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Zusammenfassung

Mit den wachsenden Anwendungsbereichen fiir Computerprogramme steigt auch die Sicher-
heitsbedrohung durch Cyber-Angriffe, welche schwerwiegende Auswirkungen und erhebliche
finanzielle Schiaden fiir Nutzer und Betreiber zur Folge haben kénnen. Um die Risiken
einzuddmmen, stehen Softwareentwickler heute vor der Herausforderung, Schwachstellen in der
Programmierung schnellstmoglich identifizieren und entschérfen zu kénnen. Die automatisierte
Fehlererkennung auf Basis von maschinellen Lernen hat sich hierbei als vielversprechendes
Tool zur Unterstiitzung abgezeichnet. Dabei werden Modelle trainiert, die in der Lage sind,
Schwachstellen im Programmcode, welche fiir einen Angriff potentiell anféllig sind, zu erkennen.
Gegeniiber herkémmlichen, regelbasierten statischen Anwendungstests, bieten maschinell
trainierte Modelle den Vorteil, dass sie auf projektspezifische Codes angepasst werden und
individuelle Entscheidungsgrenzen festgelegt werden kénnen. Sie zeigen eine vielversprechende
Leistung und tibertreffen teilweise sogar traditionelle Analysetechniken.

Trotzdem weisen auf maschinellem Lernen basierende Fehlerdetektoren noch Defizite auf.
Sie sind nur begrenzt auf andere Projekte iibertragbar und somit wenig verallgemeinerbar,
d. h. fiir jedes Projekt muss eigens ein Modell trainiert werden. Der Mangel an hochwertigen
Trainingsdaten sowie Probleme im Zusammenhang mit der Interpretierbarkeit von Modellen
stellen zusétzliche Hiirden dar. Viele Deep-Learning-Modelle werden als Blackboxen benutzt,
wodurch die Entscheidungsfindung nur schwer nachzuvollziehen ist.

Im Rahmen dieser Arbeit untersuchen wir die Herausforderungen, die mit auf maschinellem
Lernen basierenden Methoden zur Entdeckung von Schwachstellen verbunden sind, und gehen
diese an. Unser Fokus zielt auf vier entscheidende Dimensionen ab: Datenqualitiat, Modell-
Interpretierbarkeit, Robustheit und Kontextsensitivitdt. Um dem Mangel an Daten zu begegnen,
stellen wir neue, auf Code zugeschnittene Augmentationstechniken vor und steigern dadurch
die Modellgenauigkeit. Auflerdem kombinieren wir Erkldrungsmethoden mit dynamischer
Programmanalyse, um effektivere Vergleiche zu erméglichen. Um die Robustheit der Erkennung
zu erhohen, setzen wir kausale Lerntechniken ein und senken somit die Modellbeeintréchtigung
durch Storfaktoren bis zu 50%. Letztlich unterstiitzen wir die Fehlererkennung durch den
Einsatz von Taint-Analysen und erweitern so den Kontext, ohne auf das Problem exponentiell
wachsender Merkmalsrdume zu stoflen und verbessern damit Erkennungsraten gegeniiber
traditionellen Schwachstellendetektoren.

Diese Thesis présentiert Losungen, um die Anwendbarkeit der lernbasierten Schwachstelle-
nerkennung im produktiven Einsatz zu gewéhrleisten. Desweiteren liefert diese Arbeit einen
umfassenden Uberblick iiber die Herausforderungen auf diesem Gebiet und bietet Einblicke in

die Zukunft der auf maschinellem Lernen basierenden Modelle zur Schwachstellenerkennung.






Abstract

The rapid proliferation of software has led to an increase in security threats, causing data
breaches that have severe privacy implications and substantial financial consequences. As a
result, software developers are under pressure to efficiently identify and mitigate vulnerabilities.
One category of tools that has gained prominence in supporting developers in this regard is the
field of machine learning-based software vulnerability detection, where models are trained to
classify code as either vulnerable or clean. These models offer advantages over traditional static
application testing tools, including adaptability to project-specific code and tunable decision
boundaries. They have shown promising performance in vulnerability discovery, outperforming
traditional static analysis techniques.

Despite their potential, machine learning-based vulnerability detectors face challenges.
They exhibit low transferability and generalizability, meaning that models trained on one
project may not perform well on another. The scarcity of high-quality training data, along
with issues related to model interpretability, poses additional hurdles. Many deep learning
models are used as black boxes, making it difficult for security practitioners to understand
their reasoning.

Explainable AI (XAI) methods have been proposed to address the interpretability issue,
allowing practitioners to gain insights into the model’s decision process. However, these
explanations can be noisy, and small changes in the input can lead to different results.
Additionally, the choice of the right explanation method remains a challenge. The context-
sensitivity of discovery models, or their ability to detect defects that span multiple modules or
analyze code interprocedurally, also influences their detection capabilities.

In the scope of this thesis, we explore and tackle the challenges associated with machine
learning-based vulnerability discovery methods. Our focus encompasses four crucial dimensions:
data quality, model interpretability, robustness, and context sensitivity. To address the scarcity
of data, we employ novel augmentation techniques specifically tailored to code, which helps
to increase model accuracy. Furthermore, we integrate explanation methods with dynamic
program analysis to enable more effective comparisons. In terms of enhancing detection
robustness, we employ causal learning techniques to effectively reduce confounding effects by
up to 50%. Finally, we bolster defect detection by leveraging taint analysis, thereby expanding
the context without encountering the issue of exponentially increasing feature spaces and,
most prominently, increasing the detection rate.

In this thesis, we propose solutions for learning-based vulnerability discovery to be more
effectively applied in real-world scenarios. Finally, this work also provides a comprehensive
overview of the challenges and advancements in the field, offering insights into the future of

machine learning-based vulnerability discovery models.
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Introduction

In recent times, there has been a remarkable surge in the abundance of software products, a
phenomenon that has presented substantial security challenges [92]. Over the past decade,
this increase in software usage has been accompanied by a series of data breaches [181],
each of which has wide ramifications for users. Many security vulnerabilities in application
software are exploited even years after disclosure [159], while at the same time, the number of
security vulnerability exposures increases every year [183]. Reportedly, the number of disclosed
vulnerabilities grew by more than 25% from 2021 to 2022. According to recent statistics from
the USA, an average data breach costs around 9.48 million US dollars [182] and is therefore of
significant financial interest for software companies [56]. There is increasing interest in tools
and frameworks that assist software developers in identifying and mitigating risks. Tools that
warn developers about potential vulnerabilities and bugs are valuable. However, since time is
limited, these tools are required to be efficient and only add a minimum of manual labor [92].

One such category of tools is static program analysis [119, 149]. Static program analysis,
as opposed to dynamic program analysis, describes the process of inferring properties of a
program without actually executing it. Such techniques are commonly used for compiling [34],
type inference [77], or program optimization [7]. A more important and critical application of
these tools is the detection and localization of defects in software. Methods often referred to as
static application security testing (SAST) tools digest the source code of a program and return
a human-interpretable list of potential defects. SAST tools can be integrated into the software
development life-cycle of a project to detect defects before they manifest themselves as security
vulnerabilities after shipping. However, as promising as this sounds, these tools are bound by
theoretical limitations by Rice’s theorem, posing vulnerability discovery as an undecidable
problem [99]. The consequences can be summarized in such that SAST tools may never be
sound and complete at the same time. More specifically, not every reported finding may be an
actual incident [68, 124, 13], while at the same time, not every defect can be detected [33].
Any static analysis tool is forced to either under- or over-approximate the runtime semantics
of a program. While an over-approximation adds false positives, an under-approximation
yields more false negatives. In the end, a manual triage is required to filter for true and false

positives. This process requires manual labor and throws a spanner in the works of automatic



1. Introduction

vulnerability detection [10]. Despite this theoretical bound, there are practical requirements,
such as calculation speed, which must also be taken into account. Developers need SAST tools
to deliver results within a few minutes at most [188].

As a remedy, research interest arose in the domain of machine learning-based defect
detection, where the process of statically detecting flaws has been translated into a learning
task [222]. Such models are trained in a supervised fashion on secure and vulnerable samples
to classify unseen code during inference. Instead of relying on hand-crafted and hard-coded
inference rules such as conventional SAST tools, they learn these rules from the data sets
at hand [113]. Another advantage is the adaptation of project-specific code compared to
rule-based SAST tools. Finally, learning-based models have a fuzzy and tuneable decision
boundary. A decision threshold can be tuned to balance precision and recall, which can
be directly interpreted as the balance between soundness and completeness. In controlled
experiments, several of these learning-based methods reach a remarkable performance and
outperform conventional techniques of static program analysis for vulnerability discovery [228,
113] measured by their detection rate while pertaining to a lower false positive rate. Machine
learning-based tools differ in their architecture, dataset, and data preprocessing technique. For
instance, recent models borrow techniques from natural language processing using recurrent
neural networks (RNNs) or long short-term memorys (LSTMs), where the source code is
processed as a flat sequence of code tokens [113, 112]. More recent approaches apply graph
neural networks (GNNs), thereby leveraging code graphs as a compact structure to represent
the syntactic and semantic properties of programs. Finally, the latest advances in large
language transformer models have been successfully implemented to solve the vulnerability
discovery task [55].

Unfortunately, there is a catch to it: Learning-based vulnerability detectors suffer from low
transferability and generalizability [30, 27]. In this work, we will investigate several limitations
responsible for the lack of practical adaptations of machine learning-based vulnerability
discovery methods. We identify four significant shortcomings in the recent literature on
learning-based SAST tools, which we categorize in four categories, namely, the data, the
interpretability, the robustness, and context sensitivity.

First, models trained in one project cannot simply be applied to another project with the
same initial reported performance. This may be due, for example, to unrealistic datasets [27],
spurious correlation [6, 87], or label inaccuracies [197]. The vulnerability discovery task requires
a large amount of high-quality data that is only insufficiently available. Previous works rely on
pattern-generated data [113], for example, the software assurance reference dataset (SARD)
[16] or the Juliet dataset [90, 27]. Others use static analyzers to generate ground truth [165].
As a remedy, we demonstrate a novel neural augmentation strategy to artificially generate
new vulnerable samples from high-quality datasets to improve model generalizability. Using
our augmentation approach, we can significantly increase the performance of vulnerability
discovery models on unseen projects.

Moreover, models lack human interpretability since deep learning models are generally
treated as black boxes [12, 191, 23]. Needless to say, vulnerability discovery is security critical;
hence, it must be evident to practitioners why a model arrives at a particular conclusion [203].
Fortunately, Explainable AT (XAI) can be used to open up these black boxes [203, 57, 230]



and enable security practitioners to reason about a finding. For example, some models only
classify bugs at the function level [228, 27, 31] without providing explanations. However, why
a particular function is vulnerable is beyond their scope. There are several XAl methods that
can be easily used to enhance their interpretability [69], though, since all differ, it remains
challenging to choose the appropriate one. Some more recent vulnerability detectors even come
with their own integrated explanation mechanism [55, 111]. It is hard to select and assess
the proper explanation method for the vulnerability discovery task. Thus, this work presents
a novel approach to compare XAl methods using dynamic program analysis as a validation
oracle. We show that many explanation techniques reveal irrelevant information and impede
practical applicability.

Third, learning-based models may be easily affected by noise or minor deviations from
the input domain [161]. A piece of code may be correctly identified as vulnerable, but after
some simple syntactic manipulations, the model can be deceived into classifying the semantic-
equivalent function as unproblematic. This effectively hinders the transfer to other projects
or unseen samples from other distributions [30] while it may also describe the decrease in
performance over time due to concept drift. This work demonstrates a new evaluation scheme
using causal learning to find potential sources of bias in the models, called confounders, and
proposes countermeasures to alleviate these issues. We reveal that current state-of-the-art
models have at least 30% decreased performance potential due to confounding effects.

Finally, the features must be carefully designed. A statement- or function-level vulnerability
detector may never detect vulnerabilities that span multiple modules [227]. Just like regular
static analyzers, learning-based analyzers may contain different levels of context sensitivity.
Some methods only consider code metrics [134] or hashes of functions [95], some operate only
intraprocedurally [113, 111] on token-level, some rely on flow-sensitive data preprocessing
methods [27, 228] and others even incorporate call-sensitivity to some extend enabling the
model to analyze interprocedurally [227, 112]. The context-sensitivity of the model directly
influences the detection capabilities. As a first approach, we demonstrate a model that utilizes
whole-program graphs and taint analysis to widen its context width without suffering from
exploding feature spaces. Using this model, we achieve a 50% increased detection rate compared

to other detection models.

Thesis Contributions This thesis proposes solutions to improve the applicability of learning-
based vulnerability to real-world settings. The thesis condenses five peer-reviewed security
conference publications. Note that the publications are not sorted by publication date.
Following our empirical and experimental studies we propose enhancements to current literature
to achieve a practical approach to software defect localization using XAI and provide the

following concrete contributions:

1. Neural Vulnerable Code Augmentation. We analyze the shortcomings of current state-of-
the-art datasets and enhance them with a novel neural code augmentation technique.
The work is based on the publication “CodeGraphSMOTE - Data Augmentation
for Vulnerability Discovery” [58]. The full paper can be found in Appendix C.

2. Explainability of Vulnerability Discovery Models. This thesis further assesses the

interpretability of learning-based vulnerability discovery models and studies new
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directions to the accurate comparison of explanation techniques based on the publications
“Explaining Graph Neural Networks for Vulnerability Discovery” [57], which can be
found in Appendix D and “Hunting for Truth: Analyzing Explanation Methods in
Learning-based Vulnerability Discovery” [60] attached in Appendix E.

3. Controlling Confounding Effects. We present a novel evaluation scheme using causal
learning to benchmark models with respect to their learned biases. This work is based
explicitly on the publication “Broken Promises: Measuring Confounding Effects in

Learning-based Vulnerability Discovery” [87]. The full paper can be found in Appendix F.

4. Learning-based Taint Analysis. Learning-based vulnerability discovery models lack
context and do not fully grasp the semantics of code. As a novel approach, we apply
classical taint-style analysis to learners based on the publication “PAVUDI: Patch-based
Vulnerability Discovery using Machine Learning” [59]. We refer the reader to the full
paper in Appendix G.

Structure of Thesis The rest of this thesis is structured as follows: Chapter 2 is split into
two parts, starting with a theoretical introduction to software vulnerabilities and vulnerability
discovery. The second part constitutes a recap of the related works. Chapter 3 then presents
the main results of this thesis structured in the main issues of learning-based vulnerability
discovery, each based upon the respective publications. We conclude in Chapter 4 with a

summary and a future outlook.



Background

We start with an outline of the necessary preliminaries in Section 2.1 followed by a summary
condensing the respective related work from the publications discussed in this thesis in
Section 2.2.

2.1 Preliminaries

We proceed to discuss the theoretical foundation necessary for the rest of this work. We start
with the notion of software vulnerabilities, rule-based vulnerability detection methods, code
graph representations, and taint analysis. For a comprehensive overview of learning-based
vulnerability discovery, we proceed with a brief description of machine and deep learning,

classification performance metrics, and a description of Explainable Al

Software Vulnerabilities

The National Institute of Standards and Technology (NIST) glossary describes a software
vulnerability as a security flaw, glitch, or weakness found in software code that an attacker
could exploit [...] [180].

According to this, a software vulnerability is a flaw in the program logic that has the
potential to be leveraged by an attacker. Such a flaw, also denoted as bug, may emerge from
poor design or mistakes in the implementation. A bug can have several manifestations on a
program, depending on the software, use case, and the surrounding organization itself, thus,
we focus on a set of the most basic required policies to ensure the security of software [49,
p-199]. We can derive security policies leaning on the three information security principles,
often referred to as CIA triad [93]:

1. Confidentiality. This principle ensures that sensitive information not meant to be
disclosed by the system’s design remains protected from unauthorized access. For
example, a client should not have the capability to access the raw memory of a web

server.
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2. Integrity. Integrity pertains to safeguarding the integrity of a program’s execution flow
from manipulation by potential attackers. For instance, attacks involving remote or local

code execution generally aim to compromise this aspect.

3. Awailability. Availability underscores the importance of preventing malicious actions that
could lead to the software’s termination. Even a simple act like supplying malformed

input that causes a program to panic and terminate should be guarded against.

Since not every code defect has to be a security vulnerability necessarily, we can derive
three important criteria for a program that have to hold in order for it to be vulnerable given
the NIST formulation:

1. Attacker-Controlled. This property denotes that an attacker must have the capability
to exploit vulnerabilities through, for example, malformed or deliberately crafted input
data. Consider scenarios where user inputs can be manipulated to compromise system

security and violate security policies.

2. Inadequate Validation. In cases where user input is not validated correctly or sanitized, it
creates the potential for security vulnerabilities to surface. Robust validation mechanisms
should be in place to mitigate such issues. The absence of effective validation in the

presence of a software defect is a critical concern.

3. Critical Operation. A security vulnerability is more likely to emerge when a sensitive
operation exists within the system. To enable a user to violate a security policy, there
must be a critical process or function that they can target. Identifying and safeguarding

these critical operations is essential for strengthening the system’s security [212].

From the opposite perspective, we can say a program is secure if it does not violate any of
these three security policies [118] and a program is safe when it’s free from flaws [105] or free
from unacceptable risk as per IEC 61508 [19]. It can be challenging to differentiate between a
flaw that only affects the safety of a program and one that presents a threat if exploited by an
adversary [61][49, p.7]. We briefly outline both, even if our focus is on the program’s security.

IEC 61508: Functional safety of control systems defines Safety Integrity Levels (SILs) as a
measure for the risk, taking into account the likelihood of a failure and the potential damage it
could cause [19]. For low-risk services with low demand, SIL 1 is sufficient, which only requires
basic functionality testing, for instance, per ISO 9001 [22, 101]. The specification dictates
that higher-risk services conforming to SIL 2 require extensive testing, and SIL 3 and 4 even
require formal verification methods. It is noteworthy that static analyzers are recommended
for use from SIL 2 upwards in terms of defensive programming to prevent adversary effects,
for instance, input validation [118]. Similarly, ISO 15408 [17] titled Common Criteria for
Information Technology Security Evaluation defines Evaluation Assurance Level (EAL) as a
security-focused and risk-based system assessment. More confidence in a software’s security
posture requires a higher EAL level and more rigorous testing. In the rest of this thesis, we
refer to a program that is free from exploitable flaws as clean.

Lastly, there are several classifications of defects. However, this thesis considers the most
popular common weakness enumeration (CWE) [138]. Common weaknesses are mapped to

identifiers. For instance, a stack-based buffer overflow corresponds to CWE-121, while a
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2.1 Preliminaries

format string vulnerability to CWE-134. Disclosed vulnerabilities from the past are instances
of CWEs and labeled by a unique common vulnerability enumeration (CVE) number. The
famous heartbleed vulnerability, for example, has the identifier CVE-2014-0160 but belongs to
CWE-130: Improper Handling of Length Parameter Inconsistency. The risk of a vulnerability
can be calculated using the Common Weakness Scoring System (CWSS) score, which considers
the environment, for instance, the business impact and the likelihood of exploitation, the
attack surface, for example, the required attacker’s privilege, and the attack vector, and the
base finding, which includes the severity by its technical impact. Finally, we formally define a

security vulnerability for the rest of this thesis in Definition 1.

Definition 1 A security vulnerability is a software defect that enables an adversary to violate

a security goal, such as confidentiality, integrity, or availability, through a specific input.

Rule-based Vulnerability Discovery

Static program analysis is the process of analyzing the run-time behavior of a program without
executing it. More formally, it makes it possible to infer whether a property b of a program
p € P holds, denoted as p F b [149]. The task of static vulnerability discovery can be

consequently formulated as in Definition 2.

Definition 2 A method for static vulnerability discovery is a decision function f: P —
{0,1} returning 1 if p € P is VULNERABLE, implying p F b or 0 if it is CLEAN otherwise. In

this scenario, property b refers to the a defect being present in program p.

There is already a vast number of SAST tools available to support developers in their daily
work to find and disclose defects, all representing an instance of this decision function [60].
The conventional SAST tools arrive at such a function f by applying handcrafted rules to
the source or binary representations. Most rules are project-agnostic; however, in software
development companies, it is expected to elaborately design domain-specific detection and
linting rules [73, 221]. In conclusion, all these tools may differ in their analysis technique,
context, and implementation [34]. There are several properties of a static analysis framework

introducing different computational complexities:

1. Flow sensitivity. If an analysis is flow-insensitive, the program is considered an unordered
set of statements. If an analysis is flow-sensitive, it accounts for the flow of control of

the program.

2. Context sensitivity. If an analysis is context-insensitive, the analysis yields the same
results for all possible invocations. Otherwise, the call context, arguments, and return

values are also considered.

3. Interprocedural/intraprocedural. If an analysis is intraprocedural, only a single function

is analyzed in isolation. If an analysis is interprocedural, the whole program is analyzed.

In addition, we can categorize SAST tools into three coarse-grained categories, classifying
their detection capabilities. We stick to a brief overview of currently popular SAST tools that

are freely available.



2. Background

1. Lexical analyzers. Lexical analyzers are deterministic finite automata. For instance,

Flawfinder [206] is a popular open-source SAST tool using a set of C function names!
expressed by regular expressions. These rules are then matched against symbols such as
strcpy or strcat. Flawfinder consequently suggests replacing them with secure alternatives,

for example, strlcpy or strncat, respectively.

2. Syntactical analyzers. Syntactical analyzers implement abstract syntax tree traversal
strategies. Adding the capability of, for example, finding insecure argument bugs [211].
PMD [156], or Cppcheck [132] are SAST tools that rely on abstract syntax tree (AST)

traversals and have no or minimal flow-sensitive scanning capabilities [34].

3. Semantical analyzers. Semantical analyzers incorporate context-sensitive detection
rules. These tools often define operations over broader context [34]. Tools may be
even field-sensitive or type-sensitive like Infer [152], flow-sensitive like CodeQL [171], or

path-sensitive like the Clang analyzer [123].

Both lexical and syntactical analyzers have a higher false positive rate compared to
semantical analyzers [100, 119]. One reason is that Flawfinder and Cppcheck over-approximate
the program semantics: For example, an unreachable but insecure C function already triggers
a false positive. We would like to refer the reader to Appendix A for a brief SAST tool
comparison. Although SAST tools may support flow-sensitive and interprocedural analysis,
detection capabilities depend on the defined rules at hand. For example, Joern [211] is a
semantical analyzer with interprocedural analysis capabilities, however, its C/C++ detection
rules are all intraprocedural.

From a theoretical point of view, there is a limitation that makes both rule-based and
learning-based static analysis in general an undecidable problem. Consider again f(p) as a
function computing whether p £ b with b being the property of software defect is present. f is
sound if f(p) implies p F b and f is complete if =f(p) implies p E —b. Since this is a decider
over the semantics of p € P, its computation can be equivalently formulated as determining
whether the program will terminate. This is generally known as the halting problem and is
proven to be undecidable [99][208, p.337]. For further details, please refer to the proof provided
in Appendix A.

Thus, we have to over- or under-approximate the program’s runtime semantics, which has
consequences for the soundness and completeness of the static analyzer. Over-approximation
can report more findings, striving for a complete analysis, while under-approximation

approximates a sound analyzer with fewer false positives.

T.e. https://github.com/david-a-wheeler /flawfinder /blob/master /Aawfinder.py#1,1082

8



2.1 Preliminaries

1| void flawed_strdup(const char xinput) {

2| char xcopy;

3| /* Fail to allocate space for terminating '\0' x/
1| copy = (char *)malloc( strlen (input));

5| strepy (copy, input);

6| return copy;

Figure 2.1: CWE-131: Null termination string weakness.

Figure 2.1 shows a software defect caused by a string allocation that does not account for null

termination, resulting in a buffer overflow. Flawfinder’s regular expression for finding incorrect

calculations of the buffer size for strings *strcpy(x, namely CWE-131, may undoubtedly detect

the flawed string copy operation in Figure 2.1 simply due to the occurrence of the function

call. Unfortunately, it will also report legitimate sanitized occurrences.

I | exists ( StrlenCall strlen | DataFlow::localExprFlow( strlen, malloc.getSizeExpr())) and
exists (ArrayFunction af, FunctionCall fc, int arg |
DataFlow::localExprFlow(malloc, fc.getArgument(arg)) and

2
3
4 | fc.getTarget() = af and

af . hasArrayWithNull Terminator(arg)

or

af . hasArrayWithUnknownSize(arg)

or

formatArgumentMustBeNull Terminated(fc, fc.getArgument(arg))

Figure 2.2: CodeQL query to find flawed string buffer calculations.

Suppose we consider the rule by CodeQL, a context-sensitive SAST tool. In that case, we

notice a more involved detection rule in Figure 2.2, which not only checks for a call to strlen

but also whether it flows into a function that implies null-terminated strings. However, the

rule only applies intraprocedurally, within a single function, and may not catch, for example,

wrapper functions around malloc.

val allocations = cpg.method(".xmalloc$").callln .argument(1)

cpg
.method("(?i)strncpy")
. callln
.map { ¢ =>

(c.method, c.argument(1), c.argument(3))

. filter { case (method, dst, size) =>
dst.reachableBy( allocations ).codeExact(size .code).nonEmpty &&
method.assignment
.where(__.target. arrayAccess .code(s"${dst.code }.x\\[.*"))

Figure 2.3: Joern query to find flawed string buffer calculations.

We can find a similar rule by Joern in its C bug detection engine depicted in Figure 2.3,

which considers malloc as the source but only strncpy as a sink.

9



2. Background

for (const Token* tok = scope—>bodyStart—>next(); tok |= scope—>bodyEnd; tok = tok—>next()) {

1

2| [

3 const Tokenx varTok = tok—>astOperand1();

4 const Tokenx litTok = tok—>astOperand2();

6 } else if (litTok —>tokType() == Token::eChar && varType && varType—>pointer) {
7 suspiciousStringCompareError_char(tok, varTok—>expressionString());

|}

o }

Figure 2.4: Cppcheck query to find flawed string comparisons.

On the other hand, tools such as CPPcheck are not capable of performing such a flow
analysis, they rather operate on the AST. Thus, there is no specific rule for CWE-131.
CPPcheck can be used to find incorrect string comparisons that frequently occur, for instance,
str == ’\0’ vs *str == °\0’. An excerpt of the rule can be seen in Figure 2.4 where two operands

in the AST are being compared.

Code Graphs

We have seen that the syntactical SAST tools describe traversals over the AST and semantical
analyzers over flow graphs. Hence, it is advantageous to model programs as directed graphs [3,
211, 14]. Recent learning-based approaches also make use of such graph representations [228,
31, 197] for source code rather than utilizing flat token sequences [165, 113]. We refer to
the resulting representations as code graphs and denote the underlying directed graphs as
G = G(V,E) with vertices V and edges E C V x V. Moreover, the nodes and edges are
attributed, that is, elements of V' or F are assigned properties. However, different code graphs
capture various syntactic and semantic features [59]. Recent work, for instance, relies only on
syntactic features for neural code comprehension using the AST [3]. This is a tree representing

the syntactic structure of the source code of a program p € P as defined in Definition 3.

Definition 3 The abstract syntax tree (AST) is the result of parsing the source code of a
function such that the leaf nodes in the resulting tree G4 = G(Va, E4) are literals and the
edges E4 describe the composition of syntactic elements [2, p.8, p.58].

The semantic attributes of a function can be captured in flow graphs, for instance, with the

flow of control as in Definition 4 or the flow in information defined as in Definition 5.

Definition 4 The control flow graph (CFG) within a function is Go = G(Ve, E¢) with the
nodes Vo C Vs being statements, and where the directed edges Ec describe the execution order
of the statements Vo C V4 [211, 34].

Definition 5 The data flow graph (DFG) within a function is Gp = G(Vp, Ep) with the
nodes Vp C V4 being variable assignments and references, and where the directed edges Ep

describe read or write access from or, respectively, to a variable [26].

These graph representations allow us to reason about the order of the executed statements
and the flow of information between variables. An analysis using these properties is considered
flow-sensitive [149, p.5]. Finally, a call graph connects the call sites of the functions with the

definitions of the functions as defined in Definition 6.

10
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Definition 6 The call graph (CG) within a program is defined as Gog = G(Vea, Foa) where
the nodes Vo C V4 are the call sites and definitions of the functions, while the edges Ecg

connect the caller with the respective definition of the function.

An analysis using the call context of a program is considered context-sensitive [149]. Code
graphs capture the semantic and syntactic relationships between statements and expressions
in programs. Based on these classical representations, combined graphs have been developed
for vulnerability discovery. A popular one is the code property graph (CPG) by Yamaguchi
et al. [211], which is a combination of the AST, CFG, and program dependence graph [52].
Other approaches use different combinations, for instance, combining the AST with the CFG
and the DFG [26] is called code composite graph (CCG) as defined in Definition 7.

Definition 7 The code composite graph (CCG) is a disconnected graph Gocog for a program
consisting of multiple functions p = {p1,p2,..,pn} with V =l Vi and E = E4 U Ep U E¢
combining the AST with the semantic information from the CFG and DFG.

This thesis uses the CCG, since the components of a CCG are easily obtained during

compilation and capture syntactic features and information flow.

Static Taint Analysis

Classic taint analysis is originally a dynamic program analysis approach where particular
statements or expressions are marked and monitored at run-time [169]. This analysis allows
security practitioners to identify, for instance, potential attacker-controlled sources flowing into
critical program regions. Yamaguchi et al. [211] define an over-approximate static approach by
tainting program parts and statically propagating tainted values along the control and data

flow as depicted in Definition 8.

Definition 8 A taint-style analysis for vulnerability detection is a 3-tuple (Vsourcss Vsans Vsing)
consisting of the nodes in the code graph of a program p € P denoting the taint source, sink

and sanitizer nodes as depicted from Va [211].

input

[ copy
input
\l/ —— AST
Decl strc
Entry Decl Py Return DEG
char | [fcopy| |char | |malc | [copy | |input copy
strlen|
input

Figure 2.5: Simplified code composite graph [26] from Figure 2.1.
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Figure 2.5 shows a code graph for the code sample from Figure 2.1. Such a property graph
can be stored in graph databases and queried using well-formed traversals [162]. For instance,

we can define traversals as mappings from one powerset of nodes to another:
T:V =V*

Given two traversals, we can combine them by composition: 7 o 7. New traversals can be
defined by composing primitive traversal operations. For example the primitive operation
Filter selects all nodes X that fulfill a predicate b:

FILTERy(X) ={v e X: b(v)}
Furthermore, neighboring outgoing nodes can be retrieved by the following operation:

OUT(X) = (J{u: (v,u) € E}
veX
Searching, for example, for user-controlled format string vulnerabilities can then be expressed
using a single traversal finding user input that flows into variable declarations ending in

formatted string outputs.
FILTERppintggo OUT o FILTER gy 0 OUT o FILTER ¢4,

In practice, these traversals are implemented using graph database queries or implementation-
specific APIs, as we have seen in Figure 2.2 and Figure 2.3. One recent idea of learning-based
static analyzers relying on graph neural networks is that these models learn such inference

rules automatically [228]. We will revisit taint analysis in Section 3.4.

Learning-based Vulnerability Discovery

This chapter introduces the concept of learning-based vulnerability discovery. First, we outline
supervised machine learning, which is the process of learning a task given labeled data. Then,
since most models rely on deep learning, we move on to introducing the concept of deep neural
networks, optimization strategies, different deep learning architectures, classification tasks,

performance metrics used throughout this thesis, and finally, explainable Al

Supervised Machine Learning

Machine learning (ML) is a discipline arising from computer science and statistics. ML intends
to gain new knowledge by finding recurring patterns in datasets without or with only minimal
use of human interaction [137, p.2|[166]. Machine Learning is mainly used for complex data
and, therefore, replaces traditional statistical methods. Most often, problems requiring the
use of machine learning (ML) are separated into classification tasks where a model needs
to classify a given data point to a given class or perform regression tasks where a model
predicts numerical values [104]. Supervised machine learning is the process of approximating
an unknown or complex function using a model estimate [63, p.139]. It typically requires a
dataset D = {xo,...,xp } with z € RF"
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F and |D| denote the number of features and the number of samples in the dataset, respectively.
Furthermore, there is a set of labels § = {yo...yp/} typically denoted as y C [0, 1]Pl in
a binary classification task. The goal of supervised machine learning is to find a mapping
fo: x — P(y|z) where 6 is some form of optimizable parameter set. In the rest of this thesis,
we assume, without loss of generality, the label y = 0 corresponds to a clean sample, while

y = 1 denotes a vulnerable sample.

Deep Neural Networks

There are several deep neural network architectures, with the simplest one being a multilayer
perceptron, sometimes referred to as a feed-forward network, which can be seen as a universal
function approximator [36]. Three components can summarize the architecture of such a neural
network: the neurons (units), the layers (set of nodes), and the weights as the connection
between the neurons. Every layer consists of a configured amount of neurons [63, p.196]. All
Deep Neural Networks (DNN) have multiple hidden layers and the ability to learn complex data
representations in common. Each hidden layer retains a specific abstraction of representations
from a given dataset. The input layer denotes the dimension of a data point, and the output
layer denotes the dimension of the desired prediction vector. The output of one layer is
forwarded to the input of the next layer. Estimating the weights really just corresponds to
estimating a function [83].

Every layer consists of a fixed amount of neurons as part of their configuration.

Figure 2.6: Multi-layer perceptron layer configuration.

(
7
is connected to every node h,(;+ ) by an edge with weight

Consider a multilayer perceptron (MLP) as in Figure 2.6 and let h Y denote the j-th neuron

of the i-th layer. Every node p\)

) J
9](111)€ € R. The activation value for a specific node is given by:

i+1 n { (
W = (0,00 0)

A layer h(x) incorporates a non-linear activation function, for instance, rectifying linear
unit (ReLu) or tangens hyperbolicus (tanh). An activation function o(z) is used to add
non-linear properties to the learning ability of a model. Given a data point z, typically denoted
as D = {xg...zp}, = is passed through the first layer, in other words: h0 = z. Using a
vector notation, we can come up with a recursive definition h**! = o (hi0) with i > 0 [128].
Suppose we abstract the calculation rule between the weights and the previous activation

values. In that case, we obtain h; = o(CALCULATE(h?~!,#)) where in CALCULATE(:,-) of an
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MLP would correspond to a matrix multiplication. Different neural network architectures

have different calculation rules.

Latent Output

Input L .
nputb Layet Representation Layer

////:‘v \xx“x

Figure 2.7: Neural autoencoder architecture.

Several layer and neuron configurations have been proposed [104] for different purposes.
For instance, the architecture from Figure 2.7 depicts an under-complete autoencoder that
can be trained to reconstruct the input [63, p.504]. The left part of the dense hidden layer is
the encoder E(-) and the right part is the decoder D(-) the combined application to the input
Z = D(E(x)) is the approximated reconstruction. The compressed, dense latent space should

represent interesting properties [63, p.505]. We will revisit a similar architecture in Section 3.1.

Neural Network Architectures

Other architectures build on the idea of MLPs. In this thesis, different architectures are drawn
with different calculation rules. This thesis has a particular emphasis on graph neural networks

since they neatly connect with the concept of code graphs.

Graph Neural Networks These networks are a class of deep learning models realizing
a function f: G(V,E)+— y € R that can be used for the classification of graph-structured
data [167]. A graph convolutional network needs two mandatory input parameters, that is, an

RN*F with N being the number of nodes in the graph and F the

initial feature vector z €
number of features per node, and the topology commonly described by the adjacency matrix
A € [0, 1]V*N_ Furthermore, we denote by N(v) the neighboring nodes of any v € V' [71, 194].

One of the simplest graph convolutional networks (GCNs) is the message passing network

defined by Kipf and Welling [97]:

AW = g(ApI—Ngl=1)y (2.1)
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with h° = z and 6 € RFVXFY with -1 and FO being the previous and next layer’s
feature dimension. Here, the intermediate representations are linearly projected and sum-wise
aggregated according to the normalized adjacency matrix A with self-loops followed by a
non-linear activation function. This GCN can be stacked to learn filters with respect to
larger neighborhoods. Other GCN layers use different aggregation and update mechanisms,
for instance, instead of an MLP, gated graph neural networks (GGNNs) use gated recurrent
units (GRUs) to update the hidden state of nodes [109], while graph attention network (GAT)
layers use attention mechanisms [194]. Due to the fitting premise of GCNs, they have been

widely adopted for representation learning on code graphs [228].

Transformer Models A transformer model typically consists of either an encoder, a decoder,
or both [115]. Each part is further composed of multiple blocks consisting of bidirectional multi-
head self-attention mechanisms and MLPs [193]. Compared to RNNs, transformer models
do not rely on computation rules with recurrences. Instead, attention matrices produce an

attention vector for each token, denoting the influence of each other token in the sequence [55].

QK"
ATTENTION(Q, K, V) = SOFTMAX ( Vi V) (2.2)
The matrix Q € R%mode1*dk denotes a query containing the set of representations for the
current tokens, which is then multiplied with the key matrix K € R%medeiXdk  The result is
scaled by the inverse square root of the size of the embedding d; and finally, after a softmax,
used as an index to the value matrix V € R%moderXdv that produces the attention vector. dmodel
denotes the size of the vocabulary, and the @), K, and V matrices can be split into multiple

attention heads to capture richer semantics, while d; and d, constitute hyperparameters.

Optimization

Since it is often intractable to find a # directly, such that a function fy : x — y, we seek to

find a model 6 from a potentially infinite hypothesis space €2 to minimize a cost function:
J: Q=R

Gradient Descent (GD) is a first-order optimization algorithm that can be used to find
local minima (the steepest descent) in a differentiable function [185]. In this context, gradient
descent is used to fit the parameters of a neural network to a suiting solution by minimizing a
loss function. The algorithm calculates the partial derivatives of a loss function concerning its
weights ‘;—‘g. Gradient descent differentiates, with respect to each parameter, the loss function
J and proceeds to calculate the error for each sample x € D and, in case of a neural network,
propagates the changes through every layer. The calculated gradients are then used to take an

update in each direction. The calculated gradients are used to update the weights by:

gnew = gold - UVJ(f(iL’, Holdv y)

More advanced optimization algorithms like ADAM and AdaGrad are commonly used in

practice, but will not be discussed for brevity [63, p.308]. The step size and, therefore, the

15



2. Background

convergence speed are controlled by a hyperparameter n. Eventually, the model and its

configuration 6 should encode the task to find vulnerabilities.

Classification

?

The output of the neural network prediction is given by consecutively passing the neurons
values to the next layer by calculating the activation values of the neurons with the particular
calculation rule. To obtain a probability vector, typically, the output vector is normalized by
applying the softmaz or sigmoid function [63, p.184].

In conclusion, we can start with the Definition 2 and use a probabilistic output and a
parametrizable weight vector 6 given some code representation of p € P to obtain static
vulnerability discovery based on machine learning techniques as defined in Definition 9. In the
end, the probability can be translated to a final binary output CLEAN or VULNERABLE using
a decision threshold typically in the range of t € [0,1]. A t closer to 1 accounts for fy being

more complete and a t closer to 0 for a fy being more sound.

Definition 9 A method for static learning-based wvulnerability discovery is a
parametrized hypothesis function fg: P +— [0,1] that extracts a representation x of a
program p € P and maps p to a probability P(VULNERABLE | x). p is clean if the probability is

smaller than a threshold t or vulnerable if it is greater or equal to a threshold t.

Performance Metrics

Within this thesis, we stick to performance metrics for machine learning classification tasks
since vulnerability discovery is essentially a binary classification task. We consider true
positives (TPs) represented by samples that were labeled correctly as VULNERABLE and true
negatives (TNs) as records that were correctly labeled as CLEAN. false positives (FPs) and false
negatives (FNs) are represented by samples that were incorrectly classified as VULNERABLE or
CLEAN respectively. We can further calculate their respective rates by dividing them by the
total number of samples of either class in the test set, yielding true positive rate (TPR), true
negative rate (TNR), false positive rate (FPR), and false negative rate (FNR). To achieve an
unbiased view of the performance of the models, we proceed to define four metrics to measure

the models on their test sets [6].

Definition 10 We use the balanced accuracy as a replacement for the classical accuracy score
to account for imbalanced datasets. This metric yields a prevalence-agnostic score to measure

the detection quality of a classifier.

TPR+TNR

BALANCED ACCURACY = 5

Definition 11 The precision measures the number of correctly identified defects with respect

to the wrongly classified ones. It, therefore, measures the soundness of the SAST tool.

TP

PRECISION = ————
RECISION TP+ FP
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Definition 12 The recall measures the amount of correctly classified defects in relation to all
defects in the dataset. It, therefore, measures the completeness of the SAST tool.

TP

ALL = ——————
RECALL TP+ FN

Definition 13 The F1-score is the harmonic mean between the precision and recall, giving a

single numeric score for the balance between soundness and completeness of the SAST tool.

PRECISION * RECALL

F1=2.
PRECISION + RECALL

Furthermore, we calculate the area under the receiver operating characteristic curve, which
is a chart that visualizes the trade-off between TPR and FPR for different decision thresholds.
Balanced accuracy, F1-Score, and area under receiver operating characteristic (ROC) curve
are especially recommended when handling heavily imbalanced datasets as opposed to, for

example, the accuracy score [6].

Explainable AI

Molnar [140, p.6] refers to explainability as the models and methods that make machine
learning predictions understandable to humans. While Rudin et al. [164] define interpretability
as machine learning models that obey domain-specific rules to make their decisions more easily
understood by humans. It is noteworthy that there is a lack of agreement between the two

notions explainability and interpretability in recent research [54].

Definition 14 An explanation method (EM) is a function ef: (z, f(x)) — M where f is

a vulnerability discovery method, x a piece of code, and M a heatmap defined over x.

In this work, we specifically leverage explanation methods (EMs) for machine learning
to alleviate the problem of opaque decisions and to verify learning-based security systems.
Given a vulnerability discovery method f, we formalize the explanation methods as producing
heat maps M from pairs of source code = and the predicted output § = fy(x). Heatmaps (or
interchangeably explanations) attribute numerical relevance scores to locations in the code,
that is, to nodes and edges, if f is a GNN.

2.2 Related Work

This work provides novel directions for the discovery of static vulnerabilities with explainable
AT and dynamic program analysis. As a result, there exist different prior works tangent to this
thesis. We proceed with an assembly and discussion of the related works of the publications

from the appendix.
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Program Analysis

We have already discussed static program analysis from a security testing perspective and
now proceed to address other categories of program analysis, starting with dynamic program

analysis with a particular emphasis on works with a security focus.

Dynamic Analysis Dynamic program analysis, as opposed to static analysis, is not limited
to the source code but also includes the analysis of the runtime behavior of a program.
Compared to static program analysis, dynamic analysis tends to be more precise, but a single
analysis report only holds for one particular analyzed execution [64].

Generally, the dynamic analysis consists of two parts, the instrumentation and the profiling
of an application, to monitor the runtime behavior [139]. Tools like Valgrind [145] and Purify [74]
both instrument an executable and monitor its behavior. Instrumentation techniques may
track undefined bits in registers [173], taint values in memory [146], or, for example, store type
information to variables based on their operations [24]. Other approaches may include the
automatic analysis of runtime logs [76].

One technique that lies in this category is fuzzing. Since this work uses directed fuzzers in
Section 3.2 to compare explanation methods, we briefly discuss popular approaches. Common
coverage-guided fuzzers like AFL or Libfuzz generate test inputs to observe crashes or hangs in
a program under test (PUT) [53, 172, 131]. Directed fuzzers also try to reach certain execution
points during runtime. For example, AFLGo [18] and Hawkeye [29] model targeted input
generation as a power-schedule problem. Beacon [84] tries to incorporate path pruning into
the seed selection process and, as a result of this, accelerates crash reproduction compared
to AFLGo and Hawkeye. Targetfuzz [25] prioritizes the initial seed selection to speed up
directed fuzzing. Other works focus on improving the instrumentation of gray-box fuzzers by
heuristically extracting potentially interesting code regions [153].

Zhu et al. use explanation methods in conjunction with an NLP-based vulnerability-
detecting model to speed up AFLGo. V-fuzz also speeds up fuzzing with learning techniques:
It uses a neural network to detect likely vulnerable spots in binary programs [110]. Similarly,

we use fuzzing to compare EMs in Section 3.2.

Symbolic Analysis Symbolic program analysis can be used to detect violations of safety
and security properties [9]. Symbolic execution can explore a program’s execution paths
considering several potential inputs. For instance, it can be used to reason about buffer or
null checks or to determine domain invariants [114].

To such symbolic program analysis techniques belong the abstract interpretation [4]
and symbolic execution [157]. Here, the program is partially interpreted, while symbolic
representatives may replace specific library calls or user inputs. This can be useful for value
set analysis or test generation. SymCC [157] is a symbolic execution framework that relies
on compiled code and uses a Satisfiability Modulo Theorem (SMT) solver. Otter [129], on
the other hand, is based solely on the source code. Ma et al. [129] propose directed symbolic

execution to reach specific points during runtime analysis to, for example, guide fuzzers.
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Static Analysis Static program analysis reasons about properties of a program without
executing it [143, 100]. There are static analysis applications for particular focuses, for
instance, finding liveness bugs and safety violations in distributed systems [94], dependency
of ordering bugs in smart contracts [62, 51]. Shen et al. [174] compares SAST tools for
embedded systems, while Kinder and Veith [96] proposes static analysis on disassembled
binaries. The fundamental problems of static analysis include deciding the reachability of
certain instructions, the deduction of data types [77], the liveliness of variables, dead code,
the avoidance of superfluous calculations [204], the reduction of the likelihood of unintended
behavior, or the reduction of redundant calculations [149, p.1].

Recent works propose new algorithms that better exploit parallelism for faster analysis [133],
support incremental analysis, or larger context-width [189]. Interprocedural pointer analysis
yields significant improvements for static taint analysis [127], while incremental analysis speeds
up developer feedback [187]. We apply similar ideas to learning-based vulnerability detectors,
as for instance, methods to utilize broader context and incremental analysis as in Section 3.4.

SAST tools are still underused and have an average false positive rate of 35% to 93%,
while the manual triage is time-consuming and costly [143]. There is an entire research field
dedicated to improving static analyzer precision within theoretical boundaries [68, 124, 13].

This work focuses on improving learning-based SAST tools.

Code Metric Correlation The first successes that have been achieved by using heuristics
to detect vulnerabilities in code bases are based on the correlation of software quality metrics,
for instance, code size, code churn, developer activity, or code complexity [175]. Meneely and
Williams [135] use Bayesian networks to predict software defects based on a set of quality
metrics. Walden and Doyle [196] propose to rank software vulnerability indicator scores to
predict new vulnerabilities. Perl et al. [155] take a different path and identify commits that
are likely to introduce vulnerabilities based on a support vector machine. The works suggest a
low correlation between the metrics and actual vulnerabilities [196], and some works report

disappointing detection rates paired with high false positive rates [135].

Anomaly Detection Another set of interesting works treats vulnerability discovery as an
anomaly detection task. Chang, Podgurski, and Yang [28] use program mining techniques to
identify neglected conditional rules. Similarly, Yamaguchi et al. [214] find missing sanitization
checks by combining taint analysis and bag-of-words techniques to calculate an anomaly score.
These approaches are either only applicable to large software projects without the capability

to transfer knowledge from others or suffer from high false positive rates [28].

Vulnerable Clone Detection Some works redefine vulnerability discovery in terms of
finding vulnerable code clones, which often includes finding recurring patterns or functions
that were known to be vulnerable. For instance, Yamaguchi, Lindner, and Rieck [213] embed
symbols to vectors using principal component analysis and search for similar functions. Kim
et al. [95] similarly define a vulnerable code clone detection mechanism based on hashed
function abstractions. These methods trade off soundness for completeness and thus have a

low detection rate in performance benchmarks [111].
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Vulnerable Pattern Recognition Several past works already target the problem of
automatically discovering vulnerabilities and defects using loosely defined rules (heuristics)
or machine learning [222]. One of the first works to use supervised machine learning for
vulnerability discovery is Wang, Liu, and Tan [198] from 2016. They extract feature vectors
from the AST. More works followed, for instance, Draper by Russell et al. [165] using flat
token sequences and a convolutional network and VulDeePecker by Li et al. [113] who first
define code gadgets as multiple code lines depicting vulnerable control or data dependencies.
Similarly, Grieco et al. [67] use Word2Vec representations from the AST and shallow learners.

This work has a slight focus on graph neural networks since they currently provide the
most promising results [136]. The combination of GNNs and code graphs, considered in our
work, has been proven to be successful in the discovery of defects and security vulnerabilities in
a series of research [197, 228, 26, 31, 80, 46, 227]. For example, Zhou et al. [228] introduce the
first gated graph neural network on code property graphs to identify defects and vulnerabilities
collected from real-world commits. Their approach outperforms popular open-source and
commercial rule-based static analyzers as well as token-based learning models. Cao et al. [26]
choose a different graph representation of the underlying source code. They combine data flow
and control flow graphs with the abstract syntax tree to the composite code graph. Other
works also rely on different graph representations [37].

With recent advances in large language models, transformer models with several billion
parameters have been fine-tuned for vulnerability discovery. They already show extreme
success for natural language [115], and it can be assumed that we are able to achieve similar
success in representation learning on code [81]. Recent large language model (LLM)-based
vulnerability detectors achieve astonishing performance results according to their respective
publications [55, 30, 190]. Several different architectures and pre-trained large code models
have been used for this purpose, like Bert [43], RoBerta [122] or CodeT5 [201, 202].

XAI in Security

Explainable AI (XAI) is the field of reasoning about the decision process of machine learning
models. There is active research with recent surveys providing taxonomies, algorithms, and
evaluation criteria for explanation methods in machine learning [12, 191, 220].

A variety of general techniques for explaining learning models exist that can be broadly
categorized into white-box and black-box explanation methods, where the latter correlate input
features to the model output, for instance, SHAP [125] or LEMNA [69] or approximate them
with smaller, better interpretable models like LIME [160]. This thesis focuses more on the
former, white-box methods, since these methods tend to be more precise [203] and we assume
full access to the vulnerability discovery models. These methods may use the activations from
neurons like class activation maps (CAM) [215] or rely on the gradients of the model, for
example, the linear approximation [167], grad-CAM [170], Smoothgrad [177] or integrated
gradients [186]. There are also decomposition-based methods such as layer-wise relevance
propagation [103], excitation backpropagation [225], or guided backpropagation [178].

With the rise of graph neural networks, several works have ported the underlying classic
explanation concepts to the graph domain [8, 158, 167], and completely new graph-specific
algorithms have been invented [126, 219, 168] building heat maps over nodes or edges.
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Large language models use attention mechanisms where their respective attentions can be
directly interpreted as their relevance scores for a specific input/output pair. However, it is
currently disputed whether they actually offer interpretability [88, 207]. For instance, attention
scores can be decoupled for their respective prediction and be altered while pertaining to the
same prediction [88].

Bricken et al. [21] find monosemantic features, i.e., features that are uniquely descriptive
for a decision outcome, using autoencoders. They argue that models trained on cross-entropy
loss prefer many polysemantic features over fewer true monosemantic features.

Some recent approaches incorporate EMs in the vulnerability discovery task to integrate

interpretability directly into the learning process [80, 55, 111].

Comparing Explanations in Security One large corpus of works discusses the comparison
of EMs since they frequently arrive at vastly different explanations [203, 57, 230, 12, 158]. To
quantitatively compare these EMs, there exist several metrics.

Warnecke et al. [203] provide security-specific comparisons of explanation methods. However,
other works also provide comparison strategies [176, 23]. Warnecke et al. show that it is non-
trivial to validate security-critical models from explanations given by several algorithms with
a predefined set of evaluation criteria [203]. Hence, explaining the decisions of such models is
crucial [6]. Zou et al. present a method to extract essential tokens from token-based vulnerability
discovery models. The extraction works by perturbing input source code pieces such that the
binary classification label switches from one class to the other. Black-box explanation methods
yield better portability between different models, but the overall performance deteriorates.
Furthermore, they use descriptive accuracy to measure the performance. Since this is an
intrinsic metric, it is impossible to make any assumptions about the veracity [230]. All works
in this direction focus on intrinsic criteria that evaluate explanations by descriptive accuracy
or sparsity or even suggest costly human expert studies to validate the actual usefulness.
Sanchez-Lengeling et al. compare explanation methods using several types of ground-truth for
molecule graphs [167]. Nadeem et al. [144] criticize that current security-related explainable Al
research rarely conducts user studies, and it is not obvious how to integrate XAl into analyst
workflows. Finally, Linardatos, Papastefanopoulos, and Kotsiantis state that it is not possible

to rank EMs by their ability to make a model decision interpretable [117].

Limitations of SAST

Next, we will consider work that critically examines static and learning-based analysis methods.
First, we we discuss related work that attempts to validate potentially incorrect SAST reports,
and second, we will look at previous work that discusses the limitations of learning-based

models for vulnerability discovery.

Static Analysis Verification From a broader perspective, some parts of this work compare
and benchmark static code analysis methods. This has already been done in other non-learning-
based contexts. Christakis, Miiller, and Wiistholz [33] validate unverified and potentially
unsound static code analysis reports using dynamic code execution to reduce false positives.

Similarly, Wiistholz and Christakis [210] build upon this work and use online static analysis to
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guide a fuzzer by analyzing each path during the fuzzing process right before a new input is
selected. Closely related to our explanation oracle from Definition 16 in Section 3.2, Barr et al.
[10] define testing oracles as mechanisms that decide whether a set of system tests are relevant
or not. Dietrich et al. [44] state that it makes more sense to validate static analysis results
using oracles based upon dynamic analysis. Hence, Ma et al. [129] propose to apply directed
symbolic execution to verify SAST reports. All these approaches are related to our work,
yet they focus on different types of static tools and do not consider learning-based discovery

methods and their explanation.

Limits of Vulnerability Discovery Models Recently, Chakraborty et al. revealed
that several state-of-the-art datasets for evaluating vulnerability discovery models are not
realistic [27]. In a similar vein, Arp et al. [6] discuss common pitfalls when working with
learning-based vulnerability discovery methods. They argue that these problems can only be
tackled if appropriate explanation methods are employed, and hence, the process of vulnerability
discovery becomes transparent to the practitioner. Wang et al. [197] criticize datasets obtained
through biased approaches like filtering commit messages by certain keywords. They propose
to filter samples using a classifier identifying security-relevant patches. Croft, Babar, and
Kholoosi [35] state that most vulnerability discovery models suffer from label inaccuracies
with up to 42.5% irrelevant samples. We leverage these insights in our experimental design, as
well as in our metrics and dataset choices.

Risse and Bohme [161] discover that models seem to overfit certain artifacts in the dataset
and hence lack generalizability. Chen et al. [30] analyze LLM-based vulnerability detector
models and conclude that they lack transferability to other projects and, therefore, propose a
novel dataset as a remedy. Krishnan et al. [100] define four major problems in learning-based
vulnerability detection that hinder real-world adaptation. For instance, learning code semantics
is hard, data is insufficient, the assessment is only considering laboratory settings, and there is
a missing explanation for their decisions.

Harzevili et al. [72] argue that existing models may struggle to accurately capture the
context of a vulnerability, either under-approximating program semantics through overly
narrow contexts or treating code as a natural sequence. Over-approximating programs may
involve considering infeasible paths [32], resulting in a higher FPR, while under-approximation
leads to a high FNR. Zheng, Jiang, and Su [227] criticize that current vulnerability discovery
models lack interprocedural analysis. Addressing these challenges, some recent approaches,
such as those adopted by DiverseVul [30], abstain from identifier masking, as opposed to

Draper [165], aiming to glean contextual information from variable and function names.
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The following sections present solutions to recent limitations of machine learning-based
vulnerability discovery models developed during this research. Our ultimate goal is to achieve
a practical approach to localizing software defects using XAI. We specifically look at deep-
learning-based vulnerability discovery models and how state-of-the-art methods struggle with
transferability and generalizability. In general, models that help developers detect bugs and
vulnerabilities are beneficial. However, they do not always transfer to new projects or code
within the project they were initially trained on. Therefore, designing a vulnerability discovery
model requires careful consideration.

As depicted in Figure 3.1, we suggest four dimensions that are important in the
conceptualization and development of a vulnerability discovery model. These dimensions
correspond to distinct stages that a model traverses. First and foremost, there is the
preprocessing phase, with a strong emphasis on meticulous data curation. Following that, the
model is employed by practitioners, highlighting the importance of the interpretability of the
model results. In the third stage, during evaluation and post-deployment, the model must

demonstrate applicability to previously unseen data. Lastly, the model should be conceived

(1) Data (4) Context  (2) Interpretation

=i

s

ININTY
~

(3) Robustness

Figure 3.1: Brief overview of this thesis.
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3. Software Defect Localization Using XAI

and constructed with the vulnerability detection task as its primary focus. In conclusion, we
emphasize four perspectives that are indispensable for crafting production-ready vulnerability

detectors:

(1) The Data The training data used to train a supervised machine learning model must be
suitable for the task. In our case, we have to deal with datasets that reflect both clean as well
as vulnerable code. Unfortunately, It is commonly known that vulnerable samples are scarce,
and we have to assert that there are enough samples for the training process of the model.
We will address this issue in Section 3.1 Neural Vulnerable Code Augmentation and present a

novel neural vulnerable code augmentation technique based on our publication in Appendix C.

(2) The Interpretation Vulnerability detection models are designed to assist developers in
finding software defects before they manifest as vulnerabilities in production code. We need to
ensure that security experts can interpret the prediction results. However, we need to evaluate
different explanation methods and even confirm their applicability to real software. We will
benchmark different EMs and provide a novel approach using dynamic program analysis to
effectively compare EMs specifically for vulnerability discovery in Section 3.2 Ezplainability of
Vulnerability Discovery Models based on our works in Appendix D and Appendix E.

(3) The Robustness We show that excessive focus on irrelevant artifacts in the dataset
can skew the reported effectiveness of learning-based vulnerability detectors during testing
and after deployment. They lack robustness and are too sensitive to small perturbations in
the input space. We present a novel evaluation scheme using causal learning to measure these
confounding effects in Section 3.3 Controlling Confounding Effects, furthermore we demonstrate
several easy-to-use preprocessing and model modifications to established vulnerability discovery

models to combat confounding effects based on our work in Appendix F.

(4) The Context We have already discussed the importance of context sensitivity to
rule-based detection models. We show that the same applies to learning-based SAST tools.
Models with a too narrow context will over-approximate a program and suffer from a high
FPR. It is challenging to enrich the model’s perception of the code under analysis with a
broader context. We propose a solution combining static taint analysis with deep learning in
Section 3.4 Learning-based Taint Analysis for Patches based on our paper in Appendix G.
Each section outlines the problem setting and motivation for the specific problem and
proceeds to briefly discuss our proposed approach and the results. For more in-depth details,

we refer to the respective publication.
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3.1 Neural Vulnerable Code Augmentation

3.1 Neural Vulnerable Code Augmentation

I only hope that when the data’s analyzed, a weakness can be found.
-Princess Leia Organa [85]

In learning-based vulnerability discovery, one major obstacle is obtaining enough
representative code samples for supervised learning. First, vulnerable samples are sparsely
available, and second, depending on the code base, there might be a massive variance under
different code samples and different projects. One code author, for example, may prefer one
programming pattern or paradigm over another, and one project might have a completely
different linting and formatting guideline than another. If the datasets portray a limited view
of how the C / C++ code is written, they may not understand the full diversity of the language
[65]. In conclusion, in order for a learning-based system to derive meaningful patterns, the

dataset must be sufficiently large and diverse [121].

Table 3.1: Popular datasets for vulnerability discovery.

Dataset Level #VULNERABLE #CLEAN ‘ Imbalance Ratio Used in Thesis #Projects
SARD [16] Files 30000 30000 50.00% X N/A
Devign [228] Functions 11888 14149 45.65% v 2
Juliet [90] Files 5393 6503 45.00% X N/A
Draper [165] Functions 87804 1198458 6.82% X N/A
BGNN4VD [26] Functions 3867 92058 4.02% X 4
Reveal [27] Functions 1664 16505 9.15% v 2
PatchDB [199] Functions 3441 30149 10.24% v 313
FUNDED [197] Functions 5200 5200 50.00% X 1000
SySeVR [112] Slices 2091 13502 15.48% X N/A
BigVul [50] Functions 11823 253096 4.44% v 348
CrossVul [150]  Functions 6884 127242 5.13% X 498
CVEFixes [15]  Functions 8932 159157 5.31% v 564
DiverseVul [30]  Functions 18945 311547 5.73% v 797

In Table 3.1, the most popular and common vulnerability datasets are listed to ensure the
reader a good overview of the vastly different datasets in the wild. The datasets vary between
10k and 100k samples. The samples are curated from different numbers of open-source projects
ranging from 2 to 1000. Projects with N/A do not or to an unknown number contain real-world
extracted software projects. Many datasets lack vulnerable samples, which is observable in their

large imbalance ratio. This directly leads to a less diverse representation of real vulnerabilities.

Problem Setting

Chakraborty et al. [27] state that the imbalance ratio is important to reflect real-world
circumstances, and hence, a lower imbalance ratio is a preferable characteristic. However, it
poses threats to the training and validation of machine learning models [6]. Pattern-generated
datasets like SARD or Juliet and data labeled as ground-truth by rule-based SAST tools, such
as in the vulnerability detector Draper [165], lead to over-promised results and less transferable
detection models [27, 151]. While clean code samples are vastly available and can be gathered
easily from different sources, for example, GitHub, StackOverflow, or SourceForge, vulnerable

samples are scarce [6].
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Often Github, vulnerability disclosure databases like the national vulnerability database (NVD)
or CVE or bug trackers are consulted to collect vulnerable samples [27]. Although these
databases may also suffer from minor inaccuracies [195], they are the best sources at present.
Another issue we encounter in the work of Zhou et al. [228] is generating datasets obtained
from GitHub using security-related keyword extraction. This approach relies on keywords like
security, fix, Or buffer overflow to find commits potentially fixing security vulnerabilities.
The assumption is that the same code before that patch contains the vulnerability.
Unfortunately, many clean samples sneak in as vulnerabilities [35]. This problem is known as
label inaccuracy [6] and can be best visualized with an example as in Figure 3.2. The patch is
from the Devign dataset extracted from the QEMU open-source project with its commit title
displaying gemu-iotests: step clock after each test iteration and its commit message happens to
contain the keyword fix and hang, however, this is neither a vulnerability nor a relevant defect,
as it solves some minor hangs during testing!. The dataset even contains samples that are
not C or C++ functions but, for instance, markup or configuration files>. These improperly
labeled samples impose a bias on the final vulnerability detector. Inspired by Dunlap et al. [48],
we can conduct a differential dataset analysis to obtain a lower bound on the true proportion

of defects in the dataset. We want to refer the reader to Appendix A for this experiment.

+ # Allow remaining requests to finish .  We submitted twice as many to
+ # ensure the throttle limit is reached.
+ self .vm.qtest("clock_step %d" % ns)

G W N e

Figure 3.2: Wrongly labeled sample from the Devign dataset [228].

Equipped with the state-of-the-art datasets and their shortcomings, we address the problem
of scarce vulnerable data and imbalanced datasets and propose a solution utilizing only high-
quality datasets extracted from more reliable sources such as NVD or the CVE database [27]

and enhancing them.

Approach

In classical machine learning, there are several approaches to handle imbalanced datasets [116,
70, 79]. A naive approach is to downsample the dataset, throwing away clean samples. A more
sophisticated approach is to augment the dataset with new synthetic vulnerable samples. A
popular method is synthetic minority oversampling technique (SMOTE), which takes existing
similar samples and pairwise interpolates between them. Similar samples can be selected by,
for example, their k nearest neighbor set of the same class [20, 98]. New samples are then
generated by interpolating between the features of the two selected samples, yielding a new
feature vector T = Az + (1 — A)xg, where z1, z are the features of the original samples and
A € [0,1] is a uniformly distributed random number.

This may work well with continuous feature vectors, but code is naturally discrete. Inspired
by the work of Dablain, Krawczyk, and Chawla [38] and Zhao, Zhang, and Wang [226], where

the former applies SMOTE to image classification and the latter to node classification, this

"https://github.com/qemu/qemu/commit/cbaddb
2E.g. https://github.com/ffmpeg/ffmpeg/commit/301ab1
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3.1 Neural Vulnerable Code Augmentation

thesis proposes a variational autoencoder as a generative model for vulnerability augmentation.
More specifically, our approach called CodeGraphSMOTE enables the generation of new
vulnerable code graphs by interpolating in the latent space of a variational graph autoencoder.
During training, a vulnerable code property graph (CPG) x is passed through an encoder
graph neural network E that produces two output vectors, namely a mean E,(x) and a
variance Fq(x) vector.
Then a latent representation z ~ N (E,(x), E,(x)) can be sampled, and the decoder network
D(z) should approximate x as its reconstruction [63]. The training objective has two parts.
First, we would like D(z) to be similar to z, so the first optimization goal is to minimize
the reconstruction loss ||D(z) — z||. Second, as regularization and to prevent the model from
memorizing, we constrain the latent space distribution to be close to a standard Gaussian
distribution using the Kullback-Leibler divergence KL (N (E,(x), E5(x))||N(0,1)).
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Figure 3.3: The CodeGraphSMOTE training and inference pipeline.

Figure 3.3 depicts the architecture of CodeGraphSMOTE: A sequence-to-sequence
BART [106] transformer network is used to learn a descriptive embedding of source code
attached at the nodes (1), and a variational graph autoencoder is used to compress an entire
code graph into a continuous latent space preserving the most relevant information of the code
graph (2). Eventually, SMOTE is used on this latent representation (3). The graph topology
can be reconstructed using the decoder layer of the autoencoder, and ultimately, the source

code can be reconstructed using the transformer network.
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21 ~ N(Eu(21), Eo(21))
22 ~ N(Ey(x2), Eo(22)) (3.1)
T=DAz1 + (1 —N)z2)

Formally, we can interpolate between a code graph sample x1 and z9 by plugging the latent

space representation into the SMOTE formula as outlined in Equation (3.1).

Result

Using CodeGraphSMOTE, we circumvent the problem of interpolating discrete structures
as code or graphs. If we visualize the latent vector per sample using t-distributed stochastic
neighbor embedding (t-SNE) [130], we observe a natural clustering of similar CWEs as in
Figure 3.4.

Vulnerabilities of the same
CWE cluster together.

Figure 3.4: A t-SNE latent space visualization of CodeGraphSMOTE. Every point is an encoded
vulnerable sample and every color is a CWE.

A visualized artificially interpolated example can be seen in Figure 3.5. The two upper
real-world vulnerabilities truncate a string but incorrectly calculate its size. Consequently,
the interpolated vulnerability is also containing a buffer overflow. It may not be guaranteed
that the code is syntactically or semantically correct, for instance, the interpolated sample
unnecessarily defines a char *dest in the signature, however, this may not even be necessary
since it provides a more diverse view of the C and C++ programs to the learning model.

In addition to this, our experiments suggest that we can achieve a performance increase in
downstream vulnerability models with up to 21% measured in balanced accuracy compared to

other approaches, including simple downsampling.
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3.2 Explainability of Vulnerability Discovery Models

void truncate(char *src, int size) { void truncate(char *src, int size)
char *dest = malloc(size); {
if (!dest) return; char *dest = malloc(size);
memcpy (dest, src, size); if (!dest) return;
memcpy(src, dest, sizeof(dest)); strcpy(dest, src);
free(dest); memcpy(src, dest, sizeof(dest));
} free(dest);
}

void truncate_type(char *dest, char *src, int *size)

{

char *dest = malloc(size);
if (!dest)
return;
memcpy(dest, src, sizeof(src));
memcpy(src, dest, size);
free(dest);
}

Figure 3.5: An interpolated artificial vulnerability.

CodeGraphSMOTE performs better than state-of-the-art neural code editing methods
such as Graph2Edit [217]. And while there are also deterministic code editing techniques, such
as identifier renaming [218, 78, 224, 216, 223, insertion of statements [218, 223, 78, 179] or
replacement of code elements with equivalent elements [108, 5] which might be suitable for
code augmentation, the model may memorize the set of transformations and we are faced with
the same problem as with the SARD dataset.

Although there are a large number of datasets for vulnerability discovery available, they
all lack in vulnerable samples and suffer from imbalance.

Moreover, some datasets are of lower quality than others but provide more variety. It is evident
that the performance of the discovery model depends on the underlying dataset. Thus, we

propose CodeGraphSMOTE as a probabilistic strategy to augment high-quality datasets.

3.2 Explainability of Vulnerability Discovery Models

The answer to the ultimate question of life, the universe, and everything is 42.
-DeepMind [1]

The efficacy of vulnerability discovery models comes at a price: neural networks are
black-box models due to their deep structure and complex connectivity. While these models
produce remarkable results in lab-only experiments, their decisions are opaque to security
practitioners and remain unclear, which hinders their adoption in practice. Identifying security
vulnerabilities is a subtle and nontrivial task. Therefore, interaction with human experts
is indispensable when looking for vulnerabilities. For them, it is pivotal to understand the
decision process behind a method to analyze its findings and decide whether a piece of code is

vulnerable. Thus, any technique for their discovery must be interpretable.

Problem Setting

One promising direction to address this problem is the field of Explainable AI (XAI). A large
body of recent work has focused on explaining the decisions of neural networks, including
feed-forward, recurrent, and convolutional networks [215, 170, 177, 142, 103].
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Similarly, some specific methods have been proposed to make GNNs interpretable [168, 126,
219]. However, it is unclear whether and which of the methods of this broad selection can

support and explain decisions in vulnerability discovery models [203].

1] int xmlStrlen(const xmlIChar str) {
2 int len = 0;
3 if (str == NULL) return(0);
4 while ( xstr I=0) {
5 str++;
6 len++;
7
8 return(len);
o}
10
11| xmlChar #xmlStrncat(xmlIChar *cur, const xmlChar xadd, int len) {
12 int size;
13 xmlChar *ret;
14 if ((add == NULL) || (len == 0))
15 return (cur);
16
17 if (len <0)
18 return (NULL);
19
20 if (cur == NULL)
21 return (xmlStrndup(add, len));
22
23| size = xmlStrlen(cur); |
24 if (size < 0)
25 return (NULL);
26| ret = xmlRealloc(cur, (size+len+1) *sizeof(xmlIChar)); |
27 if (ret == NULL) {
28 xmlErrMemory(NULL, NULL);
29 return (cur);
30
31 memcpy(&ret[size], add, lenx sizeof (xmlIChar));
32 ret[size + len] = 0;
33 return(ret);
34| }

Figure 3.6: Vulnerability CVE-2016-1834 with highlighted explanations for RE-
VEAL+GNNExplainer (green), REVEAL+Smoothgrad (blue), REVEAL+GradCam (red).

Consider the vulnerability identified by CVE-2016-183/ in libxml2, as shown in Figure 3.6,
where several lines are highlighted. The vulnerability discovery model REVEAL [27] correctly
asserts that there is a potential buffer overflow. However, three different explanation methods
show three different lines as the root cause of the vulnerability. It is unknown which explanation
yields the best highlighting for a human security practitioner.

The question therefore arises as to which method of explanation is to be favored and which is
actually correct. In order to compare them, we need a quantitative measure. Therefore, we

define a metric to evaluate explanations as an explanation criterion in Definition 15 [60].

Definition 15 An explanation criterion is a function c: ey — R that measures the quality

ofef. An explanation method ey outperforms &y on a particular dataset D if c(ef|D) > c(éf|D).

To make things worse, there exist many different quantitative criteria [220, 176]. In the
following, we present six common criteria that are usually used in recent literature for an

automatic evaluation of EMs to illustrate the diversity to the reader [57]:
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1. Descriptive accuracy. To determine whether an EM captures relevant structures in a
vulnerability discovery model, we remove the most relevant features associated with the

classification.

2. Robustness. To measure the robustness of an input graph for a given EM, we compute

the relevant features before and after perturbing the input code sample.

3. Contrastivity. This criterion calculates the discrepancy of the relevant statements between

the vulnerable and clean classes.

4. Sparsity. An explanation method must stay concise during operation. To this end, we

count the normalized amount of relevant code.

5. Stability. Some EMs are nondeterministic and do not provide identical results during
different runs. To account for this problem, we can measure the stability in terms of the

standard deviation.

6. Efficiency. Finally, the runtime of an explanation method should not drastically increase

the time a security specialist needs for her traditional workflow.

In our work from Appendix D, we conduct an extensive experiment comparing these criteria
in Table 3.2 using two models, namely Devign and REVEAL and 12 different EMs [57].
Table 3.2: The fdescriptive accuracy, Trobustness, Tcontrastivity, {sparsity and Jefficiency for

the EMs. The standard deviation is omitted for deterministic methods as well as SmoothGrad as
it is neglectable. T means higher numbers are better. | means lower numbers are better.

Criteria | Descriptive Accuracy | Robustness | Contrastivity | Sparsity ‘ Efficiency
Model Devign ReVeal | Devign ReVeal | Devign ReVeal | Devign ReVeal | Devign ReVeal
. 0.08 0.15 0.55 0.58 0.09 0.19 0.73 0.73 3.99 5.07
GNNExplainer
+0.003 +0.008 +0.000 +0.010 +0.01 +0.01 +0.000 +0.001 +0.000 +0.001
. 0.09 0.16 0.37 0.57 0.10 0.21 0.81 0.73 1.22 47.04
PGExplainer
+0.003 +0.002 +0.000 +0.010 +0.010 +0.030 +0.010 +0.001 +0.010 +0.001
0.09 0.10 0.13 0.71 0.11 0.35 0.79 0.14 22.24 33.01
Graph-LRP
+0.002 +0.000 +0.000 +0.000 +0.000 +0.010 +0.000 +0.000 +0.000 +0.000
Random 0.08 0.18 0.07 0.07 0.12 0.40 0.51 0.52 0.01 0.02
+0.003 +0.014 +0.000 +0.010 +0.000 +0.000 +0.000 +0.000 +0.000 +0.000
EB 0.09 0.10 0.48 0.71 0.02 0.00 0.80 0.14 0.11 0.07
GB 0.10 0.10 0.40 0.71 0.05 0.00 0.80 0.14 0.10 0.16
Gradient 0.10 0.10 0.40 0.71 0.05 0.00 0.80 0.14 0.10 0.16
LRP 0.09 0.10 0.16 0.71 0.08 0.00 0.77 0.14 0.14 0.21
CAM 0.26 0.29 0.45 0.49 0.01 0.07 0.48 0.14 0.12 0.17
SmoothGrad 0.08 0.10 0.30 0.71 0.03 0.00 0.77 0.15 1.66 1.72
GradCAM 0.11 0.10 0.42 0.71 0.01 0.00 0.56 0.14 0.11 0.16
Linear-Approx 0.09 0.10 0.42 0.71 0.02 0.00 0.80 0.14 0.11 0.16
1G 0.31 0.14 0.71 0.72 0.00 0.06 0.15 0.19 1.63 2.52

Looking at Table 3.2, we observe a lack of agreement between the different EMs. There is
no one-fits-all solution since not only do the EMs perform differently from model to model,
but also very differently concerning different criteria. Although graph-specific EMs achieve
good results in sparsity, they lack runtime efficiency. Furthermore, their descriptive accuracy
is not much better than just randomly highlighting lines.

Ultimately, we are not only dealing with a large number of different EMs that perform
differently but also with a large number of different criteria for comparison that do not agree

with each other.
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Approach

As a remedy, we propose to compare the EMs in their ability to locate defects correctly.
Essentially, we can associate any EM criterion to an oracle [44, 10] given Definition 16. In the
case of the criteria from Table 3.2, the vulnerability discovery model itself is used as an oracle
to assess the explanation. For example, consider the descriptive accuracy (DA): The model is
observed whether its performance decreases given different features. Since the explanation
method is only assessed by the model that generated the decision in the first place, we refer to
such criteria as intrinsic. Intrinsic criteria are prone to noise in the input space of the model

and reflect its biases or completely neglect the task at hand, for instance, the sparsity criterion.

Definition 16 An explanation oracle is a function o: M — [0,1] that evaluates the

relevance attributed in a heatmap.

We propose extrinsic criteria based on feedback from extrinsic oracles, where we achieve a
separation of the assessor and the predictor. In theory, a human security expert could pose
as an oracle and manually assess each explanation. However, in reality, this is too costly.
Therefore, to eliminate any potential model bias and still compare the explanations with
respect to the underlying vulnerability discovery task, we can automatically assess EMs by
using dynamic program analysis. To this end, we can use any dynamic program analysis
technique, for instance, model checkers [129], abstract interpretation [68], or log analyzers [76].
In this thesis, however, we will stick to fuzzing [131, 75|, more concretely, to directed fuzzers

and runtime debuggers.

Learning - Directed
model fuzzer

Metrics

]
i Crashes
M, M, M, v Crash
analysis

Figure 3.7: Overview of our approach for generating local ground-truth for explanation methods.

A fuzzer is a program analysis tool used to generate inputs and provoke program crashes
[131, 53]. These crashes indicate software defects, and since manipulated inputs trigger them,
they often represent security vulnerabilities in the sense of Definition 1. We employ a directed
gray-box fuzzer to retrieve a set of target locations given by the heatmap from the EMs and
aim at reaching these by seeking inputs that minimize the distance to the locations [18, 153].
For instance, the directed fuzzer AFLGo calculates control-flow and call-graph distances before
the fuzzing process to guide this search. Similarly, approaches to directed fuzzing, such as
Hawkeye [29], can be applied in this step to explore the highlighted code regions and test
for the presence of vulnerabilities. Algorithm 1 summarizes the basic procedure of directed
fuzzers, as can be found in AFLGo and Hawkeye [18, 29].

AFLGo [18] uses simulated annealing to ensure convergence: An initial high temperature
is selected, which exponentially decreases throughout the fuzzing duration.

At first, inputs are assigned uniformly distributed energy and, for example, are prioritized even

though they do not necessarily reduce the distance to the targets as indicated by AssignEnergy ()
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Algorithm 1: Directed Fuzzing [18].

input : Seed S, Targets T
output: Crashes C

1 repeat

2 s = ChooseNext(S)

3 E = AssignEnergy(s)
4 repeat E times
5

6

7

s’ = Mutatelnput(s)
if LeadsToCrash(s’) then
| add " to C

else if IsInteresting(s’, T') then
9 | add s to S

]

10 until Time budget is exhausted

in Algorithm 1. During cool-down and towards the decrease of the temperature, the input seeds

are more constrained to decrease the target’s distances until eventually hitting an optimum.
To pinpoint the exact location of a crash, we utilize a debugger, for instance the GNU

Debugger (GDB) [42], to reproduce the runtime state with the fuzzed input.

This crash is an evident fact and thus represents a form of ground-truth derived from a genuine

incident during the program execution. In Figure 3.7, we can see the overall pipeline of the

EM validation scheme. Using a directed fuzzer, we can come up with new extrinsic criteria

that can be summarized as follows:

1. Crashes per path over time (Mj) As the first criterion, we identify the number of unique
crashes and hangs that are reported during the fuzzing processes. This enables us to

argue about which EM-identified targets lead to more paths with crashes or hangs.

2. Mean breakpoint hits (Ma) As the second criterion, we consider the average number of
breakpoint hits during the reproduction of crashes. If a target line triggers a breakpoint
during the reproduction of a crash, that line can be considered to be associated with the
vulnerability. The more breakpoints are hit during the reproduction of the crash, the

more lines of the explanation are relevant.

3. Mean crash distance (Ms) To overcome the gap left by Ma, we also measure the average
statements executed between the breakpoint hits and the crash site. If the lines from an
EM are closer to the crash site, they should be more helpful for a security practitioner
to identify and locate the cause of the crash and, hence, more relevant. Thus, the

highlighted line does not have to lie exactly on the crash site to be helpful.

We compare different EMs and model combinations using these extrinsic criteria using
three open-source programs under analysis, namely Libming, Libxml2, giflib, and the REVEAL
[27] and Devign [228] models. We average the scores over the models to obtain a single score
per EM. The results of this work suggest a beneficial guidance of the fuzzer using vulnerability

discovery models and EMs.

Result

Given Table 3.3, we can see that all methods significantly outperform random line annotations.

Furthermore, we can see that the intrinsic results from Table 3.2 are misleading since graph-
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based EMs actually perform better than graph-agnostic EMs. VulDeeLocator [111] and LineVul
[55] are both line-level vulnerability discovery tools. The former uses node classification and
the latter uses attention mechanisms to locate the flawed code line. Both tools underperform
heavily against the extrinsic and model agnostic EMs.

We could not measure Ms and Mj for the rule-based static analyzers since both tools could
not find a significant amount of software defects in the samples. However, we can see that the
Flawfinder lexical rule-based analyzer and the Cppcheck syntactic analyzer have at least a

worse M7 metric than the Learning-based analyzers, which are only slightly above Random.

Table 3.3: Ms and M3 comparison between EM.

EM Crashes per path over time M;  Mean Breakpoint Hits My Mean Crash Distance M3z
Random 0.51 + 0.42% 8.21 + 0.40% 0.124 + 0.014s
GNNExplainer 2.09 &+ 0.30% 15.48 4 0.22% 0.084 + 0.002s
SmoothGrad 1.96 £+ 0.37% 11.06 + 0.13% 0.077 &+ 0.003s
PGExplainer 2.15 + 0.41% 10.04 + 0.37% 0.088 + 0.010s
GradCam 2.05 + 0.12% 9.26 & 0.05% 0.097 + 0.006s
VulDeeLocator 1.02 4+ 0.28% 10.54 + 0.14% 0.094 + 0.002s
LineVul 1.04 £+ 0.34% 9.97 + 0.16% 0.084 + 0.003s
Flawfinder 0.71 + 0.15% - -
Cppcheck 0.81 + 0.16% - -

The use of EMs has been shown to produce varying results depending on the method,
which can greatly hinder their application in identifying vulnerabilities. Every incorrectly
labeled line of code must be manually assessed. The effectiveness of selecting a particular EM
depends on the dataset and the model being used and cannot be determined using intrinsic
metrics alone. To make an informed selection, input from human security experts or dynamic
program analysis can be used cost-effectively and automatically. We propose to benchmark

EMs using our extrinsic metrics as a more accurate comparison.

3.3 Controlling Confounding Effects

It has long been an axiom of mine that the little things are infinitely the most
important.

-Sherlock Holmes [47]

Kassar et al. [91] show that different code patterns can impede the efficiency of rule-based
SAST tools. We show that similar effects are present in learning-based SAST tools. Although
learning-based vulnerability detectors have achieved remarkable accuracy in recent work [55],
these benchmarks are conducted only in laboratory settings. They cannot be projected to
real-world applications [136]. In reality, the models fail to generalize and lack transferability
[27, 30]. On the one hand, this means that the trained models are not able to detect out-of-
distribution vulnerabilities from, for example, unseen projects or repositories. Still, on the
other hand, this also means that they are unable to detect defects in slightly modified samples.

This effectively hinders their adaptation to non-academic or real-world settings.
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Problem Setting

In Figure 3.8, we see a type confusion bug from the PHP Zend Engine?, LineVul [55] correctly
classifies it as vulnerable.

However, suppose we remove the green line and replace it with the semantically equivalent
but slightly obfuscated red line. In that case, LineVul fails to detect the bug, even if this line
is entirely unrelated to the underlying flaw. In essence, the bug occurs due to user-provided
data &var2, without checks, being cast to a double. Models overfit to label-unrelated features,
making them unable to detect bugs that don’t share common characteristics from the train
set [161].

1‘

2| float matrix[3][3] = {0,0,0, 0,0,0, 0,0,0}; |
3| float matrix[3 & OxF][3 & 0xF] = {{000, 000, 000}, {000, 000, 000}, {000, 000, 000}}; |

4| if (zend_hash_index_find(Z_ARRVAL_PP(var), (j), (void *x) &var2) == SUCCESS) {
5| SEPARATE_ZVAL(var2);

6 convert__to_double( *var2);

7 matrix[i][j] = (float)Z_DVAL_PP(var2);

Figure 3.8: Confounding type confusion bug in the PHP Zend engine.

We can visualize this effect of the so-called spurious correlation in Figure 3.9, which derives
a simple causal model for a vulnerability discovery function fy [184].
Here, X is the input data, and Y is the label, being either vulnerable or clean. The learning
goal of fp is to find a relationship between the learned representation R and the label Y. If
we inspect Figure 3.9 further, it is trivial to see that the representation learned by a model
f directly influences the predicted label Y. But instead of using the sample under analysis
to directly control the representation, we model it so that X has a causal and a trivial part
[184]. We call the latter the confounding variable, shortcut feature, or spurious correlation
[154]. As a result, we have three relationships: A« X — C,C — R+ A, and R — Y. The
relationship A « X — C denotes the causal features C' while A denotes the trivial or biased

feature patterns. Both influence the final latent representation R.

Figure 3.9: A causal model for learning-based vulnerability discovery.

Borrowed from causal learning, we call such artifacts confounders, and in our case, these

originate from irrelevant features that cause the model to learn biased representations [184]. A

3https://cve.report /CVE-2014-2020
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simple example for an artifact would be a common code style in all vulnerable samples and a
different style for all clean samples [161]. To this end, we identify three sources of bias that can
manifest themselves as artifacts in program code [59]. Beware that this list is non-exhaustive

since there could be infinite possible confounders in a model.

1. Coding style. Every collected sample has an implicit coding style. Since many open-
source projects use automatic linting, samples from one project to another are likely to
differ in their styles. If there are more vulnerable samples from one project than another,

the coding style correlates with Y.

2. Control flow. Projects often contain different calling hierarchies or indirections due to
programming patterns, for instance, object-oriented design principles. Several projects

and authors prefer one pattern over another, which may introduce confounding bias.

3. Naming. Different samples from different projects naturally vary in their naming
conventions. Hence, vulnerable samples may potentially differ in variable naming
compared to clean samples. Although it is common to mask such symbols, recent works

desist from normalizing them.

A model that is too sensitive to noise in the input space is not considered robust [192].
We have already seen robustness in Section 3.2 to measure the difference in the explanation
heatmaps with slightly perturbed input features. In this section, we are interested in the

robustness form a model perspective.

Approach

To measure the true causal correlation and to remove confounding variables in causal learning,
it is common to calculate the influence of one variable affecting the other by intervention [154].
This can be done using do-calculus, that is, we can stratify the confounder by calculating the
influence of C' — Y given all possible artifacts from a € A. Since the possible artifacts are
infinite, we have to approximate the distribution of A by calculating the estimated likelihood
of the code samples X = (zo,...,2,) using a subset A’ C A and define an artifact a € A" to
be a specific semantically equivalent variant of the code samples kq(X) = (ko(20), - - -, ka(z)n)
obtained by one semantic-preserving perturbation a € A’. To remove the confounding effects,

we can use the calculation from Equation (3.2).

P(Y|do(C)) =~ > P(Y|C,A=a)P(a). (3.2)

acA’
For kq(x) with a € A’, we define a specific set of code transformations to obtain different
variants of the dataset for training and evaluation. These transformations can be categorized

into three classes:

1. Styling. We can apply style formatting using clang-format with different popular
predefined styles [82].

2. Uglification. We test two different kinds of “uglification”. The first variant consists of
removing comments, randomly renaming all variables, and applying a code style. The

second variant is the same except for additionally removing all whitespaces and newlines.
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3.3 Controlling Confounding Effects

3. Obfuscation. The obfuscation consists of randomly renaming variables and functions,
removing comments, adding unneeded statements, adding function definitions, and

replacing numbers with an equivalent number representation.

Using the transformations and the stratification from Equation (3.2), we can derive a
function to measure the confounding effect of the artifacts in Equation (3.3).
Yaear PY|C,A=0a)P(a) — P(Y|C, A)

‘= P(Y|C, A) 33)

As an intuition, consider ¢ = 0, meaning that P(Y|C, A) = P(Y|do(C)). The more ¢ deviates
from 0, the greater the influence of the artifacts and P(Y'|C, A) # P(Y|do(C)).

The application of different perturbations to the code should resemble a causal intervention.
A non-confounded model should perform equally on semantically equivalent but perturbed
code since the decision should solely depend on the causal feature part. Let us define the
model predictions on the code samples under different perturbations as Va € A’ : f(kq(x)).
Consequently, this intervention provides insight into how the model behaves under different
artifacts and yields a more robust basis for model evaluation and comparison. In a more
practical sense, suppose that we have a metric M: f — R that assesses the quality of a
learning-based vulnerability discovery model, such as accuracy. We can then measure the
influence of confounders using Equation (3.4).

_ Suea M(f (k) Pla) = M(f()) )

M(f(z))

Measuring the confounding effects is one side of the coin. Thus, this thesis also proposes

four solutions to significantly reduce the confounding effects of different types for vulnerability

detection models.

1. LLMs with normalized code. To remove the effect of style artifacts on LLMs, one naive
solution is to normalize the code. Code normalization is the modification of code so that
it conforms to a given style guide, which reduces, but does not remove, the impact of

the personal style on the code [82].

2. LLMs with pre-tokenized code. Another solution follows from the work of Roziere et al.
[163], who propose to tokenize the code before applying the byte-pair encoding using a
programming language-specific lexer. They feed the resulting tokens as space-separated

plain text into the model, a process we refer to as pre-tokenization.

3. Causal Models. A more principled approach arises from the work of Sui et al. [184] in the
domain of GNNs: By applying an intervention directly to the learning model, they can
mitigate the impact of confounding variables. This is done by conditioning the causal
input features, in this case, a code graph, per sample with all possible trivial subgraphs

obtained during training [87].

4. LSTMs with differentiable memory. Delétang et al. [41] show that transformer models
cannot generalize well over different-sized input token lengths. The authors state that

classical LSTMs and RNNs with differentiable memory provide stronger generalization
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Figure 3.10: The confounding effect on the function-level detection performance measured by
balanced accuracy.

performance than transformer models on increasingly complex tasks. Since the number
of tokens within samples can impose another bias, we propose to extend LSTM-based

vulnerability detection models with a differentiable stack [102].

Result

In Figure 3.10, we can see that the LLMs, LineVul, and CodeT5+ [201] have the most
disadvantageous confounding effects with up to 60% performance decrease measured by their
balanced accuracy. However, using the normalization trick, LineVul,, and CodeT5+,, arrive
at a much better confounding effect of around 40% decrease. Using the tokenization trick, we
can even further reduce the effect to only 5%.

REVEAL, the GNN;, has a confounding effect of 20% but can be reduced using the causal graph
replacement by Sui et al. [184] to around 10%. StackLSTM is an extension to VulDeePecker
[113] and relies on a differentiable stack. Its confounding effect is slightly better than REVEAL,
however not as good as the causal graph isomorphism network (CGIN).

The novel evaluation scheme relying on causal learning has unequivocally exposed the
presence of numerous false correlations within the dataset, which led to an underperforming
vulnerability detection model and wrong line-level explanations. However, implementing the
proper preprocessing techniques or modifying the model architectures can significantly reduce

the confounding effect on the task of discovering vulnerabilities.

3.4 Learning-based Taint Analysis for Patches

I'm trying to free your mind, Neo. But I can only show you the door.
-Morpheus [86]

Current vulnerability discovery models can’t look behind function definitions and have
limited context and worse so, recent transformer models process tokens in a very limited
window [147, 39] and possibly fail to analyze functions that have more tokens than their limit
[227]. Examining the historical evolution of vulnerability discovery models unveils a progression

from models considering entire functions as observations [228, 27| to those focusing on local
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3.4 Learning-based Taint Analysis for Patches

code regions surrounding point of interests (Pols) [112, 31]. The latter category views functions
as classification targets as too coarse-grained, containing excessive, unnecessary information.
Thus, they identify Pols as specific statements involving array index calculations, function calls,
pointer arithmetic, or memory management, treating them as syntactic vulnerability candidates.
These models generally achieve better performances compared to function classifiers. In general,
these models incorporate a small interprocedural context by inlining functions within the
region of interest [227]. This inclusion of an interprocedural context is considered a key factor

contributing to the enhanced performance, a hypothesis supported by various works [136, 32].

Problem Setting

Examining Figure 3.11, the Clang analyzer suspects a potential memory leak at the end of
the code snippet. The function free_ftrace_hash acts as a wrapper for the standard library
function free. The SAST tool is unaware of the actual semantics, underlining the crucial
necessity for interprocedural context, especially in the realm of learning-based SAST tools
[227]. Inlining functions would indeed solve this problem, but with deeper nesting and larger

call hierarchies, we quickly reach limits.

(]

1
2 new__hash—>flags &= ~FTRACE_HASH_FL_MOD;

3 mutex_lock(&ftrace_lock);

4 ret = ftrace_hash_move_and_update_ops(ops, orig_hash, new_hash, enable);
5 mutex_unlock(&ftrace_lock);

6| out:
7 mutex_unlock (&ops—>func_hash—>regex_lock);

8 free_ftrace_hash(new_hash); ‘

|
9‘ [-] ‘

Figure 3.11: Linux kernel code sample with an alleged memory leak.

It has been demonstrated by Beba and Karlsen [11] that by adding flow-sensitive analysis
methods to SAST tools, the false positive rate can be reduced. Similarly, combining learning-
based SAST tools with taint analysis should improve precision and enable the discovery models

to leverage context sensitivity.

Approach

Definition 1 tells us that a security vulnerability requires human input. Thus, as a novel
contribution, we extend the definition of point of interests (Pols) beyond the potential
manifestation of software defects, as proposed by Mirsky et al. [136], to also encompass
areas associated with human-provided input, such as gets or cin. Given a code graph, we can
label all Pols and arrive at a set of nodes Vyourcr and Vgyk just as in the taint-style analysis
Definition 8. If we were to trace all possible paths between the two sets by following every
control and data flow, we would end up with an interprocedural graph that is too large to
handle. Consider Figure 3.12, we can see two code graphs of a hypothetical program. At the
same time, numbered nodes represent functions or statements, SRC and SINK denote source
and sink nodes, respectively. The directed edges represent the flow of control or information.

The left graph depicts a hypothetical interprocedural code graph for an entire program.
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Such large graphs introduce severe problems for machine learning applications. For example,
using GNNs, we would need to stack many layers to consider information that extends over
larger neighborhoods, which would not only be computationally ineffective but also introduce
problems such as Laplacian over-smoothing [107]. Moreover, information between two distant
nodes is diluted, which would also affect models like RNNs or even LSTMs. LLMs suffer
from a quadratic runtime complexity with respect to the input size, which, in addition to
their limited processing context, would further impair their practical suitability. Minimizing
the code graph by reformulating the problem from vulnerability discovery to vulnerable patch
detection enables us to consider larger contexts without having to deal with exploding feature

spaces. We will call this novel approach patch-based vulnerability discovery (PAVUDI).

Figure 3.12: Hypothetical code graphs for a program. The left depicts an interprocedural
whole-program graph, and the right its taint graph.

This not only emphasizes the necessity of context sensitivity, since the model has to analyze
patches with respect to the entire application but also leaves us with a new set of nodes Vipr
and we arrive at a new taint-style analysis problem as defined in Definition 17. Consider now
the right graph in Figure 3.12 where we now arrive at a much smaller code graph compared to

the left one. However, it still contains all necessary taint flows for a specific patch or commit.

Definition 17 a) A taint-style analysis for wulnerable patch detection is a 4-tuple
(Vsources Veini, Vsan, Vepir) consisting of the nodes in a code graph of a program p € P
denoting the taint source, sink and sanitizer nodes from Vu [211] as well as the nodes
corresponding to code that is changed or newly created in a patch [p'= p].

b) We say a patch [p' = p| contains a defect if there exists a vulnerable data or control flow
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between any vy € Vsource and vi € Vgnix with the constraint of not reaching any defined

sanitizer but intersecting with at least one node from Vigpir.

Previous works have only conducted tangent research in statically finding patches that
silently introduce vulnerability fixes, for example, the works by Wang et al. [199][200]. In

essence, our vulnerable patch detection approach consists of three steps:

(1) Graph representation. We define a new interprocedural patch graph representation
that can be built efficiently using incremental program analysis [188]. In contrast to current
discovery models, interprocedural graph representations are arguably more beneficial since
they enable us to propagate taint information within the entire program, which is impossible
with a function, local slice, or file-level graph.

For this endeavor, we represent a program under analysis p € P by an interprocedural
code composite graph (CCG). We define taint paths as a first step towards the definition of
taint graphs. For this, we select taint sources Vsourcg C V' providing user input and taint sinks
Vsnk C V' denoting critical code regions and the subset Vipir C V' of all nodes that have been
edited in a specific patch.

Definition 18 A single taint path p of a patch [p' = p] is an oriented path with vertices
VQy -+« + 5 Vp, - - - Ve Starting at vo € Vsourcr, passing through vy € Viprr and ending in ve € Vg

where all the edges are in Frpra, Epra or Eorg.

To obtain taint paths, we perform forward slicing from Vi to Vgnk following any edge
from the interprocedural data flow graph (IDFG), DFG or CFG while neglecting the edges from
the AST and CG. This leaves us with a set of paths that describe the changed spots within a
patch potentially flowing into critical sinks. Likewise, we perform backward slices from Vgpr to
Vsource- Combining both sets of slices leaves us with a set of paths describing all flows, starting
with user-defined inputs that intersect the patched locations and reach the critical sinks. To
provide a holistic view of a patch, we arrive at the taint graph, as defined in Definition 19, by
combining all taint paths and gluing them together at their patch intersections Vgpir. It is
trivial to see that this graph representation fits nicely into the definition of vulnerable patch

detection in taint-style from Definition 17.

Definition 19 A taint graph (TG) of a patch [p’ = p| is defined as Grg joining its taint paths
{(php2, ... ,fok} at their common AST nodes, starting from Vsourcr flowing through Viprr and

reaching V-

(2) Value-set analysis. As another improvement over recent discovery models, we calculate
a set of values to track the variable domains on the graphs. This assists in reasoning about
potential buffer bounds and sanitizations. More specifically, whether or not the value of a
user-controlled variable or buffer length is bounded beneficially affects the model’s decision.
Given Gp we can select any variable assignment v, € Vp and find (vs,v.) € Ep where v,
reads from vs. If v, is a constant and v, is a Boolean, Float, or Integer operation, we can
evaluate v.. If vg is not a constant, we can find (v,vs) € EFp and repeat. This eventually boils

down to constant propagation and folding. If we can evaluate v, we attach the evaluated value
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to the node. Otherwise, if the operation cannot be evaluated because, for instance, one data
flow dependent on vy of v, relies on I/O or external API calls, we annotate v, with vg. Lastly,
we find all expressions within surrounding conditional blocks that may act as invariants [204].
If within this conditional block, we find a variable that appears in a conditional of the form
<var> <comparison> <expression>, we annotate its bounds with its value if it could be evaluated
in the previous step. As an example, in Figure 3.6, we can assert that 1en is greater or equal

to zero and hence has a lower bound of 0 in the remainder of the function from line 19.

(3) Causal GNN model. Finally, we use graph isomorphism network (GIN) layers, as in
Equation (3.5), to train an inductive model to infer detection rules applied to taint graphs.
Our model is especially suited for processing long input graphs due to skip-connections [209],
self-attention [193], and the optimizable parameter ¢ determining the influence of current
nodes relative to neighboring nodes. We also use the causal attention module from Section 3.3,

enabling a fine-granular software defect localization.
h = gU=1) ((A +(14€) xI)x RELU(h(l_l))) (3.5)

The performance of PAVUDI is assessed on the FFmpeg and Qemu vulnerability dataset
from Zhou et al. [228] against different state-of-the-art function and slice-based SAST tools.
Since, to the best of our knowledge, there is no prior tool for vulnerable patch detection, we

adopt different strategies for the local detectors:

1. Max is a strategy in which the maximum value of all the prediction scores of the slices

or functions is used.
2. Mean strategy averages every prediction score from slices or functions.

3. Probability describes the likelihood of the patch being vulnerable depending on its k

components, similar to a system’s failure probability.
4. Isotonic Probability uses an isotonic regressor [148] followed by the probability strategy.

5. Commit merges all code components changed within a patch together.

The different strategies have different effects on the FPs and TPs. If the score for the
vulnerable function in the patch is smoothed out with the MEAN-Strategy, we have fewer TPs
and FPs. The MAX-Strategy, on the other hand, may be too sensitive with functions that
are slightly above the threshold, which results in a higher FP and TP, resulting in a lower

precision but higher recall.

Result

Figure 3.13 shows that using a normal GIN with local code regions results in a performance
equal to or close to the baseline models with only 40% of PAVUDI’s original efficacy.

The CGIN layer enhances the performance significantly while using the taint whole-program
paths contributes the most to the improved model performance. The bound information only

yields negligible benefits of at most 2%.
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Figure 3.13: The performance contributions of all components of PAVUDI on the FFmpeg and
the QEMU dataset.
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Figure 3.14: Performance comparison against DeepWukong and Vuddy.

We compare our approach against the seven baselines with the five aggregation strategies.
In Figure 3.14, we can see that PAVUDI has a much higher area under receiver operating
characteristic curve (AUROC) and F1-Score compared to Vuddy and DeepWukong. Since
VUDDY is a deterministic method and not fine-tuned to our dataset, bad performance is
expected. DeepWukong, however, is a sliced-based GNN approach and only achieves an
F1-Score of 65% using the ISOTONIC-Strategy.

Figure 3.15 shows the result against other graph-based methods. Especially, BGNN4VD
outperforms the previous token-based and slice-based methods with a AUROC of 80% and an
F1 score of 75%. In all of our experiments, the use of the MEAN-Strategy yields the worst
scores. The MaxX and COMMIT strategies perform similarly poorly. Both increase the false
positive rate too much, resulting in disadvantageous F1 and AUROC scores.

Given Figure 3.16, it is surprising that the simple token-based approach VulDeePecker
with the PROBABILITY-Strategy achieves an AUROC of 79% on QEMU and FFmpeg beating
SySEVR. Furthermore, we observe an overall beneficial score using the isotonic projection for
all methods.
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Figure 3.15: Performance comparison against Devign, REVEAL and BGNN4VD.
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Figure 3.16: Performance comparison against VulDeePecker and SySEVR.

Our study has demonstrated that providing more context to learning-based models
significantly enhances their detection capabilities. We recommend PAVUDI as the first
whole-program learning-based taint analysis approach that can leverage large contexts without
the problems of exploding feature spaces. While this approach may have some limitations,
such as the requirement for pre-labeled sources and sinks, which may be prone to human
error, we believe that this represents a significant step towards a new research direction for

learning-based vulnerability discovery.
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Conclusion

This thesis examines the limitations of current learning-based vulnerability discovery models
and proposes enhancements to make them more suitable for realistic applications. We have
seen four major limiting categories that hinder the adaption to real-world application, namely:
insufficient, imbalanced, and low-quality data, a lack of model interpretation, unstable and
nontransferable models, and finally, models that lack context. This chapter draws conclusions

based on the issues and experimental results addressed.

Concluding Remarks Vulnerability discovery models achieve a high detection rate while
pertaining to a low false positive rate in laboratory settings. However, the transfer to realistic
scenarios has proven to be a more significant challenge [27, 30, 100]. This thesis proposes
four potential culprits for impeding model generalization, that is, insufficient or low-quality
training data, a lack of opaque model decision, confounding correlations, and missing context.
We demonstrate CodeGraphSMOTE as a potential countermeasure for highly imbalanced
datasets that lack vulnerable samples. Furthermore, we show that even though there exist
many explanation methods to interpret ML models, they perform very differently, and popular
benchmarking criteria suffer from the decoupling of the underlying vulnerability detection task.
As a remedy, we propose to use dynamic program analysis for a more truthful comparison.
Another major problem with current vulnerability detectors is that they tend to be rather
input-sensitive and overfit on spurious correlations. Using causal learning methods, we can
measure these confounding effects and effectively assess strategies that reduce the impediment.
Lastly, all models have a limited context and hence may not learn more complex relationships
in the program under analysis. We propose a new interprocedural whole-program graph that
incorporates taint analysis to solve the vulnerable patch detection task. Considering all these
problems and possible solutions drives us closer to models that are applicable to real-world

secure software development life cycles.

Future Directions In the following, we want to discuss possible research directions. Current
trends in machine learning, such as large language models or diffusion models, also foster

research in (deep) learning-based vulnerability discovery. Large language models can process
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larger token contexts compared to formerly used RNNs or LSTMs but are still limited. Novel
approaches increase their processable context window [45] and their training and inference
efficiency [40]. Diffusion models might provide better performances than variational auto-
encoders in generating source code as they have already been adopted for natural language
[231] or in generating code graphs [120].

Research in code representation for vulnerability detection tends to focus on graphs provided
by intermediate representations from compilers, such as the LLVM-IR [136, 32]. This improves
the data quality since it abstains from over-approximate graph representations such as the one
from the fuzzy parser from Joern [211] or Fraunhofer-CPG [205]. Recent works also more and
more incorporate dynamic analysis into the preprocessing stage as infeasible path removal [32].
It would be possible to add more and more sophisticated preprocessing steps, for instance,
type deduction and annotation for small local samples if we lack context. In code gadgets,
variables could be tainted and annotated, respectively.

We also see more work in local code region detection. Since it is obvious that vulnerable
function classification provides too coarse-grained outputs that are barely helpful to human
security experts, models like LineVul [55], LineVD [80], or Velvet [46] provide line-level or
even statement-level results. This enables more interpretable outputs and less effort for
manual validation and triage. However, the manifestation of vulnerability can differ from the
predicted Pol. Patch locations might not correspond to the vulnerable location; hence, this
can result in label inaccuracies. Very early research attempts to find vulnerable code clones
by searching for similar code vector representations [213] or hashes of abstract code from
historical vulnerabilities [95]. An exciting direction could be using high-performance vector
databases [89] and latent representations by large code models [201] to efficiently find code that
is very similar to historic CVEs. This yields a very scalable approach [66] and interpretable
results since the predictions can be directly compared against historical vulnerabilities and
mapped to concrete CWEs.

Learning-based vulnerability discovery currently assumes fixed data and a one-time trained
model. In the future, with the increasing adoption in software development and delivery tools,
it will be necessary to view it as a process rather than a static setting [141]. Thus, the data and
model will change over time, which will pose a challenge for explainability and interpretability
tools that have to adapt to these changes. Causal models [154] can be integrated into decision,
data collection, and validation processes with better validation using domain knowledge by

security practitioners.
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Supplementary Material

SAST is undecidable

We show that b from Definition 2 is undecidable using Rice’s Theorem. First, b is a nontrivial
property, since we have dpyyinerasLe € P and Ipcrpan € P.

We can further reduce the problem to the undecidability of the halting Problem. Assume
that there exists an algorithm f as in Definition 2 or Definition 9 that determines whether a

program p € P has property b.

Proof: Consider a program O(p,w) that accepts a program p € P and an input w. Also,
without loss of generality, consider a program pyurxeras.e € P that contains a defect and

terminates. Now define O as following;:

Algorithm 2: Oracle O deciding the halting problem
Input: Program p € P, Input w
Output: True if p halts. False otherwise

1 Procedure O(p,w):

2 Create a new program p’ that simulates p(w) followed by pyuixerasLe;
3 Return f(p);

If p halts, p’ will contain a reachable defect, and O returns true. If p diverges, it will not
contain a reachable defect, and O will return false. Since b is assumed to be decidable, this

implies that we can use f to solve the halting problem, which is a contradiction. O

Rule-based SAST Tool Evaluation

This section provides a brief evaluation of rule-based static application security testing (SAST)
tools, focusing on precision and recall metrics for datasets that are specifically designed for
training learning-based vulnerability discovery models. The precision and recall plots illustrate

the effectiveness of Flawfinder (lexical), Rats, and Cppcheck (syntactical), as well as Semgrep
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(semantical’) SAST tools in identifying vulnerabilities. Each set of subfigures corresponds to
a specific dataset, including BigVul, CVEFixes, Devign, DiverseVul, and ReVeal. Precision
plots emphasize soundness, while recall plots depict completeness. Notably, the semantical
analyzer achieves the best trade-off between soundness and completeness. Cppcheck sacrifices
completeness for soundness, with a consistently low recall score, while its precision remains
comparable to the other tools. Rats scores the lowest in this evaluation. As a sidenote, all

rule-based SAST tools perform worse than the learning-based vulnerability detectors from the

respective publications.
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Figure A.1: The performance comparison on BigVul [50].
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Figure A.2: The performance comparison on CVEFixes [15].

'Rules are taken from here https://github.com/anon767/semgrep-rules
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Figure A.4: The performance comparison on DiverseVul [30].
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Differential SAST Dataset Analysis

In this section, a differential analysis of datasets is provided [48]. Differential data analysis is
conducted using four SAST tools. Most vulnerability datasets consist of security patches. A
vulnerable sample corresponds to the code before the patch, and a clean version represents the
code after the patch. A higher ability of the SAST tools to identify patches, indicating their
detection of bug removal or fixes, denotes a better-quality dataset. The code analysis plots offer
visualizations for various datasets, namely BigVul, CVEFizes, Devign, DiverseVul, and ReVeal.
Each subfigure provides insights into the differential analysis results for the corresponding
dataset. The Owerall score measures combined SAST performance, considering a hit whenever
at least one SAST tool reported a fixed bug. Clearly, REVEAL achieves the highest score,
directly followed by DiverseVul. The other datasets have lower scores, suggesting that these
datasets may include more patches that are not directly security-relevant. Since no SAST tool

is perfect, this, however, only gives us a lower bound.
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Figure A.6: Differential Analysis for BigVul [50] and CVEFixes [15].
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! SAP Security Research {firstname.lastname}@sap.com
2 Technische Universitét Berlin rieck@tu-berlin.de

Abstract. The automated discovery of vulnerabilities at scale is a cru-
cial area of research in software security. While numerous machine learn-
ing models for detecting vulnerabilities are known, recent studies show
that their generalizability and transferability heavily depend on the qual-
ity of the training data. Due to the scarcity of real vulnerabilities, avail-
able datasets are highly imbalanced, making it difficult for deep learn-
ing models to learn and generalize effectively. Based on the fact that
programs can inherently be represented by graphs and to leverage re-
cent advances in graph neural networks, we propose a novel method to
generate synthetic code graphs for data augmentation to enhance vul-
nerability discovery. Our method includes two significant contributions:
a novel approach for generating synthetic code graphs and a graph-to-
code transformer to convert code graphs into their code representation.
Applying our augmentation strategy to vulnerability discovery models
achieves the same originally reported Fl-score with less than 20% of
the original dataset and we outperform the Fl-score of prior work on
augmentation strategies by up to 25.6% in detection performance.

Keywords: Vulnerability Discovery - Data Augmentation - Graph Neu-
ral Networks.

1 Introduction

The research in the field of automatic vulnerability discovery has made remark-
able progress recently but is still far from complete. Traditional rule-based tools
suffer from high false negative or false positive rates in their detection perfor-
mance. Consequently, advances in deep learning spark interest in the develop-
ment of learning-based vulnerability discovery models. For instance, recent mod-
els borrow techniques from natural language processing using recurrent neural
networks (RNNs), in particular, long short-term memorys (LSTMs), where the
source code is processed as a flat sequence of code tokens [6, 30, 31, 38]. Even
more recent approaches use graph neural networks (GNNs) thereby leveraging
code graphs as a compact structure to represent the syntactic and semantic
properties of programs [6, 10, 43, 55]. Graph learning is still a young field with a
big room for improvement, but a promising technique to foster further research,
especially in software security [15].
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However, one major obstacle in learning-based vulnerability discovery, is ob-
taining enough representative code samples since most datasets available are
either too small, unrealistic or imbalanced [6, 34, 44]. While clean code sam-
ples are vastly available and can be gathered easily, vulnerable samples, on the
other hand, are scarce [2]. GNNs architectures suffer under that shortage the
most, as they tend to overfit very easily and hence need balanced labels for
training. Chakraborty et al. [6] report that models trained on inappropriate and
imbalanced datasets are less transferable and have disadvantageous detection
capabilities. The question arises then, on how to apply vulnerability discovery
models to projects that lack a large history of vulnerabilities.

In traditional machine learning domains, data augmentation techniques are
commonplace: For image data, random crops, offsets and rotations generate
slightly different images with the same underlying meaning [40]. In tabular data,
Synthetic Minority Oversampling Technique (SMOTE) is used to interpolate
between minority samples and thus generate new samples [7]. Natural language
processing uses techniques, such as synonym replacement, random word swaps,
deletions or back translation [39]. While graph-based deep learning provides a
unified method for neural networks on grids, groups, geodesics and gauges, no
augmentation method for full graphs and even less so for code graphs exists.

Although augmentation techniques for node-level [54] and edge-level [52]
tasks are available, techniques for graph classification are still unexplored [51].
The graph-specific augmentation methods that have been developed so far, either
only perturb graphs [32, 51], cannot generate new graphs with node attributes
of the target domain [21] or only perturb the node attributes [26]. Even worse,
these augmentation strategies are disconnected from the underlying vulnerabil-
ity discovery task, causing the generated samples to be neither syntactically nor
semantically correct rendering them effectively uninterpretable.

More promising approaches like Graph2Edit [50], SequenceR [9] or Hop-
pity [12] can generate new vulnerable samples by learning semantic edits ap-
plied to clean code samples [34]. Although they are better suited for balancing
vulnerability datasets than random graph perturbations, they already require a
large number of vulnerable samples for training, which is the problem we are
trying to solve in the first place. Furthermore, Nong et al. [34] observe that neu-
ral code editing approaches for vulnerability injection only yield significant im-
provements if the generated samples are assessed and selected and thus require
extensive manual labor. Hence, we need data augmentation strategies explic-
itly tailored for vulnerability discovery which do not require large amounts of
vulnerable training data and produce human-readable code. We present Code-
GraphSMOTE, a novel method to augment code graph samples for vulnerability
discovery models. It generates new vulnerable samples for the minority class in
a dataset by porting SMOTE to the graph domain, specifically for code graphs.
It does so by interpolating in the latent space of a variational autoencoder.

Our approach focuses on interpretable and sound sample generation. In
essence, the contributions we present are:
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1. A novel method to generate sound and interpretable synthetic code graphs.
2. A graph-to-code transformer to translate code graphs back to source code.
3. An evaluation demonstrating the practicability of our method.

Moreover, we publish our implementation of this method to foster further
research in this direction®. In the rest of this paper, we review Related Work
in Section 2. Then we lay down the preliminaries for vulnerability discovery in
Section 3 and for data augmentation in Section 4. We proceed to thoroughly
describe our method in Section 5, then present our experimental evaluation in
Section 6 and end with the Conclusion in Section 7.

2 Related Work

Some graph-specific data augmentation methods perturbing the given samples
have been developed, while graph data augmentation methods that are extending
the dataset by generating new graphs are heavily underdeveloped.

DropEdge [37] reduces overfitting and over-smoothing by removing random

edges from the graph at training time, and several improvements over DropE-
dge have been made by choosing the dropped edges in a biased way [16, 41].
Other methods are based on adding and removing edges [8, 53], masking node
attributes [56], sampling a random subset of the nodes [13, 20] and cropping
sub-graphs [45]. DeepSMOTE interpolates images in the latent space of an au-
toencoder instead of the original pixel space.
This greatly improves downstream classification performance for imbalanced
datasets by generating synthetic minority samples and works better than gener-
ating new samples based on generative adversarial networks [11]. The same idea
is applied to graphs to generate new nodes for imbalanced node classification
tasks in [54]. There, a GAE is trained to reconstruct the adjacency matrix, while
simultaneously learning latent features of the edges. The nodes are then over-
sampled using SMOTE in the latent space obtained by the GAE, which is also
used to generate edges connecting the new nodes with the rest of the graph. This
method achieves better accuracy in the task of imbalanced node classification.
However, no adaptation of this method has been published, that interpolates
between graphs to be used in graph classification. Chakraborty et al. [6] already
apply SMOTE on graph embeddings before using a vulnerability classifier, this
was found to increase detection performance. However, their method is gener-
ally, hardly applicable since it uses intermediate representations from another
vulnerability discovery model and does not reconstruct interpolated graphs let
alone the underlying source code.

Other approaches have been proposed from different research branches. Neu-
ral code editing uses deep learning to generate syntactically and semantically
valid code samples. Different approaches, for instance, Hoppity [12], SequenceR
[9] and Graph2Edit [50] have been developed. A recent study found out, that
these approaches do not work well for augmenting vulnerability datasets [34].

3 https://github.com/SAP-samples/security-research-codegraphsmote
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Furthermore, the generated additional samples by Graph2Edit were found to be
unrealistic but still helpful as additional training data for a vulnerability discov-
ery downstream task. Lastly, Evilcoder [36] allows for automatically inserting
bugs using rule-based code modifications, for instance, modified /removed buffer
checks. However, this method produces vulnerable code samples that are too
trivial to distinguish from clean samples and hence not suitable for machine
learning.

3 Vulnerability Discovery

The preliminary materials for our method concerning learning-based vulnera-
bility discovery, program representations and representation learning on code
graphs are discussed in this section.

3.1 Learning-based Static Analyzer

We start by formalizing the vulnerability discovery task in the following section:
Given a particular representation of a program, a static vulnerability discovery
method is a decision function f that maps a code snippet x to a label y €
{VULNERABLE, CLEAN}.

Learning-based methods for vulnerability discovery build on such a decision
function f = fo parameterized by weights © that are obtained by training on a
dataset of vulnerable and non-vulnerable code [18]. Compared to classical static
analysis tools, learning-based approaches do not have a fixed rule set and can
therefore adapt to the characteristics of different vulnerabilities in the training
data. Current learning-based approaches differ in the program representation
used as input and the inductive bias, that is, the way f depends on the weights ©.

3.2 Program Representations

Different representations for programs have been used as a basis for vulnera-
bility discovery models in the past. Popular natural language processing-based
approaches represent a program as the natural token sequence that appears
in the source code [38]. Since programs can be modeled inherently as directed
graphs [1], more recent approaches make use of graph representations [10, 43, 55]
for source code instead of flat token sequences achieving state-of-the-art perfor-
mances [38]. We refer to the resulting program representation as a code graph
and denote the underlying directed graphs as G = G(V, E) with vertices V
and edges E C V x V. Moreover, for v € V, we define N(v) as the set of its
neighboring nodes.

Code graphs differ in the syntactic and semantic features they capture. Re-
cent works, for instance, rely only on syntactic features using the abstract syntax
tree (AST) [1], while newer approaches also capture the semantic properties, as
for instance using the control flow graph (CFG), which connects statements with
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edges in the order they will be executed or the data flow graph (DFG) connect-
ing the usages of variables. Based on these classical representations, combined
graphs have been developed. A popular one is the code property graph (CPG)
[49], which resembles a combination of the AST, CFG and program dependence
graph (PDG). Other approaches use different combinations [5, 46]. All these rep-
resentations are denoted CPGs, however, to distinguish them from the original
CPG proposed by Yamaguchi et al. [49], we formally define a code graph in Def-
inition 1 as an attributed and combined graph structure representing programs.

Definition 1. A code graph is an attributed graph G = (V, E, Xy, Xg) derived
from source code and providing a syntactic or semantic view of the program.

Naturally, code graphs have attributes, for instance, a node could have code
tokens or AST labels attached. Since deep learning algorithms expect input fea-
tures to be numeric, recent works embed these attributes into vector spaces
[6, 10, 43, 55]. Hence a code graph extends the pair (V, E) by node attributes
Xy € RIVIXdv of dimensionality dy and edge attributes Xz € RIEIXde of dj-
mensionality dg [47].

3.3 Learning on Code Graphs

Vulnerability discovery using code graphs as input representation is a graph
classification task. Building on a set of labels y and a set of attributed code
graphs G it aims to learn a function fg: G +— y. A set Gipain of training graphs
with known labels for each of those is given through which the parameters @ of
the function are optimized.

To build a graph neural network for code graphs, a convolutional and a
global pooling block are needed [3]. Many graph convolutional blocks have been
developed, the simplest of which is the graph convolutional network (GCN) [25].
The GCN can be formulated based on:

X'=D"Y?AD"'?xe6, (1)

where A = A + I is the adjacency matrix with added self-loops, 13” => ; flij
is the degree matrix and X the initial node feature matrix. Other types of
convolutional blocks might be a gated graph neural network (GGNN) [29] or
a graph isomorphism network (GIN) [48], where the former uses gated recurrent
units instead of a feed-forward network and the latter has a separate optimizable
parameter for the weights applied to the self-loops. In vulnerability discovery,
however, we often lack a representative amount of vulnerable samples and, in
consequence, have to deal with imbalanced graph classification [22].

4 Data Augmentation
Since there are few examples of vulnerabilities in the wild and the datasets for

vulnerability discovery are unbalanced, as a remedy, we discuss the basics of
data augmentation in this section.
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4.1 SMOTE

The Synthetic Minority Oversampling Technique (SMOTE) [7] extends a dataset
by generating new samples for all minority classes based on feature-space inter-
polation in the input domain. This way, the imbalance ratio of the dataset can
be reduced and generalization to minority classes improved. New samples are
generated by randomly selecting a sample and choosing a second sample from
a random subset of the k nearest neighbors of the same class. New samples
are generated by linearly interpolating between the features of the two selected
nodes, yielding a new feature vector & = A\x1 + (1 — A\)zo, where x1, o are the
features of the original samples and A € [0, 1] is a uniformly random number.

4.2 Graph Autoencoder

Due to their discrete nature, SMOTE is not readily applicable to code graphs.
It is not directly evident how one would interpolate between two graphs with
both having, e.g., different numbers of nodes or edges. Some recent works apply
SMOTE on the compressed latent space representation learned by an autoen-
coder in the computer vision domain [11], which learns to generate meaningful
latent variables for samples from a data distribution [23] consisting of an en-
coder and a decoder. Moreover, the encoder of a variational autoencoder infers
a probability distribution of the latent representation, by choosing a parametric
probability distribution as the prior distribution for the latent variables. During
training, the encoder infers the parameters of that distribution. For example, a
variational autoencoder with a Gaussian distribution as the prior for the latent
space would have two encoders e, (z) = z, and e,2(x) = z,2. Then the latent
representation needs to be decoded by sampling from z ~ N (z,, z,2). This way,
the decoder can still operate on a continuous latent representation, where it then
tries to reconstruct the original input [24].

Graph autoencoders (GAEs) take this idea to the domain of graphs. They
encode a graph into a latent space representation and decode it back into a graph.
The latent space can be structured as a node- or graph-wise latent representation.
The latter implies a single constant-sized vector for the complete graph, while the
former latent space representation consists of a vector per node. Furthermore,
the reconstruction target can be the adjacency matrix [24], the node or edge
feature matrix [28]. Just like for the classical autoencoder, a variational variant
exists, called variational graph autoencoder (VGAE).

5 CodeGraphSMOTE

CodeGraphSMOTE is applied on code graphs since not only do they provide
state-of-the-art performance results on vulnerability discovery but also retain
semantic and syntactic information in a compressed structure. Moreover, Code-
GraphSMOTE is also equipped with a transformer to convert graphs back to
source code representations. In particular, it consists of an autoencoder, inter-
polation method and graph-to-code transformation model. Figure 1 shows an
overview of those blocks and their interplay.
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Fig.1: Overview of the building blocks of CodeGraphSMOTE for training on
imbalanced graph datasets.

5.1 Overview

The method has multiple training stages: The first stage is training a transformer
model to convert code graphs to their original source code (1). The learned inter-
mediate token embeddings of the transformer can then be used in the following
stage to provide aggregated node embeddings for the VGAE. The second stage
consists of training an autoencoder model to reconstruct code graphs in an un-
supervised fashion (2). In the third stage, new samples can be generated by
applying classic SMOTE to the VGAE latent representation (3). The last stage
consists of training a vulnerability discovery model on an augmented version of
the original dataset (4).

To augment the dataset, first, all code graphs of the original dataset are
encoded by the autoencoder. Next, a balanced dataset is created by generating
interpolated samples for the minority class. Lastly, the interpolated and original
latent space representations are decoded by the autoencoder to generate new
graphs for the vulnerability discovery downstream task. We proceed to explain
our VGAE architecture and then provide insights into our transformer model.

5.2 Code Graph Generation

The input to the VGAE is a code graph, while the learning task is to pertain to as
much information in the latent space as needed to reconstruct the original code
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graph. This ensures a semantically structured latent representation of vulnerable
and clean code samples.

Encoder To produce latent space representations on the level of code graphs,
a node-level autoencoder is implemented, where the intermediate node embed-
dings are calculated by applying a GNN to the input code graph. Conventional
GNNs, such as GCNs, are low-pass filters and thus remove high-frequency fea-
tures [35]. As it could be detrimental to decoding performance to smooth out the
high-frequency features of the graph, an alternative architecture is used. The de-
convolutional autoencoder [28] aims to preserve features of all components of the
frequency spectrum by using more terms of the approximated eigendecomposi-
tion. Hence, a deconvolutional network with three layers and graph normalization
[4] is used as the architecture for the encoder.

Decoder The decoder needs to decode not only the edge and node features but
also the graph’s topology. For the node level decoder, we use a GNN from Li
et al. [28] which employs an approximate inverse convolution operation, restor-
ing high-frequency features and consequently alleviating the problem of GCNs
being mostly low-pass filters [35]. Since the node feature decoder depends on
the graph’s topology, we first reconstruct the adjacency matrix using a topology
decoder.

The most prominent topology decoder is the inner product decoder which
connects two distinct nodes with latent representations X; and X} by an edge

with probability o(X] X j’T) Therefore, we can sample edges given these proba-

bilities or, in a deterministic setting, draw an edge iff (X} X’ JT) > po (usually
po = 0.5), or in other words iff

X/ X'T >t (2)

for some threshold ¢ (usually ¢ = 0). Note that increasing ¢ leads to fewer edges.

During the reconstruction of the adjacency matrix, nodes with similar fea-
tures tend to have a very high probability of an edge between them. As a solu-
tion, we decode the node features and topology separately, by splitting the latent
representation of each node in half and using only one part for each decoder.
The topology decoder is then trained to reconstruct the adjacency matrix using
a weighted binary cross-entropy loss due to the natural sparsity of adjacency
matrices.

Another problem arises since decoders based on the inner product can only
reconstruct undirected graphs due to their inherent symmetry. Hence, we im-
plement an asymmetric inner-product-based decoder, by splitting the adjacency
matrix into two halves by its diagonal. One half of the topology decoder’s latent
space is used for the upper and one for the lower part of the adjacency matrix.

Finally, a third problem with inner-product-based decoders stems from the
random node embeddings causing the expected average degree to increase pro-
portionally with the number of nodes. This is problematic since the average
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Fig. 2: Average degree compared against the number of nodes for code graphs,
decoded naively and decoded with our correction.

degree will be higher for larger graphs, while in reality, code graphs have the
property that their average node degree is independent of the number of nodes,
which is illustrated in Figure 2a and Figure 2b.
The number of reconstructed edges for a particular graph can be seen as a
random variable
Bl ~ B(p, VI~ V) (3)

with p the binomial probability to decode a particular edge among the possible
V]2 — |V] edges. Note that we consider directed edges but no loops. Hence,
we obtain E(|E|) = p- (|V|? — |V]). Assuming a deterministic sampling, edges
are decoded, when their similarity as defined by the inner product is above
a certain threshold t. Adjusting the threshold by incorporating the expected
average embedding distance of the closest embeddings reduces the effect of the
proportionally increasing average degree as depicted in Figure 2¢. The derivation
of this adjustment can be found in Appendix A.1.

Interpolation Method To augment the code graph datasets, new samples need
to be generated given a set of selected graphs. To do that, we propose a method
to select and interpolate code graphs in their latent space representations.

A sample denotes an embedding matrix X’ € RIVI*4v for a fixed latent space
dimension dy and number of nodes |V|. Since this matrix has different sizes for
graphs with different numbers of nodes, no common distance metric can be
applied to calculate the nearest neighbors. To mitigate this issue, the graphs
are padded with zero vectors for non-existing nodes to the size of the largest
graph in the dataset. Additionally, this same issue is found when interpolating
the samples and solved in the same way. The interpolated embedding matrix

X' =AX o+ (1 - NX, (4)

for two chosen code graphs G,, Gy and a uniformly random A € [0, 1] is truncated
to a number of nodes interpolated in the same way: |V| = A|[V,|+ (1 — )| V3| with
the same A. This interpolation method is not permutation-equivariant, thus the
node ordering affects the results. Since we use the same method in the nearest
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void truncate(char *src, int size) { void truncate(char *src, int size)
char *dest = malloc(size); {
if (!dest) return; char *dest = malloc(size);
memcpy (dest, src, size); if (!dest) return;
memcpy(src, dest, sizeof(dest)); strcpy(dest, src);
free(dest); memcpy(src, dest, sizeof(dest));
} free(dest);
}

void truncate_type(char *dest, char *src, int *size)

{
char *dest = malloc(size);
if (!dest)
return;

memcpy(dest, src, sizeof(src));
memcpy(src, dest, size);
free(dest);

Fig. 3: An interpolated sample in its code representation.

neighbor search, however, this results in the corresponding nodes already being
close to each other.

Finally, new latent space representation samples are generated, which can
then be decoded using the decoder. To train a graph vulnerability discovery
model on the augmented code graphs, we have to reconstruct both, edges and
nodes. The node features are recovered using the node decoder’s output which
is trained using a cosine embedding loss. The adjacency matrices need to be dis-
cretized by sampling from a Bernoulli distribution with a probability conforming
to the edge probability in the reconstructed adjacency matrix.

5.3 Graph to Code Transformation

The ability to transform code graphs back to source code adds three beneficial
properties to our method: First, we can produce human-readable samples, sec-
ond, we are no longer limited to GNNs and third, we can use the latent node
embeddings as a fixed size vector for each node in the VGAE. Thus, we train
a transformer [42] to decode non-interpolated graphs and eventually apply it to
interpolated samples.

Similar to the variational autoencoder (VAE), a transformer model consists
of an encoder and a decoder comprising multiple blocks each. A single block con-
sists of two components, namely a bidirectional multi-head self-attention mech-
anism and a feed-forward neural network. The attention mechanism generates
an attention vector for each code token providing a weight on how much one
token affects the other.

We propose an auto-regressive transformer model with a BART-like archi-
tecture consisting of six encoder and decoder layers, a width of 128 and only
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two heads per layer [27]. The code graph is linearized by sequentially extracting
the tokens through a depth-first traversal of the AST and embedded using the
pre-trained byte-pair tokenizer by Nijkamp et al. [33]. As each node consists of
a variable number of tokens, the transformer has to learn a fixed-size token-level
embedding of dimension RIV!*4v To this end, an additional transformer en-
coder layer is trained jointly, that learns a normalized and pooled node vector.
This way, inter-dependencies of the tokens are encoded in a token-level repre-
sentation for the node-level features for the code graphs in the GAE training.

Figure 3 shows a generated synthetic sample at the bottom. We take the
graph representation from the upper two samples and interpolate between both
latent representations. Then we translate the resulting graph to its code repre-
sentation using the transformer model.

Both source methods truncate a string but run into buffer overflows due to
potential size mismatches between src, dest and size. Note, that the upper samples
are taken from two real vulnerabilities. The resulting generated function has a
different name and signature, but its body is similar: It is obvious, that the
resulting method is also an example of string truncation with a buffer overflow.
The unused parameter char *dest in the signature may be erroneously caused by
either the generation of the graph or the conversion of the graph to code but
may be negligible due to the nature of data augmentation.

6 Evaluation

This section introduces the experiments designed to tackle three research ques-
tions, in particular, we describe our experimental setting and provide empirical
results answering the following questions:

RQ1 Does CodeGraphSMOTE provide a sound latent representation?
RQ2 Can CodeGraphSMOTE improve detection performance when we lack data?
RQ3 Do the augmented datasets yield better model transferability?

6.1 Experimental Setting

We rely on Fraunhofer-CPG [46] as a tool to generate code graphs and pre-
process them using networkx [19]. We use the GNN implementations from Py-
torch Geometric [14] and train them on AWS EC2 g4dn instances. All experi-
ments are conducted using 10-fold cross-validation and our VGAE consists of 2
encoder and 2 decoder layers for topology and node features respectively with a
dimension of 384. We use an Adam and AdamW optimizer for the VGAE and
the transformer with learning rates of 0.0005 and 0.001 respectively.

Datasets and Models For our experimental evaluation, we use the following
three datasets from recent publications around learning-based vulnerability dis-
covery. All three datasets consist of a corpus of vulnerable and clean samples
from C and C++ code repositories.
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1. Chromium+Debian. The Chromium+Debian dataset consists of 1924 vul-
nerable and 17294 clean samples. Thus, the imbalance ratio is 10.01%. The
dataset has been extracted from the Debian and Chromium bug tracker and
hence contains C++ code samples [6].

2. FFmpeg+Qemu. The FFmpeg+Qemu dataset is nearly balanced with a ratio
of 45.96% having 11466 and 9751 samples respectively for the clean and
vulnerable class. The code was extracted using security-related keywords
that have been matched against commits in the Github project repositories
from Qemu and FFmpeg [55].

3. PatchDB. Finally, we utilize PatchDB [44], which consists of patches ex-
tracted from the national vulnerability database (NVD) for multiple C and
C++ open-source projects. Vulnerable samples are labeled by their common
weakness enumerations (CWEs). Overall, it has 3441 vulnerable and 30149
clean samples resulting in an imbalance ratio of 10.24%.

As ML models for the downstream vulnerability discovery task, we use RE-
VEAL and Devign [6, 55]. They both rely on GGNNs and a pooling layer followed
by a feed-forward neural network prediction head. We train the transformer,
VGAE and downstream classifier on the same training set and test on a disjoint
separate dataset containing only real samples.

Metrics We use two metrics recommended especially for imbalanced learning
tasks to provide a comprehensive evaluation of the model’s performance. By
comparing these scores before and after augmentation, we can assess whether
the augmentation has improved the model’s performance.

1. F1-score. The Fl-score is a commonly used metric to evaluate the perfor-
mance of a classification model. It’s a measure of the model’s ability to cor-
rectly predict both positive and negative classes. The F'l-score is calculated
as the harmonic mean of precision (P) and recall (R).

2. Balanced accuracy. The second is balanced accuracy, which takes into ac-
count both, the true positive rate and true negative rate, and is calculated
as the average of these two rates.

Baselines To compare our method for plausibility and practicability, we bench-
mark against four commonly used augmentation strategies for graphs in general
and vulnerability discovery models in particular.

1. SARD enrichment. The software assurance reference dataset (SARD) is a
synthetic vulnerability corpus containing about 30k vulnerable and 30k clean
samples. The vulnerable samples are pattern generated, and consequently,
ML models tend to overfit [6]. We use vulnerable samples from this dataset
to enrich their original dataset as proposed by Nong et al. [34].

2. Graph Perturbation. Borrowed from the graph domain, we can augment the
dataset by randomly dropping nodes and edges. This graph perturbation
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Fig.4: Average normalized inter- and intra-cluster distance per CWE on
PatchDB.

technique can be applied to vulnerable samples to augment the dataset.
However, this technique will most likely break the code graph’s semantics
and generate unintelligible samples.

3. Graph2Edit. According to an empirical study [34], Graph2Edit [50] is cur-
rently state-of-the-art in neural code generation for vulnerability discovery.
It uses a GGNN to learn graph and node embeddings and a LSTM network
to predict edit actions on the AST. It is trained to convert ASTs of clean
samples to vulnerable ones.

4. Downsampling. A naive approach is to downsample the majority class. That
is, we remove clean samples until we have an imbalance ratio of 50%.

6.2 Results

The discussion of the experimental results is organized along the three research
questions posed at the beginning of this section, which we try to answer in the
following.

RQ1 — Does CodeGraphSMOTE provide a sound latent representation? First,
we want to assess whether the learned latent space from the VGAE in Code-
GraphSMOTE represents important features from the code graph and in partic-
ular for vulnerability discovery. The scatter plot on the left-hand side of Figure 4
shows a two-dimensional t-SNE embedding of the VGAE latent representation
per vulnerable code graph of the training set from PatchDB. Each sample is col-
ored by its CWE. We can reason about the quality of the interpolated vulnerable
samples since it correlates with the quality of the cluster. At least five clusters
are clearly visible, including CWE-269 (improper privilege management), CWE-
347 (improper verification of cryptographic signature) and CWE-763 (release of
invalid pointer or reference).The right-hand side of Figure 4 shows the average
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Fig. 5: Dataset augmentation strategies by replacement.

inter- and intra-cluster distances between the CWEs. The matrix is diagonal-
dominant suggesting that the learned representation places samples from the
same type of vulnerability closer together. Overall, we can conclude that the
latent representation encodes crucial information about the semantics of the
code and vulnerability. Since SMOTE selects neighbors that are close to each
other as interpolation candidates, it is safe to assume that it will automatically
interpolate between vulnerabilities of the same type.

The latent space representation learned by the VGAE clusters code
graphs by their vulnerability type, making it suitable for SMOTE on
vulnerability datasets.

RQ2 — Can CodeGraphSMOTE improve detection performance when we lack
data? We evaluate our method against simple downsampling, SARD enrichment
and node-dropping. We simulate smaller datasets, by removing a partition of
vulnerable samples from the original FFmpeg+Qemu, Chromium+Debian and
PatchDB datasets and re-balance them by augmenting the remaining. Figure 5
shows the performance of the Chromium+Debian model measured in their bal-
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Table 1: Cross dataset evaluation presenting the Fl-score. C+D and F+(@Q denote
the Chromium+Debian and FFmpeq+Qemu datasets respectively.

Model ‘Training Testing Downsampling Graph2Edit SARD CodeGraphSMOTE

ReVeal C+D F+Q 31.86% 36.94% 15.16% 41.37%
F+Q C+D 19.31% 21.31% 20.07% 18.26%
Devign C+D F+Q 5.25% 7.11% 5.70% 62.97%
F+Q C+D 16.83% 19.31% 18.58% 18.20%

anced accuracy. The x-axis denotes the percentage of real samples remaining
from the original datasets, while 100% corresponds to the original dataset re-
balanced using the specific method. On PatchDB, the most realistic dataset,
CodeGraphSMOTE achieves an overall area under balanced accuracy score of
73.9%, compared against 68.9%, 65.5% and 63.5% for SARD, Node-Dropping
and Downsampling respectively. Hence CodeGraphSMOTE yields a significantly
stronger improvement compared to the other approaches with nearly 24% im-
provement against simple downsampling. This is particularly interesting because
PatchDB has the most diverse and realistic dataset containing samples from
multiple projects collected directly from the NVD. Although no augmentation
strategy is a clear winner on the FFmpeg+Qemu dataset and the overall per-
formance is only slightly above 55% as already shown by Chakraborty et al. [6]
and Ganz et al. [15], we can still see that SARD is slightly worse than the other
methods. Other observations are not statistically significant due to their large
standard deviations.

For the Chromium+Debian datasets all augmentation strategies have less influ-
ence on the model as depicted by the large standard deviation compared to their
effect on PatchDB. There is no augmentation strategy that dominates another
with statistical significance. Thus, no method provides a statistically significant
improvement over another except for downsampling. Downsampling is the worst
method on every dataset while simple graph perturbation is the second best
approach.

Our method provides an improvement of up to 21% balanced accuracy
against simple downsampling on realistic datasets and keeps the model
performance constant at only 20% of the original dataset.

RQ3 — Do the augmented datasets yield better model transferability? Finally,
we evaluate whether a pre-trained instance of CodeGraphSMOTE can be used
to enhance vulnerability discovery when applied to different datasets that lack
labeled or vulnerable samples. Despite recent publications showing that the De-
vign dataset (FFmpeg+Qemu) and model are unrealistic and underperforming
[6, 15], we still include both to stay comparable with Graph2Edit.
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In contrast, we excluded PatchDB, which contains over 300 C and C++ projects,
to demonstrate the usability of CodeGraphSMOTE on small individual projects.

Table 1 shows the average F1-score for the models REVEAL and Devign us-
ing four different augmentation strategies to re-balance the datasets. While the
models have been trained and tested on disjoint datasets, our results, as shown in
Table 1 and Figure 5, indicate that training on the FFmpeg+Qemu dataset did
not yield noteworthy detection capabilities. However, with Fl-scores of 18.26%
and 18.20%, respectively, CodeGraphSMOTE can be considered comparable to
Graph2Edit with its Fl-scores of 21.31% and 19.31%. Furthermore, the mod-
els trained on the Devign+Qemu dataset did not provide any transferability,
highlighting the challenges associated with this dataset.

In contrast, training on the Chromium+Debian dataset reveals that Code-
GraphSMOTE significantly improves detection capabilities by a factor of nearly
9 for Devign and 12% for REVEAL, as compared to the state-of-the-art method
Graph2Edit. Interestingly, the Chromium+Debian dataset, with a higher degree
of class imbalance than the FFmpeg+Qemu dataset, demonstrates the superior
performance of CodeGraphSMOTE with increasing class imbalance.

CodeGraphSMOTE significantly improves model transferability by up to
800% measured by the Fl-score. The performance enhancement scales
with increasing class imbalance.

7 Conclusion

This work introduces CodeGraphSMOTE, a novel augmentation method de-
signed to address imbalanced attributed code graph datasets. Our approach em-
ploys a variational graph autoencoder to interpolate between code graph samples
in the latent space, and a transformer model to convert these graphs back to
their source code representation. On the way, we also address several common is-
sues with graph autoencoders in general, particularly in topology reconstruction.
Through experimental evaluation, we demonstrate that our method not only
achieves comparable vulnerability discovery performance with fewer data but
also improves the models’ generalizability and transferability to new datasets.

Acknowledgment. This work has been funded by the German Federal Ministry
of Education and Research (BMBF) in the project IVAN (FKZ: 16KIS1165K).
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A Appendix

A.1 Derivation of the Threshold Adjustment

Our goal is to adjust the threshold ¢ in Equation (2) such that the average
degree of a vertex in the reconstructed graph equals a given degree deg. Using
E(|E|) = p(]V]? = |V]), since we consider directed edges but no loops, this is the
case if p (|[V|> — |V]|) = deg |V] or

_deg
Povi—1

Now p = P(X] X' JT > t) where X and X'; are d-dimensional latent representa-
tions of two nodes which (due to the targeted latent distribution of the VAE) we
assume to be independent and identically distributed according to the standard
normal distribution A/ (04, I4). Hence the correct adjusted choice of ¢ is given by

t = CDF," (1 - Wdff 1) (5)

where CDFy is the cumulative distribution function of the product Z = XY of
two i.i.d. vectors X and Y as above. By symmetry, we may assume that Y is
parallel to the first coordinate axis and then X can be marginalized to this axis
without affecting the inner product. Thus, we assume w.l.o.g. d = 1.

The density of Z = XY = 1 (X +Y)? + (X —Y)?) (a.k.a. variance gamma
distribution) is known to be given by PDFz(z) = 1Ky(z) where Ky(z) is a
modified Bessel function of the second kind (see [17]).

Finally, we use numerical integration to get CDFz(z) = 1 [* Ko(2)dz and
solve numerically for ¢ as in Equation (5).
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cess is completely opaque to security experts, which obstructs their
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1 Introduction

Graph neural networks (GNN) belong to an emerging technology
for representation learning on geometric data. GNNs have been ap-
plied successfully to a variety of challenging tasks, such as the clas-
sification of molecules [11] and protein-protein interactions [20].
Compared to other neural network architectures, GNNs can effec-
tively make use of graph topological structures and thus constitute
a versatile tool for analysis of complex data.

Because of these capabilities, GNNs have also been applied to
source code to identify security vulnerabilities [39] and locate poten-
tial software defects [2]. Source code naturally exhibits graph struc-
tures, such as abstract syntax trees, control-flow structures, and
program dependence graphs [10, 32], and thus is a perfect match for
analysis with GNNs. Previous work could demonstrate that GNNs
perform better on identifying security vulnerabilities than classical
static analyzers and learning-based methods that operate directly
on the source code [39]. Consequently, these neural networks are
considered the basis for new and intelligent approaches in software
security and engineering.

The efficacy of GNNs, however, comes at a price: neural net-
works are black-box models due to their deep structure and com-
plex connectivity. While these models produce remarkable results
in lab-only experiments, their decisions are opaque to security ex-
perts, which hinders their adoption in practice. Identifying security
vulnerabilities is a subtle and non-trivial task. Moreover, there are
even theoretical bounds as there cannot be a general approach to
vulnerability detection by Rice’s theorem [15], and therefore in-
teraction with human experts is indispensable when searching for
vulnerabilities. For them it is pivotal to understand the decision
process behind a method to analyze its findings and decide whether
a piece of code is vulnerable or not. Hence, any method for their
discovery must be interpretable.

One promising direction to address this problem is offered by
the field of explainable machine learning. A large body of recent
work has focused on explaining the decisions of neural networks,
including feed-forward, recurrent, and convolutional architectures.
Similarly, some specific methods have been proposed that aim at
making GNNss interpretable. Still, it is unclear whether and which
of the methods from this broad field can support and track down
decisions in vulnerability discovery. In this paper we address this
problem and establish a link between GNNs and vulnerability dis-
covery by posing the following research questions:



(1) How can we evaluate and compare explanation methods for
GNNs in the context of vulnerability discovery?

(2) Do we need graph-specific explanation methods, or are generic
techniques for interpretation sufficient?

(3) What can we learn from explanations of GNNs generated for
vulnerable and non-vulnerable code?

To answer these questions, we present a framework for evaluat-
ing explanation methods on GNNs. In particular, we develop a set
of evaluation criteria for comparing graph explanations and linking
them to properties of source code. These criteria include general
measures for assessing explanations adapted to graphs as well as
new graph-specific criteria, such as the contrastivity and stability
of edges and nodes. Based on these criteria, we are able to draw
conclusions about the quality of explanations and gain insights into
the decisions made by GNNs.

To investigate the utility of our framework, we conduct an exper-
imental study with regular and graph-specific explanation methods
in vulnerability discovery. For regular approaches we focus on
white-box methods, such as CAM [34] and Integrated Gradients
[29], which have proven to be superior to black-box techniques in
the security domain [30]. For graph-specific approaches we con-
sider GNNExplainer [35], PGExplainer [19], and Graph-LRP [24],
which all have been specifically designed to provide insights on
GNNs. Our study shows that explaining GNNs is a non-trivial task
and all evaluation criteria are necessary to gain insights into their
efficacy. Moreover, we show that graph-specific explanations relate
better to code semantics and provide more information to a security
expert than regular methods.

2 Neural Networks on Code Graphs

We start by introducing the basic concepts of code graphs, graph
neural networks, and their application in vulnerability discovery.

Code graphs. We consider directed graphs G = (V, E) with ver-
tices V and edges E C V X V. Nodes and edges can have attributes,
formally defined as (keyed) maps from V or E to a feature space.
It is well known that source code can be modeled inherently as
a directed graph [1, 2, 5], and we refer to the resulting program
representation as a code graph. In particular, the following code
graphs have been widely used for finding vulnerabilities:

AST An abstract syntax tree (AST) describes the syntactic struc-
ture of a program. The nodes of the tree correspond to sym-
bols of the language grammar and the edges to grammar
rules producing these symbols.

CFG A control flow graph (CFG) models the order in which the
statements of a program are executed. Therefore, each node
is a set of statements and edges are directed and labeled with
flow information and conditionals.

DFG A data flow graph (DFG) models the flow of information
in a program. A node denotes the use or declaration of a
variable, while an edge describes the flow of data between
the declaration and use of variables.

PDG The program dependence graph (PDG) proposed by Ferrante
et al. [13] describes control and data dependencies in a joint
graph structure. It was originally developed to slice a pro-
gram into independent sub-programs.

#define MAXSIZE 40

void test(void)

{

4 char buf[MAXSIZE];

5 cin>>buf;

6 cout<<"result:"<<buf<<endl;

Figure 1: Source code and CPG of a simplified vulnerabil-
ity. More saturated red on nodes in the CPG corresponds to
more attributed relevance.

Based on these classic representations, combined graphs have
been developed for vulnerability discovery. The code property
graphs (CPG) by Yamaguchi et al. [32], for example, is a combi-
nation of the AST, CFG and PDG. Likewise, the code composite
graph (CCG) encodes information from the AST, DFG and CFG [7].
In the remainder, we use these two combined code graphs for our
experiments, as they have proven to be effective and capture se-
mantics from multiple representations. As an example, Figure 1
shows a CPG of a simple vulnerability.

Graph neural networks. GNNs are a model of deep learning and
realize a prediction function f: G(V,E) — R9 [23] that can be used
for classification and regression. The most popular GNN types be-
long to so-called message passing networks (MPNs) [31] where the
prediction function is computed by iteratively aggregating infor-
mation from neighboring nodes.

In the simplest GNN layer the aggregation is the sum of the
neighboring feature vectors and the update forwards the aggregated
feature vector per node to a multilayer perceptron (MLP). The
prediction i is then given by § = AXW, where A is the normalized
adjacency matrix, X the initial feature matrix, and W a weight
matrix which we seek to optimize [14]. Kipf et al. coined the term
graph convolutional network (GCN) for this specific layer. GNNs can
be further extended by incorporating other graph features as well
as adding pooling and readout layers. Finally, other architectures
like GRUs or LSTMs can be used to update the node embeddings,
too, resulting in gated graph neural networks (GGNNs) [17].

GNNss for vulnerability discovery. Due to the rich semantics cap-
tured by code graphs, GNNs have been applied in a series of work for
vulnerability discovery. In particular, we focus on the approaches
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Devign [39], ReVeal [8] and BGNN4VD [7] that can be considered
state of the art and are reported to provide promising results in the
respective publications.

Devign uses CPG graphs with additional edges connecting leaf
nodes with their successors. These edges are called natural code
sequence (NCS) and represent the natural order of the statements.
The model constitutes a six-time-step GGNN. The final embedding
of the sixth iteration and the initial node features are both forwarded
through a novel pooling layer:

o(-) = MaxPooL(ReLu(Conv(+)))

The Conv layer is a regular 1D-convolution and is followed by a
ReLu activation and max-pooling. Afterwards, the output is for-
warded through an MLP. The output of both passes is multiplied
pairwise and the prediction is the averaged result [39].

ReVeal is a model using the regular CPG. The pre-processing step
includes a re-sampling strategy and the model consists of an eight-
time-step GGNN followed by a sum aggregation and a final MLP
as a prediction layer. The training involves a triplet loss incorporat-
ing binary cross-entropy, L2-regularization, and a projection loss
minimizing resp. maximizing the vector distances between similar
or different classes [8].

BGNN4VD differs from the other two GNN models as it uses bidi-
rectional CCGs. The model uses an eight-time-step GGNN with
the same pooling operator as Devign but followed by an MLP as a
prediction layer [7].

3 Explaining Machine Learning

Vulnerability discovery using machine learning has made remark-
able progress over the last years. The proposed systems, however,
are opaque to practitioners and it is unclear how they arrive at their
decisions. This lack of transparency obstructs their deployment in
the field of security and creates a gap between research and practi-
cal demands. Explanation methods (EM) for machine learning have
the potential to alleviate this problem and help to gain insights into
the capabilities of learning-based security systems. Explainability
methods turn the decision of a machine learning model into a trans-
parent and more likely to be human interpretable result. Since all
decisions depend only on the input signal of a model, conventional
explainability methods try to correlate the input features to the
final output. However, in the domain of GNNs, we are working
with graph signals that do not only depend on features in a vector
space but on discrete topological structures.

In the following, we introduce common explanation methods as
well as approaches specifically designed to explain GNNs.

Graph-agnostic explanation methods. There exist a variety of
general techniques for explaining learning models. For this paper,
we focus on nine common approaches and adapt them for explain-
ing GNNs. Since a node is the primitive element of code graphs,
we seek explanations that indicate the relevance of nodes for the
discovery of vulnerabilities. As general EMs explain only based
on features, we propagate the corresponding relevance scores of
edges to adjacent nodes, such that all methods yield node-level
explanations.

Class Activation Maps (CAM) were originally designed for ex-
plaining Convolutional Neural Networks (CNNs). Deep layers tend
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to learn semantically meaningful features and CAM scales these
features from the last hidden layer with the weight connecting
them to the desired output node in order to generate a feature-wise
explanation [38].

Linear Approximation also known as Gradient © Input calculates
for each input feature its linearized contribution to the classification
output. Technically, this is the element-wise multiplication of the
desired output’s gradient with respect to the input node feature
with the corresponding input activation [26].

GradCAM applies the idea of Linear Approximation to the inter-
mediate activations of GNN layers instead of the input activations.
This yields an advantage similar to CAM since more relevant infor-
mation is aggregated. In this work, we take the GradCAM variant
where activations of the last convolutional layer before the readout
layer are used [25].

SmoothGrad averages the node feature gradients on multiple
noisy inputs and compared to simple gradients yields noise-robust
explanations [27]. We use noise sampled from a normal distribution
(o = 0.15) with 50 samples. These parameters were optimized for
the descriptive accuracy of the ReVeal model.

Integrated Gradients (IG) improves the Linear Approximation
by referring to a counterfactual baseline input G’ and then using
(1) gradients that are averaged along a straight path to the actual
input G, and (2) the difference of the input activations between
G and G’ instead of the absolute activation [29]. We set all node
features to zero for G’ to achieve a very low base prediction score.
Gradient or Saliency Method simply measures the change in the
prediction with respect to the change of the input by calculating the
corresponding gradients. Although simple and effective it is known
that the generated relevance maps are oftentimes noisy [29].
Guided Backpropagation (GB) clips the negative gradients to
have a positive influence during backpropagation. This technique
yields explanations that concentrate on features having an excita-
tory effect on the output prediction [28].

Layerwise Relevance Propagation (LRP) creates relevance maps
by propagating the prediction back to the input such that a con-
servation property holds with respect to the total relevance scores
of each layer. We tested the (a, ) and e-rule [16] but use only the
e-rule since it yields better results in our experiments.
Excitation Backpropagation (EB) calculates the relative influ-
ence of the activations of the neurons in layer / — 1 to one from
layer I using backpropagation while only taking positive weights
into account [37]. The gradients are normalized to sum up to 1
so that the output can be interpreted as the probability whether a
neuron will fire or not given some input.

Graph-specific explanation methods. In addition to the nine gen-
eral methods for explainable machine learning, we also consider
three EMs that have been specifically designed for explaining GNNs.
To realize a unified analysis of all methods in this paper, we adapt
these graph-specific approaches, such that they also provide expla-
nations on the level of nodes. In particular, we propagate relevance
scores assigned to edges and walks to adjacent nodes in the code
graphs, resulting in explanations similar to those of the graph-
agnostic methods.



GNNExplainer is a black-box forward explanation technique for
GNNs. Ying et al. [35] argue that general EMs fall short of incor-
porating graph topological properties and therefore develop this
approach. For a given graph, GNNExplainer tries to maximize the
mutual information (MI) of a prediction with respect to the predic-
tion based on a variable discriminative subgraph S and a subset
of node features. The subgraph that retains important edges is
obtained by learning a mask that is applied to the adjacency matrix.
PGExplainer tackles the problem that the explanations for GNN-
Explainer have to be calculated for every individual graph instance.
PGExplainer provides a global understanding of the inductive na-
ture of the model by extracting relevant subgraphs S similar to
GNNExplainer. Whereas GNNExplainer is not suitable for an induc-
tive graph learning setting (cf. [19]) PGExplainer uses a so-called
explanation network on a universal embedding of the graph edges
to obtain a transferable version of the EM.

Graph-LRP is a method using higher order Taylor expansions to
identify relevant walks over multiple layers of a GNN where the
message propagation between nodes during training is considered
as walks of information flow [24]. The relevance per walk is com-
puted using a backpropagation similar to LRP for each node in
the walk. Schnake et al. [24] argue that the information contained
in these walks is richer compared to explanations generated by
GNNExplainer or PGExplainer.

4 Evaluating Explanations of GNNs

It is evident from the previous section that a large arsenal of meth-
ods is readily available for explaining and understanding GNNs.
However, the presented explanation methods considerably differ in
how they characterize the decision process and derive explanations
for a given input graph. As a result, it is unclear which methods
are suitable for explaining the predictions of GNNs in vulnerabil-
ity discovery and how the generated relevance maps relate to the
semantics of code and security flaws.

To tackle this problem, we introduce a framework for evaluating

explanation methods on GNNss. In particular, we build on previous
work by Yuan et al. [36] and Warnecke et al. [30] who propose
criteria for comparing explanation methods in security. As their
work does not account for relational information and topological
structure, we extend their criteria as well as introduce new ones,
specifically designed for understanding how an EM characterizes
nodes in code graphs.
Descriptive accuracy. To determine whether an EM captures rel-
evant structure in a GNN, we remove a relative amount k% of the
most relevant nodes from the input graph and calculate another for-
ward pass of the model for each graph in the test set. The descriptive
accuracy (DA) for k% is then given by the model’s drop in accuracy
(with respect to its original accuracy) averaged over the test data.
The larger this drop is, the more relevant nodes are identified by
the EM. The area under the DA curve is a single numerical quantity
that summarizes its behavior, with a large area indicating a steep
rise of the curve and thus an accurate explanation of the GNN’s
decision process.

The DA shares similarities with the fidelity measurement by
Yuan et al. [36]. This measure uses thresholds on the relevance
maps to evaluate the accuracy of the explanations. Instead, we first

rank the nodes by relevance and then remove a fixed percentage
to obtain the DA. Since there is often a high variance in the size
of code graphs, we find this measure beneficial as it allows us to
obtain relevant subgraphs for vulnerability localization.
Structural robustness. To measure the robustness of an input
graph for a given EM we use the remaining agreement (RA). We
compute the 10% most relevant nodes before and after perturbing
the input graph by dropping its edges with a certain probability
p and define the RA as the size of the intersection of these highly
relevant nodes.

Our motivation comes from the desire to understand how suscep-
tible an EM is against manipulations where an adversary tampers
with the input such that the explanation method creates an arbi-
trary, meaningless explanation, for example, when GNN and EMs
are used to assess code of unknown origin. In this context, we in-
terpret structural robustness as the sensitivity of the model and the
EM to still label the original relevant code parts despite an attacker
trying to hide certain program semantics by altering control or data
flow. Although structural robustness measures the stability of the
EM against noise only, it provides an upper bound of the effort a
potential attacker needs to successfully attack the EM.
Contrastivity. The descriptive accuracy and structural robustness
provide a general view on the quality of an explanation for a GNN,
yet they do not take into account the specifics of code analysis and
vulnerability discovery.

To address this issue, we propose to measure the contrastivity
of an explanation. This measure is calculated by comparing rel-
evant statements for the vulnerable and non-vulnerable class. In
taint-style-analysis [32], for example, identifying vulnerabilities
can be approached by traversing all CPG edges that flow from user-
controlled nodes to security-critical sinks (e.g. fopen or memcpy).
Hence, we expect the explanations to differ for vulnerable and non-
vulnerable samples in these paths. If, for instance, critical calls are
completely absent in the AST, the model does not need to further
look at the DFG and CFG edges.

We calculate the contrastivity of an EM using a histogram of the
AST terminal and non-terminal (type) identifier of the 10% most
relevant nodes. Then, we compute the chi-square distance of the
normalized node histograms of negative and positive samples:

d 2
2 _1 (xi —yi)
Xy =7 ; ity

A higher difference indicates that the model takes more different
node types into account when distinguishing between vulnerable
or non-vulnerable samples, providing a more diverse view on the
characteristics of the code.

Graph sparsity. An explanation method must stay concise during
operation, since code graphs can become too large to be manu-
ally assessed by practitioners. An explanation method that marks
hundreds of nodes in a code graph as relevant yields no practical
benefit. To measure the conciseness of an explanation, we adapt
the mass around zero (MAZ) measure [30] to GNNs: To this end,
the relevance values of the nodes are normalized to be contained
in the interval [—1, 1] and then a cumulative distribution function
re f_ rr h(x)dx of their absolute values is calculated. The larger
the area under this curve is, the more relevance values of nodes are
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close to 0 and hence of little influence. If all the relevance values are
positive (resp. negative) then normalization is just division by the
value with highest absolute value (i.e. xmax resp. Xmin), otherwise
we use the projective transformation

(Xmax—Xmin) X
(¥max+Xmin) X = 2*Xmax " Xmin
with fixed point 0 mapping Xy to —1 and xmax to 1.

The area under the adapted MAZ provides us with a single

numerical quantity that describes how concise an EM operates,
where a high area indicates explanations with a sparse assignment
of relevance values to nodes.
Stability. Some EMs are non-deterministic and do not provide
identical results during different runs. This slight randomness can
pose a problem for vulnerability discovery, where the differences
between vulnerable and secure code is often nuanced and subtle.
To account for this problem, we measure the stability in terms of
standard deviation of the descriptive accuracy and sparsity over
five runs. Note that only Smoothgrad, PGExplainer, GNNExplainer
and Graph-LRP are non-deterministic, as they use randomly initial-
ized weights or random sampling. The remaining graph-agnostic
methods are deterministic by design and hence stable per definition.
Efficiency. Finally, the runtime performance of an explanation
method should not drastically increase the time a security specialist
needs for her traditional workflow. Especially for large and complex
code graphs, it is crucial that explanations are generated in reason-
able time, for instance, a few seconds. To reflect this requirement,
we measure the average runtime of an EM per single graph. Note
that the runtime in a practical setup also depends on details of the
implementation and GNN model, and thus this criterion should
only be used to provide an intuition of the performance rather than
precise runtime numbers.

X =

5 Experimental Study

After introducing our evaluation criteria, we are finally ready to
empirically evaluate the performance of explanation methods on
GNNss for vulnerability discovery. In particular, we consider the
generic and graph-specific approaches (9+3) for explanations de-
scribed in Section 3 on the three GNNs presented in Section 2.

5.1 Setup

We train Devign and ReVeal on graphs with vulnerabilities from
C and C++ open-source software and BGNN4VD on a dataset con-
taining vulnerabilities in open-source Java software. Some explain-
ability algorithms have hyperparameters that need to be calibrated.
We use Bayesian optimization to find suitable parameters for Inte-
grated Gradients, SmoothGrad, GNNExplainer, PGExplainer and
Graph-LRP. Finally, we calculate the area under curve for DA with
k € {1,5,10,15,30,50,75}, for the sparsity metric with interval
sizes r € {0.05,0.1,0.25,0.5,0.75,1.0} and for structural robustness
with edge dropping probabilities p € {0.005,0.1,0.2,0.5,0.75}. As
a baseline in all experiments, we randomly generate explanations,
where the relevance values for nodes are drawn independently from
a uniform distribution.

Case studies. For our study, we consider three datasets and the
corresponding GNNis as case studies. Each dataset consists of source
code with and without security vulnerabilities. Table 1 shows an
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overview of the case studies and the reproduced performance of
the three models. Mean and standard deviation of ten experiments,
each with different stratified dataset 80/20 splits, are reported. We
see a broad spectrum in the case studies’ performances which is
desirable, since we obtain insights in to what extent EMs depend
on the underlying GNN model.

Case-Study ‘ Accuracy ‘ Precision ‘ Recall ‘ F1-Score
Devign 55.68+0.36 | 55.28+0.38 | 90.32+2.68 | 68.58+1.09
ReVeal 84.66+0.18 | 58.53+0.34 | 58.14+0.45 | 58.33+0.40
Vulas (BGNN4VD) | 88.05+0.18 | 84.10+0.12 | 90.10+0.03 | 87.00+0.07

Table 1: Performance of all case studies for vulnerability dis-
covery (our re-implementations).

Case study A: Devign. According to the original publication,
the source code is transformed into a CPG using Joern! and en-
hanced with the NCS. Type information is label encoded. We re-
place the original gated graph neural network (GGNN) with six
GCN message-passing networks, as this provides a slightly better
model performance. We use L2-regularization during training with
ALz = 0.0001 and a learning rate of 0.0001 for the Adam optimizer,
since the original hyperparameters were not published. The model
is originally trained to identify security vulnerabilities found in the
projects FFmpeg and Qemu with excellent accuracy [39]. However,
we are not able to reproduce the corresponding results and only
attain a moderate F1-score.?

Case study B: ReVeal. In this case study, the dataset is composed
of security vulnerabilities extracted from patches for the Chromium
and Debian projects [8]. The code graphs are again extracted using
Joern. We use L2-regularization with A;» = 0.001 and a learning
rate of 0.001 for the Adam optimizer. Our accuracy (cf. Table 1) is
on par with the original publication; however, we report a higher
F1-score which could be due to different dataset splits.

Case study C: Vulas (BGNN4VD). As the third case study, we use
aJava dataset refered to as Vulas® from Ponta et al. [21]. The dataset
consists of manually curated CVEs mined from Java software repos-
itories like Tomcat, Struts, and Spring. In contrast to memory-based
vulnerabilities often found in C/C++ code, this dataset contains
security issues like SQL injections, XXE vulnerabilities, directory
traversals, or XSS injections. These vulnerabilities are linked to
commits before and after the respective patches. We apply the
BGNN4VD model and extract the CCG from each changed file in
the commit both before and after the actual fix using the Fraunhofer-
CPG*. This tools extracts graphs similar to the CCG used by Cao
etal. [7]. Regarding this dataset, each Java file in a commit is merged
into a single potentially disconnected graph. Furthermore, we add
random Java files from the same repositories. We end up with a
dataset composed of 1,000 vulnerable samples, 500 fixed samples
and 500 randomly chosen benign samples. The model is trained
Uhttps://github.com/joernio/joern
2Chakra\borty et al. [8] report the same and, like them, we were not successful in
contacting the authors.

Shttps://sabetta.com/post/vulas-dataset-released/
*https://github.com/Fraunhofer-AISEC/cpg



Criteria Descriptive Accuracy Structural Robustness Contrastivity ‘ Graph Sparsity
Model Devign ReVeal Vulas | Devign ReVeal Vulas | Devign ReVeal Vulas | Devign ReVeal Vulas
. 0.08 0.15 0.29 0.55 0.58 0.49 0.09 0.19 0.00 0.73 0.73 0.83
GNNExplainer
+0.003 +£0.008  +0.005 +0.000 +£0.010  +0.000 +0.01 +£0.01  +0.010 +£0.000 £0.001  +0.001
. 0.09 0.16 0.22 0.37 0.57 0.49 0.10 0.21 0.12 0.81 0.73 0.77
PGExplainer
+0.003 £0.002  +0.013 £0.000 £0.010  +0.010 +0.010 +£0.030  +0.040 +0.010 £0.001  +0.140
0.09 0.10 0.23 0.13 0.71 0.22 0.11 0.35 0.19 0.79 0.14 0.79
Graph-LRP
+0.002 £0.000  +0.014 +0.000 +0.000  +0.010 +0.000 +0.010  +0.000 £0.000 £0.000  +0.000
0.08 0.18 0.19 0.07 0.07 0.08 0.12 0.40 0.18 0.51 0.52 0.51
Random
+0.003 £0.014  +0.012 +0.000 +0.010  +0.010 +0.000 +0.000  +0.000 +0.000 £0.000  +0.000
EB 0.09 0.10 0.12 0.48 0.71 0.39 0.02 0.00 0.22 0.80 0.14 0.32
GB 0.10 0.10 0.25 0.40 0.71 0.50 0.05 0.00 0.00 0.80 0.14 0.14
Gradient 0.10 0.10 0.25 0.40 0.71 0.50 0.05 0.00 0.00 0.80 0.14 0.14
LRP 0.09 0.10 0.25 0.16 0.71 0.34 0.08 0.00 0.27 0.77 0.14 0.75
CAM 0.26 0.29 0.12 0.45 0.49 0.49 0.01 0.07 0.21 0.48 0.14 0.69
SmoothGrad 0.08 0.10 0.34 0.30 0.71 0.55 0.03 0.00 0.30 0.77 0.15 0.78
GradCAM 0.11 0.10 0.33 0.42 0.71 0.49 0.01 0.00 0.28 0.56 0.14 0.77
Linear-Approx 0.09 0.10 0.13 0.42 0.71 0.49 0.02 0.00 0.17 0.80 0.14 0.67
1G 0.31 0.14 0.20 0.71 0.72 0.72 0.00 0.06 0.08 0.15 0.19 0.14

Table 2: AUC for descriptive accuracy (DA), sparsity (MAZ) and structural robustness (RA) and y? distance for contrastivity.
The standard deviation is omitted for deterministic methods as well as SmoothGrad as it is neglectable.

using the Adam optimizer with Ir = 0.001 and L2-regularization
with ALz = 0.0001.

5.2 Results

Equipped with three case studies on vulnerability discovery, we
proceed to compare the different explanations based on our evalua-
tion criteria. These experiments are repeated five times and mean
and standard deviation are reported in Table 2.

Descriptive accuracy. We find that all graph-specific methods are
inferior to the graph-agnostic ones under this criterion. Overall,
the best method depends on the tested model. Graph-LRP is on par
with its structure-unaware counterpart LRP. Furthermore, PGEx-
plainer performs equal or better than GNNExplainer on two out
of three tasks. Some graph-agnostic methods are even worse than
the random baseline for certain models. Furthermore, as seen in
Figure 2, for Vulas it is sufficient to remove less than 10% of the
nodes to nearly render the prediction insignificant, since a DA of
84% — 50% = 34% corresponds to the model predicting similar to
random guess for Vulas. The DA curves show different levels of the
results, which are due to the different model baselines. Compared
to ReVeal, if more than 40% of the relevant nodes are removed, the
accuracy drops close to random for most methods, even though
Vulas has a lower node median count than ReVeal. We measure the
drop in the F1-score for Devign, since this model has a low accuracy
score in the first place.

As expected from the values in Table 1, the explanation methods
can not reveal much for Devign as the model does not predict
much better than random guessing. IG works best in the Devign
case study. Our observation fits with the insights from Sanchez-
Lengelin et al. [23]. Just as they suggest, we see that CAM and IG are
among the best candidates. Moreover, according to our experiments
SmoothGrad is a winning candidate as well.

We link the bad performance of PGExplainer to a phenomenon
called Laplacian oversmoothing [6]. For deep GNNs, the node em-
beddings tend to converge to a graph-wide average. Depending
on the depth of the network, the node embeddings get harder to
separate and the performance of the network gets worse. Chen
et al. [9] measure the mean average distance (MAD) of the node
embeddings and demonstrate how networks with a higher MAD
perform better. In the best runs, ReVeal, Devign and Vulas have a
MAD of 1.0, 0.21 and 0.88 respectively. Because PGExplainer uses
node embeddings to predict an edge’s existence, we argue that this
phenomenon influences such explanation methods. We can link the
low MAD to the low DA from Table 2.

From descriptive accuracy to visualization. Based on the DA, we
can easily extract minimal descriptive subgraphs that contain rel-
evant nodes and yield insights on what paths characterize a vul-
nerability. As an example, BGNN4VD correctly identifies the SSRF
vulnerability (CVE-2019-18394°) from Vulas that occurred in the
OpenFire software. Figure 3 shows the vulnerability. After retriev-
ing the 10% most relevant nodes from SmoothGrad, we can con-
struct a minimal descriptive subgraph of this vulnerability as shown
in Figure 3. We can traverse the CFG and DFG edges to reproduce
the vulnerability, starting from doGet over getParameter(host) and
the method call getImage(host, defaultBytes) and ending with the
IfStatement where we would expect an input sanitization.

Extending descriptive accuracy to edges. Besides determining rele-
vant nodes, it is also possible to calculate the most important edges
and their descriptive accuracy. Except for GNNExplainer and PG-
Explainer, which both compute edge relevance scores, we calculate
an edge relevance score by calculating the harmonic mean of the
adjacent node relevance scores for each edge for the remaining

Shttps://nvd.nist.gov/vuln/detail/CVE-2019-18394
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Figure 2: Descriptive accuracy (first row from top), sparsity (second row) and robustness curves (last row) for the Devign, ReVeal

and Vulas case study for selected explanation methods.

EMs. An edge is only important if both adjacent nodes are similarly
important. Eventually, the relevance of the edge types can be cal-
culated by computing the histogram of the top 10% relevant edges.
For space reasons, we compare the edge type attributions of the
graph-specific methods only with those for the generic EMs with
the best DA.

In this setting, SmoothGrad shows the best DA for Vulas, al-
though, it only attributes high relevance to AST edges (Figure 4).
On the other hand, PGExplainer attributes a lot more relevance
to semantically important edge types, although its DA is lower.
It would make sense, that assuming the model correctly learns
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to identify security vulnerabilities, EMs should assign more rele-
vance on semantically meaningful edges. The AST edges should
not encode much information when identifying vulnerable code.
For the Vulas case study, DFG seems to be important for identi-
fying vulnerabilities, comparing the histogram with the negative
and positive samples. Unfortunately, SmoothGrad also shows the
same histogram, both for negative and positive samples, while PG-
Explainer attributes more scores to semantically interesting edge
types.

Given the results for the ReVeal case study from Figure 4, the
issue becomes more obvious: Most graph-agnostic methods fail to



public void doGet(HttpServletRequest request,
HttpServletResponse response) {

byte[] bytes = getImage(host, defaultBytes);
6 if (bytes != null) {

7 writeBytesToStream(bytes, response);

s| )
o 3

10| private byte[] getImage(String host,
11| bytel[] defaultImage) {

12 if (hitsCache.containsKey(host)) {
13 return hitsCache.get(host);

¥
15 byte[] bytes = getImage("http://" + host
16 + "/favicon.ico");
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Figure 3: Minimal descriptive subgraph for the vulnerabil-
ity CVE-2019-18394. The vulnerability has been detected by
BGNN4VD and the graph extracted with SmoothGrad.

attribute relevance to semantically meaningful edges. Only GNNEx-
plainer and PGExplainer attribute more relevance to meaningful
edges when seeing positive samples. In general, CFG seems to
be unimportant for positive samples. Graph-agnostic explanation
methods attribute most relevance to semantically irrelevant AST
and NCS edges for Devign (not shown in the plot).

Structural robustness. Overall, Integrated Gradients is by far the
best EM according to its robustness (cf. Table 2). By contrast, Graph-
LRP is the worst method on average, which makes sense since it
calculates relevant walks and therefore strongly depends on edges.
In Figure 2, we can see how the remaining methods compare against
each other, with random being the worst method. Devign and Vulas
as opposed to ReVeal show a steeper decrease, which could mean,
that the model is trained to focus on the edges instead of the nodes.
The random baseline is very low, as we attribute random nodes high
relevance and an intersection of relevant nodes is very unlikely.
Finally, ReVeal is less affected by edge perturbations.
Contrastivity. The contrastivity is rather low for most EMs, indi-
cating that the selection of nodes is not very diverse and there is
room for improvement. Still, Graph-LRP provides the largest dis-
tance in the case studies Devign and ReVeal between vulnerable and
non-vulnerable code. SmoothGrad achieves the best contrastivity
score for Vulas. For Devign and Vulas, all graph-agnostic EMs are
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Figure 4: Important edge types for Vulas and ReVeal. Left
column shows negative results and right positive.

below the baseline. In general, graph-specific methods seem to be
better in identifying differences between relevant node types of
vulnerable vs. non-vulnerable samples.

We observe that those EMs with a very low contrastivity attribute
most relevance to the root nodes, both in the CCG and CPG.

By looking at the histogram over the most important node types
(AST block identifier) labelled by graph-specific and graph-agnostic
explainability methods respectively, we can clearly see a more
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Figure 5: Important AST identifier histogram for ReVeal for
negative and positive samples.
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diverse distribution for the graph-specific methods in Figure 5,
although the root nodes still determine the largest attribution mass
for both EM classes. Some labels are skipped to be more readable.

However, we find that the contrastivity of the graph-specific

methods is influenced by the root nodes of the AST. When removing
the root nodes and measuring the accuracy we observe only a drop
of 8%, 5% and 0% for Vulas, ReVeal and Devign, respectively. This is
a hint that it is not the model that focuses on top nodes but rather
the explanations do. Intuitively, it is not a desired behavior that an
EM distributes relevance to nodes that do not provide any useful
information to an expert. However, since the root node aggregates
the relevance from nodes lower in the hierarchy, it makes sense.
We can see this phenomenon in Figure 1, too, where the root node
has similar relevance as the node cin >> buf.
Graph sparsity We see in Table 2 that for all models the graph-
specific EMs yield the sparsest scores. This makes perfect sense
since they are optimization algorithms that seek to maximize mu-
tual information by maximizing the prediction score and minimiz-
ing the probability of an edge between two nodes. The random
baseline has an AUC of around 50% because all nodes’ relevance
scores are uniformly distributed. Integrated Gradients have the
worst results given the Devign and Vulas results. IG, for instance,
attributes around 90% of the overall importance to approximately
60% of the nodes in the ReVeal case study.

In Figure 2 the MAZ curves (sparsity) are presented for the case

studies. All graph-agnostic methods give extremely dense explana-
tions for the ReVeal case study. Overall the graph-agnostic methods
seem to be inferior compared to graph-specific methods. In Figure 1,
we present an explanation of a CPG showing a vulnerability® that is
correctly classified by ReVeal. The attribution is applied using PGEx-
plainer which correctly attributed relevance to the cin>>buf node.
However, unimportant nodes like the root node are highlighted as
well.
Stability. Table 2 shows that all graph-specific methods yield an
uncertainty that differs extremely from model to model. The graph-
agnostic explanation methods do not vary at all. Furthermore, in
the Sparsity and the DA column we see that PGExplainer has very
different score levels across multiple runs. Each run differs in the
descriptiveness from the identified important nodes and the amount
of relevance distributed over all nodes.

The variance in the runs of Graph-LRP correlates to the sampled
walks: Depending on the dataset and the sampling strategy, there
is a difference in DA and MAZ. Graph-LRP and GNNExplainer
generally have a much lower MAZ AUC standard deviation than
PGExplainer, i.e. there is little variation in their conciseness. On
the other hand PGExplainer’s MAZ AUC varies extremely and,
therefore, may yield different explanations. In addition its stability
depends proportionally on the median node count of the dataset
which is lowest for Devign.

We connect the large standard deviation of the graph-specific EMs
in Vulas concerning the DA with the low node and edge count.
A low node count means removing a single different node could
have a stronger effect on the model’s decision. Furthermore the
CCG has less edges than the CPG, since the CCG does not contain

6Taken from https://samate.nist.gov/SARD/
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PDG edges. Hence, a single misspredicted edge in PGExplainer or
GNNExplainer could lead to a vastly different classification output.
Efficiency. Graph-specific methods are almost always slower than
their conventional competitors. PGExplainer is trained one time per
dataset, which in turn, renders its training time for the inference
negligible. Due to the fact, that the PGExplainer uses node em-
beddings to predict the edge probability in a graph, we see that its
runtime is extremely slow for ReVeal which can be directly linked to
the large node and edge count median of 333 and 1132 respectively,
for this particular case study. CAM, GB, linear approximation and
EB scored the best scores in terms of runtime in our experiments.
Among the graph-specific methods, PGExplainer was the fastest
in 2 out of 3 tasks’. Graph-LRP is slow as well since it calculates
one LRP run for each walk. Runtime figures can be seen in the
appendix.

6 Discussion

Our evaluation of the various EMs provides a comprehensive yet
also complex picture of their efficacy in explaining GNNs. Depend-
ing on the evaluation criteria, the approaches differ considerably in
their performance and a clear winner is not immediately apparent,
as shown in Table 3. In the following, we thus analyze and structure
the findings of our evaluation by returning to the three research
questions posed in the introduction.

(1) How can we evaluate and compare explanation methods for
GNNss in the context of vulnerability discovery?

We find that existing criteria for evaluating EMs are incomplete
when assessing GNNs in vulnerability discovery. Our experiments
show that graph-specific criteria are crucial for understanding how
an approach performs in a practical application. For example, a se-
curity expert would not only focus on high accuracy of explanations
but also stability, sparsity, efficiency, robustness, and contrastivity.
Theoretically, a study with human experts would provide more
insights. However, this would be intractable. As a trade-off, we
suggest using combinations of our proposed evaluation criteria to
measure the potential to be human interpretable. The interplay of
these measurements is crucial and all have to be considered.

(2) Do we need graph-specific explanation methods, or are generic
techniques for interpretation sufficient?

Our evaluation demonstrates that generic EMs often lack sparse
explanations and tend to mark more nodes as relevant than needed.
For a security expert, it is necessary to spot the location of vulner-
abilities. Not only have graph-specific methods larger differences
between negative and positive samples more often, but also do they
focus on semantically more meaningful edge types. As Yamaguchi
et al. [32] show only few security vulnerability types can be found
when only taking AST edges into account and hence a more con-
trastive view is necessary. It turns out that generic techniques often
fail to provide this perspective when analyzing GNNs.

The stability and descriptive accuracy of graph-specific expla-
nation methods, however, is inferior to generic approaches. Con-
sequently, the sparse and more focused explanations comes with
a limited accuracy in the relevant features. This opens new di-
rections for research and developing graph-specific methods that

"Measured on AWS EC2 p3.2xlarge instance.
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Table 3: Final evaluation comparing graph-agnostic and graph-specific EMs. One point for a winner EM per model.

attain the same accuracy as generic approaches. Some possible
improvements could be adding regularization to focus on semanti-
cally important nodes, using node embeddings from lower layers
to overcome Laplacian oversmoothing, or to use the contrastivity
criterion already within the generation of explanations.

(3) What can we learn from explanations of GNNs generated for
vulnerable and non-vulnerable code?

We observe that many explanation methods focus on semanti-
cally unimportant nodes and edges, while having a large descriptive
accuracy. This could be a hint that the GNNs do not actually learn
to identify vulnerabilities but artifacts in the data sets, so-called
spurious correlations. As this phenomena occurs over several ex-
planation methods, it seems rooted in the learning process of GNNs
and thus cannot be eliminated easily. This finding is in line with
recent work on problems of deep learning in vulnerability discov-
ery [8] that also points to the risk of learning artifacts from the data
sets. Hence, there is a need for new approaches that either elimi-
nate spurious correlations early or improve the learning process,
such that more focus is put on semantically relevant structures, for
example, by additionally pooling AST, CFG and DFG structures.

Moreover, we show on a real-world vulnerability that the ex-
traction of minimal relevant subgraphs from explanations is possi-
ble and provides valuable insights. These subgraphs can be used
to construct detection patterns for static-analyzers [33], to guide
fuzzers [40], or to find possible attack vectors for penetration test-
ing [12]. Hence, despite the discussed shortcomings of explanation
methods and GNNs in vulnerability discovery, we finally argue that
they provide a powerful tool in the interplay with a security expert.
Especially, the generation of subgraphs from explanations helps
to understand the decision process for a discovery and to decide
whether a learning-based system spotted a promising candidate for
a vulnerability in source code.

7 Related Work

The variety of methods for explaining machine learning has brought
forward different approaches for evaluating and comparing their
performance [e.g., 18, 29, 34, 37]. In the following, we briefly discuss
this body of related work, indicating similarities and differences to
our framework.

Closest to our work is the study by Warnecke et al. [30] who
develop evaluation criteria for EMs in security-critical contexts. For
instance, they propose variants of the descriptive accuracy, spar-
sity, robustness, stability, and completeness for regular explanation
methods. We build on this work and adapt the criteria to graph
structures, such that they do not only measure the relevance of
individual features but topological structures. Furthermore, we in-
troduce new criteria that complement the evaluation and emphasize
important aspects in the context of GNNs. Baldassarre and Azizpour
[4] compare different explanation methods by attributing relevance

to features but do not consider the underlying graph structure.
Since nodes and edges are natural building blocks of a graph, it
is beneficial to focus on identifying those important topological
structures. This is especially important since we represent code as
graphs and relevant nodes can be directly mapped to relevant code
parts.

In a different research branch, explanation methods on GNNs
have been evaluated by Sanchez-Lengeling et al. [23], Baldassarre
and Azizpour [4] and Pope et al. [22]. Their main contributions
include the reinterpretation of classical EMs to be applicable to
graph neural networks and their evaluation on GNNs such as CAM,
LRP and GradCAM. However, their works fall short of introducing
new graph-specific criteria that are designed to explain structures
not captured in common feature vectors. Besides their lack of a
thorough comprehensive assessment as we introduce in our work,
they do not consider any graph-specific EM.

Furthermore, Yuan et al. [36] introduce a framework for evalu-
ating explanation methods for GNNs. They introduce the criteria
fidelity, stability, and sparsity which compute the relevance for the
model’s prediction, the robustness against noise, and the concise-
ness of the methods respectively. Their work does not consider
robustness against adversaries, efficiency or contrastivity and, most
importantly, lacks experimental evaluations.

Pope et al. also determine the contrastivity of an explanation
method by measuring the contrast between explanations for dif-
ferent classes [22]. However, they do not deliver insights about
robustness or efficiency in their experiments which is especially
important for the security domain. We adapt their contrastivity
into the context of vulnerability discovery and use it to asses how
well an explanation aligns with the actual code semantics. Besides
that, we want to assess how the model differentiates between vul-
nerable and non-vulnerable samples. We try to answer whether
GNN models actually learn to identify vulnerabilities. This question
aligns with different works, that critically analyze the capability of
models learning to represent vulnerabilities [3, 8].

In summary, current research does not offer any comprehensive
framework applicable to GNNs in security related contexts. The
majority of related work measures the quality of graph explana-
tion methods with a specific ground truth [35] or domain knowl-
edge [24] when checking whether EMs correctly detect cycles in a
synthetic dataset, for example [35]. We try to evaluate models and
explanations without using ground truth for the attributions, since
this information rarely exists in realistic scenarios.

8 Conclusion

We compare multiple graph-agnostic and graph-specific explana-
tion methods on three state-of-the-art GNN models which identify
security vulnerabilities. For the assessment, we introduce a frame-
work combining the evaluation criteria stability, descriptiveness,
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structural robustness, efficiency, sparsity and contrastivity. Taking
only the descriptive accuracy and runtime (efficiency) into account
for the three GNN models under test, CAM, IG and SmoothGrad out-
perform all other explainability techniques. However, explanation
methods for security-critical tasks, need to be thoroughly assessed
using all of the above criteria. We find that all explanation methods
have shortcomings in at least two criteria and therefore hope to
foster research for new explanation methods. When it comes to
meaningful, contrastive and sparse explanations that emphasize
the underlying graph topology we find graph-specific methods to
be superior.

To actually locate security vulnerabilities given human inter-
pretable explanations we thus suggest using GNNExplainer or PG-
Explainer. Our experimental results could guide development for
novel graph-specific explanation methods or to overcome current
shortcomings for GNNs in identifying security vulnerabilities.
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A Runtime Evaluation

Method Devign ReVeal Vulas
EB 0.11 0.17 0.07
GB 0.10 0.16 0.09
Gradient 0.10 0.16  0.091
LRP 0.14 0.207 0.12
CAM 0.12 0.17 0.09
SmoothGrad 1.66 1.72 1.79
GradCAM 0.11 0.16 0.08
Linear-Approx 0.11 0.16 0.09
IG 1.63 2.52 1.52
GNNExplainer 3.99 5.06 8.88
PGE-Training 4.36 50.14 3.20
PGE-Inference 1.22 47.04 3.06
Graph-LRP 22.24 33.01 19.10

Table 4: Average runtime (in s) per single graph instance.

B Model Comparison

Model Devign BGNN4VD Reveal
Graph CPG Bidirectional CCG CPG
Network Type 6-GGNN 8-GGNN 8-GGNN
Pooling 1D-Conv 1D-Conv Maxpooling
Prediction Head PEM?® MLP MLP

Loss BCE + L2-Reg BCE Triplet Loss

Table 5: Notable differences between the models.

C Datasets

In the next three subsections we give a more detailed introduction
to the datasets.

C.1 Devign

The Devign dataset consists of manually labeled C functions gath-
ered from Qemu and FFmpeg open source projects [39]. It consists
of 6000 malicious and 6000 benign samples. All bugs have been
found by scraping the commit history for certain keywords includ-
ing injection and DoS. Often vulnerabilities consist of out of bounds
or other memory related security issues. For example this® or that!?.
Since FFmpeg and Qemu are part of the OSS-Fuzz project and are
8Pairwise Embedding Multiplication

“https://github.com/ffmpeg/ffmpeg/commit/06e5c791949b635552a4305df6ce9d2fFa45ec90
Ohttps://github.com/ffmpeg/fimpeg/commit/5a2a7604da5f7a2fc498d1d5c90bds92edac9ces

2| MEMCPY (rhostname,
3| sizeof (rhostname) - 1);

continuously fuzzed, such vulnerabilities are oftentimes detected
during that process.

C.2 Reveal

Reveal consists of Debian security vulnerabilities taken from its
tracker!! and of Chromium vulnerabilities taken from its issue
tracking tool'2. Only bugs that are labeled security with a existent
patch are scraped. Assuming a file has been patched, all its func-
tions are extracted and labeled benign. Functions that differ from
before and after fix are labeled malicious. Therefore, the dataset is
unbalanced and consists of more benign than malicious functions.

static void eap_request(

eap_state *esp, u_char *inp, int id, int len) {
if (vallen < 8 || vallen > len) {
5| break;
}
/* FLAW: 'rhostname' array is vulnerable to overflow.=x/

- if (vallen >= len + sizeof (rhostname)){
+ if (len - vallen >= (int)sizeof (rhostname)){

ppp_dbglog(...);

inp + vallen,

rhostname[sizeof (rhostname) - 1] = '\@';

Listing 1: Reveal example vulnerability CVE-2020-8597

In Listing 1 a sample vulnerability form the Reveal dataset taken
from their original publication can be seen [8]. The sample shows
a buffer overflow vulnerability due to a logic flaw in the point to
point protocol daemon with the corresponding fix (line 9 and 10).

C.3 Vulas

Vulas is a collection of CVEs associated with large open source
Java projects and their respective fix-commits [21]. We extract each
changed function before and after the actual patch together with
multiple randomly chosen functions from the same repository. The
newest vulnerability in our dataset is CVE-2020-9489'3 and the
oldest one CVE-2008-1728 4. A sample security issue can be seen
in Figure 3.

Uhttps://security-tracker.debian.org/tracker/
2https://bugs.chromium.org/p/chromium/issues/list
Bhttps://www.suse.com/security/cve/CVE-2020-9489.html
4https://nvd.nist.gov/vuln/detail/CVE-2008-1728

107






Hunting for Truth: Analyzing
Explanation Methods in
Learning-based Vulnerability Discovery

109



E. Hunting for Truth: Analyzing Explanation Methods in

Learning-based Vulnerability Discovery

Hunting for Truth: Analyzing Explanation Methods in
Learning-based Vulnerability Discovery

Tom Ganz
SAP SE
Karlsruhe, Germany

Philipp Rall

Darmstadt, Germany

Abstract—Recent research has developed a series of methods
for finding vulnerabilities in software using machine learning.
While the proposed methods provide a remarkable perfor-
mance in controlled experiments, their practical application is
hampered by their black-box nature: A security practitioner
cannot tell how these methods arrive at a decision and
what code structures contribute to a reported security flaw.
Explanation methods for machine learning may overcome this
problem and guide the practitioner to relevant code. However,
there exist a variety of competing explanation methods, each
highlighting different code regions when given the same
finding. So far, this inconsistency has made it impossible to
select a suitable explanation method for practical use.

In this paper, we address this problem and develop
a method for analyzing and comparing explanations for
learning-based vulnerability discovery. Given a predicted
vulnerability, our approach uses directed fuzzing to create
local ground-truth around code regions marked as relevant
by an explanation method. This local ground-truth enables
us to assess the veracity of the explanation. As a result, we
can qualitatively compare different explanation methods and
determine the most accurate one for a particular learning
setup. In an empirical evaluation with different discovery
and explanation methods, we demonstrate the utility of
this approach and its capabilities in making learning-based
vulnerability discovery more transparent.

1. Introduction

The automatic discovery of vulnerabilities in software
is a long-standing challenge in security research. Several
methods have been proposed for this task that combine
static program analysis with machine learning techniques.
Recent approaches build on deep neural networks that
are trained on examples of vulnerable and non-vulnerable
code and potentially identify security defects automatically.
In controlled experiments, several of these learning-based
methods reach a remarkable performance and outperform
conventional techniques of static program analysis for
vulnerability discovery [e.g., 13, 16, 33, 49, 56].

Methods for learning-based vulnerability discovery,
however, suffer from a severe shortcoming: The employed
deep neural networks are opaque to the practitioner. That
is, it remains unclear how they arrive at a decision and
which particular code structures are responsible for a
predicted vulnerability. To make use of learning-based
methods, a practitioner is forced to manually investigate
each finding and validate its integrity, undermining the
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promise of automatic vulnerability discovery. Despite their
excellent performance, learning-based methods are thus
rarely employed in practice.

As a remedy, recent work has explored explanation
methods for machine learning in vulnerability discovery
[e.g., 21, 50, 58]. These methods enable to trace back the
decisions of a neural network to particular code regions,
thus creating the necessary context to assess a predicted
vulnerability. However, there is no established standard
for these explanations. A variety of competing concepts
exists, each highlighting different code regions when given
the same finding [21, 50]. As an example, Figure 1 shows
three explanations for a security flaw identified by a deep
neural network [13]. Each explanation marks different parts
of the code, making it impossible to interpret the finding
without further insights. This inconsistency poses a major
hurdle in creating transparent and explainable methods for
vulnerability discovery.

In this work, we address this problem and propose a
method for analyzing and comparing explanation methods
for learning-based vulnerability discovery. The core idea of
our approach is to generate ground-truth around the code
regions marked by an explanation method to determine
their veracity. To this end, we guide a directed fuzzer
toward their locations and inspect the relation between
reported crashes and explanations. This strategy allows us
to make a qualitative comparison of explanation methods
and link marked code regions to actual vulnerabilities. Our
method provides a novel view of explainable machine
learning in security that addresses the lack of ground-truth
in current frameworks for analyzing explanations.

We empirically evaluate our approach using different
explanation methods suitable for vulnerability discovery.
Our experiments show that commonly used intrinsic crite-
ria, such as the descriptive accuracy of an explanation, do
not adequately measure performance and lead to inconsis-
tent results. In contrast, our approach allows for a reliable
comparison, as it selectively constructs ground-truth on
local code regions, defined as local ground-truth and thus
evaluates the explanations against real vulnerabilities. Our
analysis contradicts prior work on selecting explanation
methods for vulnerability discovery[21, 50]: We find that
graph-based explanation methods actually outperform other
techniques when we base this comparison on local ground-
truth rather than (arbitrary) intrinsic criteria.

Naturally, our method cannot uncover the ground-truth
for any possible vulnerability, as it inherits the limitations
of directed fuzzing. For example, explanations pointing to
unreachable code cannot be analyzed and verified. Still,



int xmlStrlen(const xmlChar *str) {
int len = 0;

3 if (str == NULL) return(0);

4 while ( *str !'= 0) {

5 str++;

6 len++;

8 return(len);
9| ¥

10
11| xmlChar *xmlStrncat(xmlChar *cur, const xmlChar *add, int len) {
12 int size;

13 xmlChar *ret;

14 if ((add == NULL) || (len == 0))
15 return(cur);

16

17 if (len < @)

18 return(NULL) ;

20 if (cur == NULL)
21 return(xmlStrndup(add, len));

size = xmlStrlen(cur);
if (size < 0)
return(NULL) ;
26 ret = (xmlChar * )xmlRealloc(cur, (size+len+l) * sizeof(xmlChar));
27 if (ret == NULL) {
28 xmlErrMemory (NULL, NULL);
29 return(cur);
30 }
31| #  memcpy(&ret[size], add, lenxsizeof(xmlChar));
ret[size + len] = 0;
return(ret);

++

;4}

Figure 1: Vulnerability CVE-2016-1834 with highlighted
explanations for ReVeal+GNNExplainer (green), Re-
Veal+Smoothgrad (blue), ReVeal+GradCam (red). ¢ and +
denote the crash site and patch, respectively.

our method is the first approach to automatically assess
the veracity of explanations and help practitioners select
accurate explanation methods in practice.

The rest of this paper is organized as follows: In Sec-
tion 2, we introduce learning-based vulnerability discovery
and corresponding explanation methods. We then present
our approach for validating explanations in Section 3 and
evaluate its efficacy in Section 4. Limitations and related
work follow in Sections 5 and 6, respectively, before we
conclude in Section 7.

2. Vulnerability Discovery and Explanation

Let us first formalize the task of vulnerability discovery.

Definition 1. A method for static vulnerability discovery
is a decision function f: x — P(vuln|z) that maps a
piece of code x to its probability of being vulnerable.

Several methods can be directly cast into this simple
representation. For example, the classic tool Flawfinder'
searches for known patterns of insecure code, including
the usage of functions associated with buffer overflows
(e.g., strcpy, strcat, gets), format string problems
(e.g. printf, snprintf), and race conditions. Flawfinder
takes the source code text representation, matches it
against the above-mentioned function names and sorts them
by risk which is a discrete approximation to P(vuln|z).
Other static code analysis tools, such as Cppcheck® or
SonarQube3, can be similarly described as a function f
predicting vulnerabilities.

Learning-based methods for vulnerability discovery
also fit into this generic representation. The methods build
on a function f = fy (model) parameterized by weights
0 that are obtained by training on a dataset of vulnerable

1. https://dwheeler.com/flawfinder/
2. https://cppcheck.sourceforge.io/
3. https://www.sonarqube.org/features/multi-languages/cpp/

and non-vulnerable code [22]. Compared to classic static
analysis tools, learning-based approaches do not have a
fixed rule set and thus can adapt to characteristics of
different vulnerabilities in the training data. Conceptually,
these learning-based approaches mainly differ in (a) the
program representation used as input and (b) the learning
model, that is, the way f depends on the weights 6.

2.1. Program Representation

Learning algorithms typically require vector represen-
tations as input. Some methods for vulnerability discovery,
therefore, apply techniques from natural language process-
ing (NLP) to derive a suitable feature vector for a given
source code. In this case, the statements in the code are
regarded as sentences while keywords and literals form the
words. Doing so yields a sequential data corpus that can be
numerically encoded, for instance, by applying common
word embeddings [33, 39, 42].

Source code can also be modeled as a directed graph
G = G(V,E) with vertices V, edges E C V x V,
and attributes from a suitable feature space, that are
attached to nodes and edges [1, 7, 53]. We refer to
the resulting program representations as code graphs.
These graphs can capture syntactic and semantic relations
between statements and expressions inside code. Popular
graphs are abstract syntax trees (AST) and flow graphs
encompassing data and control flow. Similarly, a structure
called a program dependence graph (PDG) describes
control and data dependencies in a joint form [19]. Based
on these classic representations, combined graphs have
been developed for vulnerability discovery, in particular,
the code property graph (CPG) by Yamaguchi et al. that
resembles a combination of the AST, CFG and PDG [53].

2.2. Learning Model

Several learning models have been considered for
the discovery of vulnerabilities, ranging from simple
ones to deep neural networks [32, 33, 38, 42]. In par-
ticular, graph neural networks (GNN) are a promising
approach to process structured program representations.
They are deep learning models that take advantage of the
graph structure in the input and realize an embedding
i: G(V,E) — y € R? that can be used for classification
tasks [43]. The most popular GNN types belong to so-
called message-passing networks (MPN) where the pre-
diction function is computed by iteratively aggregating
and updating information from neighboring nodes. Several
message passing types exist that use different aggregation
and update schemes [51].

Due to the rich semantics captured by code graphs,
GNNs have been applied in a series of works for vul-
nerability discovery [16, 49]. The resulting approaches
outperform the former introduced sequential models, like
VulDeepecker [33] and Draper [42]. In this work, we
thus focus on approaches using GNNs on code graphs.
In particular, we consider the graph-based methods De-
vign [56], ReVeal [13] and the token-based methods
VulDeeLocator [34] and LineVul [20] that are state-of-the-
art in learning-based vulnerability discovery. Nonetheless,
our approach for creating local ground-truth is applicable
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to all learning models that allow tracing back explanations
to code regions.

Return

Reference

BinaryOperator

AST AST

lm l,\s.,_

Reference Reference

Figure 2: Explanation in the excerpt of a code graph.
Relevant nodes are highlighted in blue.

2.3. Explainable Learning

While learning-based vulnerability discovery has made
significant progress over the last years, a security prac-
titioner faces the problem that their decisions must be
verifiable. Learning-based approaches, however, only yield
a binary decision as output for a given source code, which
is hardly helpful for this task and requires a manual
investigation. Hence, explainable learning has been studied
as a remedy.

Given a vulnerability discovery method f we formalize
explanation methods as producing heatmaps M from pairs
of source code x and the predicted output y = f(x).
Heatmaps (or interchangeably explanations) attribute nu-
merical relevance scores to locations in the code, i.e. to
nodes and edges, if f is a GNN.

Definition 2. An explanation method (EM) is a function
ef: (z, f(x)) = M where f is a vulnerability discovery
method, © a piece of code, and M a heatmap defined
over x.

EMs are commonly classified into two categories:
black-box EMs require no knowledge of the learning
model, as for instance GNNExplainer, while white-box
EMs have access to the weights of the learning model
[50]. Furthermore, we discriminate graph-specific EMs that
account for the topology of the provided graphs and graph-
agnostic EMs that do not [21]. Throughout the paper, we
apply different EMs to graph representations of code. We
assume that a list of relevant lines of code can be extracted
from the inferred heatmap M over the features. The precise
process depends on the learning model that is used. For
NLP-based approaches, as for instance VulDeeLocator and
LineVul, the embedded code slices have to be converted
back to their string representation, while for code graphs
the respective code lines have to be attached to each node.

Explanation algorithms for GNNSs attribute relevance to
nodes, edges or subgraphs. We apply the heatmaps to the
nodes as depicted in Figure 2. Here we see the xmlStrlen
function from Example 1 with the corresponding graph
representation. Data and control flow edges have been
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removed for visualization purposes. The relevant nodes
are highlighted in accordance with the explanation method
Smoothgrad on the ReVeal model.

2.4. Comparing Explanations

In view of the variety of available EMs, it becomes
important to select an appropriate method for a given task,
in our case vulnerability discovery. Unfortunately, ground-
truth about relevant code regions is not available, and if
there is, then only under laboratory conditions. To compare
explanation methods in practice, we require metrics that
capture the quality of the explanations delivered by an
explanation method w.r.t. to a dataset and a model. Such
a metric can be defined as a criterion function taking an
EM as input and mapping it to a numerical score.

Definition 3. A criterion is a function c : ey — R that
measures the quality of ey. An explanation method ey
outperforms é; on a particular dataset D if c(es|D) >
c(éf|D).

A frequently used criterion is the descriptive accu-
racy (DA) that measures the relative importance of samples
comparing the prediction outcome of the model [9, 23, 35].
By removing the top features in M from x and re-
evaluating f(Z) [50] we measure the relative drop in
performance, for instance, the accuracy. We expect the
model to arrive at a poorer decision without its relevant
features. In this case, the vulnerability discovery model is
not only used as the decision method but also as an oracle
to assess the quality of an explanation.

Definition 4. An explanation oracle is a function o: M —
[0, 1] which assesses the attributed relevance in a heatmap.

Another popular criterion measures the sparsity of
the explanation since we expect fewer relevant lines of
code to be more human-interpretable [50]. The sparsity
is calculated by simply counting the relevant code lines
from M. Furthermore, some works from the security
domain also measure the robustness of explanations, giving
intuitions about the influence of noise. Based on these
intrinsic criteria, Warnecke et al. [50] and Ganz et al. [21]
assess the suitability of explainable learning in security.

Definition 5. Suitability is the property of an explanation
that describes the potential interpretability in practical
scenarios.

We refer to criteria characterizing suitability as intrinsic
criteria since they only draw conclusions between the
learning model and the explanations—and not the task at
hand. Consequently, intrinsic criteria do not compare EMs
by their ability to explain decisions but rather by their
potential to generate interpretable explanations. Since this
is fundamentally different to interpretability, we introduce
the term suitability for intrinsic comparisons.

For example, an explanation method might be suitable
for vulnerability discovery, yet it may still be incorrect in
the sense that the highlighted code is unrelated to the identi-
fied vulnerabilities. Validating the veracity of explanations
is only possible with ground-truth, that is, extrinsic criteria
that incorporate external knowledge about vulnerable code.



The ground-truth represents another oracle, which however
is only available for trivial cases [5].

Definition 6. Veracity is the property of an explanation
that describes how the relevant lines of code of a model
actually correspond to the examined task.

When it comes to vulnerability detection, the veracity
of an explanation is arguably more important than its
suitability. The veracity is to an explanation what soundness
is to a static analyzer. A static analyzer is considered sound
if it claims that a property of a program is true, while this
property is in fact true [30]. Similarly, we expect a code
region highlighted by an explanation method to be linked
to the underlying vulnerability.

Let us consider the example shown in Figure 1 which
we use throughout the paper. It shows a vulnerability in
Libxml2 (CVE-2016-1834). The code uses xmlStrncat to
concatenate two strings together. In particular, it reallocates
the first string to a larger contiguous memory area using
the calculated lengths from xmlStrlen. If the length of the
string is too large, the variable len overflows in line 6 and
eventually results in a negative size used for reallocation.
The memory block now becomes too small for memcpy in
line 31 and yields a buffer overflow. The patch checks
whether size is negative and is denoted by + in line 24
and 25. The crash-site is indicated by # in line 31.

We highlight explanations from three EMs on this vul-
nerability to illustrate their inconsistency. GNNExplainer
has the worst results according to criteria proposed by
Ganz et al. [21], yet it comes close to the crash-site.
GradCam highlights the size assignment in line 23, which
is also a good indicator; however, line 32 is definitely a
false positive. Smoothgrad highlights lines 6 and 8 equally.
While line 6 may be relevant to the integer overflow, the
other line is a false positive as well. The problem is that
the EMs arrive at completely different explanations with
varying suitability. Thus, we wonder how can they can be
compared with respect to their veracity?

3. Methodology

We argue that the veracity of an explanation is key
for practical vulnerability discovery. However, it requires
ground-truth about the location of vulnerabilities in source
code, which is tedious to obtain or not available at all.
As a remedy, we propose to apply directed fuzzing as
an incomplete but sound strategy for generating local
ground-truth around a region highlighted by an explanation
method. An overview of the resulting method is shown in
Figure 3 and formalized in Algorithm 1. Technically, the
method is composed of four components: a learning model,
an explanation generated for a predicted vulnerability, a
directed fuzzer for comparing the veracity and a crash
analysis to provide fine-grained insights.

In the first step, the learning model receives a code
sample z as input, runs an inference process and outputs
the decision fy(x). If a white-box explanation is employed,
the model’s weights, gradients and log-probabilities, are
additionally returned. Next, the explanation method under
test generates a heatmap M given the results of the
model for the input z. We interpret M as pointers to
interesting code regions by assigning a relative score to
each feature. A directed fuzzer [8, 14, 37] is then used as an

1 . 1
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Figure 3: Overview of our approach for generating local
ground-truth for explanation methods.

explanation oracle, which executes the given sample with
inputs directed toward the highlighted code regions. As the
last step, we employ a crash analysis by reproducing any
discovered crash. This enables us to obtain a detailed view
of the execution flow and, most importantly, the executed
lines of code.

The directed fuzzing and the crash analysis are repeated
for a fixed period, where the targets are processed according
to their relevance. This loop ensures that we obtain
comparative quantities for the top-k code lines highlighted
by the explanation method. We proceed to describe these
steps in more detail.

Algorithm 1: Method for generating ground-truth
for explanation methods.

Input: Discovery method f, explanation method e, dataset of
source code X’

1 repeat n times

2 for x € X do

3 y < f(x) /I Inference on sample

4 M < ef(x,y) /I Generation of explanation

5 Highlight code lines L from M

6 Run directed fuzzer towards L

7 Reproduce and analyze crashes

8 return M, Mo, M3 (Extrinsic criteria)

Let us assume we use the highlighted line in Figure 1
from GNNExplainer to direct the fuzzer. As soon as
the fuzzer generates a seed large enough for an integer
overflow, the application crashes at line 31, since the
reserved memory block for memcpy is too small. Line 32
is obviously not on the execution trace of the crash and
the assignment in line 26 is closer to line 32 than lines
4 and 8. Hence, we argue that the fuzzer would reveal
GNNExplainer as the best EM in this example.

3.1. Prediction and Explanation

Our approach is applicable to any combination of
learning models and EMs that allow a mapping of the
predictions back to locations in the source code. For
example, it can be applied to all combinations of models
and EMs considered in the studies by Ganz et al. [21], Zou
et al. [58], and Warnecke et al. [50].

Some vulnerability discovery models come with their
own integrated EM that is optimized jointly with the
learning process, as for instance, VulDeeLocator [34] or
LineVul [20]. These explanation can be similarly used
with our method, as they are equivalent to an API wrapped
around a learning model and EM as indicated by the
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dashed box in Figure 3. We refer to these methods as
model-integrated EMs.

Furthermore, some EMs generate negative and positive
scores, as they discriminate between the influences of
the two prediction classes. To unify these methods with
other explanations, we consider a code line that negatively
contributes to a vulnerability as one that indicates it is not
vulnerable. That is, we first apply the explanation method
to a decision of the learning model and then normalize
the returned relevance scores to the range M € [0, 1]%,
where F' is the number of code lines in a sample. After
this normalization, we select the top k£ most relevant lines
of code as indicated by the relevance values. The number
k to be selected is subject to parametric choice but should
be kept small and constant since more sampled lines lead
to a more involved manual assessment.

3.2. Code Highlighting

If the considered learning model operates on a se-
quential representation of the source code, mapping the
highlighted features to code regions is straightforward. For
graph-based approaches, however, we need to design a
way to extract the relevant code locations from the graph
to be able to feed them as targets into a directed fuzzer.

To this end, we attach to each node its starting and
end lines in the source code. Some of these nodes appear
higher in the AST hierarchy, like IfStatements, whereas
others denote the leaf nodes, such as literals [21]. The
hierarchy defines the number of lines a node spans. Since
the same code line can be marked as relevant by multiple
nodes from different layers, we traverse the AST in a
depth-first search and add relevance to each line as we
walk from the root to the leaf nodes.

Ganz et al. observe that the relevance scores from
higher nodes aggregate the score of their child nodes [21],
causing higher nodes to be more relevant than lower ones.
This phenomenon can be observed in Figure 2 and is likely
due to the aggregation property from the message passing
algorithm in GNNs. We solve this issue by weighting the
relevance per node by the inverse of the number of lines
a node spans, such that, for example, the EM attributes
more relevance to an IfStatement than to its surrounding
FunctionDeclaration.

3.3. Directed Fuzzing

We employ a directed grey-box fuzzer to retrieve a set
of target locations and to aim at reaching these by seeking
inputs minimizing the distance to the locations [8]. For
instance, the directed fuzzer AFLGo calculates control-flow
and call-graph distances prior to the fuzzing process to
guide this search. Similarly, approaches to directed fuzzing,
such as Hawkeye [14], can be applied in this step to explore
the highlighted code regions and test for the presence of
vulnerabilities.

To emphasize this, we revisit the definition of a security
vulnerability.

Definition 7. A security vulnerability is a software defect
that enables an adversary to violate a security goal, such as
the confidentiality, the integrity, or the availability, through
a specifically crafted input.
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A fuzzer is a program analysis tool used to generate
inputs and provoke program crashes. These crashes indicate
software defects, and since they are triggered by manipu-
lated inputs, they often represent security vulnerabilities
in the sense of Definition 7. As we direct a fuzzer towards
potential vulnerabilities in software, it is likely that a crash
is associated with a vulnerability rather than a software
defect. While this correlation could be coincidental, that
is, an independent defect is close to a vulnerability, this
situation should be rare given the high performance of
current methods for vulnerability discovery. Moreover, even
if only a defect is found, its proximity to a potential
vulnerability makes it necessary to investigate it anyway,
indicating a security relevance.

3.4. Crash Analysis

With the help of a directed fuzzer, we can thus explore
a program and seek to hit code regions indicated by an
explanation. To pinpoint the exact location of a program
crash, we utilize a debugger. The crash is a fact and thus
represents a form of ground-truth derived from a genuine
incident during the program’s execution. This incident is
local, as it pertains to individual statements rather than
the program as a whole. Consequently, we define local
ground-truth in Definition 8.

Definition 8. Local ground-truth refers to the precise
location within a program where a crash has been reported.
This location serves as a reference point for identifying
and addressing related issues in the code.

Technically, we employ a software debugger, such as
GDB or LLDB, that enables us to execute the programs
under test (PUT) with the crashing seeds and pause the
execution to collect information about the crash-site and
the explanation. In particular, we select the code lines
highlighted by the EMs as breakpoints during the crash
reproduction. When a relevant line is hit, the debugger
halts the program and starts to calculate metrics that serve
as extrinsic criteria in our approach. Using these criteria,
we are able to draw conclusions about the relation between
the crash and the highlighted code regions.

3.5. Extrinsic Criteria

We introduce three metrics that provide extrinsic
criteria to compare and assess explanation methods. These
criteria complement each other and yield a comprehensive
view of the veracity of an explanation.

M;: Crashes per path over time. As the first criterion,
we identify the number of unique crashes and hangs that
are reported during the fuzzing processes. This enables us
to argue about which EM identified targets that lead to
more paths resulting in crashes or hangs.

Fuzzers like AFL and AFLGo report unique crashes
and unique paths by first counting the overall crashes and
paths, and then rejecting those that reach the same branches.
This process is called de-duplication. However, Klees et al.
argue that de-duplication based on the executed edges
leads to false positives [29]. Furthermore, it is insufficient
to measure only the number of crashes. An explanation
that randomly assigns relevance will result in the fuzzer



having greater test coverage, leading to more crashes, only
a few of which are actually related to the code defect. We
counteract both issues by consolidating the crashes-over-
time criterion with the found paths-over-time. Calculating
the proportion of unique crashes per path, effectively gives
us a single notion of how many crashes per path on average
have been found. More paths will decrease the score while
fewer paths increase it.

M, : Mean breakpoint hits. As the second criterion, we
consider the average number of breakpoint hits during
the reproduction of crashes. If a target line triggers a
breakpoint during the reproduction of a crash, that line
can be considered to be associated with the vulnerability.
The more breakpoints are hit during the reproduction of
the crash, the more lines from the explanation are relevant.
The explanation method can highlight sections of code
near the actual vulnerability, but which may not be part
of the execution trace. Such lines may still be relevant,
since they may help a security practitioner to pin down
the vulnerability. On the other hand, this criterion alone
measures only whether a code line from an explanation is
executed at least once.

Ms: Mean crash distance. To overcome the gap left
by M, we also measure the average executed statements
between the breakpoint hits and the crash-site. If the lines
from an EM are closer to the crash-site, they should be
more helpful for a security practitioner to identify and
locate the cause of the crash and hence more relevant.
Thus, the highlighted line does not have to lie exactly
on the crash-site to be helpful. A target line from which
it takes longer to reach the crash-site is accordingly less
relevant since a security practitioner would have to afford
more time to traverse the code and find the connection
between the explanation and the actual cause.

#include <iostream>

using namespace std;

3| int array[3] = {1,2,3};

unsigned int index = userinput();
5[ if (index < 3)

6 cout << array[index];

else

8 cout << array[index]; // crash

Figure 4: Example vulnerability for extrinsic criteria.

Interplay of the criteria. We provide a hypothetical
example to illustrate their interplay in Figure 4 and to
establish an intuition for the three extrinsic criteria with
their edge-cases.

In this example, there are two possible branches, with
one leading to a crash if the user input index is larger
than 2. There are eight lines of code, hence each heatmap
M is specified by an 8—tuple of numbers from the interval
[0,1] and consequently there are 8! possible orderings by
the relevance of the code lines. We want to investigate
what would be sets M and M~ leading to the best and
worst scores, respectively.

In a fuzzing experiment, we can assume that the
fuzzer finds the crash quickest if line 7 or line 8 are
highlighted as relevant, resulting in an M7 score close to 1
for these lines. When the lines before 5 are highlighted, the
benign and the vulnerable path should appear evenly often,

resulting in an M; score of 1/2. When only line 5 or 6 are
selected, the result is an M; score of 0. Hence, we have
[0,0,0,0,0,0,1,1] € M™ as the optimal explanation.

M- measures the explained lines that have been exe-
cuted prior to the crash. Line 1 through line 5 are always
considered relevant by Ms, since they are linear (non-
branching) starting from the program entry. In contrast,
line 5 and line 6 will never be hit in a crash and can
therefore only negatively impact the criterion. Line 7 and
line 8 are executed within the crash reproduction. Hence,
the worst score is achieved by labeling line 5 and 6, and
the best score by labeling the complement: line 1 through 4
and line 7 and 8. This leads to [1,1,1,1,0,0,1,1] C M™T.

M3 measures the distance between the explained lines
to the crash-site. Hence, marking line 1 would result in
the worst and line 8 in the best score. Clearly, the most
relevant line is line 8 since it has a distance of O to the
crash-site. For fairness, we can also take & = 2 lines prior
to the crash-site as sufficiently close, therefore we have
[0,0,0,1,0,0,1,1] € M™ as the optimal explanation.

We conclude that an EM placing the most relevance on
line 7 and 8 would yield the best-combined results, since
there is the largest overlap of the different M ™. While M,
already captures this property, it depends on the number of
successful fuzzing runs. When the number of repetitions is
insufficient, the heatmap becomes ambiguous and thus also
My and M3 are necessary to distill the local ground-truth
around the crash-site.

Relationship to intrinsic criteria. To better understand
the introduced extrinsic criteria as an incomplete yet sound
replacement for the intrinsic criteria, let us discuss their
commonalities and differences below.

The DA is the response of an intrinsic explanation
oracle, namely f, while our extrinsic criterion M evaluates
the response of an extrinsic explanation oracle, namely a
directed fuzzer, to measure the relevance of an explanation.
Thus, in both cases, the heatmaps are interpreted as the
localization of a weakness.

Let us consider Figure 1 as an example again: After
removing line 6 and 8, ReVeal is unable to classify the
code snippet as vulnerable. This corresponds to a benefi-
cial DA, however, it wrongly suggests that Smoothgrad
has advantageous detection capabilities. If we focus on
GNNExplainer and remove line 26, ReVeal still classifies
the snippet as vulnerable, leading to a disadvantageous
DA. This effect is due to the fact that features in x have
varying degrees of influence on the prediction output.

The intrinsic criterion sparsity counts the relevant lines
[50]. A sparser M is considered more human interpretable,
while M, and M3 measure the distance of the executed
relevant lines to a recorded crash. For sparsity, the goal is to
minimize the highlighted code lines while for Ms and M3,
as many relevant lines as possible should be executed close
to the crash. Thus, both criteria provide intuitions about
the conciseness of the EM. Consider again Example 1,
GNNE«xplainer has the sparsest score but compared to
LineVul is further away from the actual crash location.
LineVul, however, has a worse sparsity score.

Some studies measure the stability [21] or robust-
ness [50] as the resiliency of an EM to noise in the feature
space. Ganz et al. measure the variance in the descriptive
accuracy [21] to this end. One EM is more robust than
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another if the variance in descriptive accuracy is lower for
the former than for the latter. Intuitively, it makes sense
that the same procedure can be trivially applied to the
extrinsic criteria as well.

Local ground-truth vs. vulnerabilities. After examining
the behavior of the extrinsic criteria M7, M>, and M3 and
their relationship to intrinsic criteria, we can now consider
the benefits of using extrinsic criteria.

A program crash is a clear indicator of a software defect
and likely a vulnerability, as demonstrated by our running
example (Figure 1). For instance, in line 31, we can observe
that the program allocates insufficient memory, which
directly leads to the crash. While highlighting line 31 can
precisely pinpoint the vulnerability, other lines executed
close to the crash might provide additional insights into
the root cause of it. For instance, line 23 or 26 may
indicate an integer overflow that contributed to the crash
and could be helpful in fixing the vulnerability. On the
other hand, lines such as 32 cannot be part of the crash
execution trace, even if they are in close proximity to the
crash. Consequently, GradCam’s accuracy is lower when
considering our extrinsic criteria.

The lines of code highlighted by an EM indicate the
most relevant features for predicting a security vulnerability.
However, EMs may identify code locations with artifacts
resulting from overfitting, such as noise or outliers [50].
Conversely, a crash triggered by a fuzzer indicates the
direct consequence of a security vulnerability [37], and
the crash-site pinpoints the exact location of the problem.
Therefore, a security analyst needs to reason about the
vulnerability using the crash-site and the associated execu-
tion trace. We expect a veracious EM to highlight regions
related to the crash-site and execution trace.

Our evaluation criteria assess the accuracy and proxim-
ity of the highlighted code locations to the local ground-
truth, which is based on the actual incident where the
program behavior diverged from its intended functionality,
potentially exposing the system to security risks. This
is different from intrinsic criteria that rely solely on the
discovery model’s feedback or properties directly derived
from M, which may be unreliable.

4. Evaluation

We proceed to experimentally demonstrate the applica-
bility of our approach and evaluate the veracity of different
explanation methods. In the course of this, we provide
answers to the following research questions:

RQI

Can we establish ground-truth around vulnerabili-
ties predicted by learning models?

RQ2 Which explanation method provides the best ex-
planations according to extrinsic criteria?

RQ3 How do extrinsic and intrinsic criteria differ when
comparing explanation methods?

RQ4 How do rule-based auditing tools perform against

explanation methods?

These questions naturally arise during software auditing
with learning-based methods for vulnerability discovery
and thus reflect typical decisions that must be made by
security practitioners.
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4.1. Experimental Setup

Before addressing these questions, we first introduce
our experimental setup and the different methods for
learning-based vulnerability discovery and generating ex-
planations for their predictions.

Vulnerability discovery methods. For identifying se-
curity flaws, we employ the methods Devign [56] and
ReVeal [13], which are state-of-the-art in learning-based
vulnerability discovery.

1) Devign: This method uses code property graphs
as a basis for detecting vulnerabilities. The graphs are
extended with edges connecting leaf nodes with succeeding
statements. These edges represent the natural order of the
statements. The employed learning model is a gated graph
neural network (GGNN) with six-time steps [56].

2) ReVeal: This discovery method takes an unmodified
code property graph as input. The learning model consists
of an eight-time-step GGNN followed by a sum aggregation
and a fully connected network as the prediction head.
The training involves a triplet loss that includes binary
cross-entropy, L2 regularization, and a projection loss
that minimizes the distances between similar classes and
maximizes the difference between different classes.

Choosing two different models enables us to identify
effects that are specific to the model. Both models are
trained on 70% of the dataset while the remaining 30%
are used for testing. Devign achieves 70.33 4 0.23% and
ReVeal 77.89 + 0.11% accuracy on the test dataset using
five-fold cross-validation.

Furthermore, we apply two recent learning-based detec-
tion models that come with their own explanation methods
(model-integrated EMs).

3) LineVul: This model is a transformer-based discovery
model that jointly trains a self-attention [27] layer used for
line-level explanations. LineVul uses a pre-trained large
language model based on BERT and fine-tunes on patch
diffs represented as tokens [20].

4) VulDeeLocator: This model optimizes an attention
layer after a bidirectional LSTM layer and achieves gran-
ularity refinement with a top-k pooling layer by filtering
out unimportant statements [34]. VulDeeLocator uses a
token-based representation extracted from graph slices on
the LLVM intermediate representation.

We use LineVul’s official implementation* and their
pre-trained model and retrain VulDeeLocator’ with their
official implementation on their original data. Both models
are evaluated on the same dataset as Devign and Re-
Veal achieving 68.15 + 0.43% for VulDeeLocator and
81.11 + 0.20% accuracy for LineVul using five-fold cross-
validation. LineVul and VulDeeLocator both apply jointly
optimized attention layers.

Training dataset. For our experiments, we consider a
combined training dataset assembled from the works
by Chakraborty et al. [13], Zhou et al. [56], and
Russell et al. [42]. To ensure strict separation of training
and test data, the programs under test (PUTs) are not part
of this dataset. In particular, our training dataset is derived
from the following sources:

4. https://github.com/awsm-research/LineVul/
5. https://github.com/VulDeeLocator/VulDeeLocator



1) FFmpeg+Qemu: The Devign dataset comprises
vulnerabilities extracted from commits associated with
bug fixes. These commits are taken from the FFmpeg
and Qemu open-source projects. The bugs are manually
annotated and balanced with non-vulnerable code [56].

2) Debian+Chromium: The ReVeal dataset is scraped
from patches of Chromium’s Bugzilla bug tracker and
issues from the Debian Linux security tracker. The dataset
is imbalanced and manually annotated [13].

3) Draper dataset: The Draper dataset is a partly
synthetic dataset and builds on the software assurance
reference dataset. It is partly labeled by static analyzers
and has over one million functions with around 6% of
them being vulnerable [42].

In total, our combined training dataset contains about
one million vulnerable C and C++ functions. It is likely
representative of a large set of CWEs in source code and
thus provides a good basis for training learning models
for vulnerability discovery.

Explanation methods. As subjects for our study, we
consider four common explanation methods for machine
learning. In particular, we focus on the graph-agnostic
methods Smoothgrad [46] and GradCAM [45] that are
widely applied in computer vision and the graph-specific
methods GNNExplainer [54] and PGExplainer [36] tailored
towards explaining GNNs. We chose these methods since
they yield the best performances according to other studies
focusing on software security [21, 50].

1) GradCAM: This explanation method applies a linear
approximation to the intermediate activations of GNN
layers [45]. In this work, we take the GradCAM variant
where activations of the last convolutional layer before the
readout layer are used [21].

2) SmoothGrad: This method averages the node feature
gradients on multiple noisy inputs [46]. We use noise
sampled from a normal distribution (o = 0.15) with 50
samples following Ganz et al. [21].

3) GNNExplainer: This method employs a black-box
forward technique for GNNs. For a given graph, it tries to
maximize the mutual information (MI) of the prediction
[54]. Since the method returns edge relevance, we attribute
the relevance of each node according to the harmonic mean
of adjacent edges. We train the GNNExplainer for 100
epochs with a learning rate of 0.01.

4) PGExplainer: This method uses a so-called
explanation network on an embedding of the graph
edges [36]. We train the network for 20 epochs with a
learning rate of 0.01 using an SGD optimizer.

Since graph-agnostic methods explain only vector-
spaced features, we aggregate the feature vectors associated
with graph nodes, so that all considered methods yield node-
level explanations. Moreover, since each method returns
a heatmap with relevant scores, different thresholds will
result in different numbers of false positives and false
negatives. Compared to Ganz et al. [21] we select the ten
most relevant code lines per vulnerable function instead
of a number relative to the graph size. Generally speaking,
the number of highlighted lines should be small to avoid
extensive manual assessment.

Baselines. In addition, we compare our approach against
three simple baselines: A random baseline assigns rele-
vance to random lines in the functions known to contain
bugs. This allows us to draw conclusions about the rele-
vance of EMs. Note that this baseline has prior knowledge
about the vulnerable functions and is therefore a strong
baseline. Moreover, vanilla AFL is included to show the
general effectiveness of EM-driven target generation and
its use as an oracle. Compared to the behavior of the
EM-directed fuzzing, we expect AFL to take longer until
crash and to find more unrelated paths. We also compare
the explanation methods against two popular open-source
rule-based static analyzers CPPCheck and Flawfinder that
already have been used in several studies [56]. We enable
CPPCheck’s bug hunting option to reduce false positives.

Programs under test. For comparing the selected explana-
tion methods under realistic conditions, we consider a set of
programs under test (PUTs) with known vulnerabilities in
several previous versions. We choose these programs since
they are commonly used in fuzzing literature [8, 14, 40]
and different fuzzing harnesses are readily available. Note
that the source code of these programs is not included in
the training set of the learning models and hence unknown
to them.

1) LibxmlI2: The first program is an XML parser written
in C with around 70 known CVEs and around 5000 public
commits. The input seeds for the fuzzer are based on DTD
documents from the respective Git repository.

2) Libming: This program is a flash utility written in C
that has around 70 known CVEs associated with overflow
or DoS vulnerabilities. The initial seed is an exemplary
SWEF file. We use the available fuzzing instrumentation
script from the AFLGo repository.

3) Giflib: The third program is a library to manipulate
GIF image files. Its repository has around 700 commits
with only eight publicly known CVEs. The input seed
is an empty string. We also use the available fuzzing
instrumentation code from the AFLGo repository.

To find potential vulnerabilities, we extract commits
that are associated with CVEs and bug fixes from their
respective versioning control systems, since this is currently
the state-of-the-art approach to build vulnerability datasets
[13, 56]. This extraction technique offers insights into
whether we can use our method to successfully assess
the explanation methods on popular models. We have 65,
69 and 8 vulnerable versions respectively for Libxml2,
Libming and Giflib.

Directed fuzzer. For establishing local ground-truth, we
rely on the directed fuzzer AFLGo which is a modified
version of the coverage-guided fuzzer AFL. Experiments
show that AFLGo provides a significant speed-up compared
to AFL when trying to reproduce crashes given known
targets [8]. We set a time budget of one hour to measure
the average crashes per path, the mean breakpoint hits and
the average crash distances.

All PUTs are compiled with an address sanitizer
(ASAN) to increase the yield of address-based crashes.
Sanitizers alter the instrumented code by inserting inline
reference monitors. This leads to crashes when policy
violations, e.g., reading from uninitialized memory, happen.
Consequently, we are capable of detecting several more
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defect types related to memory violations. Lastly, we use
the GNU Debugger (GDB)® for our crash analysis and
determine our extrinsic measures M, Mo and Ms3.

Intrinsic criteria. We compare our approach for establish-
ing local ground-truth against intrinsic criteria presented in
the introduction, which are commonly used to assess expla-
nation methods [9, 21, 50, 58]. To measure the descriptive
accuracy (DA), we follow the strategy by Warnecke et al.
[50] and calculate the decrease in performance of a learning
model when removing the top ten relevant lines of code. If
an explanation method correctly identifies important code,
the performance will drop significantly and we get a high
DA. Conversely, if the explanation method is not able to
mark relevant code, the DA will be close to zero.

Furthermore, we calculate the sparsity of an explana-
tion by calculating the mass around zero (MAZ) [21] of
the explanations for all samples. In reality, EMs produce
heatmaps M with vastly different numerical scores, hence
we project these relevance scores to the range [0, 1] and
count the number of lines lower than a 0.5 threshold
averaged by the number of lines. This indicates how much
of the relevance mass lies lower than a 0.5 threshold. The
larger, the fewer lines have been marked as relevant.

All discovery and explanation methods are imple-
mented on top of Pytorch Geometric and all experiments
are run on separate AWS EC2 g4dn instances so that the
runs do not interfere with each other. We repeat them
n = b times as suggested by Klees et al. [29] since the
fuzzing process depends on randomness.

4.2. Experimental Results

We organize the discussion of the experimental re-
sults along with the four research questions posed at
the beginning of this section. Our goal is to develop
an understanding of how local ground-truth can help in
analyzing explanation methods in vulnerability discovery
and how it improves current practices in software auditing.

RQ1. — Can we establish ground-truth around vulner-
abilities predicted by learning-models? Given Figure 5,
we see that random relevance attribution is by far the
worst explanation method on Giflib with only around 3.5%
crashes per path on average according to M;. However,
it for example, beats PGExplainer and SmoothGrad on
Libming using Devign, proving it to be a strong base-
line. Hence, on some PUTs, graph-agnostic explanation
methods exhibit the same or worse M; score as randomly
annotating code lines with relevance. Since the random
baseline attributes relevance to random code lines within a
vulnerable function, this method will generally find more
unique crashes per path over time compared to AFL alone,
as seen in the experiments with Libming and Libxml2.
Figures 6 present the mean breakpoint hits and mean
crash distances per explanation method for Devign and
ReVeal. The more left an EM is located on the map, the
closer are the targets to the crash-site (M3) and the higher
an EM, the more target lines lie on the crash’s execution
trace (M5). Hence, the green shading denotes a better
placement, while the red suggests worse performances

6. https://www.sourceware.org/gdb/
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TABLE 1: The time needed to reproduce crashes from
CVEs.

CVE Project Devign+SmoothGrad ~ AFL

CVE-2018-11226  Libming 3h30mds+75s >24h
CVE-2018-7866 Libming 15m21s+23s 39m00s£65s
CVE-2014-0191 LibxmlI2 2m41s+54s 13m12s£73s
CVE-2016-5131 Libxml2 4m43s+14s 11m15s+29s
CVE-2016-4658 LibxmlI2 11m22s+33s 30m15s+22s
CVE-2014-3660 LibxmlI2 26m09s+19s 56m14s+22s
CVE-2015-7500 Libxml2 38m04s+04s  1h13m07s+43s

regarding the two criteria. Including M» and Ms; from
Figure 6 however, random is the worst method. Lastly,
there is always at least one graph-specific method per PUT
that outperforms random relevance assignment.

Except for Giflib, vanilla AFL finds fewer crashes
per path on average than the other explanation methods.
Surprisingly, AFL is among the best methods on Devign
for Giflib. This could be due to the overall bad performance
of Devign on Giflib compared to ReVeal. Table 1 shows
known CVEs contained in the PUTs with the average
time needed until the fuzzer reproduces the crash with and
without targets from the EM within a fixed period of 24
hours. In our experiments, the fuzzer in combination with
an EM reproduces the crash of every CVE substantially
faster than AFL alone.

Discussion. According to Table 1, the crash reproduction
is faster using the extracted lines from explanation methods
compared to vanilla AFL without any targets. After re-
executing the generated seeds from the directed fuzzer
during the crash analysis, using the debugger, we observe
that the lines were indeed hit and close to a crash-site,
given the results from Figure 6, since all EMs do have a
beneficial My and Mgz score over random. This verifies
that the seeds are indeed targeted to the explained lines
and that the lines are in fact associated with the crash.

The heatmaps of the EMs advantageously direct
the fuzzer to the crash-sites. Thus, we can interpret
the heatmaps as local ground-truth around vulnera-
bilities.

RQ2. — Which explanation method provides the best
explanations according to extrinsic criteria? For visual-
ization purposes, consider Figure 5 showing the average
crashes per path (M;) over the fuzzing period for five runs
for Devign and ReVeal on all three PUTs. AFLGo uses
simulated annealing [28] to schedule the energy assignment
for the generated seeds [8]. We can see that the fuzzing
process gets more and more targeted until we observe an
asymptotic progression suggesting an optimum.

We can fit this behavior to a logarithmic function
parameterized by time: f(z) = a - log(x) + b, where a is
the logarithmic stretch and b denotes an intuition for the
initial found crashes per path. A higher a corresponds to
a steeper approximated slope and consequently denotes
the speed by the targets that let the fuzzer find crashes.
Since the first crashes are hardly targeted, we are more
interested in the steepness of the progression a and not
the initial performance b. The logarithmic stretch allows
us to simplify the comparison for the M; and is depicted
in Table 2.
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Figure 5: Fuzzing results for models Devign and ReVeal.

TABLE 2: Logarithmic stretch a per EM, PUT and model for average unique crashes per path over time (M7).

GNNEXxplainer SmoothGrad

PGEXxplainer

Gradcam .
PUT ‘ Devign  ReVeal ‘ Devign  ReVeal | Devign  ReVeal ‘ Devign  ReVeal LineVul  VulDeeLocator ‘ Flawfinder = CPPCheck ‘ AFL  Random
Libming 2.01 2.09 2.15 2.06 2.14 2,16 2.00 2.04 2.12 2.10 1.50 1.54 | 191 1.98
Libxml2 0.26 0.26 0.48 0.21 0.26 0.25 0.23 0.37 0.23 0.25 0.09 0.19 | 0.21 0.25
Giflib 0.60 0.94 0.73 0.81 0.71 0.76 0.54 0.70 0.78 0.72 0.53 0.70 | 0.71 0.30

With the logarithmic stretch, we first assess the in-
fluence of the model on the EM’s output, for instance,
GradCam, SmoothGrad, GNNExplainer and PGExplainer
in Figure 5. Overall we can see that all EMs show a
beneficial progression over time for at least one dataset
and model combination since a higher a value denotes
a steeper increase. Judging by the best scores, graph-
specific EMs score four out of six and graph-agnostic EMs
score two out of six. PGExplainer finds more crashes on
ReVeal than all other methods on Devign for Libxml2 given
Table 2. GNNExplainer outperforms all other methods on
Libxml2 for Devign, since the others show an asymptotic
progression to a lower plateau. On Libming, however, they
are equally performing.

According to the My and M3 scores from Figure 6,
GNNExplainer gives the most concise explanations for De-
vign regarding the mean breakpoint hits while Smoothgrad
yields the best score concerning the mean crash distance.
This means that the explanations by GNNExplainer result
in targets that are more often part of the execution trace but
the distance to the crash-site is further away from the crash-
site. On the other hand, SmoothGrad does not have as many
breakpoints but the relevant lines are closer to the crash-site.
Conversely, GradCam gives the worst results since only a
few lines are relevant and those lines marked are further
away from the crash-site than for the other EMs. Even the
baseline highlighted more lines that have been part of crash

traces than GradCam. Furthermore, Figure 6b shows that
GNNExplainer yields the most relevant lines measured by
the breakpoints that were hit during crash reproduction and
the average distance to the crash-site. Although the average
crashes per path are best for PGExplainer, GNNExplainer
has the most precise explanations. GNNExplainer is on
the Pareto front for both maps.

At first sight, the model-integrated EMs perform simi-
larly compared to the separate EMs as indicated by Figure
8b and Table 2. LineVul is slightly better on Libming and
Giflib, while VulDeeLocator is better on Libxml2 but still
only on par with Random. Given Table 3 VulDeeLocator,
however, has a far better M5 score, which indicates that the
explanation is more accurate, while less close to the local
ground-truth given the M3 metric compared to LineVul.
Both methods outperform GradCam and PGExplainer but
are inferior to GNNExplainer and SmoothGrad.

Discussion. Our evaluation reveals, that the choice of EM
is also dependent on the choice of discovery model. A
different model might work better with different EMs. In
general, however, are graph-specific EMs, for instance, GN-
NExplainer, achieving the best results in our experiments
for graph-based vulnerability detection models as seen in
Table 3. The relevant explained lines are all close to the
examined crashes and are, compared to the others, more
often part of the crashing execution trace. We also see
that graph-specific methods also perform better regarding
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TABLE 3: M, and Mjs comparison between model-
integrated and model-independent EMs with standard
deviation.

Model Mean Breakpoint Hits M2  Mean Crash Distance M3
Random 8.21 £ 0.40% 0.124 + 0.014s
GNNExplainer 15.48 + 0.22% 0.084 + 0.002s
SmoothGrad 11.06 £+ 0.13% 0.077 £ 0.003s
PGExplainer 10.04 + 0.37% 0.088 + 0.010s
GradCam 9.26 £+ 0.05% 0.097 + 0.006s
VulDeeLocator 10.54 + 0.14% 0.094 + 0.002s
LineVul 9.97 + 0.16% 0.084 + 0.003s

M, where graph-specific EMs achieve the best scores in
four out of six while graph-agnostics only in two out
of six experiments according to Table 2. Contrary to the
empirical study of Ganz et al. [21] we find that graph-
specific methods are more veracious than graph-agnostic
EMs. We thus conclude that the extrinsic criteria enable us
to qualitatively compare EMs, which has not been possible
before for vulnerability discovery.

Model-integrated EMs are a viable replacement for sep-
arate vulnerability discovery models and EM combinations.
In our experimental study, however, we observe two model-
separate beat their performance, namely GNNExplainer
and SmoothGrad.

Our extrinsic criteria indicate that graph-specific
explanation methods highlight vulnerabilities best.
When possible, these methods should be used to
explain code in graph-based vulnerability discovery.

RQ3. — How do extrinsic and intrinsic criteria differ
when comparing explanation methods? We evaluate two
commonly used intrinsic criteria for ReVeal, Devign,
VulDeeLocator and LineVul on the PUTs in Figure 7.
We measure the sparsity (MAZ) and descriptive accuracy
for each EM and PUT. The higher and the further to
the right the result is in the graph, the better the EM
is according to the intrinsic criteria. Overall, Gradcam
and Smoothgrad yield the best DA for ReVeal. Most
explanations however lie closely around zero according to
the DA. Considering the sparsity, only about 75% of all
code lines’ relevance scores lie within the range of [0, 0.5]
for GNNExplainer. PGExplainer has the best MAZ for
all PUTs and for both models since around 0.95 — 0.98%
of the code lines score an accumulated relevance lower
than 50%. Our results are in line with Ganz et al. [21]
since according to them, Smoothgrad is among the best
candidates considering the DA and PGExplainer produce
the most concise explanations.

Reviewing the snippet in Figure 1, we note that
VulDeeLocator does not detect the sample, while LineVul
highlights lines 14, 23 and 31. Interestingly, it is able to
precisely pinpoint the crash-site, however, it seems to also
detect more false positives. Given their intrinsic evaluation
in Figure 7c, we can support the observation that model-
integrated methods appear to have an abundant heatmap,
given their sparsity score, but achieve an up to 400% better
DA than the separate EMs, i.e. those that are not coupled
with the discovery model. VulDeeLocator, on the other
hand, has an inferior DA than LineVul. Only the gradient-
based EM GradCam (on ReVeal) has a similar Descriptive
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Accuracy as LineVul, which mirrors the results from their
intrinsic evaluation [20].

Discussion. We can see that the DA for Devign yields no
particular information whatsoever. Gradcam and Smooth-
grad yield a better DA for ReVeal. Although their DA
is superior compared to GNNExplainer and PGExplainer,
their located code lines are, however, unrelated to the
actual underlying vulnerability concluding from our ex-
trinsic results. Furthermore, Smoothgrad has a low DA on
Libming although its speedup of the crash reproduction



was the fastest, resulting in the highest M; score given
Table 2. The performance of the EMs measured by their
intrinsic criteria in Figure 7 shows a large discrepancy
from the performances measured by our extrinsic criteria.
The descriptive accuracy is similar across all PUTs, EMs
and even models. In contrast, our extrinsic criteria show
vastly different performance plateaus among the EMs taken
from Table 2 and the Pareto maps from Figure 6a and 6b.

It has been shown that the DA is sensitive to learned
artifacts in the model, such as feature overfitting [21, 58].
This can be explained analogously with an image recogni-
tion task: Imagine evaluating a model that classifies boats
and cars. Intuitively, the model could learn to focus on
whether the image contains water or not. Consequently,
removing features such as coastline and water causes the
model’s performance to drop significantly, resulting in
a higher DA. Hence, the most relevant features are not
important for solving the actual underlying task and the
DA fails to capture this. Moreover, if a model generalizes
well over its features, it may be robust to the removal of its
top features, resulting in a low DA while still performing
well in its task.

It turns out that this feature overfitting, measured by
the discrepancy between intrinsic and extrinsic criteria,
is even more extreme when the model and the EM are
jointly trained. The tighter coupling between VulDeeLo-
cator and LineVul’s model and EM causes the EM to
be more sensitive to the overfit artifacts, i.e. , noise,
under or overrepresented features, or outliers. LineVul
and VulDeeLocator, for instance, are trained on vulnerable
functions and their associated patches. The modified lines
in the patch are used to train their EM. This introduces
bias, for instance in Example 1, another possible fix might
as well change the return type of xmlStrlen from int to
size_t. However, the maintainers decided against this’.
Thus, the patch and the bug location can be very different.
This might be the reason why LineVul highlights line 23,
since buffer length calculations might be often part of a
patch in their datasets.

More formally speaking, the disadvantage of the de-
scriptive accuracy is the double use of model f: firstly as a
model from which the relevant code lines are calculated and
secondly as an oracle to evaluate them. Since M; uses a
directed fuzzer, we can remove any bias by the decoupling
of the oracle from the discovery model. Another advantage
of our extrinsic criteria is that they rely on an oracle
based on dynamic analysis instead of a static analyzer f.
Christakis et al. and Dietrich et al. state that dynamic
analysis should be preferred to validate the soundness of
a static analyzer [17, 18]. Hence, we can conclude that
M7 uses a more faithful oracle for the real-world task of
vulnerability discovery.

Considering the sparsity, GNNExplainer and LineVul
achieve the worst MAZ results, and PGExplainer and
Smoothgrad yield the best. However, judging by how often
their lines lie on the execution trace and how close they
were to the crash, they perform exactly counter-factually
using our extrinsic criteria.

Suppose a line from an explanation was neither close
to the crash-site nor was it even executed during a fuzzing
iteration. In that case, we can clearly say that removing this

7. https://bugzilla.gnome.org/show_bug.cgi?id=763071

feature does not affect M; but increases the conciseness
of an explanation. On the other hand, we can take into
account what it means for an explanation to be maximally
concise. Consider an example where every highlighted line
is part of the execution trace and maximally close to the
crash-site. Removing a single line might give us a more
concise explanation but at the cost of valuable information.
We conclude that M5 and M3 measure sparsity, too, but if
we rely on the intrinsic sparsity to compare EMs, we may
end up with an EM that labels a few code lines as relevant
but none of these actually deliver information to locate or
fix the bug. As an example of this phenomenon, consider
Smoothgrad in Figure 1. Therefore, the ability of our
extrinsic criteria to measure EMs is closer to the underlying
task of vulnerability discovery and less susceptible to
learned biases.

Our criterion M relates to the descriptive accuracy,
while Ms and Mj; describe sparsity. However,
our extrinsic criteria provide a better basis for
comparison, as their results turn out to be more
diverse and consistent compared to intrinsic criteria.

RQ4. — How do rule-based auditing tools perform
against explanation methods? We compare Flawfinder and
CPPCheck against the explanation methods in Table 2. All
static analyzers are inferior in our experiments and only
beat the random baseline on Giflib. Figure 8a exemplary
visualizes the average crashes per path (M) for the expla-
nation methods and the static analyzers over the fuzzing
duration for Libxml2 and Devign. Over time, except
GNNExplainer and Flawfinder, all methods converge to a
similar plateau. Towards the end, CPPCheck identifies more
crashes than Flawfinder. It has already been observed in the
work of Arusoaie et al. [3], that CPPCheck is more effective
than Flawfinder. In general, the improved effectiveness of
the explanation methods compared to the static analyzers
is likely due to the fact that Devign and ReVeal are better
at detecting vulnerable code artifacts.

For visualization purposes, we want again to point to
Figure 1 which shows a critical vulnerability in Libxml28.
Flawfinder reports a possible flaw in memcpy due to len
not being checked. Hence, Flawfinder is the only method
to correctly detect the crashing location without any false
positive, although the accompanying description is wrong
whatsoever since len is not the problem. CPPCheck on
the other hand does not detect the flaw, even with the
bug-hunting option disabled, resulting in potentially more
false positives.

Discussion. As previously pointed out, another advantage
is that our extrinsic criteria allow us to benchmark vulner-
ability discovery models with their EMs against classical
rule-based static analyzers, which is not possible with
intrinsic criteria. In our experiments given Figure 8a, we
see that all EMs beat the open-source static analyzers
when comparing the average found crashes over time in
our experimental study.

8. https://gitlab.gnome.org/ GNOME/libxml2/-/commit/8tbbf55
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Our extrinsic criteria indicate that the combination
of EMs and learning-based vulnerability discovery
models reveal code relevant to vulnerabilities better
than traditional static analyzers.

5. Limitations and Implications

We proceed to discuss the limitations and implications
of our approach and provide recommendations for its
application in practice.

Limits of fuzzing. If we assume that a vulnerability
is present in the program under test, it is not known
in advance whether a fuzzer can reach it due to time
constraints or roadblocks. Worse, it is not even certain
whether the defect actually causes a crash. Clearly, our
approach is limited to vulnerabilities that can be generally
identified through a fuzzer. Interestingly, however, such
vulnerabilities largely overlap with those that can be
uncovered using learning-based vulnerability discovery

To illustrate this relation, we compile a non-exhaustive
list of Common Weakness Enumeration (CWE) numbers
that vulnerability discovery models, such as [16, 20, 49],
are capable of detecting statically. We then cross-reference
these CWE numbers with those that fuzzers, such as [24],
are able to find, and present the results in Table 4 in the
Appendix. We conclude that not all vulnerabilities in a
dataset can be successfully uncovered by fuzzing, but we
can still gather enough evidence using some descriptive
samples to evaluate one explanation method in preference
to another, which after all, is our main proposition.
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Moreover, AFL, the fuzzer we employ, suffers from
hash collisions in the way it stores visited branches’. As
a consequence, a random portion of the seeds that have
been found is dropped before the crash analysis. However,
this (statistically) does not influence the outcome for My
and M3 because both average quantities (breakpoint hits,
or crash distance) over the set of seeds.

Implications. We have seen that intrinsic criteria can lead
to misleading results. Although our approach is not perfect,
it is an important step forward that helps to better compare
and evaluate explanation methods. In particular, when
learning-based vulnerability discovery methods are jointly
applied with fuzzing, for example as part of a security audit,
our approach is a natural fit and allows determining the best
explanations methods for the program under test. Moreover,
our method is applicable in all scenarios where fuzzing
is effective and thus can serve as an oracle to improve
learning-based vulnerability discovery. This, for instance,
holds for all open-source software currently investigated
in the OSS-Fuzz project.

However, there are also scenarios where our approach
is not suitable for evaluating explanation methods. If the
program under test is small and only a few samples are
available, the proposed criteria may not provide meaningful
results because not many bugs can be validated by the
fuzzer. Similarly, if the time budget is limited, the fuzzer
may not have enough processing time to go through the
important branches. In these cases, our extrinsic criteria
may not be meaningful. Still, we recommend sticking to a
manual assessment of samples in these cases, rather than
relying on intrinsic criteria.

6. Related Work

Our work provides a novel link between two active
areas of security research: vulnerability discovery using
machine learning and directed fuzzing. As a result, there
exist different prior work related to our approach that we
discuss in the following.

Learning-based vulnerability discovery. The combination
of GNNs and code graphs, considered in our work, has
proven successful in the discovery of bugs and security
vulnerabilities in a series of research [11, 15, 48, 56]. For
example, Zhou et al. introduce the first gated graph neural
network on code property graphs to identify bugs and
vulnerabilities collected from real-world commits. Their
approach outperforms popular open-source and commercial
static analyzers as well as token-based learning models
[56]. Cao et al. choose a different graph representation of
the underlying source code. They combine data-flow and
control-flow graphs with the abstract syntax tree to the
code composite graph [11].

Recently, Chakraborty et al. reveal that several state-
of-the-art datasets to evaluate these models are not re-
alistic [12]. In a similar vein, Arp et al. [2] discuss
common pitfalls when working with methods learning-
based vulnerability discovery. We argue that these problems
can only be tackled if appropriate explanation methods are
employed and hence the process of vulnerability discovery
becomes transparent to the practitioner.

9. https://github.com/mirrorer/afl/blob/master/docs/technical_details.txt



Explanation methods. Several recent surveys have de-
veloped taxonomies, algorithms and evaluation criteria
for explanation methods in machine learning [6, 47].
With the rise of graph neural networks, several works
ported the underlying classic explanation concepts to the
graph domain [4, 41], as well as completely new graph-
specific algorithms have been invented [36, 44, 54]. For
instance, Yuan et al. describes a comprehensive taxonomy
for explainable graph-specific machine learning with a cat-
egorization of current algorithms and evaluation methods
[55]. Guo et al. introduce a black-box explanation method
for security-critical machine learning models [23]. Some
recent approaches incorporate EMs in the vulnerability
discovery task to integrate interpretability directly in the
learning process [20, 25, 34]. However, all work in this
direction focuses on either intrinsic criteria evaluating the
explanations by the descriptive accuracy or sparsity or
suggesting human expert studies to validate the actual
usefulness. Closest to our approach, Sanchez-Lengeling
et al. compare explanation methods using several types of
ground-truth for molecule graphs [43].

Comparing explanation in security. Explanation methods
have already been applied to learning models in security in
different studies. Warnecke et al. show that it is non-trivial
to validate security-critical models from explanations given
by several algorithms with a predefined set of evaluation
criteria [50]. However, explaining the decisions of such
models is crucial [2]. Zou et al. present a method to
extract important tokens from token-based vulnerability
discovery models. The extraction works by perturbing
input source code pieces such that the classification label
switches from 1 to 0. Black-box explanation methods
yield better portability between different models but the
overall performance deteriorates. Furthermore, they use
descriptive accuracy to measure the performance. Since
this is an intrinsic metric, it is impossible to make any
assumptions about the veracity [58]. Finally, Linardatos
et al. state that it is unfeasible to rank EMs by their ability
to make a model’s decision interpretable [35].

Directed fuzzers. Since we rely on directed fuzzers,
we briefly discuss popular approaches, including AFLGo
[8] and Hawkeye [14]. Both model the targeted input
generation as a power-schedule problem. Beacon [26]
tries to incorporate path pruning into the seed selection
process and hereby accelerates crash reproduction com-
pared to AFLGo and Hawkeye. Targetfuzz [10] prioritizes
the initial seed selection to speed up directed fuzzing.
Other works focus on improving the instrumentation of
grey-box fuzzers by heuristically extracting potentially
interesting code regions, for example in the work by
Osterlund et al. [40]. Zhu et al. use explanation methods
in conjunction with an NLP-based bug-detecting model to
speed up the directed fuzzer AFLGo. V-Fuzz also speeds up
fuzzing with learning techniques: it uses a neural network
to detect likely vulnerable spots in binary programs [31].

Static analysis report verification. From a broader per-
spective, our work compares static code analysis methods
using dynamic analysis. This approach has been also
persuaded in other contexts. For example, Christakis et al.
[17] validate unverified and potentially unsound static code

analysis reports using dynamic code execution to reduce
false positives. Similarly, Wiistholz and Christakis [52]
build upon this work and use online static analysis to guide
a fuzzer by analyzing each path during the fuzzing process
right before a new input is selected. Closely related to our
explanation oracle, Barr et al. [5] define testing oracles
as mechanisms that decide whether a set of system tests
are relevant or not. Dietrich et al. [18] state that it makes
more sense to validate static analysis results using oracles
based upon dynamic analysis. All these approaches are
related to our work, yet they focus on different types of
static tools and do not consider learning-based discovery
methods and their explanation.

7. Conclusion

In this work, we present a novel method to compare
explanation methods for learning-based vulnerability dis-
covery models by their veracity. Current advances in the
field consider vulnerability discovery as a classical machine
learning task. They fail to connect it to the underlying
problem, which is static program analysis. Since there is
a large pool of explanation methods available to choose
from, with each yielding vastly different explanations, we
present an appropriate and novel method to systematically
and automatically evaluate extracted explanations for deep
learning-based vulnerability-detecting models.

We propose directed fuzzing to selectively generate
ground-truth and verify and compare the relevance of
explanations. We show that several general assumptions
drawn from past experimental studies are biased. For
instance, recent work uses inadequate oracles or none
at all to compare EMs. This leads to results that advise
against black-box or graph-specific explanation methods
in past works, such as GNNExplainer. However, by using
dynamic execution as a more appropriate oracle, our results
suggest to still consider black-box and graph-specific
EMs for vulnerability discovery. In addition, we present
evidence that integrating explanation methods directly
into the learning task to discover weaknesses can further
compromise performance comparison. We conclude that
our method is suitable for testing explanation methods
and verifying practical considerations of whether or not
learning-based vulnerability discovery models should be
incorporated into everyday secure software development.
Based on our results, we hope to foster research in the
fields of explainable machine learning for vulnerability
discovery.
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A. Appendix

TABLE 4: CWEs detected by fuzzers (F) and ML models (M) as reported by [16, 20, 24, 49].

CWE  Description Detected By  Sanitizer needed
20 Improper Input Validation M

22 Improper Limitation of a Pathname to a Restricted Directory (’Path Traversal’) M

74 Improper Neutralization of Special Elements in Output Used by a Downstream Component ("Injection’) M

77 Improper Neutralization of Special Elements used in a Command ("Command Injection’) M

78 Improper Neutralization of Special Elements used in an OS Command ("OS Command Injection’) M

119 Improper Restriction of Operations within the Bounds of a Memory Buffer M

125 Out-of-bounds Read M ASAN
130 Improper Handling of Length Parameter Inconsistency F

131 Incorrect Calculation of Buffer Size F

133 String Errors F

138 Improper Neutralization of Special Elements M

172 CWE-172: Encoding Error F

189 Numeric Errors F

190 Integer Overflow or Wraparound M UBSAN
191 Integer Underflow (Wrap or Wraparound) M UBSAN
200 Exposure of Sensitive Information to an Unauthorized Actor M

269 Improper Privilege Management M

284 Improper Access Control M

285 Improper Authorization M

287 Improper Authentication M

310 Cryptographic Issues F

362 Concurrent Execution using Shared Resource with Improper Synchronization ("Race Condition”) M TSAN
369 Divide By Zero ™M

393 Return of Wrong Status Code F

399 Resource Management Errors M

400 Uncontrolled Resource Consumption M

404 Improper Resource Shutdown or Release M

415 Double Free M

416 Use After Free F

434 Unrestricted Upload of File with Dangerous Type F

457 Use of Uninitialized Variable F

465 C: Pointer Issues F

467 Use of sizeof() on a Pointer Type M

469 Use of Pointer Subtraction to Determine Size M UBSAN
476 NULL Pointer Dereference M MSAN
514 Covert Channel F

573 Improper Following of Specification by Caller M

610 Externally Controlled Reference to a Resource in Another Sphere M

611 Improper Restriction of XML External Entity Reference F

617 Reachable Assertion M

662 Improper Synchronization F

665 Improper Initialization M

666 Operation on Resource in Wrong Phase of Lifetime M

668 Exposure of Resource to Wrong Sphere M

670 Always-Incorrect Control Flow Implementation M

674 Uncontrolled Recursion F

681 Incorrect Conversion between Numeric Types F

682 Incorrect Calculation F

703 Improper Check or Handling of Exceptional Conditions F

704 Incorrect Type Conversion or Cast M

706 Use of Incorrectly-Resolved Name or Reference F

754 Improper Check for Unusual or Exceptional Conditions M

758 Reliance on Undefined, Unspecified, or Implementation-Defined Behavior FM UBSAN
770 Allocation of Resources Without Limits or Throttling M

772 Missing Release of Resource after Effective Lifetime M LeakSAN
787 Out-of-bounds Write M

834 Excessive Iteration FM

835 Loop with Unreachable Exit Condition ("Infinite Loop”) F
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ABSTRACT

Several learning-based vulnerability detection methods have been
proposed to assist developers during the secure software devel-
opment life-cycle. In particular, recent learning-based large trans-
former networks have shown remarkably high performance in
various vulnerability detection and localization benchmarks. How-
ever, these models have also been shown to have difficulties accu-
rately locating the root cause of flaws and generalizing to out-of-
distribution samples. In this work, we investigate this problem and
identify spurious correlations as the main obstacle to transferability
and generalization, resulting in performance losses of up to 30%
for current models. We propose a method to measure the impact
of these spurious correlations on learning models and estimate
their true, unbiased performance. We present several strategies to
counteract the underlying confounding bias, but ultimately our
work highlights the limitations of evaluations in the laboratory for
complex learning tasks such as vulnerability discovery.

CCS CONCEPTS

« Security and privacy — Software and application security;
« Computing methodologies — Machine learning.

KEYWORDS

Vulnerability Discovery, Confounding Effect, Overfitting, Causal
Learning, Large Language Models

ACM Reference Format:

Erik Imgrund, Tom Ganz, Martin Harterich, Lukas Pirch, Niklas Risse,
and Konrad Rieck. 2023. Broken Promises: Measuring Confounding Ef-
fects in Learning-based Vulnerability Discovery. In Proceedings of the 16th
ACM Workshop on Artificial Intelligence and Security (AlSec °23), Novem-
ber 30, 2023, Copenhagen, Denmark. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3605764.3623915

® This work is licensed under a Creative Commons Attribution
™ International 4.0 License.

AlSec '23, November 30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0260-0/23/11.
https://doi.org/10.1145/3605764.3623915

130

niklas.risse@mpi-sp.org
Max-Planck Institute
Germany

rieck@tu-berlin.de
Technische Universitat Berlin
Germany

1 INTRODUCTION

The traditional approach to finding vulnerabilities in software relies
on manual code review and extensive testing. This approach is
time-consuming, resource-intensive, and prone to human error.
Static program analysis, on the other hand, supports developers
and security professionals in automatically identifying and locating
potentially flawed areas without actually running the program.
Unfortunately, such static application security testing (SAST) tools
often report many false positive alerts, which consequently require
expensive manual triage as well.

As a remedy, methods for learning-based vulnerability detection
have been proposed to automatically derive rules from historical
data to increase the detection rate while at the same time pertaining
to a lower false-positive rate [31, 39]. These machine learning (ML)
models have been shown to outperform rule-based SAST tools un-
der laboratory settings [15, 65]. There is a vast number of learning-
based detection methods available differing mainly in their model
architecture, dataset, and the preprocessing techniques they use.
For instance, there exist sequence-based solutions from the NLP do-
main [31, 39], graph neural networks for code analysis [7, 9, 50, 65]
and more recently transformer-based models [8, 15, 46].

With large language models (LLMs) being on the rise, trans-
former networks have been trained on many code-centric tasks,
achieving remarkable results on, for instance, code clone detec-
tion [61], code completion [33], code generation [45] and code
summarization [51]. Naturally, this progress has also inspired LLM-
based approaches for vulnerability detection and localization. How-
ever, since training an LLM requires a vast amount of data and re-
sources, techniques categorized as one-shot and few-shot learning
have been adopted to fine-tune pre-trained models in this setting.
Novel advances like adapters [22] or low-rank adaption [23] yield
possibilities to optimize pre-trained LLMs for very specific learning
tasks. Similarly, it has been shown that the learned representa-
tion of pre-trained LLMs beneficially supports the performance on
fine-tuned downstream tasks [24].

As a consequence of this development, recent works present an
astonishing performance on the discovery and localization of de-
fects in source code using fine-tuned LLMs, beating prior learning-
based and rule-based methods by far and achieving more than 90%
balanced accuracy under in-lab conditions [15]. A further benefit of
these transformer networks is improved vulnerability localization
through the interpretation of token attention scores as a measure
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of code importance [15, 40]. This success of transformer networks,
however, is overshadowed by a notable weakness: The models fail
to generalize to out-of-distribution samples [8]. That is, high perfor-
mance is only achievable if the training and test data come from the
same software project, which obviously undermines the practical
utility of learning-based vulnerability discovery.

In this work, we explore the reason for this deficit and show that
transformer networks suffer from spurious correlation, hindering
generalization and transferability. These correlations create a con-
founding bias in the learning models, which impacts the detection
as well as localization of vulnerabilities. The networks not only
fail to identify out-of-distribution data but also hint at irrelevant
code when explaining their decisions. To characterize this prob-
lem, we propose a methodology to measure the impact of spurious
correlations on learning-based vulnerability discovery using the
framework of causal inference. To this end, we correlate the loss
in performance with semantics-preserving transformations that
gradually change the appearance of the code. We find that even
minor tweaks in style, control flow, or variable naming are enough
to render transformer networks unusable.

We propose three techniques to counter the underlying con-
founding effects: First, we observe that graph neural networks
(GNNS) are less susceptible to artifacts in the dataset and hence
offer an alternative architecture for vulnerability discovery. Second,
we can mitigate some confounders by pre-tokenizing the input for
the LLMs, and finally, we propose to normalize code to a canoni-
cal representation before passing it to LLMs. The latter achieves
the best overall results. Although we cannot completely eliminate
spurious correlations, their impact can be reduced significantly,
enabling research to avoid confounding effects.

The rest of this paper is structured as follows: After an introduc-
tion to LLMs and graph representations for vulnerability discovery
in Section 2, we detail the problem setting and our methodology
in Section 3. In Section 4, we present our empirical evaluation and
discuss the results in Section 5, ending with related works and our
conclusion in Section 6 and Section 7, respectively.

2 VULNERABILITY DISCOVERY

We start by introducing the basic concepts of large language mod-
els (LLMs) and graph neural networks (GNNs) for the task of vul-
nerability discovery, before exploring their limitations.

2.1 Vulnerability Discovery

A vulnerability detection method aims to derive a single score
indicating the vulnerability likelihood of a program based on a
particular representation of it. This is expressed in Definition 1,
which defines a decision function that takes a piece of code and
maps it to the probability of it being vulnerable.

DEFINITION 1. A method for static vulnerability discovery is a de-
cision function fy: x — P(VULNERABLE| x) that maps a code sample
x to its probability of being vulnerable [17].

Learning-based methods for vulnerability discovery utilize a
parameterized classification function fy as depicted in Definition 1,
whose weights 0 are optimized during training on a dataset of
vulnerable and non-vulnerable code samples [18]. We denote the
classes with prediction probabilities as VULNERABLE and CLEAN,
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where the former denotes a sample with a code bug present and
the latter denotes a sample without bugs.

2.2 Large Language Models

Prior works apply models borrowed from the natural language
processing domain to vulnerability discovery [31]. This includes
the interpretation of code as a natural sequence of tokens. Models
like recurrent neural networks (RNNs) or long short-term mem-
orys (LSTMs) are naturally suited for this task [31, 39, 65]. With
the rise of LLMs, which are in essence large transformer models,
such networks are increasingly used and fine-tuned for the task of
detecting and locating code defects.

Typically, a transformer model consists of either an encoder, a
decoder, or both [32]. Each part is composed of multiple blocks
consisting of bidirectional multi-head self-attention mechanisms
and feed-forward neural networks. Compared to RNN, transformer
models are not limited by the Markov property, where the last
hidden state of an RNN needs to store the latent representation of
the entire program. Instead, attention matrices produce an attention
vector for each token denoting the influence of each other token
in the sequence [15]. Since the self-attention mechanism is the
heart of LLMs, we define it formally using the original notation
by Vaswani et al. [48]:

. OKT
Attention(Q, K, V) = Softmax ( \/d_ V) (1)

k
The matrix Q € R%modaXdk denotes a query containing the set
of representations for the current tokens, which is then multiplied
with the key matrix K € RmodeiXdk The result is scaled by the
inverse square root of the embedding size dy and finally, after a
softmax, used as an index to the value matrix V € R%mode1 Xdy yield-
ing the attention vector. dy,o4e] denotes the size of the vocabulary
and the Q, K and V matrices can be split into multiple attention-
heads to capture richer semantics. Recent methods for vulnerability
discovery, such as LineVul [15], use pre-trained transformer net-
works, like CodeT5 [52], BERT [12] or RoBERTa [34], and fine-tune

them on vulnerable code.

2.3 Graph Neural Networks

Since programs can be modeled as directed graphs [1, 5, 58], a
different strain of research has explored graph representations for
source code instead of flat token sequences [9, 50, 65]. We refer to
the resulting program representation as a code graph and denote
the underlying directed graphs as G = G(V, E) with vertices V
and edges E C V X V. Moreover, nodes and edges of the graphs
are attributed, that is, elements of V or E are assigned values in a
feature space that characterize local properties of the code.
Different code graphs capture different syntactic and semantic
features. A popular representation is the code property graph (CPG)
by Yamaguchi et al. [58], which is a combination of the abstract
syntax tree (AST), the control flow graph (CFG), and the program
dependence graph. Other approaches use different combinations,
for instance, combining the AST with the CFG and the data flow
graph (DFG) [6]. Using such representations, research has started
to focus on graph convolutional networks (GCNs) [65]. These net-
works are a class of deep learning models realizing a function
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f: G(V,E) — y € R? that can be used for the classification of
graph-structured data [40].

GCNs can be viewed as a generalization of convolutional neural
networks (CNNS), just as an image can be viewed as a regular grid
graph where each pixel denotes a node in the graph connected by
edges to its neighboring pixels [57]. A graph convolutional net-
work needs two mandatory input parameters, that is, an initial
feature matrix X € RN*F, with N being the number of nodes in
the graph and F the number of features per node, and the topol-
ogy commonly described by the adjacency matrix A € [0, 1]N*N,
The most popular GCN types belong to so-called message passing
networks (MPNs) where the prediction function is computed by
iteratively aggregating and updating information from neighboring
nodes. One of the simplest MPNss is the one defined by Kipf and
Welling [26]:

hD = g(ARU-Dw -1 )
with h® = X [26]. Here, the intermediate representations are linearly
projected and sum-wise aggregated according to the normalized
adjacency matrix A with self-loops followed by a non-linear acti-
vation function. These GCNs can be stacked to learn filters w.r.t.
larger neighborhoods. Other GCN layers use different aggregation
and update mechanisms, for instance, instead of an multilayer per-
ceptron (MLP), gated graph neural networks (GGNNs) use gated
recurrent unit (GRU) cells to update the hidden state of nodes [29],
while graph attention network (GAT) layers use attention mecha-
nisms [49]. We refer the reader to the overview article by Wu et al.
[57] that discusses GNNss in detail.

Because of the fitting premise of GCNs, they have been widely
adopted for representation learning on code graphs. The graph-
based approaches in recent literature outperform classical SAST
tools and older sequential models, such as VulDeepecker [31] or
Draper [39]. Graph-based methods like Devign [65] and REVEAL [7]
are currently among the best learning-based approaches for vul-
nerability discovery, though with lower performance than recent
methods based on LLMs.

3 METHODOLOGY

We proceed to outline the problem setting and introduce our method-
ology for measuring the impact of spurious correlations.

3.1 Problem Setting

Currently, many popular learning-based vulnerability detectors
exist with varying efficiency. Furthermore, previous works have
shown, that although these approaches provide promising results,
their ability to precisely pin down the root cause of a bug is lacking.
It is questionable, how a security practitioner should respond when
a model classifies a function as vulnerable if the model is unable to
precisely locate the bug.

Some models come with an integrated explanation mechanism,
for instance, LLMs, while others can be enhanced using model-
agnostic explanation mechanisms [42], such as Class Activation
Maps (CAM) or SHAP [35]. These explanation methods provide a
more fine-grained view of the decision of the model and can be used
for line-level or even statement-level bug localization. However,
these methods provide vastly differing results [54, 66] and a fair
comparison is generally non-trivial [3, 16]. It has been shown that
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vulnerability discovery models tend to focus on irrelevant artifacts
in the provided data [16] and that their measured performance may
be biased with respect to practice [3, 7].

A motivating example. Let us consider the example in Figure 1.
Here, LineVul [15] correctly identifies a bug in the given C function.
However, the model falsely claims that the root cause lies in line 2,
that is, the instantiation of a matrix on the stack. The actual cause
of the vulnerability, however, is a type confusion in lines 3 and
5. The variable var is pulled from a hash map and then, without
further checks, converted to a double!. The matrix plays no role
in this vulnerability and thus the explanation misleads a manual
investigation of the finding.

float matrix[3][3] = {{0,0,0}, {0,0,0}, {0,0,0}};

5] if (zend_hash_index_find(Z_ARRVAL_PP(var), (j), (void x*x)
&var2) == SUCCESS) {

SEPARATE_ZVAL (var2);

; convert_to_double(*var2);

6 matrix[i][j] = (float)Z_DVAL_PP(var2);

Figure 1: Type confusion bug in the PHP Zend engine.

Interestingly, the tokens with the greatest attention scores from
LineVul in line 2 consist of “float”, “}}” and “{{”. In the training set,
these tokens co-occur 198 times for vulnerable functions and only
67 times for non-vulnerable functions, thus creating a spurious
correlation. The model incorrectly learns this correlation as an
indicator for a vulnerable function. Obviously, there must be more
biases present in the training dataset such as the one identified here,
which makes the model concentrate on irrelevant artifacts.

The problem becomes worse when we try to slightly change the
coding style and obfuscate some lines as seen in Figure 2. Although
the function is semantically equivalent and only minimally changed,
LineVul now classifies this function as clean, despite the original
vulnerability being still present.

float matrix[3 & OXF][3 & OxF] = {
{600, 000, 000}, {000, 000, 000}, {000, 000, 000}};
1| if (zend_hash_index_find(Z_ARRVAL_PP(var), (j), (void *x)&
var2) ==
SUCCESS) {
SEPARATE_ZVAL (var2);
convert_to_double(*var2);
matrix[i][j] = (float)Z_DVAL_PP(var2);

Figure 2: Obfuscated version of type confusion bug.

To visualize the effect of spurious correlation, we present Figure 3
which derives a simple causal model for a vulnerability discovery
function fy [44]. Here, X is the input data and Y is the label, being
either VULNERABLE or CLEAN. The learning goal of fp is to find
a relationship between the learned representation R to the label
Y. There is a relationship C « X — A denoting that the causal
features C and trivial or biased feature patterns A both influence
the final latent representation R. Missing or different artifacts in
unseen data then weaken the model performance.

Thttps://cve.report/CVE-2014-2020
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/Artifacts

A

Code

Figure 3: Simple causal model of machine learning for vul-
nerability discovery.

The artifacts are called confounders in causal learning and in our
example, the confounders originate from irrelevant features that
cause the model to learn biased representations. A simple example
for an artifact would be a common code style in all vulnerable
samples and a different style for all clean samples. The ultimate
goal in this work is not only to measure f and the actual influence of
A but also to remediate this influence since these learned artifacts
hinder the model from generalizing well over unseen or out-of-
distribution data, that is, real-world code.

To this end, we identify three sources of bias that can manifest
as artifacts in program code:

(1) Coding style. Every collected sample has an implicit coding
style. Since many open-source projects use automatic linting,
it is likely that samples from one project to another differ in
their styles. If there are more vulnerable samples from one
project than another, the coding style correlates with Y.

(2

~

Control flow. Projects often contain different calling hier-
archies or indirections due to programming patterns, for
instance, object-oriented design principles. Several projects
and authors prefer one pattern over another which may
introduce further confounding bias.

(3) Naming. Different samples from different projects naturally
vary in their naming conventions. Hence, vulnerable sam-
ples may potentially differ in variable naming compared to
clean samples. Although it is common to mask such symbols,
recent works unfortunately desist from normalizing them.

This list is non-exhaustive since, potentially, there can be an
infinitely large number of artifacts. Nonetheless, we state that a
model is confounded if artifacts heavily influence its decision. Since
other works do not account for this, we propose a more reliable
evaluation methodology.

3.2 Evaluating Models

Current models for learning-based vulnerability discovery suffer
from low transferability and generalizability. Yet, they pertain to
a high true positive and true negative rate on test sets aligning
with the training distribution [7, 8]. How a security expert can gain
insight into how well the model performs in practice is an open
research question. The performance can not be truly measured on
the test set, as it is of the same distribution as the training set and
might lack diversity compared to real-world code samples.
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Training the model on one dataset and testing on another is
a possible evaluation approach; however, it remains unclear how
many datasets one has to evaluate. Worse still, vulnerability datasets
are scarcely available [7]. Using more datasets improves the insights
gained, but increases the amount of data and computing resources
necessary for the evaluation. As a consequence of this situation,
we propose a method that uses only one dataset.

To motivate our evaluation scheme, we briefly introduce the
concept of causal inference that reveals influencing variables. If we
inspect Figure 3, it is trivial to see that the representation learned
by a model f directly influences the predicted label Y. But instead
of using the sample under analysis to directly influence the repre-
sentation, we model it so that X has a causal and a trivial part [44].
We call the latter the confounding variable, shortcut feature, or
spurious correlation [44]. As a result, we have three relationships:
A—X—>C,C—> R« A and R — Y. To measure the true causal
correlation and to remove confounding variables in causal learning,
it is common to calculate the influence of one variable affecting the
other by intervention.

This can be done using do-calculus [36], that is, we can stratify
the confounder by calculating the influence of C — Y given all
possible artifacts from a € A [36]:

P(Y|do(C)) = Z P(Y|C, A = a)P(a) 3)
acA

We approximate the distribution of A by calculating the esti-
mated likelihood of the code samples X = (xo,...,xn) with our
different perturbations. As using all possible artifacts is not feasible,
we use a subset A’ C A and define an artifact a € A’ to be a variant
of the code samples k,(X) = (kq(xp), ..., kq(x)n) obtained by one

of our perturbations a € A’. Equation 3 then becomes:

P(Y|do(C)) ~ Z P(Y|C, A = a)P(a). (4)
acA’

We estimate P(a) = Za/ie/—(;;(a’)
lating the likelihood of a particular variant of the code sample Py (a)
utilizing a generative LLM with weights 6. We calculate the likeli-
hood of each token of the code sample dependent on the previous
tokens. Since calculating the likelihood of the entire sequence by
multiplying the individual token likelihoods is numerically infeasi-
ble, we instead average the log-likelihoods over the entire sequence
to obtain the approximate likelihood, similar to the calculation of
the perplexity, a popular metric for generative LLMs [37].

Further, we can measure the impact of the artifacts on the model
by calculating the average relative difference between the original
model decision compared to the decision when every artifact is
marginalized. We call this difference the confounding effect,

o Zaea PYIC.A = @)P(@) - P(YIC. A) -
P(Y|C,A)
As an intuition, consider ¢ = 0, meaning that P(Y|C, A) = P(Y|do(C)).
However, the more ¢ deviates from 0, the greater the influence of
the artifacts and P(Y|C, A) # P(Y|do(C)).

The application of different perturbations to the code should
resemble a causal intervention. A non-confounded model should
perform equally on semantically equivalent but perturbed code
since the decision should solely depend on the causal feature part.

~ P(a) empirically by calcu-
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Let us define the model predictions on the code samples under
different perturbations as Va € A" : f(ks(x)). Consequently, this
intervention provides insight into how the model behaves under
different artifacts and yields a more robust basis for model evalu-
ation and comparison. In a more practical sense, suppose that we
have a metric M: f — R assessing the quality of a learning-based
vulnerability discovery model, such as the accuracy. We then have

o= ZacA M(f (ka(x))P(a) - M(f(x))
M(f(x))

and can measure the influence of the confounder using the con-
founding effect as defined above.

(6)

3.3 Reducing Confounder

The measurement of the confounding effect of artifacts on the
model is one side of the coin, but on the other side, we also want
to reduce the influence of such trivial patterns on the model. We
propose three methods that can be applied to either LLMs or GNNs
for vulnerability discovery that mitigate the effects in practice.

LLMs with normalized code. To remove the effect of style arti-
facts on LLMs, one naive solution is to normalize the code. Code
normalization is the modification of code so that it conforms to a
given style guide, which reduces, but does not remove, the impact
of the personal style on the code [21]. As a code normalization
method, we apply one code style to all methods and use the uni-
formly formatted code as training data. This has the same effect
of normalizing the coding style, and thus removing style artifacts
while preserving closeness to real-world code and thus making
better use of the pretraining than the next method. We abstain from
normalizing the variable naming by masking the variable names
during training so that the effect of the naming artifacts can be
measured as part of our evaluation.

LLMs with pre-tokenized code. Another solution follows from the
work of Roziere et al. [38], who propose to tokenize the code before
applying the byte-pair encoding using a programming language-
specific lexer. They feed the resulting tokens as space-separated
plain text into the model, a process we refer to as pre-tokenization.
We adopt the same methodology, but as our models were trained
with untokenized code, we expect a performance drop from the
different data distributions obtained, as the code samples now lack
all newlines and other style practices common to real-world code.
Retraining an LLM completely on tokenized code is impractical, as
the main benefit of LLMs is the adaptability to several tasks using
fine-tuning.

Causal graph learning. A more principled approach arises from
the work of Sui et al. [44] in the domain of GNNs: By applying an
intervention directly to the learning model, they can mitigate the
impact of confounding variables. This is done by conditioning the
causal input features, in this case, a code graph, per sample with
all possible trivial subgraphs obtained during training.

To encode the input graph, a graph isomorphism network (GIN)
layer is used followed by two MLPs to calculate a relevance score
for nodes and edges. For any node v; € V we calculate their node
attention and for any pair of nodes (v;,0;) € E their edge attention.
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Furthermore, the output dimension of the MLPs is halved to perform
a latent space disentanglement, where the first half will later be
optimized to contain only the relevant nodes that are causal for our
task and the second half will be trained to only contain the trivial
part of the graph, in this case, the artifacts.

A mean readout layer is applied last as a pooling strategy fol-
lowed by a final MLP with softmax activation as the prediction
head returning either VULNERABLE or cLEAN. Using the attention
scores we can calculate attention masks for both, the causal and
trivial nodes, and causal and trivial edges. We apply these masks
to the adjacency matrix and feature matrix of the input graph re-
sulting in the causal and trivial subgraphs respectively. The causal
graph can be used to explain the prediction and track the cause of
a vulnerability.

To train the model in a supervised fashion, we first apply a tra-
ditional negative log-likelihood (NLL) loss to our ground truth and
the latent representation of the causal graph. Then, we take the
representation of the trivial subgraph and optimize the model to
separate trivial and causal features by fitting the softmax distri-
bution using the trivial graph to a uniform distribution using the
Kullback-Leibler divergence (KL). Finally, to stratify the confounder,
another NLL loss is calculated between the ground truth and the
prediction, while the causal graph is augmented with a random triv-
ial subgraph from another graph in the dataset. During the training
procedure, the model essentially learns to ignore trivial patterns.

4 EVALUATION

In this section, we describe the experimental setup and the results
of our evaluation. The experiments are devised to give answers
to the following research questions. We publish our code for easy
experimental reproduction 2.

e RQ1: Are confounding effects measurable?

e RQ2: How do artifacts influence vulnerability localization?

e RQ3: Can the confounding effect be reduced?

4.1 Experimental Setup

We rely on Fraunhofer-CPG by Weiss and Banse [55] and networkx
[19] as tools to generate code graphs. The graph-based models are
implemented using Pytorch Geometric [14] and trained on AWS
EC2 g4dn instances. We use the transformers library [56] to fine-
tune the transformer-based models. The tokenization of code is
calculated using tree-sitter as the parser. The hyperparameters of
all models are documented in Table 1.

Zhttps://github.com/SAP-samples/security-research-confoundingeffects

Table 1: Hyperparameters used for considered models.

REVEAL StackLSTM CGIN ‘ CodeT5+ LineVul

Optimizer Adam ‘ AdamW
Learning Rate 5.1074 1074 1074 107° 107°
Epochs 70 50 14 3 10
Batch Size 128 1 2 8 8
Warmup Steps 0 0 0 50 50
Weight Decay 1074 0 0 0.01 0.01
Number of parameters 719k 1.7M 222k 223M 249M
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Table 2: Function-level accuracies with different augmentations. CodeT5+, and LineVul,, are trained on normalized data and

CodeT5+; is trained on tokenized data.

Transformation ReEVEAL CGIN StackLSTM  CodeT5+ CodeT5+, CodeT5+; LineVul LineVul,, LineVul;
None 63.57% 61.55%  62.79% 94.62% 83.15% 59.51% 93.09% 83.62% 65.21%
Chromium 63.62% 62.24%  62.79% 59.21% 66.46% 59.56% 58.76% 68.68% 65.25%
Mozilla 63.59% 61.39%  62.84% 59.18% 66.54% 59.56% 57.67% 67.63% 65.25%
Google 63.53% 63.42%  62.79% 59.16% 66.20% 59.56% 58.95% 68.39% 65.25%
LLVM 63.43% 60.37%  62.84% 59.01% 66.54% 59.56% 58.73% 68.22% 65.25%
Uglify 62.29% 58.02% 61.04% 50.67% 55.62% 55.32% 50.44% 55.77% 60.30%
Uglify (-Whitespace) 62.86% 58.47%  61.04% 54.15% 57.37% 55.35% 49.51% 55.88% 61.02%
Obfuscate 50.51% 59.41%  50.74% 53.61% 59.41% 60.73% 52.11% 57.29% 60.74%
Obfuscate (+Format) 50.46% 56.12%  50.71% 37.14% 58.13% 61.19% 40.56% 53.60% 61.44%
Obfuscate (-Whitespace)  49.76% 55.28%  53.12% 52.05% 55.79% 55.50% 51.02% 53.68% 60.92%
Causal Accuracy 64.18% 61.59%  64.75% 59.09% 65.41% 59.80% 58.71% 67.46% 65.02%

Dataset. We use Big-Vul [13] as the underlying dataset for all
of our experiments, as it is one of the biggest currently available
datasets with line-level defect information. The dataset consists
of 26 635 vulnerable and 352 606 non-vulnerable functions from
different code repositories.

Transformations. We apply transformations on the dataset that
implicitly remove artifacts to obtain different variants of the dataset
for training and evaluation. These transformations can be catego-
rized into three classes:

(1) Styling. We apply style formatting using clang-format [21]
with different popular predefined styles. We test the pre-
defined styles Chromium, Google, LLVM, and Mozilla for a
diverse range of style choices. As previously described, ap-
plying the formatting removes style-related artifacts.

@

~

Uglification. We test two different kinds of “uglification”. The
first variant consists of removing comments and renaming
all variables to a string of twelve randomly chosen lower-
case letters and applying style normalization. The second
variant is the same except for additionally removing all un-
needed whitespace. This transformation removes artifacts in
code style and naming whilst also partially removing causal
information, as the variable names are typically chosen de-
liberately and essential to detect vulnerabilities.

3

=

Obfuscation. The obfuscation consists of randomly renam-
ing variables and functions, removing comments, adding
unneeded statements, adding function definitions, and re-
placing numbers with an obfuscated equivalent number. The
numbers are obtained by converting them to decimal, bi-
nary, octal, or hexadecimal. Additionally, we evaluate the
models on the obfuscated code after applying a predefined
coding style and after removing all unneeded whitespace.
The obfuscation also removes control-flow artifacts, since
statements are randomly inserted.

Models. We have chosen a diverse set of models for evaluation,
both graph-based and text-based. For graph-based models, we train
and evaluate REVEAL as a state-of-the-art GNN for vulnerability de-
tection [7] and causal graph isomorphism network (CGIN) [44] as

a causal graph model that mitigates the effect of artifacts. For text-
based models, we choose LineVul [15] and fine-tune a CodeT5+ [52]
model with 220 million parameters similar to Chen et al. [8] and
Thapa et al. [46]. We fine-tune the transformer models on the origi-
nal code available as part of the dataset. Additionally, we train the
models on normalized and tokenized code.

Delétang et al. [11] show that transformer models cannot gen-
eralize well over different-sized input token lengths. The authors
show that classical LSTMs with differentiable memory provide
stronger generalization performance than transformer models on
increasingly complex tasks. Since the number of tokens within
samples can impose another bias, we extend VulDeepecker [31], a
LSTM-based vulnerability discovery model, with a differentiable
stack [27]. VulDeePecker is generally inferior to the other mod-
els [7]. However, an LSTM with access to a stack has been shown
to provide advantageous results for regular and context-free tasks,
similar to the capabilities of a real-world parser [11].

Evaluation tasks and metrics. The models are evaluated based
on two tasks: function-level binary classification with the classes
VULNERABLE and CLEAN and line-level classification of known-
vulnerable functions. We use the balanced accuracy, as the mean
between the true positive and true negative rate, for both tasks,
due to the heavily imbalanced datasets. Additionally, we measure
the causal accuracy as the balanced accuracy based on causal pre-
dictions according to Equation 4. Further, we use the balanced
accuracy as metric M for measuring the confounding effect from
Equation (6). For the line-level task, we use the top-1, top-3, and
top-5 accuracy as introduced by Fu and Tantithamthavorn [15].

To obtain a ranking of the lines by each model, we use model-
specific explainability methods. For the graph-based models we
obtain node relevance scores and then propagate these scores to
all lines included in the node to arrive at a line relevance [16].
We obtain node relevance scores for REVEAL by applying Grad-
CAM [41] and for CGIN by utilizing the causal node attention scores.
For the transformer-based models, we calculate the relevance of
each line in the same way as proposed by Fu and Tantithamthavorn
[15]. The relevance of each token in the line is summed to obtain the
aggregate line relevance. The token relevance is similarly obtained
as the attention to each token in the first layer of the encoder.
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As our transformations can change the layout of the code and
thus the locations of the vulnerable lines, we need to match the
original lines to the transformed lines. As the matching is non-trivial
and harder with additional transformations, we only test on the
original dataset and the styled variants. We match the vulnerable
lines to the formatted lines if one of the lines is an exact substring
of the other line without considering whitespace. As a baseline,
we also measure the expected top-k accuracy with random line
orderings, which can be calculated based on the expected best rank
of any vulnerable line, which is distributed according to a particular
negative hypergeometric distribution. More formally, the expected
rank is E(X) for X ~ NHG(|L|, |Lo|, 1) with the set of all lines L
and the set of non-vulnerable lines Ly. By calculating the expected
rank of each code sample in our test set, we can obtain the expected
top-k accuracy for a random baseline.

4.2 Results

In this section, we provide our experimental results and use the
outcomes to provide answers to our research questions.

RQ1: Are confounding effects measurable? In Table 2, we present
our results for the function-level prediction scores for all eight mod-
els measured in their balanced accuracy. The best performance per
transformation is bold and the second best value is italic. CodeT5+
and LineVul have an initial balanced accuracy of 94.62% and 93.09%
on the test set, respectively. That is an approximate increase of 50%
relative to REVEAL, StackLSTM, and CGIN. Interestingly, the detec-
tion performance of the transformer models shrinks to a detection
rate lower than that of the other models when the test samples are
transformed using different styles. With less than 60% balanced
accuracy CodeT5+ and LineVul are performing worse than the non-
transformer-based models having about 63% balanced accuracy on
average. This is a clear hint that the transformer models overfit on
artifacts in the train and test distribution aligning with the coding
style. The discrepancy between the performances with and with-
out augmentations for the other models is negligible, with CGIN
having the overall worst results with approximately 61%, followed
by StackLSTM with 62% and REVEAL with 63%.

The situation becomes worse when comparing the performances
of the transformer models when provided with uglified code, that
is, inlining functions, and removing whitespace and tabs. While
the other models pertain to a comparable performance at around
60%, the performance of LineVul and CodeT5+ is not different from
random guessing. The uglifier without the removal of whitespace
leaves CodeT5+ with 54%, while LineVul is still comparable to a ran-
dom guesser. Using an obfuscator is the most drastic augmentation
transformation, as it even changes control flow and adds superflu-
ous function calls. All models, except CGIN, are not significantly
better than random guessing in this scenario.

Furthermore, when comparing the accuracy obtained based on
causal-only features, it is obvious that the initial performance of
CodeT5+ and LineVul is based on artifacts instead of causal features
with only 59.80% and 58.71% causal accuracy, respectively. The
graph-based models REVEAL and CGIN as well as StackLSTM on the
other hand, obtain a causal accuracy near their initial performance,
indicating that their predictive performance is based on causal
features instead of artifacts.
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Figure 5: Confounding effect on Top-5 line-level accuracy.

We show that there are indeed artifacts encoded in the training
set that negatively influence the models when transferring to se-
mantically equivalent code. If the model already fails in predicting
vulnerabilities in the test set with the same distribution as the train-
ing set but with minor changes, it is highly uncertain how it behaves
on real data. The reported performance scores of the models are not
suitable for a veracious comparison. While the initial highest per-
formance is 94.62%, the true models’ capabilities collectively level
off at around 60%. In summary, the influence of the confounding ar-
tifacts distorts the reported performance by up to 60% measured by
the discrepancy between the test and augmented test set. Figure 4
summarizes the confounding effect on different models visualizing
the degrees of performance drop. The transformers are in fact the
models most affected in this experiment.

RQ2: How do artifacts influence vulnerability localization? Ta-
ble 3, Table 4 and Table 5 show the top-1, top-3 and top-5 line-level
accuracy, respectively. The best scores per transformation are high-
lighted in bold. The first column denotes the performance of the
random baseline. This is included as a reference for the performance
of the models, as well as to show the limitations of our measure-
ment method. Due to the fuzzy matching of formatted lines to the
original lines, the number of total lines varies in the formatted code,
and consequently, the expected performance changes slightly.

Although the performance of the transformer models for function-
level prediction is greatly influenced by the application of code
formatting, only much smaller differences for line-level localization
can be observed. For LineVul, the top-1 accuracy drops from 40.33%
to at most 38.67% while for CodeT5+ the performance increases
from 38.67% up to 44.75%. For the top-3 accuracy, the same effect
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Table 3: The Top-1 line-level Accuracy of the Transformer and Graph models with different code styles.
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Codestyle Random ReVearL CGIN StackLSTM  CodeT5+ CodeT5+,, CodeT5+; LineVul LineVul,,  LineVul;
None 26.86% 43.09%  43.65% 39.23% 38.67% 38.67% 38.67% 40.33%  39.78% 41.44%
Chromium  26.86% 44.20%  43.65% 45.86% 44.75% 44.75% 44.75% 37.02%  37.02% 37.02%
Mozilla 25.71% 43.65% 42.54%  44.20% 40.88% 40.88% 40.88% 38.67% 37.57% 39.23%
Google 28.57% 44.75% 44.20%  45.30% 44.75% 44.75% 44.75% 38.67% 37.57% 37.57%
LLVM 28.57% 44.20% 44.20%  45.30% 43.65% 43.65% 43.65% 35.91% 34.25% 34.81%
Table 4: The Top-3 line-level Accuracy of the Transformer and Graph models with different code styles.
Codestyle Random ReVear CGIN StackLSTM  CodeT5+ CodeT5+,  CodeT5+; LineVul LineVul, LineVul;
None 46.86% 59.67% 58.01%  58.56% 64.64% 64.64% 64.64% 62.43% 63.54% 64.09%
Chromium  46.86% 60.77%  57.46%  60.77% 64.64% 64.09% 63.54% 56.91%  55.25% 56.35%
Mozilla 45.14% 61.88%  58.56%  60.77% 64.09% 63.54% 63.54% 61.88%  60.77% 60.22%
Google 47.43% 61.33% 60.77%  61.88% 64.64% 64.09% 64.09% 55.25% 55.25% 55.25%
LLVM 46.86% 61.33% 58.56% 61.88% 64.64% 64.09% 64.09% 56.91% 56.35% 55.80%
Table 5: The Top-5 line-level Accuracy of the Transformer and Graph models with different code styles
Codestyle Random ReVear CGIN StackLSTM  CodeT5+ CodeT5+,  CodeT5+; LineVul LineVul, LineVul;
None 57.71% 67.96%  68.51%  66.30% 71.82% 71.82% 71.82% 69.06%  68.51% 69.06%
Chromium  57.71% 69.61%  69.06%  69.61% 71.82% 71.82% 72.38% 64.64%  64.09% 64.64%
Mozilla 57.71% 70.72% 69.61% 70.17% 70.17% 70.17% 70.72% 66.85% 66.30% 65.75%
Google 57.71% 69.61% 70.72%  69.61% 71.82% 71.82% 72.38% 62.98% 62.98% 63.54%
LLVM 57.71% 69.61% 69.61%  69.61% 71.82% 71.82% 72.38% 64.64% 62.98% 64.09%

can be seen for LineVul with a drop from 62.93% to 55.25% and at
most 61.88%, while CodeT5+ does not induce any big differences.
The same can be seen in the top-5 accuracy. The graph-based mod-
els CGIN and REVEAL yield smaller differences in their performance
and in general improve when a code style is applied. Their results
closely follow the expected performance and the variations in per-
formance can be explained by changes in the total number of lines
and the matched number of flawed lines.

All models show better than random performance, even when
applying the code formatting augmentation, implying they are not
relying on styling artifacts for line-level localization. For the top-1
accuracy, the graph-based models and CodeT5+ are competitive and
within reach of each other depending on the code style used with
no clear best approach. The performance of LineVul on the other
hand is worse than all the others, which is also seen for the top-5
accuracy and with mixed results for the top-3 accuracy. For the
latter, REVEAL and CGIN show similar performance with REVEAL
being better in all cases, while CodeT5+ is better than all other
models. CodeT5+ is also better than the other models in all cases
but one when considering its top-5 accuracy.

In summary, we see only a slight effect of artifacts on vulnerabil-
ity localization for CodeT5+ and the graph-based models. LineVul
is definitely affected by the removal of artifacts from the data and
shows an overall weaker performance. Models that are less affected
by the application of code formatting show an overall greater per-
formance for vulnerability localization, indicating that generalizing
code formatting changes are helpful to vulnerability localization. It

is interesting that CodeT5+ does not see a performance drop in vul-
nerability localization, even though it was present in function-level
prediction, indicating that the model is attending to the correct
parts of the code but drawing wrong conclusions. Moreover, the
performance difference between LineVul and CodeT5+ cannot be
satisfactorily explained, as both models are trained similarly with
the only difference being base architecture, indicating that the vul-
nerability localization performance of transformer models trained
with artifacts is unpredictable. The graph-based models on the other
hand are less affected in general and more predictable. Figure 5
visualizes the confounding effect calculated as the relative change
of top-5 line-level accuracy normalized by subtracting the random
baseline. All models suffer under the confounding effect, while
ReVEAL and CGIN suffer the least.

RQ3: Can the confounding effect be reduced? Considering Table 2
again, we can see that the adjustment of the training procedure
for the transformer models significantly reduces the discrepancy
between the test and augmented test performance. LineVul trained
on normalized code achieves the best results on different styled
code of around 68%, followed by CodeT5+ trained in normalized
code with around 66%, beating the balanced accuracy scores from
REVEAL, StackLSTM and CGIN by ~ 3%. As opposed to the tech-
nique by Roziere et al. [38], pre-tokenization of the input code may
decrease the artifact overfitting effect but its performance is still
inferior to the other non-transformer-based models.
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Tokenization and normalization for the LLMs also helped to
reduce the bias measured by the Uglify transformation. However,
REVEAL, StackLSTM, and CGIN outperform all transformer models.
Surprisingly, reducing the confounder effect on the transformers
helps to improve the performance on obfuscated code changes,
slightly outperforming CGIN with up to 7%.

Moreover, tokenization and normalization also boost the causal
accuracy of LineVul significantly. With a causal accuracy of 67.46%,
an increase of nearly 15% from the unnormalized model, LineVul,,
performs best in our testing, beating even the graph-based models.
CodeT5+,, performs second-best with a causal accuracy of 65.41%,
but CodeT5+; only achieves 59.80%. We attribute this only slight
increase in performance of the tokenized model to the data distribu-
tion shift of tokenized data, which looks significantly different from
the real-world data, that the model was pre-trained on, requiring
further training. For LineVul; and CodeT5+; the causal accuracy is
equal to the accuracy of the raw data, indicating that the artifacts
initially present in the raw data are removed by tokenization.

It is also surprising that StackLSTM beats the transformer models
and CGIN on uglified code. We conjecture that the StackLSTM
learned to parse code despite syntactical differences. Considering
Figure 6, we can see that the model learned to push opening brackets
to the stack and pop closing ones from the stack if encountering
them. Interestingly, StackLSTM learned to mimic a parser using the
vulnerability discovery dataset.

We have shown that we can reduce the confounding influence
of artifacts in the dataset on the detection models. GNNs are less
influenced by code obfuscations than by control flow distortions
as opposed to transformer models for which we observe the op-
posite effect. LSTMs are also less susceptible to style changes and
CQGIN is a viable approach to reduce the confounding influence.
Transformer models and specifically LLMs are severely influenced
by slight code transformations, however, we can mitigate this by
rather normalizing the input code than tokenizing it.

In the end, LLMs prove their superiority to LSTMs and GNNs
when correctly trained. Recall Figure 4, CGIN and CodeT5+ trained
on pre-tokenized code reduced the confounding effect the most.
While training on normalized code is also a viable strategy, in
general, inferior to GNNs. The confounding effect on LineVul is
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Figure 6: The learned stack policy for StackLSTM.
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Figure 7: Confounding effect on Top-1 line-level accuracy.
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Figure 8: Confounding effect on Top-3 line-level accuracy.

largest on Top-3 line-level accuracy, considering Figure 8, while
some models, especially CodeT5+, even benefit from the artifact
removal as depicted by Figure 7 where they have a positive change
of up to 50% detection improvement.

Interestingly, the shape and values of the confounding effect on
the transformer models trained on the original data are nearly the
same as those of the corresponding models trained on normalized
and pre-tokenized data. As only the encoder input attention is used
for generating line-level localization as per LineVul’s method, this
indicates that the encoder input attention is not affected by the
presence of style artifacts in training while being greatly influenced
by the presence of style artifacts at inference.

5 IMPACT

In Section 4, we have measured the confounding effect on both the
function-level and line-level balanced accuracy for vulnerability dis-
covery models. We have seen that their predictive performance and
bug localization capabilities severely depend on artifacts present
in the dataset. Furthermore, we demonstrate that we can not only
measure but also reduce the confounding effect through our model
or pre-processing choices. We provide here the most critical sug-
gestions derived from our experimental study.

Tokenize the Code. The first insight is that using normalized
code for fine-tuning the transformers yields the best function-level
results on the augmented samples. However, there is still a measur-
able confounding effect of up to ¢ = 30% for CodeT5+ and LineVul.
That means that there are probably still artifacts remaining that
normalizing code cannot account for. GNNs and StackLSTM pro-
vide better robustness in the first place but lose performance after
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code obfuscation. CodeT5 + on tokenized code has the lowest scores
but also the lowest confounding effect with around ¢ = 0%. Hence,
given an LLM, pre-tokenizing the code may be the best option to
receive unbiased performance results.

Compare against GNNs. REVEAL and CGIN have the best overall
robustness against artifacts. CodeT5+, however, shows the strongest
results in accurate line-level bug localization. Since a larger con-
founding effect hints that the model does not actually learn the
underlying task, we argue that the graph-based models have better
out-of-distribution performances and are thus better applicable to
real-world cases. This is also in line with the results from Chen
et al. [8]. By utilizing normalized or tokenized training data, the
confounding effect of the transformer-based models is reduced
such that their out-of-distribution performance is improved and
competitive with GNN.

Better Transferability. We argue that our evaluation provides a
more faithful view of vulnerability discovery models. Obviously, if
models tend to overfit to artifacts on one dataset, they lack general-
ization to another. Out-of-distribution transferability is an impor-
tant property since this also mirrors the applicability to real-world
cases. We tested LineVul on another dataset containing vulnerabil-
ities from Chromium and Debian [7]. The new test set is disjoint
from the original trainset. LineVul achieves 50%, tokenized Line-
Vul 55%, and normalized LineVul 64% balanced accuracy on the
unseen samples, underlining the usefulness of our evaluation and
stratification approach.

6 RELATED WORK

In the following, we provide an outline of recent works that are
tangent to this research area.

Vulnerability Discovery Models. There is a notable amount of re-
search interest in developing novel vulnerability discovery models
and comparing them to prior ones. With Vuddy [25] being a heuris-
tic vulnerable clone detection model, Draper [39] and VulDeePecker
[31] being one of the first token-based deep learning solutions,
consecutive works started to benchmark their approaches against
them. Slicing-based approaches [9, 30] and graph-learning-based
approaches starting with Devign [65], have followed shortly after
[7, 50, 65] reporting remarkable success even compared to tradi-
tional rule-based tools. The novel soft-attention mechanism from
Vaswani et al. [48] has fostered research and approaches like Vul-
SPG [64] and Cheng et al. [10] report even better results. Finally,
LLMs like RoBERTa [34] or CodeT5 [53] have been applied to vul-
nerability discovery tasks [8, 15, 46] achieving currently the best
performances on realistic datasets.

Explainable AI for Security. With the success of learning-based
function-level vulnerability discovery models comes the problem
with a lack of interpretability and defect localization [16]. Explain-
able AI helps to open up black boxes such as deep neural net-
works [4, 47]. This is even more critical to applications in a security
context. Under the sheer number of explainability algorithms, find-
ing the best suited for vulnerability discovery has been an active
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research question [54, 66]. Ganz et al. [16] investigate how a secu-
rity practitioner can compare different localization of bugs, as a
bug can be rarely pinned down to a single line [16, 64].

Fallacies in Vulnerability Discovery. Arp et al. [3] give rise to
fallacies in developing ML models for security. For instance, they
examine which metrics may induce a biased view of the perfor-
mance, and how artifacts in the dataset can negatively impact the
true performance. Chakraborty et al. [7] find that current datasets
as the one from Zhou et al. [65] or Li et al. [31] are unrealistic
and biased. They further show that most models lack transfer-
ability to out-of-distribution datasets by cross-evaluating popular
models. Wang et al. [50] criticize datasets obtained through biased
approaches like filtering commit messages by certain keywords.
They propose to filter samples using a classifier identifying security-
relevant patches. We leverage these insights in our experimental
design as well as our metrics and dataset choice.

Code Transformations. In the experiments presented in this paper,
we use specific types of transformations to investigate the confound-
ing effects of artifacts on LLMs and graph-based models, specifically
the application of predefined styles, uglification, and obfuscation.
Applying transformations to code in order to investigate the limits
of LLMs or graph-based models has received growing attention
in the vulnerability discovery research community. Examples of
such transformations that have been investigated are identifier
renaming [20, 59, 60, 62, 63], insertion of unexecuted statements
[20, 43, 60, 62] or replacement of code elements with equivalent el-
ements [2, 28]. We continue this investigation by providing a novel
implementation of transformations, by applying them to measure
the confounding effects of artifacts, and by evaluating strategies to
mitigate such effects.

7 CONCLUSION

In this work, we show that current vulnerability discovery models
are severely influenced by artifacts such as code styles, variable
naming, and common control flow patterns. The true performance
of such models is hardly measurable and the reported ones from
recent works can not be extrapolated to out-of-distribution code
samples. We link the problem to spurious correlations in the dataset
enabling models to shortcut decisions using unrelated information.
We show that some models are less impacted by confounders and
others more. Especially, large language models achieve remarkable
results, but when provided with slightly modified code, their initial
performance degrades. We propose three mitigations to drastically
improve performance as a remedy to spurious correlation.
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ABSTRACT

Machine learning has been increasingly adopted for automatic se-
curity vulnerability discovery in research and industry. The ability
to automatically identify and prioritize bugs in patches is crucial
to organizations seeking to defend against potential threats. Pre-
vious works, however only consider bug discovery on statement,
function or file level. How one would apply them to patches in
realistic scenarios remains unclear. This paper presents a novel
deep learning-based approach leveraging an interprocedural patch
graph representation and graph neural networks to analyze soft-
ware patches for identifying and locating potential security vulner-
abilities. We modify current state-of-the-art learning-based static
analyzers to be applicable to patches and show that our patch-
based vulnerability discovery method, a context and flow-sensitive
learning-based model, has a more than 50% increased detection
performance, is twice as robust against concept drift after model
deployment and is particularly better suited for analyzing large
patches. In comparison, other methods already lose their efficiency
when a patch touches more than five methods.
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1 INTRODUCTION

A change to a program is typically accomplished through a patch,
providing feature updates or fixes for bugs and vulnerabilities [47].
With the increasing adoption of continuous integration (CI) and
continuous deployment (CD), the need to monitor and validate
patches for potential bugs has become substantial [33]. To maintain
a secure and reliable software development life-cycle, organiza-
tions must have a robust software quality assurance process in
place to identify and mitigate security risks before a patch reaches
production systems.

The traditional approach to finding bugs in software relies on
manual code reviews and extensive testing. However, this approach
is time-consuming, resource-intensive, and prone to human error.
Static program analysis, on the other hand, supports developers to
identify potentially flawed code regions without actually running
the program. Unfortunately, such static application security test-
ings (SASTs) tools often report many false positive alerts, which
consequently requires expensive manual triage. The problem arises
from too general detection rules and the theoretical limits of static
analysis including bug and vulnerability detection [27]. In practice,
developing detection rules for SAST tools is an error-prone and
tedious task [30]. Hand-crafted rules are often incomplete or too
sensitive, resulting in unfavorable trade-offs between high false-
positive and false-negative rates. The detection deteriorates even
more when these rules are project-agnostic and intended to apply
to a large number of applications.

As a remedy, methods for learning-based vulnerability detection
have been proposed to automatically derive rules from historical
data [30, 35, 58]. Current machine learning (ML) models have been
shown to beat rule-based SAST tools with a much higher detection
rate while pertaining to a lower false-positive rate [14, 43, 57, 58].
However, the prevailing ML models focus exclusively on features in
local code regions, such as functions [58], statements [17] or slices
[29]. Moreover, these models are not context- or flow-sensitive, and
thus suffer from low generalizability and transferability in realistic
settings [11, 12, 32, 39].

With patches, the situation is even worse, as there is often little
time to test and validate them before they are released and it remains
unclear how a security expert would apply learning-based SAST
tools to commits, as a patch can potentially span over multiple
disjoint modules, functions, and classes. Since patches are the only
atomic unit defining the evolution of software, it makes sense to
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adapt existing methods or develop novel techniques that infer bugs
in patches rather than identifying bugs on more fine-granular levels.
Yin et al. [56] state that up to 24% of patches introduce new bugs,
moreover, with open-source software, most patch developers are
not even familiar with the entire code base.

The main research question addressed in this work is how to
effectively identify and locate bugs in patches. As current learning-
based analyzers do not consider patches, we can demonstrate that
their detection performance is poor. Thus, we present a novel patch-
based vulnerability discovery (PAVUDI) approach. We combine
graph neural networks with traditional taint analysis to identify
and locate bugs in patches considering the entire application. We
first formalize a new graph representation that allows security
practitioners to analyze interprocedural data and control flow from
potentially attacker-controlled sources to software-critical regions.
Such a single graph captures the impact of a given patch on the
system’s security posture. Secondly, we design a learning model
specifically for this graph representation to automatically infer
vulnerable or flawed paths within a patch.

To empirically validate the effectiveness of our approach, we
conduct a comprehensive evaluation of the proposed method on
a dataset of security patches. We show that PAVUDI outperforms
state-of-the-art methods under real-world conditions. Furthermore,
we find that current approaches suffer from concept drift, that is,
they lose their initial detection capabilities over time. PAVUDI is less
affected by this drift, providing a more stable detection performance
over time.

In summary, we make the following contributions in this work:

(1) Interprocedural code representation. We introduce and formal-
ize a new graph representation of code for finding security
vulnerabilities. The graph is context- and flow-aware and
provides security-relevant information especially for bug
discovery in patches.

(2) Explainable graph learning model. We implement a novel
model architecture that is well suited for our graph represen-
tation and provides explainable results using causal structure
learning.

(3) Extensive empirical evaluation. We compare PAVUDI against
several different state-of-the-art vulnerability discovery mod-
els and implement several detection strategies to apply these
models to patches.

(4) Real-world findings. We test PAVUDI in realistic scenarios by
detecting previously unknown bugs in open-source software.
More specifically, we apply our model to two popular C li-
braries and find five bugs in their most recent 100 commits.

The rest of this paper is structured as follows: We begin with
an introduction to vulnerabilities and graph representations in
Section 2, then we detail our problem setting in Section 3 and
present our methodology in Section 4. In Section 6, we discuss our
empirical evaluation and end with related work and conclusions in
Section 7 and Section 8, respectively.

2 VULNERABILITIES IN PATCHES

Before presenting our approach to detect vulnerabilities in patches,
let us first introduce the basic concepts of static non-learning and
learning-based vulnerability discovery methods.

Ganz, et al.

2.1 Vulnerability Discovery

To begin, we define the task of discovering vulnerabilities in a pro-
gram. We aim to derive a single score that indicates the likelihood
of a program being vulnerable based on a particular representation
of it. This is expressed in Definition 1, which defines a decision
function that takes a piece of code and maps it to the probability of
it being vulnerable. Note, that this definition does not differentiate
between x being a function, statement or patch.

DEFINITION 1. A method for static vulnerability discovery is a
decision function f: x — P(vulnerable|x) that maps a piece of code
x to its probability of being vulnerable [20].

Classic rule-based SAST tools can be described directly as a func-
tion f predicting vulnerabilities, by for instance, matching function
calls against known patterns or applying taint style analysis by
tracking the flow of user-provided values, checking buffer bounds,
detecting undefined behavior and more. Learning-based methods
for vulnerability discovery, on the other hand, build on a function
f = fp parameterized by model weights 6 that are obtained by
training on a dataset of vulnerable and non-vulnerable code [23].
Compared to classic static analysis tools, learning-based approaches
do not have a fixed rule set and thus can adapt to characteristics of
different vulnerabilities in the training data. The primary differences
among these approaches lie in the input program representation
and the learning model, for instance, how the function depends on
the model weights.

2.2 Vulnerabilities and Patches

There are several ways vulnerabilities can slip into program code
during software development, ranging from a single patch to a series
of complex and intertwined changes to a program. While there are
approaches to trace a discovered bug back to the inducing changes,
the other direction, namely identifying all commits sufficient for
spotting an unknown vulnerability, is a hard problem in the general
case. As a remedy, we focus in this work on vulnerabilities that are
linked to one specific patch.

In particular, we consider a patch as vulnerability-inducing if
its code changes either directly introduce the defect or are in close
proximity to an existing one, so that vulnerable data passes through
code changes as defined later in Definition 7. An example of such
a patch is the heartbeat commit introducing a buffer-overread in
CVE-2014-0160, as shown in Figure 1. Note that even though we
restrict our scope to single vulnerability-inducing patches, their
complexity can still be significant, covering dozens of disconnected
regions across an entire code base.

2.3 Graph Representations

Since programs can be modeled as directed graphs [2, 6, 53], re-
cent approaches make use of graph representations [14, 43, 58] for
source code instead of flat token sequences [30, 35]. We refer to the
resulting representation as a code graph and denote the underlying
directed graphs as G = G(V, E) with vertices V and edges E C VXV.
Moreover, the nodes and edges are attributed, that is, elements of
V or E are assigned values in a feature space.

However, different code graphs capture different syntactic and
semantic features. Recent works, for instance, rely only on syntactic
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features for neural code comprehension using the abstract syntax
tree (AST) [2]. This is a tree representing the syntactic structure of
source code.

DEFINITION 2. The abstract syntax tree (AST) of a function f is
the result of parsing its source such that the leaf nodes in the resulting
tree G4 = G(V4, E4) are the literals and the edges E4 describe the
composition of syntactic elements [1].

The semantic attributes of a function can be captured in flow
graphs for instance with the flow of control or the flow in informa-
tion defined in Definition 3.

DEFINITION 3. The control flow graph (CFG) within a function f is
Ge = G(Vg, E¢) with the nodes Vo C V4 being statements, and where
the directed edges Ec describe the execution order of the statements
Ve € V4 [53]. The data flow graph (DFG) within a function f is
Gp = G(Vp, Ep) with the nodes Vp C V4 being variable assignments
and references, and where the directed edges Ep describe read or write
access from or respectively to a variable [9].

These graph representations allow us to reason about the order
of the executed statements and the flow of information between
variables. An analysis using these properties is considered flow-
sensitive [32]. Finally, a call graph connects function call-sites with
the function definitions as defined in Definition 4.

DEFINITION 4. The call graph (CG) within a program is defined
as Geg = G(Veg, Ecg) where the nodes Vog C V4 being function
call-sites and definitions, while the edges Ecg connect the caller with
the respective function definition.

An analysis using the call context of a program is considered
context-sensitive [32]. Code graphs capture syntactic and seman-
tic relationships between statements and expressions in programs.
Based on these classical representations, combined graphs have
been developed for vulnerability discovery. A popular one is the
code property graph (CPG) by Yamaguchi et al. [53], which is a com-
bination of the AST, CFG and program dependence graph. Other
approaches use different combinations, for instance, combining
the AST with the CFG and the DFG [9], called code composite
graph (CCG) as defined in Definition 5.

DEFINITION 5. The CCG is a disconnected graph Geeg for a pro-
gram P = {fi, fo, ... fu} withV = UL,V and E = E4 UEp U Ec
combining the AST with the semantic information from the CFG and
DFG.

The components of a CCG are easily obtained during compila-
tion, and capture syntactic features and information flow, which
fits neatly into the definition of taint-style analysis, which we will
revisit in Section 4 [54].

2.4 Graph Representation Learning

With the recent success of graph-based program representations,
research has started to focus on graph convolutional networks
(GCNis) [58]. These networks are a class of deep learning models
realizing a function f: G(V,E) » y € R¢ that can be used for the
classification of graph-structured data [36].

GCNs can be viewed as a generalization of convolutional neural
networks (CNNs), just as an image can be viewed as a regular grid
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graph where each pixel denotes a node in the graph connected by
edges to its neighboring pixels [51]. A graph convolutional net-
work needs two mandatory input parameters, that is, an initial
feature vector X € RN*F_ with N being the number of nodes in
the graph and F the number of features per node, and the topol-
ogy commonly described by the adjacency matrix A € [0, 1]N*N,
The most popular GCN types belong to so-called message passing
networks (MPNs) where the prediction function is computed by
iteratively aggregating and updating information from neighboring
nodes. One of the simplest MPNs is the one defined by Kipf and
Welling [26]:

W) = g(AR-Dw=1) 1)

with K% = X. Here, the intermediate representations are linearly
projected and sum-wise aggregated according to the normalized ad-
jacency matrix A with self-loops followed by a non-linear activation
function. These GCNs can be stacked to learn filters with respect to
larger neighborhoods. Other GCN layers use different aggregation
and update mechanisms, for instance, instead of an multilayer per-
ceptron (MLP), gated graph neural networks (GGNNs) use gated
recurrent unit (GRU) cells to update the hidden state of nodes [28],
while graph attention network (GAT) layers use attention mecha-
nisms [42]. We refer the reader to the overview article by Wu et al.
[51] for further details.

Because of the fitting premise of GCNs, they have been widely
adopted for representation learning on code graphs. The graph-
based approaches in recent literature outperform classical SAST
tools and older sequential learning models such as VulDeepecker [30]
or Draper [35]. Graph learning-based approaches like Devign [58]
and ReVeal [11] can be considered state-of-the-art and provide
strong results in their respective publications.

3 PROBLEM SETTING

Current research on learning-based static code analysis focuses on
local code regions, for instance, functions [11, 58], slices [29], or
small code gadgets [14]. However, software development revolves
around changes that can span multiple files and functions. Con-
current versioning systems like Git allow software developers to
track changes that may contain bug fixes or feature enhancements
commonly denoted as patch:

DEFINITION 6. A patch (commit) [P’ = P] is a transition from
one program P’ to another P. It consists of changed code lines and
files commonly denoted as hunk. A patch is often associated with a
Git commit and its unique identifier [47].

Besides introducing new features or fixing bugs, a patch also po-
tentially adds new bugs [56] which we want to detect. The decision
function from Definition 1 does not specify how to apply existing
methods to patches. A naive approach would be to glue together
all snippets changed by a patch before applying a decision function
that operates on function or statement level.

However, problems arise due to the difficulty in identifying and
locating all possible changes within a commit that potentially in-
troduces bugs. Consider the heartbleed bug (CVE-2014-0160) in
the OpenSSL C library. The bug was introduced due to a feature
change adding TLS heartbeats three years prior to the discovery
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of the actual security vulnerability. The commit! touches twelve
different C files and five header files in two different packages. A
static analyzer would need to check all changed functions in all
changed files to find the defect causing the heartbleed vulnerability
shown in Figure 1.

1| if (hbtype == TLS1_HB_REQUEST)

3 unsigned char xbuffer, xbp;
| int r;

6 /* Allocate memory for the response, size is 1 byte
7 * message type, plus 2 bytes payload length, plus
8 * payload, plus padding

*x/

0 buffer = OPENSSL_malloc(1l + 2 + payload + padding);
1 bp = buffer;

13 /* Enter response type, length and copy payload */
4 *bp++ = TLS1_HB_RESPONSE;

15 s2n(payload, bp);

16 memcpy (bp, pl, payload);

Figure 1: Buffer over-read in dtls1_process_heartbeat().

We can see that memcpy copies a buffer with the size obtained by
the client. If the client proposes a buffer length larger than the target
buffer, it effectively triggers a heap-based buffer over-read. Finding
this bug among all the changed files seems like finding the needle
in the haystack. A static analyzer would need to identify memcpy
as a critical code statement, consider payload user-controlled and
detect that there is no sanitization in-between.

We conclude that locating bugs in patches naturally comes with
several problems that need to be addressed:

(1) Context-sensitive changes. Patches may only touch certain
functions and modules but need to be analyzed in the sur-
rounding context. A bug typically spans over multiple mod-
ules [57], that may be associated with a patch but do not
have to be directly affected by it.

(2) Non-coherent changes. A patch may not correspond to a sin-
gle feature change but potentially touch multiple modules
that do not necessarily have to be associated with each other.
Applying a SAST on all changed components may signifi-
cantly increase the reported false positive alerts.

(3) Evolution of software. The learning-based discovery of vulner-
abilities has already been addressed in research [11, 47, 58],
however, finding a patch that introduces a bug is non-trivial,
as a program may undergo several changes before a bug
actually manifests. In addition, the feature representation of
the program may change over time, causing the performance
of a learning-based analyzer to degrade over time as well.

4 METHODOLOGY

PAVUDI is inspired by classic taint analysis, a dynamic program
analysis approach where particular statements or expressions are
tainted and monitored at run-time [37]. This analysis allows se-
curity practitioners to identify, for instance, potential attacker-
controlled sources flowing into sensitive program regions. Yam-
aguchi et al. [53] define an over-approximate static approach by
tainting program parts and propagating tainted values statically

Ihttps://github.com/openssl/openssl/commit/481750
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along the control and data flow. We extend their original formal
definition to allow us to statically find vulnerabilities in patches
per Definition 7.

DEFINITION 7. a) A taint-style analysis for vulnerable patch detec-

tion is a 4-tuple (Vsources Vsink Vsans Veprr) consisting of the nodes in
the CCG of a program P denoting the taint source, sink and sanitizer
nodes as depicted from V4 [53] as well as the nodes corresponding to
code that is changed or newly created in a patch [P’ = P].
b) We say the patch [P’ = P] contains a bug if there exists a vulnera-
ble data or control flow between any vy € Vsource andvi € Vsing with
the constraint of not reaching any defined sanitizer but intersecting
with at least one node from Vipr.

4.1 Overview

To overcome the issues described in Section 3, our method is com-
prised of a new graph representation, called taint graphs which
considers the context of a patch, a value-set analysis and an ex-
plainable graph neural network (GNN) that learns to infer detection
rules on this particular representation in a taint-style fashion as
described in Definition 7.

Graph representation. We define a new interprocedural patch
graph representation. Beba and Karlsen [5] have shown that taint
information significantly reduces false positives for rule-based static
analyzers, hence, we similarly argue that this graph representation
yields more valuable context to learning-based analyzers. In con-
trast to current discovery models, interprocedural graph represen-
tation is arguably more beneficial, since it enables us to propagate
taint information within the entire program, which is impossible
with a function, local slice or file-level graph.

Value-set analysis. As another improvement over recent discov-
ery models, we calculate a value-set analysis to track variable
domains in the graphs. This assists in reasoning about potential
bounds and sanitizations. More specifically, whether or not the
value of a user-controlled variable or buffer length is bounded ben-
eficially affects the model’s decision.

Causal GNN model. Finally, we use graph isomorphism network
(GIN) layers to train an inductive model to infer detection rules
applied to taint graphs. Our model is especially suited for processing
long input graphs by its skip connections and attention mechanism.
The attention weights from the latter can be interpreted as relevance
scores per node to achieve a fine-granular localization of bugs.

4.2 Representation

To obtain a graph representation that is appropriate for vulnerability
discovery in patches, we slice from taint graphs that are an extension
to CCGs. We can calculate them in four steps:

(1) Insert call edges
(2) Insert interprocedural data flow
(3) Perform a value-set analysis

(4) Create security-relevant slices

(1) Insert call edges. A CCG is an intraprocedural disconnected
graph Geeg for a program P. Each function within P has its own
CCG. We can connect each of them by adding call graph edges.
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More concretely, we connect call-sites with function definitions per
Definition 4. We eventually end up with a single connected graph

no_ .
for PwithV =JV} and E = E4 UEp U Ec U Ecg. Although the
i

CCG now encompasses an over-approximate global semantic of
the program P with a single connected graph, it is still hard to track
interprocedural data and control flow.

(2) Insert interprocedural data flow. The CG provides some
intuition about the relation between functions during execution.
Yet, to keep track of user-controlled variables, it is necessary to
provide a more fine-grained view of the interprocedural data flow.
Consider a function call v; — vy with (v1,v2) € Ecg. Since vy is a
call statement, we can associate its accompanying argument nodes,
while the same applies to the function parameters represented in
the function signature of the callee v3. We sort the argument nodes
by their appearance in the function definition and connect them
pairwise yielding Ejprg. During the static analysis, it is hard to
infer whether a variable passed by reference may be written to or
only read from, thus, we model interprocedural data flow graph
(IDFG) edges between pointers as a bidirectional relationship. This
step leaves us with an IDFG graph formally defined in Definition 8.

DEFINITION 8. The interprocedural data-flow graph (IDFG) is

no_.

defined as Giprg where Viprg € U V[’) with EfprG connecting
i=1

parameters in the function call to their respective arguments in the

function definition.

(3) Perform a value-set analysis. Given Gp we can select any
variable assignment v, € Vp and find (vs, ve) € Ep where v, reads
from vs. If v5 is a constant and v, is a Boolean, Float or Integer
operation, we can evaluate ve. If vs is not a constant, we can find
(v,u5) € Ep and repeat. This eventually boils down to constant
propagation and folding. If we are able to evaluate v, we attach
the evaluated value to the node. Otherwise, if the operation can not
be evaluated because, for instance, one data flow dependent v, of
ve relies on I/O input or external API calls, we annotate ve with vg.

Lastly as described by Wegman and Zadeck [50], we find all
expressions within surrounding conditional blocks that may act
as invariants. If within this conditional block, we run into a vari-
able that appears in a conditional of the form <var> <comparison>
<expression>, we annotate its bounds with its value if it could be
evaluated in the previous step. As an example, in Figure 2, we can
assert that len has a lower bound of 10 in the entire conditional
block after line 4.

We can formalize this by attaching a lower-bound domain to
every reference node v € Vp defined as a four-tuple semi lattice
(R, <, 1,My) and an upper-bound domain (R, >, T,M,). T and L de-
note UNBOUNDED, that is, the variable has no upper or lower bound
respectively, My, is the least upper bound defined as My, : (k1, k2) —
min(ky, kz) and My, consequently, is the greatest lower bound de-
fined as My : (k1, k2) — max(kq, k2). Both are used as transfer func-
tions at the control flow join points [3].

(4) Create security-relevant slices. At this point, we have a
program P represented by an interprocedural CCG. As a first step
towards the definition of taint graphs, we define taint paths. For
this, we select taint sources Vsource C V providing user input and
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taint sinks Vsiyk C V denoting critical code regions and the subset
Veprr C V of all nodes that have been edited in a specific patch.

DEFINITION 9. A single taint path p of a patch [P’ = P] is an
oriented path with vertices vy, ..., 0p, ... Starting at vy € Vsource,
passing through v, € Veprr and ending in ve € Vsng where all the
edges are in E;prg, EprG or Ecrg.

To obtain taint paths we perform forward slicing from Vgprr to
Vank following any IDFG, DFG or CFG while neglecting the AST
and CG edges. This leaves us with a set of paths that describe the
changed spots within a patch potentially flowing into critical sinks.
Likewise, we perform backward slices from Vzprr to Vsource. Com-
bining both sets of slices leaves us with a set of paths describing
all flows starting with user-defined inputs intersecting the patched
locations and reaching the critical sinks. To provide a holistic view
of a patch, we arrive at the taint graph, as defined in Definition 10,
by combining all taint paths and gluing them together at their patch
intersections Vgprr. It is trivial to see, that this graph representa-
tion neatly fits into the definition of taint-style vulnerable patch
detection from Definition 7.

DEFINITION 10. A taint graph (TG) of a patch [P’ = P] is defined
as Grg joining its taint paths {p*, p%, .. .,pk} at their common AST
nodes, starting from Vsource flowing through Vep,r and reaching V.

Originally, the term “taint graph” has been frequently used in
malware analysis, where information collected by malicious ap-
plications is tracked to analyze how it flows through processes
and files [55]. In our case, we are interested in how user-provided
data flows through a patch and whether they may reach critical
program sections. The definition of Vsource and Vsink is specific to
the intended use and can be set appropriately. Furthermore, the
number of paths in Grg might become exponentially large, hence
we suggest sub-sampling k paths at random.

4.3 Discovery

Let us consider the vulnerability in Figure 2 for CVE-2015-7497
which was introduced 12 years before it was publicly disclosed 2.
plen is a user-controlled variable that could trigger a buffer under-
flow in name when provided with an integer larger than len.

value = *name;
value <<= 5;
if (len > 10) {
value += name[len -

(plen + 1 + 1)1;

Figure 2: Buffer underflow in Libxml2.

The corresponding taint graph with k = 4 is depicted in Figure 3.
For visualization purposes, we have omitted irrelevant node and
edge labels and shortened the remaining node labels. We can see
that four possible input sources flow into the array access to name.
The common joint AST node, reached by each input source node
happens to be a function call to XMLDictLookUp (). The critical node
in this example is an array index calculation highlighted by PAVUDI.

Zhttps://github.com/GNOME/libxml2/commit/2fdbd3
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name[len - (plen+2)]

read(fd, (char *) databuf, sbuf.st_size)

fread(buf, 1, len, ) > |

fopen(filename, r)

Figure 3: The Grg with k = 4 for a Libxml2 buffer-underflow.
Red denotes the relevant node according to PAVUDI.

Representation Learning. For a taint graph to be applicable for GNNs,
we represent the textual code that is attached to every AST node
using Word2Vec on each token and eventually take the average
similar to recent works [11, 58]. We then train a causal graph iso-
morphism network (CGIN) [40] to infer bugs in patches using our
novel graph representation. The GIN model performs state-of-the-
art while relying on a simple update and aggregation mechanism
similar to the GCN in Equation (1):

A = -1 ((A+(l+e) ) xmsw(hU—U)) @)

Since, compared to classic code graphs, taint graphs are poten-
tially longer and have a smaller average degree, we implement
several design choices that help to pertain important information
over large distances. We set € in Equation (2) as a trainable pa-
rameter, which is particularly useful in conjunction with GINs to
reduce smoothing out information from distant nodes. Further-
more, we use skip connections between the layers to help relevant
information propagate across the topology.

After three graph encoding layers, we use two MLPs to calculate
a relevance score for nodes and edges. For any node v; € V we
calculate their node attention as depicted in Equation (3) and for
any pair of nodes (v;,v;) € E their edge attention as depicted in
Equation (4) respectively. Furthermore, we halve the output space
of the MLPs to perform a latent space disentanglement, where the
first half will later be optimized to contain only the nodes causal
for our task and the second half will be trained to only contain the
trivial part of the graph which can be considered noise.

af, a? = o(MLPNope (hi)) ®)
b, bf; = 0(MLPEpgg (il hj)) ()

A mean readout layer is applied last as a pooling strategy fol-
lowed by a final MLP with softmax activation as the prediction head
returning either VULNERABLE or CLEAN. Using the attention scores
we can calculate attention masks My, Mx, Mg, Ma respectively for
the causal and trivial features, and causal and trivial edges. We
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apply these masks to the adjacency matrix and feature matrix of
the taint graph yielding G¢ and G* for the causal and trivial sub-
graphs respectively. The causal taint graph can be used to explain
the prediction and find the cause of a vulnerability.

To train the model in a supervised fashion we first apply a tradi-
tional NLL-loss L, to our ground truth and the latent represen-
tation of the causal graph hg_ as depicted in Equation (5).

Lup =750 ), ¥glog (alhge) )
GeD
Then we take the representation of the trivial subgraph hg: and
optimize the model to separate trivial and causal features by fit-
ting the classifier with the trivial graph to be close to a uniform
distribution using the Kullback-Leibler divergence (KL):

Lot = == > KL (yunit o(hgo)) ©)
|D]
GgeD

Gangz et al. [19] observe that common explanation methods put
high relevance scores to features that stem from artifacts in the
dataset. To reduce such bias taking effect in our future model inter-
pretation, Sui et al. [40] suggest applying a backdoor adjustment
to take care of any confounding variable. This can be achieved by
conditioning the causal graph per sample with all possible trivial
graphs G! with t € 7 obtained during training. This stabilizes train-
ing and helps reduce the influence of noise and spurious correlated

features in the taint graph as defined in Equation (7).

1
Leaus = —W Z Z y; log (CT (hgc +hgt)) (7)

GeDteT
After optimizing the model by minimizing Lsup + Lunif +Lcaus
we obtain a GNN that is able to process potentially long taint graphs.
We can use the causal part of the graph G¢ that was relevant to
the model to classify the patch VULNERABLE and to localize the bug.
Even more concretely using af from Equation (3) we can rank the
most important causal nodes relevant for this classification, as the
attention score can be directly interpreted as relevance score [36]
e.g. by calculating the top-1 important node:
max aj
v; eV

4.3.1 Data Labeling. In order for a ML model to learn whether
a patch potentially introduces new bugs, we would need to have
a dataset with commits that originally add bugs to the code base,
however, such a dataset is non-existent and not trivial to create,
since, for example, a bug may need several commits until it man-
ifests itself. Instead, current vulnerability datasets only contain
commits that are known to fix bugs. Per commit, we can check
out a software project and sample taint graphs with a pre-defined
maximum length. We support the decision with a study from Calder
et al. [8] stating that most C and C++ open-source projects have a
maximum call-stack depth of 15. For each patch commit we mark
the changed files and lines and move back in time to find commits
prior to the patch touching the same lines in the same file. Partic-
ularly, for any commit including the patch, we extract its TG and
label it vULNERABLE if it touches the same file and lines as the patch
and label it cLEAN otherwise. This leaves us with three different
types of TGs: Randomly selected clean graphs, vulnerable graphs
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that touch pre-fixed code locations, and clean graphs patching a
bug. We will publish our extraction tool for subsequent research 3.

In general, we can address the issues from Section 3, since the
program-aware context-sensitive taint graphs can be regarded as
a solution to the problem of (1) context-sensitive changes, since
we are using only tainted paths we can consider the problem (2)
non-coherent changes to be circumvented to some extent. Lastly,
extracting the commits from different time steps and only if they
are associated with a known bug addresses the issue (3) evolution
of software. However, using this approach, we can’t decide whether
a patch introduces a bug, but whether patched code contains a
bug. As long as we do not have a dataset with patches introducing
bugs, but only patches that fix bugs, we argue, that this is a good
compromise.

5 EVALUATION

In the following section, we first lay out our experimental setup
and then provide answers to the following questions:
RQ1 How do the individual components of PAVUDI contribute
to the detection capability?

RQ2 How do other strategies compare to PAVUDI?
RQ3 How does the size of a commit affect the performance?

RQ4 How does PAVUDI behave after training and deployment?

5.1 Experimental Setup

In this section, we present our experimental setup for the experi-
mental evaluation.

5.1.1 Datasets. We use the state-of-the-art datasets from Zhou
et al. [58] for comparison with related approaches. The datasets are
derived from the open-source projects FFmpeg, a video decoding
and encoding command line tool, and QEMU, a generic emulation
software. Zhou et al. [58] curate a list of security-related keywords*
associated with security patches that are used to crawl the Github
repositories of both projects and find security-relevant commits.
This has the advantage over other datasets [e.g. 17] that they have a
large number of samples per project. They then proceed to extract
code samples from the bug-fixing commits. We, on the other hand,
use these fixing commits to extract clean taint graphs (at the time
of the commit) and vulnerable taint graphs (prior to the commit)
as outlined in Section 4.3.1. The FFmpeg project contains exactly
2558 vulnerable and 3037 clean or fixed taint graphs, while QEMU
is slightly smaller with 1006 clean and 928 vulnerable taint graphs.
We also assess PAVUDI’s performance on five smaller projects,
namely Libxml2, an XML parser, and Lrzip, a compression tool,
since they have already been targeted by program analysis research
[e.g. 7, 16, 20], cURL, a command line tool for HTTP requests,
and OpenSSL, a cryptographic library, since these pose security-
critical applications which have been exploited in the past and
finally TinyProxy, as a relatively new untested security-relevant
application.

5.1.2  Taint Graphs. Per commit, we sample at most k = 1000 taint
paths with a maximum length of / = 200. For each commit, we can

3https://github.com/SAP-samples/security-research-taintgraphs/tree/main/PAVUDI
4https://sites.google.com/view/devign
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incrementally update the interprocedural CCG in a graph database
using only the changes per patch. We choose Viource and Vi
similar to Pewny and Holz [34], by annotating libc functions that
are related to bugs or provide user input. We refer the reader to
the appendix for the complete list of tainted statements. Further-
more, we attach Boolean upper- and lower-bound information to
each variable reference and assignment to provide the model with
information on whether the value of the expression is bounded.

5.1.3 Baseline Models. There are several state-of-the-art meth-
ods for learning-based static vulnerability discovery. We compare
against three intraprocedural graph-learning-based models since
they also rely on graph representations. These models classify bugs
only on the function level.

Devign uses as its initial input graph the CPG enhanced with the
natural sequence graph connecting leaf nodes in their order of
evaluation [58]. The model consists of a six-step GGNN with a
one-dimensional CNN as pooling.

REVEAL is similar to Devign and uses an eight-step GGNN to
embed the graph structure in latent space [11]. However, they use
a simple max pooling. Their original input graph is the CPG and
they use a triplet loss for training.

BGNN4VD uses the bidirectional CCG instead of the CPG [9].
They use an eight-step GGNN just as REVEAL followed by a 1D
convolutional pooling and a final linear layer.

Due to the fact that all three only consider local functions, their
static analysis approach is not context-sensitive, however flow-
sensitive since they use data and control flow edges [39]. Thus,
as another set of baselines, we select two models that are able to
process bugs in a limited interprocedural context.

DeepWukong is a graph-based learning model [14]. Compared
to the other GNN-based approaches it uses pre-processed slices
around potentially critical code locations, for instance, array index-
ing arithmetics, pointer usages or library calls.

SysEVR is similar to DeepWukong, as it first finds locations poten-
tially containing bugs, for instance, pointer usages, arithmetic ex-
pressions, function calls, and array indexing [29]. However, instead
of using a graph representation, they stick to the token representa-
tion of the code extracted from the slicing operation on the CPG to
feed it into a bidirectional gated recurrent unit (BGRU).

DeepWukong and SySEVR extract syntactic vulnerability can-
didates in the source code used for positioning the slices. Their
slicing operation includes function calls within the function under
analysis. Both approaches are context-sensitive and flow-sensitive
since they either use flow graphs or a flow-sensitive slicing ap-
proach. Lastly, we compare PAVUDI’s performance against two
more popular approaches.

VUDDY [25] is a non-learning-based static analyzer that detects
bugs by comparing their function signatures against known CVEs
and NVDs.

VulDeePecker similarly to SySEVR uses a token-based representa-
tion of intraprocedural forward and backward slices over the CPG
[30]. It uses a BiLSTM for classification.
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VUDDY is a non-learning-based analyzer that is not optimized
for the dataset and thus a suitable baseline representative for other
non-learning based SAST tools. VulDeePecker, a context-unaware
analyzer, is similar to SySEVR but does not incorporate any a priori
information about the slicing locations. Furthermore, VUDDY is
neither context nor flow-sensitive.

5.14 Strategies. All baselines process code at different granularity,
but to the best of our knowledge, none of them has been previously
applied to patches. While some methods classify slices and others’
entire functions, it remains unclear how one would apply them to
patches. Thus, we aggregate their decisions to a single score per
patch using five different aggregation strategies as if we would
integrate them into a software quality assurance process:

Max is a strategy where simply the maximum value of all prediction
scores from slices or functions is taken.

Mean strategy averages over every prediction score from slices or
functions.

Probability is a strategy where the probability of the patch being
vulnerable depending on its k components, is similar to calculating
a system’s failure probability.

k
P=1-]]0-f(p) (8)
i=0

As denoted in Equation (8), for each vulnerable component, we
multiply the probability of the complement event yielding the prob-
ability that no component is vulnerable. Then we take the comple-
mentary event again and obtain the probability that at least one
component is flawed.

Isotonic Probability is similar to the probability strategy. Niculescu-
Mizil and Caruana [31] state that prediction scores from ML models
can not be mapped to probabilities out-of-the-box. We use an iso-
tonic regressor to calibrate the predictions before calculating the
probability as in Equation (8).

Commit merges all changed code components within a patch
together and feeds them into the model if applicable, instead of
returning predictions per function.

The different strategies have different effects on the FPs and
TPs. If the vulnerable score for the only function in the patch gets
smoothed out with the MEAN-Strategy, we have fewer TPs and
FPs. On the other hand, the Max-Strategy may be too sensitive
to functions being slightly above the threshold resulting in higher
FPs and TPs resulting in a lower precision but higher recall. Note
that VUDDY only returns CLEAN or VULNERABLE without any
confidence score. Hence, we can only apply strategy CommIT and
Max. The slice-based approaches can not have merged components
as input hence we can not apply the CommIT-Strategy to them.

5.1.5  Performance Metrics. To assess the performance of the dif-
ferent models we use several performance measurements that are
recommended for comparing ML models in security [4]. For the
comparison against other models and in the ablation study we
use the F1-Score, that is, the harmonic mean between precision
and recall. Furthermore, we use the area under receiver operating
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Table 1: Ablation study: F1-Scores measured for different
settings.

Dataset GIN GGNN GCN CGIN
FFmpeg+CutOff 042 +0.14 0.48+0.08 0.50+0.10 0.56 £ 0.05
QEMU+CutOff 0.51+0.11 047 £0.08 0.50+0.03 0.61 £0.22
FFmpeg+TG 0.89+0.02 0.89+0.01 0.85+0.02 0.90 £ 0.02
QEMU+TG 0.84+0.01 0.79+0.03 0.79+0.02 0.84£0.01
FFmpeg+TG+Bounds  0.90 £ 0.03  0.89 £ 0.01  0.89 £0.02 0.91 + 0.02
QEMU+TG+Bounds 0.84+0.03 0.80+0.03 0.80+0.02 0.85+0.21

characteristic curve (AUROC), particularly as a second measure-
ment for the evaluation against the baselines. For the concept drift
experiment, we choose the balanced accuracy, calculated as the
arithmetic mean between the sensitivity and specificity. We repeat
every experiment ten times and report the best score.

5.1.6  Implementation Details. We implement PAVUDI on top of Py-
torch Geometric and Memgraph?® for storing and transforming the
taint graphs. Furthermore, we use an AWS EC2 g4dn instance for ex-
tracting the taint graphs and for training. We use PyDriller and the
GitHub API for extracting patch information, such as for instance,
the commit date, the number of changed functions and methods.
We train every model including PAVUDI on the same dataset with
an identical 70/30 random split, except for the non-learning-based
static analyzer VUDDY. We use the hyperparameters from the re-
spective original publications or reference implementations for the
baselines. For PAVUDI we use an ADAM optimizer with a learning
rate of 0.0001 and for the Word2Vec node embedding we use a
vector of size 100 and a context window of size 3 [11].

5.2 Evaluation

We proceed to present our experimental results to provide answers
to our research questions.

How do the individual components of PAVUDI contribute to the de-
tection capability? We present our ablation study for our CGIN
model on taint graphs on the FFmpeg and QEMU datasets. We try
three other popular GNN architectures, namely GIN [52], GGNN
[28] and GCN [26]. Also, we evaluate the models without using the
bounds information from the value-set analysis. Finally, we slice
off a subgraph from the taint graphs, such that each graph only
captures the immediate data flow around the patch neglecting taint
information. In Table 1, we see that the cut-off taint graphs yield
worse performance, hence we argue that providing interprocedural
and taint information is crucial for classifying vulnerable patches.
GCN is the worst architecture, while GGNN is very close to GIN.
However, CGIN provides the best F1-Scores.

Using the backdoor adjustment from Sui et al. [40] our results
align with their observation, that we can even reduce the out-of-
distribution (OOD) problem. This can be seen in Table 2 where
PAVUDI achieves noticeable detection performance measured by
the F1-Scores on completely different open-source software projects
that it was not trained on. It achieves an F1-Score of 58% for Libxml2
and even 83.4% for OpenSSL, although, there is an overlap between
QEMU'’s and OpenSSL cryptographic feature implementations.

Shttps://memgraph.com/
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Table 2: F1-Score for dataset cross-evaluation.

Testset Trainset
FFmpeg QEMU FFmpeg+QEMU
FFmpeg 91.1+1.7% 340+ 14% N/A
QEMU 413+ 1.1% 82.9+27% N/A
Libxml2 39.6 £ 1.8% 58.0 +£1.2% 57.0+1.6%
cURL 48.5 + 0.3% 222 +22% 14.0 £ 1.2%
OpenSSL 60.9 +1.43% 83.4+1.6% 54.0 +2.4%
FFmpeg QEMU
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Figure 4: Performance comparison against DeepWukong and
Vuddy.

Context information contained in taint graphs and GIN lay-
ers significantly contributes to the detection performance of
PAVUDIL

How do other strategies compare to PAVUDI? We compare our ap-
proach against the seven baselines with the five aggregation strate-
gies. In Figure 4 we can see that PAVUDI has a much higher AUROC
and F1-Score compared to Vuddy and DeepWukong. Since VUDDY
is a deterministic method and not fine-tuned to our dataset, the bad
performance is expected and is representative of other rule-based
SAST tools. DeepWukong, however, is a sliced-based GNN approach
and only achieves an F1-Score of 65% using the IsoToNIC-Strategy.
In Figure 8 it is surprising that the simple token-based approach
VulDeePecker with the PROBABILITY-Strategy achieves an AUROC
of 79% on QEMU and Devign beating SySEVR. Furthermore, we ob-
serve an overall beneficial score using the isotonic projection for all
methods. Figure 5 shows the result against other graph-based meth-
ods. Especially BGNN4VD outperforms the former token-based
and slice-based methods with an AUROC of 80% and an F1-Score
of 75%. In all of our experiments, using the MEAN-Strategy yields
the worst scores. The Max and ComMIT Strategies are similarly
underperforming. Both increase the false positive rate too much
resulting in disadvantageous F1- and AUROC-scores. That means
the naive strategy, to merge all changed functions and classify this,
is detrimental to the detection performance. However, calculating
the failure probability using the PROBABILITY-Strategy is the best
aggregation approach. The inferiority of SySEVR and DeepWukong
may stem from the fact that they define slices around syntactic vul-
nerability candidates which may end up with too many candidates
and foster false positive alerts. 70% of all statements in FFmpeg
correspond to syntactic vulnerable candidates using SySEVR po-
tentially posing a low signal-to-noise ratio.
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Figure 5: Performance comparison against Devign, REVEAL
and BGNN4VD.
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Figure 6: Performance decrease with increasing number of
changed methods.

The probabilistic aggregation is the best strategy for previous
models applied to patches, still, PAVUDI provides an up to
three times stronger detection performance.

How does the size of a commit affect the performance? We assume
that the difficulty of detecting bugs is positively correlated with
number of methods touched in a commit. Relying on the MEAN-
Strategy, for instance, would smooth out the result of a bug pre-
diction with too many changed methods. Resulting in a larger
amount of false negatives. Since the PROBABILITY-Strategy yields
the best result in our evaluation, we proceed to measure the per-
formance loss with commits that have an increasing number of
changed methods. In Figure 6 we indeed observe a performance
drop. With five changed methods the model performance already
deteriorates significantly. VUDDY and BGNN4VD can pertain to
their original performance only when analyzing less than 13 and 8
methods respectively. PAVUDI, however, is only slightly affected
by the number of methods in a commit.

The detection performance of most baselines deteriorates
after 8 changed methods within a patch. PAVUDI’s perfor-
mance slightly drops only after 15 methods.

How does PAVUDI behave after training and deployment? Concept
drift describes the performance loss after the deployment of a model.
We assume, that the features that a model is applied on might
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Figure 7: Performance decrease measured over time since
training,.

change relative to the features the model was trained on originally.
We conduct another experiment to explain whether a model needs
to be fine-tuned after initial training and how large its generaliza-
tion effect is. We train all models, excluding VUDDY, on our dataset.
The dataset is sorted by contribution date and split in half. The first
half is for training and the second is for validation. In Figure 7, we
see that PAVUDI has a significant drop after 300 days. DeepWukong
deteriorates after 200 days on FFmpeg. The other models struggle
to learn anything initially on the time-sorted datasets. On QEMU
only Devign and BGNN4VD have a competitive initial F1-Score
of 75%. However, their detection capabilities shrink already after
respectively 25 and 60 days.

All baseline models lose their initial performance after at
most half a year from training. Only after one year, PAVUDI
significantly loses its detection efficiency.

6 PRACTICAL APPLICATION

We demonstrate that PAVUDI has a notable performance benefit
over other learning-based vulnerability discovery methods when
applied to patches. Due to this, we propose to integrate PAVUDI in
practical scenarios.

Integration. PAVUDI is specifically designed to detect patches
that either introduce or touch bugs or security vulnerabilities. As
already detailed in Section 4.3.1, we can detect bugs in patches by
checking out a project at a specific commit and extracting a taint
graph through the changed code lines with respect to the preceding
commit. This effectively enables us to integrate PAVUDI into a se-
cure software development lifecycle. For instance, PAVUDI can be
triggered on every new commit within a continuous integration or
deployment pipeline and analyze the changes. We report a finding
if PAVUDI’s confidence score for a code change exceeds a threshold.
However, due to the inherent problem of concept drift in the vulner-
able patch detection task which we have shown in our experiments,
it is evident that PAVUDI requires a continuous learning process
when deployed in software development. Therefore, PAVUDI has
to be retrained or fine-tuned regularly.

Interpretation. Each reported finding should be reviewed man-
ually. Therefore, it is essential that the results help security prac-
titioners to find the root cause of the bug quickly. For this reason,
we have added an explanation mechanism to PAVUDI that can
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Figure 8: Performance comparison against VulDeePecker and
SySEVR.

highlight relevant nodes in the taint graph. Recall the vulnerable
patch from Figure 2 and its taint graph in Figure 3 with its most
important node highlighted in red according to PAVUDI. Just like
Sui et al. [40], we arrive at such an explanation by considering the
causal graph G¢ during inference. Since the attention mask can
be interpreted as relevance scores, we can rank the nodes by their
attention and highlight the node with the largest attention value.
This directly hints us to the node responsible for an array index
calculation that causes the bug in Figure 3. However, taint graphs
can become very large and cluttered, thus we suggest extracting
line-level information from the highlighted relevant nodes. By sim-
ply storing the line-level information on every node, we can extract
the relevant code lines from the highlighted nodes according to the
explanation. This allows for precise localization of bugs and vulner-
abilities and may even be integrated into integrated development
environments (IDEs).

6.1 Case-Studies

To demonstrate the practicability of our tool, we apply it in a real-
istic scenario on two tools with their most recent 100 commits at
the time of writing, namely Tinyproxy and Lrzip to find unknown
bugs. We reported every finding to the respective maintainer. In
particular, we proceed as outlined in the prior section: We extract
the taint graphs, run PAVUDI’s inference and extract line-level
explanation scores.

Table 3: Detected bugs by PAVUDI.

Project Bug Description Found in Commit  Fixed?
Tinyproxy  Buffer-Overflow 453235 Fixed (470cc0)
TinyProxy  Undefined Behavior 64badd Fixed (6ffd9a)
TinyProxy = Missing Format Limits 252959 Fixed (3764b8)
TinyProxy  Undefined Behavior 252959 Reported
Lrzip Use-Of-Uninitialized Memory ~ 09ceb8 Reported

Overall we found five bugs as depicted in Table 3. In TinyProxy
we identified a buffer overread, three bugs related to undefined
behavior, and one bug related to missing width limits in sscanf
fields. In Lrzip we found a use-of-uninitialized value. We present
a bug found in TinyProxy, an HTTP/HTTPS proxy written in C,
as a case study in the following Section. In Figure 9, we can see
the change of a config parser function. The analyzed patch should
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initially enhance the parsing speed, however, PAVUDI detects a
bug at line 11. The pointer q might exceed its limit resulting in a
buffer over-read. TinyProxy expects its configuration input space-
separated key-value-pairs to be of the form key value. If a space is
missing, the program crashes.

~'while (fgets (buffer, sizeof (buffer), f)) {
3| - if (check_match (conf, buffer, lineno)) {
printf ("Syntax error on line %ld\n", lineno);

5| + for (;fgets (buffer, sizeof (buffer), f);++lineno) {
of + if(buffer[0] == '#') continue;
7] + p = buffer;
3| + while(isspace(*p))p++;
9| + if(!+p) continue;
0] + q=p;
+ while(!isspace(*q))q++;

Figure 9: The buffer overflow in TinyProxy’s config parser.

6.2 Limitations

The discovery of security vulnerabilities in software is a hard prob-
lem that is undecidable in the general case. As a result, our approach
naturally comes with limitations and blind spots that we discuss in
the following.

Non-taint vulnerabilities. PAVUDI relies on data and control flow
between user-controlled sources and critical sinks. This conse-
quently means it can only detect vulnerabilities that manifest in the
interprocedural data or control flow. We cannot possibly find bugs
that do not share this characteristic, for instance, race conditions
or deadlocks.

Definition of sinks. The performance of our approach depends on
the definition of appropriate sinks and sources. This may be tricky
and subject to each individual project. We follow the approach
by Pewny and Holz [34] as described in Section 5.1.2. While this
selection of libc functions can miss certain vulnerabilities, such as
off-by-one errors, including all pointer arithmetics and function
calls, as Li et al. [29] propose, leads to computationally infeasible
large graphs for our method.

Model updates. Although PAVUDI seems to be more stable than
other methods, we see a performance decline after model deploy-
ment. This indicates that it is necessary to regularly update or
retrain PAVUDI with new data. Therefore, we propose to combine
PAVUDI with other vulnerability discovery methods, such as rule-
based and dynamic analysis methods, so that each balances the
blind spots of the others until updates to models and rules are
available.

7 RELATED WORK

In this section, we present the literature related to research areas
tangent to this work.

Learning-based vulnerability discovery. Several past works al-
ready target the problem of automatically discovering vulnerabili-
ties and bugs. For instance, Russell et al. [35] and Li et al. [30] use a
token-based approach. The combination of GNNs and code graphs
has already been proven to be suited for the discovery of bugs and
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security vulnerabilities in software [10, 13, 44, 59]. Zhou et al. [59]
introduce the first gated graph neural network on code property
graphs to identify bugs in vulnerabilities collected from real-world
commits. Their approach outperforms popular open-source and
commercial static analyzers as well as token-based ML models. Cao
et al. [10] combine data and control-flow graphs with the abstract
syntax tree to the code composite graph.

Interprocedural Graphs. Lietal. [29] use interprocedural slices for
the vulnerability discovery task. Zheng et al. [57] show that graphs
extracted from intraprocedural function slices make it impossible
for the models to learn interprocedural bugs spanning multiple
functions. Although these approaches try to incorporate interpro-
cedural information, it is insufficient since either the function call
depth is limited and rather small, or neither the input source nor
critical sinks are considered. Using a whole-program interprocedu-
ral graph representation would solve this problem, however, this
is a nontrivial task, since programs can become rather large [41].
Our approach overcomes the issue by only selecting relevant paths.
Cheng et al. [15] extract multiple interprocedural paths starting
from a function under analysis until its return. They neglect sources
and sinks and abstain from a whole-program perspective.

Learning on patches. Since this work focuses on patches, it is
noticeable that there is a research interest around the classifica-
tion of patches [46, 48] that have been introduced silently or are
security relevant. In this particular field, GNNs could have been
applied successfully [45]. Wang et al. [43] also classify security-
relevant patches to improve the dataset preparation. Another re-
search branch tries to detect anomalies in patches using meta-
information of the specific versioning control system [18, 21, 22].

Explainable AL Deep-Learning models tend to be black boxes,
hence, there exist a large variety of explanation methods to enable
us to interpret a model’s decision. Guo et al. [24] introduce a black-
box method specifically for security-relevant models. Selvaraju
et al. [38], for instance, introduce a white-box method for image
classification. Sanchez-Lengeling et al. [36] port many methods to
the graph domain. Ganz et al. [19] and Warnecke et al. [49] show
that explanation methods used to locate bugs tend to reveal bias
and artifacts from the training procedure of a model. We address
the explainability of PAVUDI in this paper using soft attention as
presented by Sanchez-Lengeling et al. [36] as it has already been
done in other works [17].

8 CONCLUSION

In this work, we adapt several state-of-the-art learning-based vul-
nerability discovery models to vulnerable patch detection and show
that they have a poor performance and their detection capabili-
ties even degrade over time after deployment. As a consequence,
we present our novel patch-based vulnerability detection model,
PAVUDI, which leverages interprocedural code graphs and taint-
style static program analysis.
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Table 4: Functions for Vygurce-

Function Description

getchar/getc/getch Reads a char from stdin

fgets Reads a line from a stream

read Reads from a file descriptor

fopen Opens a file

scanf Reads formatted input from stdin
gets Reads input from stdin

fscanf Reads formatted input from a stream

getenv/secure_getenv
fread

poll/ppoll
recvfrom/recv/recvmsg

Reads from an environment variable
Reads input from a stream

Wait for event on file descriptor
Receives message from socket
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Table 5: Functions for V.

Function

Description

malloc/calloc/realloc
memcpy

strepy
printf/snprintf/sprintf
memset

strcat

free

Allocate heap memory.
Copies memory content.
Copies string content.
Provides formatted output.
Initializes memory.
Concatenates strings.
Deallocates memory.
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