width is determined using a 𝑘-nearest
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Figure 3: Our approach for removal of the foreground: (a) Output from the previous step, (b) noise reduction, (c) removal of

skin areas, and (d) removal of static areas.

neighbor strategy, where the width is increased until it fits the his-
torical values of the pixels. This selection is related to the common
classification technique of 𝑘-nearest neighbors and thus provides
the name for this method.

Ours. Finally, we propose an own three-stage method for remov-
ing a person in a video. In contrast to the other methods, we exploit
knowledge about the concrete attack scenario and difficulties ob-
served for the other approaches, such as noise from the background
removal and properties of the leaked pixels in the transition region.
Figure 3 visualizes the three stages of our method. Our method first
removes noise from the video frames resulting from the removal
of the virtual background. It continues to delete regions associated
with skin color, which serves as a shortcut to identifying persons via
machine-learning techniques. Finally, our method removes static
areas in the video that likely do not contain information about the
real background which is only revealed during movement.

Ours— (i) Noise reduction. To ease the isolation of background
parts from the foreground, we first reduce the noise within the
image. This allows identifying homogeneous areas, such as clothes,
that do not provide much relevant information and should there-
fore be removed. To this end, we apply a series of morphological
transformations to the output of the first stage. The transforma-
tions denoise the video frame while already removing parts of the
foreground at the same time.

In particular, we convert each video frame into a gray-scale im-
age. Then, we calculate a binary mask of the gray-scale image with
the method of Otsu [28] that determines the necessary threshold
automatically. Based on this mask, we transform the video frame
using a morphological opening, followed by a dilation [8]. The
morphological opening smooths the video frame and removes dark
homogeneous areas of the foreground, while the dilation avoids that
crucial information of the real background is discarded. Lastly, we
apply the resulting mask to the original image to restore the color
information. An example of this stage is depicted in Figure 3 (b).

Ours— (ii) Removing skin areas. The removal of skin colors of-
ten allows isolating the person from the background parts we are
interested in without involved object recognition techniques. To
determine skin areas in a video frame, we rely on the method by
Kolkur et al. [23] that identifies a range of skin tones, including dark
and light colors. We assume that the method is not perfect, yet we
believe that it provides sufficient accuracy for a proof-of-concept
attack. Using the proposed skin color model, we determine the skin
areas and remove them with the GrabCut algorithm [30] described
in Section 3.1. Figure 3 (c) shows an example of this stage.

Ours— (iii) Removing static regions. Finally, we exploit that pixels
of the real environment typically become visible when the tran-
sition between foreground and background changes, for example,
during movement of the person in the front. Hence, these pixels are
non-static and appear only occasionally in video frames. We thus
conclude that static content not changing over time does not con-
tain such pixels and can be removed. For this purpose, we employ
the method by Zivkovic & van der Heijden [46] to remove those
static areas from the video using kernel density estimation.

Note that the method has initially been developed to remove
static backgrounds from videos. In our case, however, it is used to
delete the non-moving parts of the foreground and thereby nar-
rows in on those parts of the image relevant for reconstructing the
environment. Figure 3 (d) depicts the result of this step.

3.2.3 Comparison. We empirically compare the considered meth-
ods for foreground removal with the calibration sequence. Similar
to the previous step, we use precision, recall, and F1-score as perfor-
mance measures for the removal process. The ground truth infor-
mation is again provided as a binary mask indicating the manually
labeled pixels of the foreground for each of the 182 video frames in
the calibration sequence. All performance measures are averaged
over these frames and the run-time is given as the average time for
processing one frame.

Table 2: Performance of foreground removal.

Method Precision Recall F1-score Run-time

𝑈 2-Net 0.02 0.00 0.00 1.59 s
Mask R-CNN 0.06 0.68 0.11 0.89 s
k-NN 0.11 0.69 0.19 0.05 s
Ours 0.19 0.41 0.27 0.21 s

Table 2 shows the results of the evaluation. The performance
significantly reduces in comparison to the previous step, reaching
an F1-score of 0.27 in the best case. This decline, however, is not
surprising. In contrast to the removal of the background, we are
now dealing with a dynamic object in the video whose region is far
more challenging to identify in the individual frames. This increased
difficulty is reflected in the performance of the method 𝑈 2-Net
that is unable to determine the relevant regions of the foreground,
despite being the best approach for the previous step.

The other methods perform significantly better than𝑈 2-Net and
enable locating a considerable part of the person in the foreground.
Our approach exhibits the best performance with an F1-score of
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Figure 4: Reconstruction of real background: (a) screenshot of original video, (b) reconstruction after 1 frame, (c) reconstruction

after 10 frames, and (d) reconstruction after 500 frames. Note the guitar that has become visible on the right.

0.27 followed by the k-NN approach with a score of 0.19. This differ-
ence shows that applying noise reduction and removing skin areas
improves the overall outcome of this task by 42%. Consequently,
we select our three-stage method for the second step.

With the exception of 𝑈 2-Net, the selected methods allow pro-
cessing a video frame in less than one second on average. Thus, by
combining the first and second steps of our attack, we still achieve
a run-time performance of less than 2 seconds per frame, which
enables processing videos in reasonable time.

3.3 Reconstruction of Background

As the final step, we need to aggregate the extracted pixels into
a single image, resulting in the reconstructed background. This
process of combining images is often referred to as blending in com-
puter vision, and there exist several methods for specific scenarios
[see 9]. In our setting, addition and lighten only are two promising
blend modes, as they enable us to fuse information from similar
frames. However, the pixels from the real environment are sparsely
distributed and only visible in some of the video frames. In addition
to standard blend modes, we thus also devise an own method that
accounts for the sparse representation of leaked pixels.

For this method, we define a marker color, indicating that a
pixel contains no information for our attack. When the virtual
background is removed in the first step and the foreground in the
second step, the underlying regions are simply replaced with this
marker color. The video frames are then aggregated by addition of
all non-marked pixels, for example, with the help of a mask layer for
each frame. As a result, only those pixels that passed both removal
steps are combined in the final reconstruction.

3.3.1 Comparison. We evaluate the different methods for blending
the extracted pixels using the calibration sequence. In contrast
to the previous experiments, however, we collapse the 182 video
frames from the sequence into a single ground-truth mask for the
visible pixels of the real background. Using this mask, we compute
the precision, recall, and F1-score of the reconstructed background
pixels over the entire sequence.

Table 3: Performance after all attack steps.

Method Precision Recall F1-score Run-time

Addition 0.42 0.39 0.41 1.46 s
Lighten Only 0.39 0.88 0.54 1.43 s
Ours 0.40 0.88 0.55 1.46 s

Table 3 shows the results of this experiment over all attack steps.
Our method yields an F1-score of 0.55 and slightly outperforms
the non-specific blending techniques. Although errors from the
previous steps accumulate during our attack and lower the per-
formance, we find that several parts of the real background from
the calibration sequences become visible. Hence, we complete our
attack chain by adding the proposed method as its third step. This
step adds another 0.1 seconds per frame to the processing time, so
that the total time per frame is about 1.5 seconds on average for
the complete attack on our desktop system.

Figure 4 shows an example of our reconstruction for a video
call with about 500 frames. As the number of analyzed frames
increases, the amount of information extracted with our attack
rises, gradually revealing parts of the real background. Although
artifacts from the person moving in the foreground are also present
in this reconstruction, a guitar clearly becomes visible on the right
side after processing the entire video.

4 EVALUATION

Equipped with a working attack, we are ready to study its effec-
tiveness in a practical scenario. Since our reconstructions often
contain fragments of sensitive objects that are difficult for auto-
mated methods to identify, we design our evaluation around a user
study. That is, we ask human participants to assess a reconstructed
background and report visible objects. The basis for this experiment
is the following dataset of video calls.

Dataset of video calls. We record 19 short videos of people mov-
ing in front of a personal object. The videos are recorded at the
subjects’ home location and comprise different room environments,
webcams, and clothing. The objects are positioned in the back-
ground so that they are covered when the subjects gesture with
their hands. The selected objects have a size between 0.3m and
1.5m. They can be grouped into six categories: furniture (i.e., a lamp,
a chair, and a fan), dartboards, clothing, posters and pictures with
different motifs, indoor plants, as well as a guitar. The resolution
of the videos ranges from 0.2 megapixels (640×360) to 2 megapix-
els (1920×1080), and their duration lies between 5.7 seconds and
41 seconds. Further details are listed in Table 4.

Using the recorded videos, we perform video calls with the ser-
vices Zoom, Webex, and Google Meet. In particular, we replay the
videos through an emulated camera device and record the out-
put transmitted through the video conferencing service. As virtual
background, we employ four standard images available with the
different clients that are shown in Figure 5. We examine each of
the three services with one light and one dark virtual background



Figure 5: Virtual backgrounds used in the user study.

from this set, resulting in a total of 114 video calls (19 videos × 2
virtual backgrounds × 3 video conferencing services). For each call,
we apply the three steps of our attack as described in Section 3 and
generate a reconstruction of the background.

Table 4: Statistics of the 19 recorded videos.

Feature Minimum Average Maximum

Resolution (MP) 0.2 1.5 2.0
Duration (s) 5.7 18.8 41.0
Frames (#) 172.0 564.9 1,230.0

User study. To assess the quality of the reconstructed backgrounds,
we conduct a user study with 70 participants of different age and
profession. Specifically, we ask the participants to inspect randomly
selected images of reconstructions and report whether they can
identify an object. If so, they are asked to describe the type of the
object in a few words. We consider an object correctly identified, if
this description broadly matches the type. For example, we consider
the descriptions “egyptian”, “golden face”, and “pharaoh’s mask”
all correct matches for a picture showing the Egyptian pharaoh
Tutankhamun in our dataset. Overall, every reconstructed back-
ground image is assessed by 5 to 7 participants, and the recognition
accuracy is measured as the number of correctly identified objects
over all provided background images.

Results. The results of the user study are shown in Table 5. On
average, the participants correctly recognize objects in 35% of the
reconstructed backgrounds, where the lowest accuracy is achieved
for Webex with 28% and the highest for Google with 40.4%. Given
that 70 participants have investigated the reconstructions for each
service and no clues have been provided in advance, these results
clearly indicate a privacy risk in current virtual backgrounds. Our
attack is sufficient in these cases to reveal enough pixels from the
environment to make an identification possible.

Table 5: Recognition of objects in video calls.

Services Zoom Webex Google

Identified objects (%) 38.7 28.0 40.4
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Figure 6: Recognition of object types.

The virtual backgrounds employed in the video calls play only
a minor role for our attack. The recognition accuracy for the four
considered virtual backgrounds ranges between 22,8% and 43,9% in
our user study. Interestingly, the animated background “Northern
Lights” from Zoom, shown in the lower left corner of Figure 5,
provides the best accuracy in our experiment, despite being a video
with continuously changing light patterns. This result demonstrates
that our approach can also deal with animated backgrounds and
its three steps are not obstructed by simultaneous changes in the
foreground and background of the video frames.

Finally, we break down the recognition of the objects along
their types, as shown in Figure 6. We observe that the accuracy
distribution varies significantly between the objects, where the
dartboard and the guitar achieve the highest average accuracy
with 94% and 65%, respectively. The furniture objects, the pictures
and the plants are spotted with an accuracy of around 20%. The
clothing (a black shirt) is the only object that is never identified in
one of the reconstructed backgrounds. Figure 7 shows background
images reconstructed using our approach. The right image presents
a negative example. The object (a plant) cannot be identified by
the participants of our study. In contrast, the left image shows a
positive example. Most participants correctly identify the dartboard
visible in the background.

In summary, our approach is capable of uncovering different
categories of objects in the environment of a video call. While the
attack is not guaranteed to succeed in all cases and may gener-
ate blurred reconstructions, we still conclude that current virtual
backgrounds do not provide sufficient protection from attacks and
further research in this area is needed.

5 LIMITATIONS

Our work provides insights into the privacy risks posed by virtual
backgrounds in video calls. While our evaluation clearly confirms a
real threat in a practical scenario, our study naturally cannot explore
the underlying privacy problem in all possible facets. Therefore,
in the following, we discuss the limitations of our work and their
implications on our findings.

Diversity of test cases. Our study aims at analyzing the effect of
the attack under different practical scenarios. However, the con-
sidered objects and backgrounds are far from exhaustive and we
thus refrain from making general claims on the effectiveness of
our attack. Nonetheless, the reported detection rates of over 30%



Figure 7: Examples of reconstructed backgrounds. Left: a successful reconstruction; the object (dartboard) in the background is

clearly visible. Right: an unsuccessful reconstruction; the object (plant) in the background is blurred and not visible.

clearly indicate that our attack poses a privacy risk in practice. By
extending the evaluation with more diverse backgrounds, cameras,
rooms, and objects, this result could be further refined, yet the key
outcome of our analysis would not change.

Diversity of movements. We have asked the participants to move
in front of the selected object in a natural way. Consequently, our
study reflects a base-case scenario for the adversary where rele-
vant objects are guaranteed to be covered in the transition between
foreground and background. In practice, an adversary might experi-
ence different scenarios, where relevant objects are within the view
of the camera but never exposed through motion of the person.
Similarly, our attack fails if the objects in the background move
themselves, as their reconstruction then results in blurred frames.
Still, our setup is not unrealistic. Given that people regularly gestic-
ulate and even move during video conferences, there is a reasonable
risk that static objects in the background will become accessible
for our attack. Note that attackers can easily locate video frames
with increased movement using the k-NN method and thus extract
only those to render an attack effective.

Alternative attack strategies. Our attack is mainly build around
existing methods of computer vision and available implementa-
tions. This enables us to (re)use them across different analysis steps.
However, other analysis strategies also come to mind and might
even perform better. In particular, deep neural networks are a pow-
erful tool of machine learning, potentially able to solve the attack
in a single end-to-end approach. Similarly, techniques from video
compression and information theory might also be applicable to
spy through a virtual background. As our results already indicate
a privacy risk, better attack strategies can only further emphasize
the severity of this problem, and hence we leave their design and
exploration to future work.

No automatic object recognition. We conduct a user study to eval-
uate the impact of our attack. As objects in the background are
often only partially reconstructed, we focus on human assessment
rather than an entirely automatic approach. The human percep-
tion is very precise in recognizing partial or noisy objects, which
learning-based approaches often struggle with. Nonetheless, our
attack could be further enhanced by applying an automatic system
for object recognition to the output of our attack. We also leave
this extension to future work as it does not significantly change

the attack setup. An adversary can always manually investigate the
reconstructed background to reveal private information.

6 DEFENSES

Our evaluation shows that there is a need for alternative privacy
defenses in video calls. It is clear that physical measures, such
as removing sensitive objects from the background or deploying
roll-up panels behind a person, can be easy realized in practice.
However, when business and home activities regularly take place
in the same room, these measures become cumbersome and do not
pose viable alternatives. As a remedy, we thus propose to mitigate
the privacy risk also from a technical perspective.

The efficacy of our approach hinges on the amount of leaked pix-
els at the transition of foreground and background. Consequently,
any means limiting this leakage can serve as a defense and reduce
the chances of a successful attack. As discussed in Section 2.1, two
factors influence the quality of matting in practice: the available
computing power and additional information for the matting algo-
rithm. As a defense, we suggest to make use of these factors:

Additional computing power. The quality of virtual backgrounds
can be increased if additional computing resources are utilized. For
example, Lin et al. [25] show that a high-resolution image matting
becomes feasible in real-time when a consumer GPU is used during
a video call (Nvidia RTX 2080). Similar hardware is available in
many desktop systems and currently unused. In our experiments,
the services Zoom,Webex, and GoogleMeet use less than 10% of the
GPU in our system, indicating that this resource would be available
to improve the quality of image matting.

Additional information. The quality of virtual backgrounds can
be further improved if additional information is provided to the
matting algorithm. For example, the methods by Sengupta et al.
[32] and Lin et al. [25] produce accurate mattings if a single image
of the background is provided in advance. Such an image could
easily be captured during the preparation of a video call by asking
the user to step out of the camera’s view for a short moment.

While both strategies cannot rule out the possibility of leaking
pixels from the environment through a virtual background, they
help reduce the attack surface and render the exposure of objects
less likely. Furthermore, they require only a moderate amount of
extra effort—a spare GPU and amoment of time—whichmakes them



a viable extension to improve the quality of virtual backgrounds
in video calls. Hence, we recommend integrating corresponding
features into current video conferencing software.

7 RELATEDWORK

To the best of our knowledge, we are the first to present an attack for
spying on virtual backgrounds in video calls. Our approach shares
similarities with other work on attacking video conferencing and
exposing privacy leaks in video content. In the following, we briefly
review this related work.

Attacks against video calls. During a video call, a wealth of acous-
tic and visual data is transferred between the participants, often
leaking information and providing the basis for attacks. For exam-
ple, Anand & Saxena [2] and Compagno et al. [13] make use of
acoustic emanations from keystrokes to infer typed text during
video conferences. This attack is transferred to video signals by
Sabra et al. [31] who infer keystrokes from the body movement of a
person alone. Similarly, Genkin et al. [14] introduce a side channel
that allows spying on LCD monitors during video calls via acoustic
emanations of their vertical refresh mechanism. The emanations
expose patterns on the monitor and reveal visited websites.

The technology underlying video conferencing services provides
further fruitful targets for attack. For example, Ling et al. [26]
discuss the emerging threat of “Zoom bombing” that constitutes a
recent problem in remote school education. This attack exploits the
weak authentication mechanisms of video conferencing services
and enables third parties to intrude video calls without permission.
Focusing on the network side of the services, Wright et al. [41, 42]
inspect encrypted VoIP traffic and uncover languages and phrases
in conversations from traffic patterns. Finally, Kagan et al. [20]
explore broader privacy issues of video conferences, including the
identification of faces and text.

Our work extends this line of research by presenting an attack on
the video signal. In contrast to previous work, however, we target
the privacy mechanism of virtual backgrounds and demonstrate
that it does not provide sufficient protection.

Privacy leaks in images and videos. A different branch of research
has studied privacy leaks in general image and video content. For
example, Backes et al. [3, 4] investigate reflections in objects and
eyes that expose sensitive information. Similarly, Xu et al. [44] use
eye reflections to spy on the entry of sensitive information on smart-
phone displays, and Balzarotti et al. [5] demonstrate how typed
text can be inferred from video recordings of a keyboard. Moreover,
Hill et al. [19] and Cavedon et al. [10] investigate attacks against
mosaicing and blurring of images, a frequent protection for sensi-
tive data. Finally, recent work explores information leaks of image
and video content in social networks. For example, Shoshitaishvili
et al. [33] present a method for uncovering personal relations from
photos on social media, and Hasan et al. [17] introduce a method
for locating bystanders in photos.

Our attack shares the underlying motivation with this work,
as it explores privacy leaks in video signals. Yet, it differs in that
we target a protection mechanism in video calls that has not been
previously analyzed in security research. Consequently, we provide
an additional view on the privacy risks of video content.

8 CONCLUSION

We show that virtual backgrounds, as available in current video
conferencing software, provide only limited privacy protection. In
particular, we demonstrate that there is a risk of objects in the back-
ground becoming visible to other participants. For three common
services, our attack enables the detection of objects in 35% of the
cases. As a short-term defense, we recommend carefully preparing
the environment even if a virtual background is deployed. In the
long run, there is a need for improving the underlying software and
implementing a more accurate separation of foreground and back-
ground, for example, by leveraging GPUs or providing additional
information to the matting algorithms.

While video calls have proven to be an essential tool for remote
collaboration and mitigation of the Corona pandemic, a series of
works—including this paper—shows that this technology is fraught
with privacy risks. Therefore, we argue that the techniques used
in video calls need to be systematically reviewed for information
leakage and service providers should ultimately strive for privacy-
friendly communications by design.

Ethical Considerations

Our university does not require a formal IRB process for the ex-
periments conducted in this work. Nevertheless, we modeled all
experiments and the user study according to the ethical principles
proposed in the Menlo report [22]. In particular, the recordings of
the video calls were not shared with the participants of the study.
Instead, we only distributed the reconstructed backgrounds. By
design, these images do not show a person, which we manually
verified. Moreover, we also adhered to the strict General Data Pro-
tection Regulations (GDPR) of the EU. All participants agreed to
an informed consent form that advised them about the purpose of
the study and the data collected. In addition, we provided a contact
address in case of questions and requests for data removal.
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