
Security Viewpoints on
Explainable Machine Learning

vorgelegt von

M.Sc.
Alexander Warnecke

ORCID: 0009-0006-3617-3968

an der Fakultät IV - Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
– Dr. rer. nat. –

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Wojciech Samek
Gutachter: Prof. Dr. Konrad Rieck
Gutachter: Prof. Dr. Giorgio Giacinto
Gutachter: Prof. Dr. Pavel Laskov

Tag der wissenschaftlichen Aussprache: 16. April 2024

Berlin 2024

Dedicated to my grandfather Otto.

Abstract

In the swiftly evolving researchfield ofmachine learning, there is a growing demand for en-
suring both the interpretability and security of algorithms. Recently, a variety of approaches
to explain how models arrive at their predictions have been developed and constitute a core
component towards enabling trustworthy machine learning. In this thesis, we adopt the
viewpoints of a developer, an operator and an adversary when investigating explanations and
derive research questions that emerge from each perspective.

From the perspective of a developer leveraging machine learning for security tasks such as
malware and vulnerability detection, we elucidate the question of selecting an optimal ex-
plainable learning algorithm. Recognizing the need for a coherent measure of comparison,
we introduce a set of multiple evaluation metrics to contrast explanations. These metrics
are employed on four security tasks spanning diverse neural network architectures. Further-
more, we present an algorithm to extract meaningful explanations, offering a compact lens
into the model and dataset for further investigation. During the analysis of these prototyp-
ical explanations, we unveil a pressing concern that many existing models do not necessarily
address the issues they were initially trained for.

Next, we transition to the viewpoint of an operator of amachine learning service and show
how explanations can reveal privacy leaks in machine learning models. Our findings under-
line the need for strategies for data adjustments without significant disruption to the model
parameters, especially in the light of legislature like the General Data Protection Regulation
(GDPR). In this endeavor, we introduce the concept of certified unlearning for features and
labels with a framework based on approximate parameter updates. Conditions that guaran-
tee certified unlearning are derived and tested across a variety of datasets and tasks.

Lastly, adopting the vantage point of a potential adversary, we present innovative attack
mechanisms exploiting model weaknesses unveiled by explanation techniques. Firstly, we in-
troduce dormant minimal backdoors, a novel approach to embed stealthy backdoors bypass-
ing standard detection paradigms by manipulating hardware accelerators. Secondly, using
the similarity of edge detection and explanations for image classifiers, we present the concept
ofmodel-independent adversarial examples. These adversarial examples sidestep the need for
access to model parameters or black-box queries, confining their operation exclusively to the
input presented to the model.

Collectively, this work enlightens about chances and challenges when adapting explana-
tions into machine learning based systems. On the one hand, explanations can effectively
support practitioners in evaluating and debugging datasets and models. On the other hand,
problems like information leakage and attack detection must be addressed and understood
further to pave the way to trustworthy and robust learning systems.

Zusammenfassung

Im schnelllebigen Forschungsfeld des maschinellen Lernens besteht eine wachsende Nach-
frage nach der Gewährleistung von Interpretierbarkeit und Sicherheit der eingesetzten Algo-
rithmen. In letzter Zeit wurden verschiedene Ansätze zur Erklärung der Funktionsweise von
Modellen entwickelt, die einen Kernbestandteil zur Ermöglichung von vertrauenswürdiger
künstlicher Intelligenz darstellen. In dieser Arbeit nehmen wir die Perspektiven eines Ent-
wicklers, eines Betreibers und eines Angreifers ein, wenn wir Erklärungen betrachten und
leiten Forschungsfragen ab, die aus jeder Perspektive entstehen.

Ausder Sicht einesEntwicklers, dermaschinellesLernen fürAufgabenwie Schadsoftware-
und Schwachstellenerkennung nutzt, betrachten wir die Frage der Auswahl eines optimalen
Erklärverfahrens. Um die Notwendigkeit eines kohärenten Vergleichsmaßes zu erkennen,
stellenwirmehrereBewertungsmetrikenvor, umErklärungen zuvergleichen. DieseMetriken
werden auf vierDatensätzenunterVerwendungverschiedener neuronalerNetzwerkarchitek-
turen evaluiert. Außerdem präsentieren wir einen Algorithmus zur Auswahl interessanter
Erklärungen, der einenkompaktenEinblick indasModell unddenDatensatz fürweitereUn-
tersuchungen bietet. Die Analyse dieser prototypischen Erklärungen zeigt, dass viele Mod-
elle nicht unbedingt die Probleme lösen, für die sie ursprünglich trainiert wurden.

In der Perspektive eines Betreibers eines maschinellen Lernservices zeigen wir, wie Erk-
lärungen Datenlecks in maschinellen Lernmodellen aufdecken können. Unsere Ergebnisse
verdeutlichen die Notwendigkeit von Ansätzen zur Datenanpassung ohne dabei die Mod-
ellparameter stark zu verändern, insbesondere vor dem Hintergrund von Gesetzen wie der
Datenschutz-Grundsatzverordnung (DSGVO). Zu diesem Zweck führen wir das Konzept
des „zertifizierten Verlernens” für Merkmale und Labels ein, das auf approximativen Param-
eteraktualisierungen basiert. Bedingungen, die ”zertifiziertes Verlernen” garantieren, werden
abgeleitet und in mehreren Datensätzen und Aufgaben getestet.

Zuletzt nehmen wir den Standpunkt eines Angreifers ein und präsentieren neuartige An-
griffsmechanismen, die von Erklärungstechniken aufgedeckte Modellschwächen ausnutzen.
Zunächst führen wir „schlafende minimale Hintertüren” ein, einen neuartigen Ansatz, um
Hintertüren in Lernmodelle einzufügen, indem Hardwarebeschleuniger manipuliert wer-
den. Außerdem präsentieren wir einen neuen Angriff, um durch minimale Eingabeverän-
derungen Bildklassifikatoren in die Irre zu leiten, welcher auf der Ähnlichkeit von Erklärun-
gen und Kantendetektionsalgorithmen beruht. Der vorgestellte Angriff benötigt weder Zu-
gang zu denModellparametern noch mehrere Anfragen an das Lernmodell und operiert da-
her ausschließlich auf der demModell präsentierten Eingabe.

Insgesamt diskutiert diese Arbeit Chancen und Herausforderungen für den Einsatz von
Erklärungen im maschinenllen Lernen. Einerseits können Erklärungen Anwender effek-
tiv bei der Bewertung und Fehlerbehebung von Datensätzen und Modellen unterstützen.
Andererseits müssen Probleme wie Informationslecks und Angriffserkennung weiter unter-
sucht werden, um den Weg zu vertrauenswürdigen und robusten Lernsystemen zu ebnen.

Acknowledgements

First and foremost, I would like to expressmy deepest gratitude tomy supervisor Prof. Dr.
KonradRieck for awakeningmy interest inmachine learning inGöttingen and givingme the
chance to do a PhD. Thank you for believing in my ideas, all the discussions about them and
for cheering me up in the difficult phases every PhD student has to go through.

Moreover, I would like to thank my two co-referees Prof. Dr. Giorgio Giacinto and Prof.
Dr. Pavel Laskov for reading this thesis. I know that you are busy and have full schedules, I
appreciate that you take your time for me.

I’m glad to have received funding by the German Research foundation under Germany’s
Excellence Strategy EXC 2092 CASA-390781972 and by the German Federal Ministry of
Education and Research under the grants BIFOLD-23B and VAMOS-16KIS0534.

I’m also extremely grateful for all the people I met and worked with. Firstly, thanks to all
members of theMLSECresearch group for all the fun, discussions and researchprojects Iwas
having with you. Special thanks to Prof. Dr. Christian Wressnegger for introducing me to
the system security circus and teachingme how academiaworks. I would like to acknowledge
the contributions of all my co-authors to my work, especially Dr. Daniel Arp, Lukas Pirch,
Julian Speith and Jan-Niklas Möller. Last but not least, thank you Frank Rust and Stefan
Czybik for setting up amazing servers and restarting them when required. Thank you Katja
Barkowsky and Sarah Hashmi for handling the bureaucracy for me.

Life is easier when you have good friends, therefore I would like to thank Tobias Meier,
Janis Schaab andRomanWohlgemuth for always being there and for lots of great discussions
about life and other things. The ”bosscast” we started during the Covid pandemic was the
best idea we’ve ever had. I would also like to thank the LG10 carnival group for providing
me with a refreshing viewpoint on the life outside of academia, for the great sleepover parties
at the lake and father’s day hikes through the forests around Lauenberg. It is great to have a
place where you can always come and feel welcome and home.

Above all, I would like to thankmy family for their support throughoutmy life. My grand-
parents, Karin andOtto, deserve special thanks for taking care ofme after school. I know that
it wasn’t always easy for you. To my mother Martina and my sister Esther, thank you for al-
ways being there and encouragingme to pursue the things that bringme happiness. Nadine,
my sister-in-law, brought joy and laughter into my life. I appreciate the wonderful memories
we shared and the fantastic birthday cakes you made for me. Philine, thank you for showing
me the world through your wonderful, unbiased eyes and for bringing so much joy into my
life. To my wife Sandra, thank you for your unconditional support and for always believing
in me. I love you dearly.

Publications

This thesis contains ideas and results that have been published by the author in the following
papers aswell as currently unpublished concepts in the field of adversarial machine learning.
Publications listed with a filled square (■) have been authored by the thesis author and those
with an empty square (□) originate from collaborations under the lead of other researchers.

■ Alexander Warnecke, Daniel Arp, Christian Wressnegger and Konrad Rieck. Evalu-
ating Explanation Methods for Deep Learning in Security. In Proc. of the 5th IEEE
European Symposium on Security and Privacy (EuroS&P). 2020.

□ LukasPirch*, AlexanderWarnecke*, ChristianWressnegger andKonradRieck. TagVet:
VettingMalware Tags using ExplainableMachine Learning. In Proc. of the 14th ACM
EuropeanWorkshop on Systems Security (EuroSec). 2021.

□ Tom Ganz, Martin Härterich, Alexander Warnecke and Konrad Rieck. Explaining
GraphNeuralNetworks for VulnerabilityDiscovery. InProc. of the 14thACMWork-
shop on Artificial Intelligence and Security (AISEC). 2021. Best paper award.

□ Daniel Arp, ErwinQuiring, Feargus Pendlebury, AlexanderWarnecke, Fabio Pierazzi,
ChristianWressnegger, LorenzoCavallaro andKonradRieck. Dos andDon’ts ofMa-
chine Learning in Computer Security. In Proc. of the 31st USENIX Security Sympo-
sium. 2022. Distinguished paper award.

■ Alexander Warnecke, Lukas Pirch, Christian Wressnegger and Konrad Rieck. Ma-
chineUnlearning of Features andLabels. InProc. of the 30thNetwork andDistributed
System Security Symposium (NDSS). 2023.

■ Alexander Warnecke*, Julian Speith*, Jan-Niklas Möller, Konrad Rieck and Christof
Paar. Evil from Within: Machine Learning Backdoors through Hardware Trojans.
Technical report, arXiv:2304.08411. 2023.

*Authors contributed equally

List of Figures

1.1 Explanations of the security system VulDeePecker 3
1.2 Different explanations from a machine learning based spam detector 4
1.3 Saliency maps for a deep neural network trained for traffic sign recognition . 5

2.1 Fitting polynomials of different degreem to training data points 15
2.2 Inner workings of a multilayer perceptron 17
2.3 Inner workings of a convolutional neural network perceptron 19
2.4 Inner workings of a recurrent neural network 21
2.5 Example of an adversarial example for image classification 27
2.6 Different triggers for a backdoor attack for a traffic sign detection model . . 30

3.1 Comparison of the top-10 features for the different explanation methods . . 38
3.2 Explanations for a program slice from the VulDeePecker dataset 40
3.3 Descriptive accuracy and sparsity for the considered explanation methods . 45
3.4 Perturbation label statistics of the datasets 47
3.5 Intersection size of the Top-10 features of explanations after model stealing . 52

4.1 Overview of the PROF scheme . 57
4.2 Prototypes and outliers of malicious PDF documents 60
4.3 Prototypes and outliers of malicious Android applications 61
4.4 VulDeePecker snippet before and after pre-processing 63
4.5 Schematic overview of the TagVet approach 66
4.6 CNN for tag prediction . 67
4.7 Mean Silhouette Coefficient and Adjusted Rand Index for clusterings . . . 70
4.8 Average descriptive accuracy andMass around Zero of TagVet 71

5.1 Probability of all shards being affected by unlearning 79
5.2 Datapoints affected by unlearning in different datasets 94
5.3 Gradient residual of the certified unlearning methods 95
5.4 Difference in loss between retraining and unlearning 95
5.5 Fidelity of the certified unlearning methods 97
5.6 Fidelity of certified learning models after batch-wise unlearning 97
5.7 Fidelity of a neural network compared to logistic regression 98
5.8 Perplexity distribution of the language model 101
5.9 Fidelity and run-time for unlearning unintended memorization 103

xi

5.10 Accuracy and runtime for unlearning poisoning 105
5.11 Accuracy and runtime for unlearning poisoning for different model sizes . . 106

6.1 Saliency map for a deep neural network trained for traffic sign recognition . 110
6.2 The four stages of our proposed hardware trojan attack 111
6.3 Visualization of the Lp penalty for the model update δ 116
6.4 Sparsity evaluation of the minimal backdoor 118
6.5 Mean backdoor success rate when using it for a deviating model 122
6.6 Backdoor success rate and hardware overhead for a varying number of pa-

rameter changes . 124
6.7 Input images, LRP explanations and edges detected by a Sobel filter 126
6.8 Success rate and PSNR score of the Sobel attack 128
6.9 Adversarial examples created by the Sobel attack and with Gaussian noise . . 129
6.10 Success rate of the adaptive filter attack for different numbers of training

examples and filter sizes . 131
6.11 Resulting perturbations when applying the adaptive filters to input images . 132
6.12 Resulting convolution filters of the adaptive attack after optimization . . . 133
6.13 Classic filters from image processing . 134
6.14 Adversarial examples for the ResNet model for different PSNR values . . . 135

List of Tables

3.1 Overview of the considered neural networks 34
3.2 Explanations of LRP and LEMNA for a sample of the GoldDream family . 41
3.3 Explanations for a benign Android application 42
3.4 Two explanations from LEMNA for twoMimicus+ examples 43
3.5 Descriptive accuracy (DA) and sparsity (MAZ) for explanation methods . . 46
3.6 Incomplete explanations of black-box methods 48
3.7 Average intersection size between top features for multiple runs 49
3.8 Run-time of explanation methods . 50
3.9 Summarized results of the evaluated explanation methods 51

4.1 Top-5 features for the entire Mimicus+ dataset determined using LRP . . . 60
4.2 The most frequent tokens in the top features of the VulDeePecker dataset . 64
4.3 Performance of baseline methods for VulDeePecker 64
4.4 Explanation snippet for tag “Creates process with hidden window” 68
4.5 Prediction performance of TagVet . 71
4.6 Pattern for sandbox tag “Attempts to connect to unavailable TCP servers” . 72
4.7 Behavioral pattern for the malware family Fareit. 73
4.8 Behavioral pattern for the cluster #15. 73
4.9 Behavioral pattern for the malware family AutoIt. 74
4.10 Behavioral pattern for the cluster #28. 75

5.1 Overview of the four datasets used for unlearning 92
5.2 Average runtime of unlearning for the Drebin+ dataset 98
5.3 Exposure metric of the canary sequence for different lengths 102
5.4 Completions of the canary sentence after unlearning 103

6.1 Impact of trigger size andmodel architecture on the Sparsity and Classifica-
tion performance . 120

6.2 Difference in test accuracy, sparsity andquantization changes for a face recog-
nition model . 121

6.3 Attack success rate when using the adaptive filters for different models . . . 135

xiii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 6
1.3 Structure of this Thesis . 7

2 Background 9
2.1 Machine Learning . 9
2.2 Neural Networks . 16
2.3 Explainable Machine Learning . 21
2.4 Attacks onMachine LearningModels and Explanations 27

3 Evaluating ExplanationMethods 33
3.1 Selecting Datasets andModels . 34
3.2 Deriving Evaluation Criteria . 37
3.3 Evaluation . 45
3.4 RelatedWork . 53

4 From Explanations to Security Insights 55
4.1 Prof: A Framework for Selecting Explanations 56
4.2 Security Model Analysis . 59

4.2.1 Malware Detection . 59
4.2.2 Vulnerability Detection . 63

4.3 Vetting Malware Tags . 65
4.3.1 Behavior Monitoring and Representation 66
4.3.2 Tag Learning and Prediction . 67
4.3.3 Generating Explanations . 68
4.3.4 Quantitative Evaluation . 70
4.3.5 Qualitative Evaluation . 72

4.4 RelatedWork . 75

xv

5 From Explanations to Unlearning 77
5.1 A Framework for Machine Unlearning 80
5.2 Update Steps for Unlearning . 83
5.3 Certified Unlearning of Features and Labels 88
5.4 Applications . 92

5.4.1 Unlearning Sensitive Features . 92
5.4.2 Unlearning UnintendedMemorization 99
5.4.3 Unlearning Data Poisoning . 104

5.5 RelatedWork . 106

6 From Explanations to Attacks 109
6.1 Dormant Minimal Backdoors . 110

6.1.1 Realizing Backdoors through Hardware Trojans 110
6.1.2 Crafting Minimal Backdoors . 114
6.1.3 Evaluation in Software . 117
6.1.4 Evaluation in Hardware . 122

6.2 Model Independent Adversarial Examples 125
6.2.1 Sobel Filter Attack . 127
6.2.2 Adaptive Filter Attack . 130

6.3 RelatedWork . 136

7 Conclusion andOutlook 139

Appendix A Appendix 143
A.1 Proofs for CertifiedMachine Unlearning 143

References 149

1
Introduction

1.1 Motivation

In the last decade, the field of machine learning has experienced an unprecedented surge,
transforming the landscape of various industries and research domains. From image recog-
nition [156] and natural language processing [268] to medical diagnosis [88] and computer
security [19],machine learning techniqueshavedemonstrated remarkable capabilities in solv-
ing complex problems. This revolution is owed to the rise of deep learning architectures,
availability of vast datasets, and computational power that have driven machine learning to
new heights of accuracy and applicability.

However, this impressive progress has been accompanied by a critical challenge: the lack
of transparency and interpretability in the decision-making processes of machine learning
models. As machine learning systems become integral to high-stakes applications such as
autonomous vehicles [70] or intrusion detection in critical infrastructures [259], the impor-
tance of understanding how these models arrive at their decisions has never been more pro-
nounced. The black-box nature of many machine learning algorithms has raised concerns
about their reliability, accountability, and potential biases contained in them, necessitating
the development of algorithms to explain their predictions. Such clarity is crucial in fostering
societal trust in machine learning, particularly for operations in sensitive domains.

1

Explainable Machine Learning is a novel subfield that aims to bridge the gap between the
remarkable predictive power of complex models and the human need for comprehensible
and justifiable decisions. The pursuit of explainability is not just a philosophical endeavor; it
has real-world implications for issues like legal compliance, ethical considerations, and public
trust. The need to strike a balance between accuracy and transparency thus extends the classi-
cal machine learning pipeline of training amodel on a dataset andmeasuring its performance
on unseen data by an algorithm that generates explanations for inputs fed to the model. An-
alyzing these explanations the practitioner can draw conclusions about the data and model
used and gather insights about the learning task at hand.

Although different approaches for generating explanations have been developed in the last
decade [e.g. 25, 266], the majority of them computes relevance- or saliency scores for each
feature of an input to indicate its importance for the classification of themodel at hand. Uti-
lizing these scores for analysis has quickly caught the attention of security researchers since
they can guide an analyst to weak spots of models or reveal sensitive information from the
training data that is used at inference time. In the last decade, a plethora of vulnerabilities
that compromise model operation have been found at different stages of the machine learn-
ing pipeline [e.g. 205]. Exploiting these attack vectors and adjusting models to prevent them
will hopefully pave the way to trustworthy machine learning in the long run. In the follow-
ing, we present three examples that show how explainablemachine learning can be a valuable
tool to make learningmodels more secure and thereby derive the research questions that will
be discussed throughout the thesis.

Firstly, let us consider a learning model to detect vulnerabilities in source code. Such vul-
nerabilities pose a severe threat to modern software but detecting themmanually is a tedious
and error-prone work. Therefore, approaches for automatic detection of such vulnerabili-
ties have shown promising results in recent years [166, 310, 311]. The code snippet in Fig-
ure 1.1 (top) contains a critical call to the strcpy function and three different explanations
(below) obtained using different algorithms. The underlyingmodel is a recurrent neural net-
work [166] that processes code token-wise, thus treating it like natural language and thereby
achieves an excellent detectionperformance. If a token is a variable nameor a function, for ex-
ample, its name will be replaced by a general identifier like VAR1 as shown in the explanations
below. Investigating the given explanations, we see that the first method provides a nuanced
representation of the relevant features whereas the second method generated an unsharp ex-
planation due to a lack of sparsity. The third approach provides an explanations that even
contradicts the first one. Note that the variables VAR2 and VAR3 receive a positive relevance
(orange) in the first case but a negative relevance (blue) in the third one.

2

1 c = split(arg[i],”=”,&n);
2 block_flgs = strcpy((xmalloc(strlen(c[1]) + 1)),c[1]);

1 VAR0 = FUN0 (VAR1 [VAR2] , STR0 , & VAR3) ;
2 VAR0 = strcpy ((FUN0 (strlen (VAR1 [INT0]) + INT0)) ,

VAR1 [INT0]) ;

1 VAR0 = FUN0 (VAR1 [VAR2] , STR0 , & VAR3) ;
2 VAR0 = strcpy ((FUN0 (strlen (VAR1 [INT0]) + INT0)) ,

VAR1 [INT0]) ;

1 VAR0 = FUN0 (VAR1 [VAR2] , STR0 , & VAR3) ;
2 VAR0 = strcpy ((FUN0 (strlen (VAR1 [INT0]) + INT0)) ,

VAR1 [INT0]) ;

Figure 1.1: Explanations for the prediction of the security systemVulDeePecker on a code snippet from the original training
dataset.

The fact that each of the explanation methods is built upon sound assumptions that jus-
tify its usage confronts the practitioner with different questions: Which explanationmethod
should I use for the learning problem at hand and how can I compare differentmethods? We
aim for an answer by proposing different metrics for comparing and evaluating explanation
methods. Concretely, we focus on different datasets and models from computer security
applications that pose special requirements to the explanation methods and thus deserve an
own special treatment. We will see that certain approaches are indeed generating better ex-
planations than other ones and should thus be preferred in practical applications.

Next, we investigate models for classifying e-mails into the categories “spam” (malicious)
or ”ham” (benign). In today’s interconnected digital landscape, the convenience of email
communication has brought about numerous benefits for both individuals and businesses.
However, alongside the advantages, a persistent harmhas emerged in the formof spamemails.
These malicious messages often carry dangerous payloads, including malware, ransomware,
and phishing attacks. If successful, such attacks can compromise sensitive company data, dis-
rupt operations, and lead to financial losses. Machine learning based detectors for spammails
are an effective tool since a lot of e-mail traffic is readily available for training in companies
and the performance of such models is remarkably high [24]. The majority of spammail de-
tectors transform the e-mail content to a ”bag of words”, indicating whichwords are present,
and use the frequencies of occurrence in spam- and ham-mails for classification. Figure 1.2
shows four example e-mails, two from each class, with the relevance of the five most impor-
tant words highlighted according to their score. The e-mails originate from a large corpus of
e-mail traffic from the american company Enron [183].

3

Id Spam E-Mail Spam E-Mail Ham E-Mail Ham E-Mail

0 online remove 2000 enron

1 money prices love gas

2 security http deal 2000

3 read removed houston hpl

4 million 80 bob teco

Figure 1.2: Different explanations from a machine learning based spam detector. For each e‐mail the five most important
words are highlighted.

Analyzing the token relevance scores, we find that important words in the spammails are
indeed linked to phishing attempts using financial baits (”money”, ”million”, ”http”). How-
ever, we also notice the presence of seemingly irrelevant features like dates (”2000”), content
from signatures (”enron”, ”houston”) or even the names of employees (”bob”). Such features
that are disconnected from the actual learning task but still important can be considered as
artifacts from the learning problems that are problematic in various ways: Firstly, evading
the classifier can be performed easily for spammail authors by including these artifacts in the
crafted e-mails. Secondly, recently introduced legislation, like the General Data Protection
Regulation (GDPR) [1] in the European Union include provisions that require the right to
be forgotten. This mandates companies to take reasonable steps to achieve the erasure of per-
sonal data concerning [the individual] [1]. Depending on the dataset that was used to train
the classifier, individuals can claim their right to be forgotten and enforce the model owner
to delete their data. However, once a machine learning model is trained it is difficult to re-
move information from the training data, a process recently namedmachine unlearning [38].
While explainable machine learning can uncover potential artifacts related to personal data,
a mechanism for removal – at the best case without retraining the model from scratch – is
required. In this thesis we will propose such a method to allow machine unlearning of fea-
tures and labels by closed-form model updates and derive theoretical guarantees that allow
for certified unlearning.

Finally, we consider a machine learning models for image classification, being one of the
research fields that attracts the most attention in these days. Figure 1.3 shows different dat-
apoints that were used to train a neural network to detect German traffic signs (top) along
with themodel classfication (column title) and the corresponding explanation (bottom). We
can see that themodel oftentimes uses only the shapes of the traffic sign to derive the classifca-
tion and only in the case of the roundabout leverages information from inside the traffic sign.
Surprisingly, we notice that the rightmost image depicts a stop sign which is classified incor-
rectly and where all relevance is concentrated in a small region of the image. This indicates

4

GiveWay Speed Limit 50 Roundabout Right of Way Right of Way

Figure 1.3: Saliency maps for a deep neural network trained for traffic sign recognition. The top row shows training images
and the network prediction is above them. Red color in the saliency map indicates high importance whereas blue color
indicates irrelevance.

that a backdooring attack [107, 170, 242] has been performed on the underlying machine
learning model during the training process by an adversary. Such a backdoor refers to a sub-
tle and strategically embedded trigger or pattern within the model that, when appropriately
activated, can cause the performance to degrade or produce erroneous results. Backdooring
attacks target the model’s architecture itself, lying dormant until triggered by specific input
conditions, thus evading detection during regular training and testing phases. These ma-
liciously implanted vulnerabilities can compromise the integrity and reliability of machine
learning systems, leading to catastrophic consequences in safety-critical applications. For in-
stance, a self-driving car that relies on the neural network for street sign recognition from
Figure 1.3 endangers the lives of passengers on the road and undermines the public trust in
this new technology.

For an effective explanationmethod, it is paramount to highlight the trigger in Figure 1.3,
therebyunmasking themaliciously injectedbehavior. Indeed, there existmultiple approaches
that leverage saliency maps to detect backdoors in learning models automatically [e.g. 76,
128]. From the perspective of an adversary, the goal then shifts to embedding a backdoor
that is invisible for explanation methods in order to avoid detection by these methods. In
response to this challenge, this thesis presents a novel form of backdoors calledminimal dor-
mant backdoors that exploit the fact that the hardware executing the model can be compro-
mised. These backdoors, once installed, allow execution of trojans at the inference step and
thus remain undectable for detection methods that exist at the time of this writing. To be
applicable in realistic setups, the number of model parameter changes is minimized and we
will see that as few as three parameter changes are sufficient to implement effective backdoors
into modern neural network architectures.

5

1.2 Contributions

In this thesis we present security viewpoints on explainablemachine learning, offering insights
fromdistinct vantage points and addressing questions that stem from these perspectives. The
initial standpoint caters to machine learning practitioners who seek to leverage explanations
for comprehending the model’s learning process or for engaging in subsequent analytical
steps to extract novel insights. The second viewpoint zeroes in on the challenges concern-
ing privacy protection that emerge when implementing explanation methods in real-world
scenarios. Finally, we slip into the role of an adversary aiming to attack the functionality of
a machine learning model using the insights gained from explainations. Notably, this work
encompasses four contributions:

• Evaluating ExplanationMethods. Practitioners have to choose explanation methods,
however it is unclear how they can be compared andwhich one is suited best for an ap-
plication at hand. We propose six evaluation criteria for comparison covering general
concepts as well as those relevant for computer security applications. In an extensive
study with different neural networks and datasets, we compare different explanation
approaches to highlight advantages and disadvantages when applied in practice.

• From explanations to insights. Employing explainable machine learning proves to be
a valuable asset across numerous security applications. To ease analysis, we propose
a scheme that allows navigating through the space of explanations by using prototypes
and outliers. In diverse domains, spanning from Android malware detection to vul-
nerability assessment and dynamic malware analysis, we demonstrate the capacity of
our approach to elevate the depth of analysis and offer fresh perspectives to analysts.

• From explanations to unlearning. Once sensitive features or wrongly labeled data has
been detected, it is a challenging task to remove it from themodel after training. Since
modern machine learning models are complex and take long to train we propose the
first method to efficiently remove features and labels using a closed form update on
themodel parameters. Wederive conditionsunderwhich certifiedunlearning, a strong
theoretical guarantee, can be obtainedwhenusing our updates in practice and evaluate
them on different datasets and machine learning models.

• From explanations to attacksRecent research has shown that modern neural networks
suffer from adversarial examples and that backdoors can be inserted into them when
controlling a small fraction of the training data. We derive the concept of minimal

6

dormant backdoors, a new class of neural network trojans that circumvent detection
methods by using compromised hardware and lying dormant until configured by an
adversary. Moreover, motivated by explanations for image classifiers, we also propose
model independent adversarial examples based on edge detection algorithms. Crafting
these perturbations requires neither parameter access normodel queries and still allows
fooling modern networks efficiently.

1.3 Structure of this Thesis

Chapter 2 presents the fundamentals of machine learning, explanation techniques and
attacks on neural networks that are required to follow the remainder of this thesis.

Chapter3 introduces evaluationmethods for explanationmethods and a large scale study
on datasets and models for computer security applications. The results have been published
at the IEEE European Symposium on Security and Privacy 2020 and the ACMWorkshop on
Artificial Intelligence and Security 2021 and provide the practitioner with guidance which
explanation methods to use in practice.

Chapter 4 presents insights on different security datasets and models using explainable
machine learning. We show how decompiled android applications can be compressed with
respect to their behavior and howmalware tags can be vetted using dynamical malware anal-
ysis. The insights have been published at the USENIX Security Symposium 2022 and the
ACMWorkshop on Systems Security 2021.

Chapter 5 proposes a framework to unlearn features and labels from machine learning
models and derives a theoretical foundation for unlearning in this setting. The approaches
are evaluated on different models and datasets and analyzed theoretically. The results have
been published at theNetwork and Distributed System Security Symposium 2023.

Chapter 6 discusses new attacks on machine learning models, namely a minimal pro-
grammable backdoor for neural networks that requires very few parameter changes to be ac-
tivated and a new class of adversarial examples that require neither access to the parameters
nor queries to the model. At the time of this writing these results have not been published at
peer-reviewed conferences yet.

7

8

2
Background

In the following chapter we present the theoretical background required to follow the re-
maining concepts and problems discussed in this thesis. Firstly, we introduce supervised
machine learning problems and optimization methods to solve them. Regarding learning
models, we will mostly focus on neural networks since they are the dominating models that
appear throughout this thesis. Secondly, we present explainablemachine learning algorithms
that allow to trace back decisions of neural networks in different ways. Finally, adversarial
examples, backdoor attacks and attacks on explainable learning techniques are introduced as
important threats to modern neural networks.

2.1 Machine Learning

Machine learning is an interdisciplinary research field at the intersection of computer science,
statistics, and optimization, focused on developing algorithms and models that enable com-
puters to learn patterns autonomously from datasets. Thereby, these algorithms circumvent
the need for explicit programming to solve complex problems across domains such as image
and speech recognition and natural language processing. These algorithms can be broadly
categorized into three types depending on the way the training data to extract insights from
is available, namely unsupervised learning, supervised learning and reinforcement learning.

9

In this thesis, wewill dealwithmodels that havebeen trained in a supervised fashion,which
describes a paradigmwheremodels are trained using labeled datasets, i.e., input data is paired
with corresponding desired outputs. The learning process aims to make the model learn the
underlying relationships between inputs and outputs, enabling it to make accurate predic-
tions or classifications for new, unseen data instances. This approach hinges on the availabil-
ity of well-annotated training data, allowing the model to iteratively refine its understanding
of the data’s characteristics and generalize to novel examples.

Learning Problem In the following, we introduce a mathematical notation for super-
vised learning problems, where we mostly rely on the books of Bishop [36] and Smola and
Vishwanathan [257]. In general, we are given a dataset D = {z1, . . . , zn} with each point
zi = (x, y) consisting of a datapoint x ∈ X and a label y ∈ Y in a supervised learning
setup [257]. We assume that the feature spaceX = Rd and therefore use a bold face notation
for vectors x ∈ X from now on whereas the j-th entry of x is denoted by xj. The structure
of the label setY depends on the learning task at hand: When aiming to predict a numerical
value, like the price of a stock at a given time given a history of prices, the label will be a posi-
tive real number, i.e., Y = R+. Such problems are also called regression problems [36]. The
dominating task for this thesis, however, is called classification and in this case Y constitutes
a set of C classes into which the points inX can be categorized. Thus, we denote an element
in Y either by the class y ∈ {1, . . . ,C} to which x belongs or by a vector y representing a
discrete probability distribution over the classes, i.e., all entries sum up to one and the entry
yk indicates the probability that x belongs to class k. At the first glance, it might seem like a
strong requirement that the outputs of a learningmodel form a probability distribution over
the class labels. However, such a distribution can be obtained relatively easy for an output
vector y by applying the softmax transformation ŷi = exp(yi)/

∑
k exp(yk) to every entry yi

of y. A special softmax distribution is called one-hot encoding, where only one entry in y is
set to one, oftentimes to indicate a ground truth for training labels [36].

A learning model is a mapping fθ : X → Y that can predict labels for input instances
x ∈ X [103]. The prediction depends on the parameters θ ∈ Θ of the learning model,
where the parameter spaceΘ ⊂ Rm is the set of all possible parameter vectors. The process of
finding “good” parameters θ is called training and is performed by optimizing a loss function
ℓ : X×Y×Θ → R thatmeasures the difference between the prediction of fθ for a datapoint
x and its true label y. Loss functions are often defined by the notation ℓ : Y×Y , however for
us it is advantageous to use a notation involving the learning parameters as used by Smola and
Vishwanathan [257]. The larger the difference between the label and the model prediction,

10

the larger the value of ℓwill be, thus we aim to minimize the loss function for our datasetD.
If we assume that the occurrence of a datapoint inX and its correct label can be characterized
by a density function p(x, y) we can define an optimal set of parameters by minimizing the
expected lossR∞(fθ)with respect to θ [36], where

R∞(fθ) =
∫
X×Y

ℓ(x, y, θ)dp(x, y).

In practice, we usually don’t know the underlying distribution p(x, y) and therefore as-
sume that the datapoints in our datasetDhave beendrawn independently and are distributed
identically according to p(x, y) [36]. Under this assumption we can define the optimal set of
parameters θ∗ such that the empirical risk RD(fθ) is minimized,

θ∗ = argmin
θ∈Θ

RD(fθ) = argmin
θ∈Θ

n∑
i=1

ℓ(zi, θ). (2.1)

Example 1 Linear Regression
As a first example, consider a dataset D constituting of points from an unknown function
g : Rd → Rwewould like to approximate. Webelieve that g is a linear function and therefore
choose a first order polynomial as our learning function fθ, i.e., fθ(x) = θ0 + θTx, where
θ0 ∈ R is an additional parameter for the intercept of fθ(x). A suitable loss function in this
setup is given by the L2 loss ℓ(z, θ) =

(
y − fθ(x)

)2. Denoting by θ̃ = (θ0, θ) the empirical
risk minimization problem becomes

θ∗ = argmin
θ̃∈Rd+1

n∑
i=1

(
yi − θ0 − θTxi

)2
. (2.2)

Example 2 Logistic Regression
Next, consider a dataset D that constitutes of points with binary labels, i.e., y ∈ {0, 1} for
all datapoints inD. The learning model of the logistic regression classifier is given by

fθ(x) =
exp

(
θTx

)
1+ exp

(
θTx

) .
This output is a score in the interval (0, 1) and thus represents the probability that x be-

longs to class 1. To ensure that fθ is amapping toY we assign x to class 1whenever fθ(x) ≥ 0.5
and else to class 0. For training, we can employ the cross-entropy loss function

ℓ(z, θ) = −y ln(fθ(x))− (1− y) ln(1− fθ(x)). (2.3)

11

Despite their simplicity, linear- and logistic regression models are popular for many appli-
cations in these days. It is well known that the optimization problem in Equation (2.2) has a
unique solution that can be formulated in a closed form expression, see book by Bishop [37].
Unfortunately, this is not the case for the logistic regression classifier although the optimiza-
tion problem is convex and has a unique optimum as well [37]. This problem results from
the inherent non-linearity of fθ and transfers to many learning models, especially neural net-
works. To this end,modern training procedures operate in an approximate fashionwith algo-
rithms where fast minimization of the empirical risk is obtained by taking into account that
the final solutionmight be only a local optimum. In the following, wewill introduce popular
optimization algorithms that can be used to tackle non-convex problems as in Equation (2.1)
since we have to solve many such formulations throughout the thesis.

Optimization schemes The cornerstone optimization algorithm for modern machine
learning models is called Stochastic Gradient Descent (SGD) and iteratively adjusts the model
parameters in the direction of the negative gradient of the loss function [143, 226, 229].
Drawing a random datapoint z fromDwithout replacement SGD performs the update

θ (t+1) = θ (t) − τ∇θℓ
(
z, θ (t)) (2.4)

until all points inD have been processed once. Since the gradient of the loss function ℓ points
into the direction of the steepest ascent, SGD decreases the loss on the points in D by con-
struction. The parameter τ is called learning rate and has critical impact on the outcome of
the optimization: If τ is too small, optimization can require many epochs, i.e., loops overD,
and if τ is too large the optimization may not converge at all since the gradient is only a lo-
cal optimization and large update steps can move θ to a region where the loss is even higher
than before. However, under mild assumptions like convexity of ℓ and Lipschitz-continuity
with constant L one can show that SGD finds a global minimum ofRD(fθ) in a finite num-
ber of steps if the learning rate is smaller than 1

L , see book by Boyd and Vandenberghe [39].
Therefore, SGDoffers a computationally efficient approach for navigating high-dimensional
parameter spaces and the inherent randomness injects noise into the optimization process,
which can lead to faster convergence and help escape local minima.

Although simple by construction, SGD also has inherent weaknesses regarding its conver-
gence speed and behavior in special loss landscapes that motivated many different optimiza-
tion schemes [e.g. 148, 317]. In the following, we give three examples for extensions of SGD
and refer the reader to the books of Goodfellow et al. [103] or Nocedal andWright [200] for
an in-depth discussion of optimization in neural networks.

12

Example 3 Minibatch SGD
Instead of performing the update for each datapoint in D, it is helpful to draw a batch B of
datapoints and perform the update in the direction of the average gradient in B, i.e.,

θ (t+1) = θ (t) − τ
|B|

∑
z∈B

∇θℓ
(
z, θ (t)). (2.5)

As for SGD, batches are sampled as long as datapoints in D have not been processed in the
current epoch. Compared to the high variance of individual SGDupdates,Minibatch SGD’s
updates tend to be smoother due to averaging over multiple examples. Large batch sizes lead
to more stable convergence trajectories and can make learning more predictable, however to
escape local minima the batch size should not be chosen too large eventually [103].

Example 4 Momentum based SGD
SGD can become very slow, for example when the gradients are consistently small close to a
local optimum. Also, noisy gradients can cause SGD to follow the wrong path frequently. A
solution proposed by Polyak [211] takes into account previously calculated gradients in the
update rule. The update is given by

v(0) = 0

v(t+1) = αv(t) − λ∇θℓ
(
z, θ (t))

θ (t+1) = θ (t) + v(t+1).

Here, α < 1 is a hyper-parameter that is used to accumulate the gradients of the past up-
dates and if α is significantly greater than the learning rate λ the gradient can not change the
current direction quickly. This update rule can be thought of as a ball that is rolling down a
hill: Once it has accumulated some speed small bumps cannot change its direction so easily.
This look-ahead feature of momentum based SGD allows it to ”pre-correct” the updates, ef-
fectively reducing the oscillations and speeding up the convergence process. This property
is useful especially in the beginning of the learning phase when the parameters are far away
from the optimum and gradients are generally noisy. Clearly, Momentum based SGD can
be combined with batch sampling to obtain the advantages of both strategies.

Example 5 Newton Step
SGD takes only the gradient of the loss function into account when calculating the update
which leads to a relatively limited view of the loss landscape. However, Loss functions with
neural networks as learningmodels yield are oftentimes irregular and non-convex landscapes

13

to operate on. If the loss function is twice differentiable with respect to θ, a Newton step
corresponds to the update rule

θ (t+1) = θ (t) −H−1
θ
(
z, θ (t)) · ∇θℓ

(
z, θ (t)),

whereHθ ∈ Rm×m is the Hessian matrix of the loss function with respect to the parameters,
i.e.,Hθ(z, θ) = ∇θ

(
∇θℓ(z, θ)

)
. TheNewton update generally needs fewer steps to converge

as it takes the curvature of the loss function into account when computing the direction to
move to. However, it is computationally more expensive since it requires calculating and
inverting the Hessian matrix which can be costly since its size is quadratic in the number of
model parameters. Although first-order update strategies are the de-facto standard formodel
training nowadays, Newton steps can become interesting when the parameters are close to
the optimum and fine-grained adjustments are necessary [200].

Regularization Minimizing the empirical risk using approximate update strategies like
SGD consistently increases the classification performance of our model on the datapoints in
D. Recall, however, that the goal of the training process is to obtain amodel that will be used
in practice to classify unseen datapoints. If the model learns the training data too well, to the
point where it starts to capture not just the underlying patterns in the data but also the noise
present in the training set we speak of overfitting. This phenomenon becomes a severe hurdle
for the application of learning models in practice since new concepts that were not present
in the training data cannot be detected and will be overseen. Overfitting occurs mostly for
models with lots of parameters, whereas underfitting affects models that are too simple to
capture the structure present in the dataset [36].

To illustrate the concepts of overfitting and underfitting, let us consider the regression task
from Example 1 again where we set the input dimension d = 1. The dataset thus consists of
points that represent measurements of an unknown function g(x) + ε with some Gaussian
noise ε to indicate that the measurements of g are not exact. We extend the learningmodel to
a general polynomial of degreem and choosem = {1, 3, 15} to obtain three differentmodels
with rising complexity. Using the L2 loss and SGD as an optimization algorithmwe can now
optimize the parameters on the training data and obtain functions as shown in Figure 2.1 in
orange. Apparently, the linear model (m = 1) is underfitting the training datapoints since it
cannot capture the non-linear concept of g. On the other hand, the polynomial of order 15 is
clearly overfitting the data since it fits the training data well but differs significantly on many
regions of g. Therefore, choosing order three is the best choice in this example to obtain a
robust approximation of g.

14

0 0.5 1

−1

0

1

m = 1

True function Polynomial fit

0 0.5 1

−1

0

1

m = 3

0 0.5 1

0

1

m = 15

Figure 2.1: Fitting polynomials of different degreem to training data points from a noisy linear function g.

If the loss on the training data is not decreasing, underfitting can be spotted easily, however
preventing a model to overfit training data is more difficult. A common strategy that coun-
teracts overfitting is to use a regularization termΩ(fθ) in the loss function that penalizes too
complex models [36]. The new empirical risk minimization problem becomes

θ∗ = argmin
θ∈Θ

RD(fθ) = argmin
θ∈Θ

n∑
i=1

ℓ(zi, θ) + λΩ(fθ), (2.6)

where λ is a hyper-parameter that balancesmodel complexity and prediction performance.

A well known choice for Ω is the Lp norm of θ, given by Ω(fθ) = ∥θ∥p =
(∑m

i=1|θi|m
)1/p

for some p ∈ N. A special case is obtained for p = 0, where ∥θ∥0 =
∣∣{θi ̸= 0}

∣∣,i.e., the norm
only counts the entries away from zero [173]. In the regression example, theLp regularization
inhibits the SGD algorithm to assign high values to the parameters that correspond to higher
order polynomials and therefore leads to a suitable model when λ is chosen adequately.

Measuring Prediction Performance The loss function is the driving force that lets
the classification performance of the learning model increase during time. However, it is a
numerical value of little help for the practitioner when evaluating the performance. In the
following, we briefly introduce themost important evaluationmetrics used in this thesis and
refer to the work of Powers [213] for a greater discussion on relations between them.

In a binary classification problem, we can evaluate a learning model on an unseen dataset
D′ after training andobtain the number of true positives (TP) and true negatives (TN), i.e., the
number of datapoints that have been correctly classified as class one or zero respectively. For
an imperfect classification score,wewill also obtain false positives (FP) and false negatives (FN)

15

that were incorrectly predicted as class one or zero, respectively. Based on these numbers, we
can define three important measures for classification performance, namely the accuracy, the
true positive rate (TPR) and the false positive rate (FPR) defined as

accuracy =
TP+ TN

|D′|
, FPR =

FP
FP+ TN

, TPR =
TP

TP+ FN
.

The accuracy simplymeasures howmany examples have been classified correctly, ameasure
that can be irritating if the number of examples in one of the two classes is much higher than
in the other one. To this end, the FPR (and TPR)measure the fraction of samples from class
zero (one) that have been misclassified and thus allow a better evaluation compared to the
accuracy alone. Notice that FPR and TPR are dependent on each other, i.e., increasing the
TPR will also increase the FPR and vice versa. Therefore it is common practice to create a
receiver operation curve (ROC curve) that displays multiple combinations of FPR and TPR
for different parameters θwhen selecting a model.

Similar to TPR and FPR, the Precision andRecallmetrics are defined as

Precision =
TP

TP+ FP
, Recall =

TP
TP+ FN

,

and a precision-recall curve can help selecting a suitable model. Precision is the fraction of
true positives in all examples that have been classified as class one and recall is equal to TPR.
TheF1 score is a uniquemeasure for classificationperformance definedby theharmonicmean
of precision and recall,

F1 = 2
precision · recall
precision+ recall

.

In general, it is useful to consider multiple measures of performance since each of them
can be misleading in certain cases as shown by Arp et al. [20], for example.

2.2 Neural Networks

Neural networks are a class of machine learning algorithms inspired by the structure and
functioning of the human brain [e.g. 103, 228]. They consist of interconnected layers of
nodes or neurons that process and transform input data to make predictions or decisions.
Neural networkshave achieved remarkable successes across variousdomains, from image [156]
and speech recognition [275] to natural language processing [268]. In the following section
we will introduce three popular types of neural networks, namely Multilayer perceptrons
(MLPs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs).

16

x1

x2

x3

o(1)1

o(1)2

o(1)3

o(1)4

o(2)1

o(2)2

o(2)3

o(2)4

o(3)1

o(3)2

o(3)3

w1,3

w2,3

w3,3

w4,3

= α
(∑4

i=1 wi,3o(2)i

)

Figure 2.2: Multilayer perceptron with three input units, two hidden layers with four units each and three output units.

Multilayer Perceptrons Multilayer perceptrons are one of the simplest and most
common types of neural networks. They consist of an input layer, one ormore hidden layers,
and an output layer. Data is processed in a unidirectional manner, passing information from
the input layer through the hidden layers to the output layer. Each layer consists of multiple
neurons or units where each unit is connected to every unit from the preceding layer and
every unit from the subsequent layer by weights w as depicted in Figure 2.2. The neurons
compute a weighted sum of their inputs, add a bias b and apply an activation function α to
the result. If we denote the input values by x1, . . . , xd the output o of a single unit is given by

o = α
(d∑

i=1

wixi + b
)
. (2.7)

The non-linearity functions are necessary to enable the model to capture complex (non-
linear) relationships in the data since the processing in Equation (2.7) is linear apart from α.
The concrete choice of activation function depends on the application at hand andmultiple
options exist including the logistic sigmoid function from Example 2, the hyperbolic tan-
gent function tanh or a rectified linear unit (ReLU) the latter one being the most prominent
choice in these days [103].

The linearity of the forwarding process of a single unit in a MLP allows us to express the
output of the entire l-th layer composing of k units by a matrix multiplication given by

o(l) = α(l)
(
W (l−1, l) · o(l−1) + b(l)

)
, (2.8)

where α(l) is the activation function of the l-th layer, b(l) ∈ Rk holds the concatenated
bias values of each unit in the layer andW (l−1, l) ∈ Rk×k′ is composed by the stacked weight
connections from the k′ units in layer l− 1 to the k units in layer l.

17

In a closed expression, the output of a MLP with L layers can be expressed as

fθ(x) = α(L)
(
W (L−1,L) · α(L−1)

(
. . . · α(1)

(
W (0,1) · x+ b(1)

)
+ b(L−1)

)
+ b(L)

)
,

where θ =
(
W (0,1), b(1), . . . ,W (L−1,L), bL

)
contains all weights and biases of the network.

Investigating this representation of fθ we notice that it is highly non-linear and the inner
workings are opaque to the practitioner, especially if L is large. However, as long as the acti-
vation functions remain differentiable, we can compute the gradient of fθ(x) that is required
to perform SGD updates, for example. This process consists of a forward pass, where fθ(xi)
is computed to evaluate the loss function with yi and a backward pass, where the gradient for
each layer is calculated to update its parameters. In fact, it was the efficient implementation
of this backpropagation algorithm [159] paired with efficient hardware for its execution that
fueled the popularity of neural networks in these days [156].

ConvolutionalNeuralNetworks Convolutional neural networks are a specialized
type of neural network designed for processing grid-like data, such as time series, images or
videos [e.g. 160, 251]. The key components are convolutional layerswhich utilize smallfilters
(also called kernels) to scan the input data and capture local patterns. These layers enable the
network to automatically learn features like edges, textures, and shapes from the data.

Recall that convolution is a mathematical operation that maps two functions h(x) and
w(x) to a new function (h ∗ w)(x) given by

(h ∗ w)(t) =
∫

h(τ)w(t− τ)dτ.

At each t, the convolution can be interpreted as the area under the function h(τ)weighted
by the functionw(−τ) shifted by t. As t changes, theweighting functionw(t−τ) emphasizes
different parts of h(τ) [103].

CNNs pick up the concept of averaging an input in a local area by using multiple kernels
as parameters. The input plays the role of the function h and the parameters of the network
represent different weighting filters w. As an example, consider a one dimensional input vec-
tor x and a kernel w of kernel size K. A convolution layer with parameters w and a bias b
generates a new vector where the i-th entry is given by

(x ∗ w)i = α
(K∑

m=−K

xi−mwm + b
)
. (2.9)

18

x1 x2 x3 x4 x5 x6 x7

o1 o2 o3 o4 o5

w1 w2 w3

= α
(∑3

i=1 wixi+3
)

Figure 2.3: Illustration of a convolutional filter of size three operating on a one dimensional input vector x.

Thus, each entry in (x∗w) represents a weighted sumof a region in xwhere the weighting
is given by the filterw. To generate the entire output we can imagine sliding the filterw over
the input and computing the weighting above at each point. This process is illustrated in
Figure 2.3 for a convolution with filter size K = 3 that operates on an input vector of size
seven. It also becomes apparent that the number of parameters inCNNis smaller compared a
MLP since the same filter is applied at each point of the input. The output of a convolutional
layer is often called featuremap since each kernel can extract different features from the input.
Notice that i − j can be negative in the definition above causing xi−j to be undefined. To
avoid this, the convolution can be started either at indexK+ 1 (yielding a feature map which
is smaller than the input) or the input can be paddedwith zeros at the beginning and the end
such that input and output size are identical.

One dimensional convolutions are handy to process sequential data like time series, for
example. In many applications of machine learning, however, the input consists of images,
i.e., two dimensional arrays. Luckily, it is straight forward to expand the concept of one di-
mensional convolutions to two dimensions as we show in the following example.

Example 6 Two dimensional convolution
Given an input imageX of size d× d′ × cwhere c is the number of channels, we can expand
the filtersw to sizeK× K× c and define the convolution output as

(x ∗ w)j,i = α
(c∑

l=1

K∑
m=−K

K∑
n=−K

Xj−m, i−n, l · wm, n, l + b
)
. (2.10)

CNNs for image classification usually comprise of long sequences of convolutional layers,
each equipped with multiple kernels to allow extraction of different features, followed by
multiple feed-forward layers [156, 251]. Specialized concepts like skip connections to facili-
tate training [119] or parallel convolutions of different filter sizes [270] have also been used
to achieve further performance gains. Nevertheless, the convolution operation remains the
key operation in any modern CNN.

19

Recurrent Neural Networks Recurrent neural networks are designed for sequen-
tial data, such as time series and natural language [e.g. 120, 268]. Unlike MLPs, RNNs have
connections that loop back on themselves, allowing them tomaintain memory of past infor-
mation. When dealing with sequential data, the order of elements matters. Consider lan-
guage as an example: the meaning of a sentence can change drastically by merely reordering
its words. Similarly, in a time series, the past values often hold crucial information for pre-
dicting future values. MLPs and CNNs fail to account for this inherent sequence nature
since they cannot determine temporal relationships when processing data.

A RNN maintains an internal state represented by a vector h t ∈ Rp that evolves as it
processes each element of the input sequence. This memory allows the network to capture
contextual information from previous elements and incorporate it into its predictions for
subsequent elements. Let us consider an input sequence x1, . . . , xT of T time steps as an
example where each xi ∈ Rd. At each time step t, the RNN takes in the input vector xt and
the internal state ht−1 to updates its internal state to

ht = α
(
Wi · xt +Wh · ht−1 + b

)
. (2.11)

The matricesWi ∈ Rp×d andWh ∈ Rp×p together with the bias vector b ∈ Rp represent
the parameters of the network and α is again an activation function. Figure 2.4 gives an il-
lustration of the processing steps for an input sequence of length four. It is noteworthy that
Wi andWh do not depend on t and are thus applied at each time step. After processing the
entire input sequence, the internal state holds information from every time step and can be
used for further processing. One can apply a fully connected layer that takes hT as input or
apply an additional recurrent layer that processes the intermediate hidden states h1, . . . , hT

as inputs, for example [103].

If the input sequence is very long, classical RNNs can suffer from the vanishing gradient
problem, which makes the magnitude of the updates to the learning parameters very small.
To encounter this problem, there exist different variants of RNNs that extend the learning
model. Most prominently,Long Short-TermMemory networks [LSTMs, 120] andGatedRe-
current Units [GRUs, 58] propose the usage of additional gates for the forwarding process
of RNNs. These gates allow to decide when to update information in the cell state, when to
forget certain information, and when to output information to the next time step. This gat-
ing mechanism makes LSTMs and GRUs better suited for handling sequences with varying
time spans between relevant events.

20

h0

x1

h1

h1

x2

h2

h2

x3

h3

h3

x4

h4

h4

Wi

Wh

=

α (Wi · x4 +Wh · h3)

Figure 2.4: Illustration of forwarding process of a recurrent neural network for an input sequence of length four.

2.3 ExplainableMachine Learning

The popularity of neural networks and their excellent performance inmany application fields
quickly raised the question ofwhy they perform so good andwhat they actually learn. While
learning models like decision trees or k nearest neighbors classifiers [see e.g. 36] can be inter-
preted by design, the non-linearity and complexity of neural networks offers a real challenge
in understanding their inner workings.

Approaches to explain neural networks can be categorized into different categories de-
pending on their functionality [108]. We stick to the work of Samek et al. [235] and use
the concepts of global and local explanations methods to differentiate them. Global explana-
tionmethods yield explanations for the entiremodel independent of specific inputs. Among
the first Simonyan et al. [250] presented the idea of generating image examples thatmaximize
a given neuron in the output layer, i.e., we can solve

x∗ = argmax
x∈X

fθ(x)c (2.12)

using SGD, for example, to generate images that reveal insights about relevant concepts of
c. This approach has also been extended to neurons inside the networks [87] and is called
Activation Maximization. Kim et al. [145] quantitatively rank the importance of concepts
defined by humans and Koh et al. [150, 151] search the most important training examples in
terms of their influence on the total loss to explain a network at hand.

The largest portion of algorithms for explaining neural networks are local, that is given
an input example x these methods compute a relevance score Ri for each feature xi of x that
indicates its importance for the prediction fθ(x). Since local explanation operate on model
predictions, we also establish the notation that fθ(x) denotes the output score of the highest
class in the final network layer, i.e., fθ(x) ≡ maxi fθ(x)i for the remainder of this section.

21

The design of local explanation techniques has become an own active research field since
the relevance scores can be arranged next to the input x and allow an easy visual inspection by
humans, especially for image classification systems. In the following, we present different ex-
planation strategies that will be used throughout this thesis. For a better overview, we group
local explanation algorithms further into four specific categories namely local surrogate mod-
els, occlusion based analysis, gradient based analysis and backward propagationmethods [235].
At the end of the sectionwewill also briefly discuss remaining approaches that do not fit into
any of the categories mentioned above.

Local surrogateModels The first category of algorithms aims to replace the decision
function by a local surrogate model that is easier to interpret. Consider, as an example the
Linear Regression model introduced in Example 1 which computes its predictions using the
linear projection wTx. The weight indices wi indicate whether the corresponding feature xi
contributes positively or negatively to the result, depending on the sign of wi. Using this
insight, the LIME [220] algorithmfits a linear regressionmodel to a set of perturbed versions
of x given by a probability distribution px(η). For example, px(η) could set entries in x to zero
randomly to measure the impact of their absence. The relevance score can then be obtained
using the solution of the weighted least squares optimization problem

min
w

∫
πx(η)

(
fθ(η)− wTη

)2 dpx(η) (2.13)

and setting Ri = xiwi. Here, πx(η) is a weighting function that measures the difference
between x and its perturbed version η like the cosine similarity or a gaussian kernel, for exam-
ple [220]. The KernelShap [175] algorithm proposes a special weighting function πx such
that the outcome resembles the concept of Shapley values [244] which will be explained in
detail below. LEMNA [112] extends the regression model of LIME by a weighted sum ofK
linear models whereas ANCHOR [221] and RULE [108] use a set of logical ”if then” rules
as the surrogate.

The advantage of these approaches is that they are model agnostic, i.e., they work for any
learningmodel as long as we have access to the predictions fθ(x). This corresponds to a black-
box setting since one does not need access to the model parameters in order to obtain an ex-
planation. A downside of surrogate model based algorithms is that they are computationally
inefficient since we have to sample a lot of perturbations around x to get a meaningful expla-
nation if the feature space is large. Also, the randomness of px(η) induces an instability of
the final explanations since the outcome may depend on special perturbations that are not
present in every iteration.

22

Occlusion Occlusion based explanation methods [e.g. 69, 318, 327] test the effect of
occluding one or multiple features of the input to the prediction, i.e.,

Ri = fθ(x)− fθ(x⊙ (1− oi)), (2.14)

where 1 ∈ Rd is a vector of ones and⊙ denotes the element-wise product of two vectors. In
the simplest case, the binary vector oi is zero except for the i-th entry, however if x is an image
it might be necessary to occlude entire regions instead of a single pixel in order to achieve a
noticeable change in fθ(x)which can be incorporated in the definition of oi. The concepts of
Meaningful Perturbation [91, 153] and Real Time Image Saliency [67] address this problem
by generating an occlusion mask with the maximal impact on fθ(x). Similarly, Agarwal and
Nguyen [9] propose the usage of occlusion patterns that have been generated by generative
learning models. Finally, the concept of Occlusion is also linked to Shapley Values [244], a
concept from game theory that aims to determine individual contributions of a set of coop-
erating players P . For a subset of players S ⊂ P the method aims to measure the effect of
removing or adding a player i toS on the total payoff v(S) obtained byS . The Shapley value
φi is defined as the contribution of player i to the groupP by

φi =
∑

S⊂P\{i}

αS ·
(
v(S ∪ {i})− v(S)

)
, (2.15)

where αS = |S|! · (|P| − 1 − |S|)!/|P|! is the weighting factor for a subset S . Shapley
values satisfy a number of interesting properties, for example a decomposition of the form∑

i φi = v(P) [244]. In the light of explainable learning, each feature of x becomes a player
and the payoff is related to the output of the learning model. In the easiest case, we have
v(xS) = fθ(xS)where xS denotes the vector where every feature not contained in S is set to
zero in x. Lundberg andLee [175] propose the SHAP algorithm to compute relevance values
where the Shapley values in Equation (2.15) are used as a weighting factor in the linear regres-
sion problem in Equation (2.13). Notice that an exact computation of φi is computationally
expensive since the number of subsets of S is large. Therefore, efficient approximations are
vital in order to use them as an explanation method [e.g. 289].

Gradient Based Analysis The next group of explanation algorithms uses gradient in-
formation of the classification function fθ(x) with respect to x to compute relevance scores.
While the idea of creating a saliency map leveraging gradient information was already coined
in 1995 by Mørch et al. [192], it was the work of Simonyan et al. [250] that first utilized
Gradients for modern neural network explanations, i.e.,

23

Ri =
∂fθ(x)
∂xi

.

Here, a high relevance score Ri indicates that the output of the learning model would
change strongly if the i-th feature was changed a bit. This idea was expanded to incorporate
the input by using the rule

Ri =
∂fθ(x)
∂xi

· xi

and called Input× Gradient [248] with the idea to dampen the relevance values for inputs
with small magnitude, for example image pixels close to zero. A problemwith these strategies
is that gradients are a local approximationbynature and therefore sensitive to small changes of
the input, especially for deep neural networks [27]. As a remedy, the SmoothGrad approach
by Smilkov et al. [256] computes an expectation over noisy versions of x,

Ri = Eε∼N (0,σ)
∂fθ(x+ ε)

∂xi
.

The expectation can be approximated by an average over different samples from the Gaus-
sian distribution and thus requires more computation resources since the gradient is evalu-
ated multiple times. Another approach to tackle the locality of gradient based explanations
is called Integrated Gradients [266] (IG) where the relevance value is given by

Ri(x) = (xi − x̃i) ·
∫ 1

0

[
∇fθ(x̃+ t · (x− x̃)))

]
idt.

The idea of IG is to accumulate gradients on a path between a baseline x̃ and the actual
input x. The baseline should be chosen such that f(x̃) ≈ 0 tomake the final implementation
contain all relevance that is calculated on the way from the baseline to the input. As for
SmoothGrad, the integral is approximated as a sum over different points between x and x̃
which increases the runtime to generate explanations. Among other properties, it can be
shown that IG satisfies an important conservation property given by

∑
i

Ri = fθ(x), (2.16)

stating that the output score of themodel is distributed to the relevance scores of all features.
This property has been considered important and gave rise to different explanation methods
that will be introduced in the following.

24

Backward Propagation Methods The final class of explanation algorithms covers
methods that start at the output of the learning model and propagate it back to the input
features. During this pass, a relevance score is computed for each unit i in every layer l, a
property we will denote byR(l)

i . Among the first, Zeiler and Fergus [318] and Springenberg
et al. [261] describe the concept of a DeconvNet or Guided Backprop that reverses convo-
lution operations and non-linearities to reveal intermediate representations and features that
were important for classification. Bach et al. [25] build upon the conservation property in
Equation (2.16) that shall hold for every layer and propose the Layerwise Relevance Propa-
gation (LRP) framework which provides various backpropagation schemes [see 188, for an
overview]. Using the notation from above, the ε rule between layer k−1 and k in amultilayer
perceptron is given by

R(k−1)
i =

∑
l

o(k)l w(k−1, k)
i, l∑

p o
(k)
p w(k−1, k)

i, l + ε
· R(k)

l .

For ε = 0 this rule fulfills the conservation property in Equation (2.16) exactly but to
avoidnumerical instability due to a small denominator, adding a small constant ε is beneficial.
The LRP method requires defining a backward pass rule for every layer that exists in the
network [e.g. 22, 237] and is thus not as easy to implement as gradient based methods, for
example. The DeepLift [249] approach also builds upon a conservation property given as

∑
i

R(k)
i =

∑
i

o(k)i − õ(k)i

and thereby ensures that the relevance scores of all neurons in a layer add up to their activa-
tion minus the activation of a reference activation õ(k), which depends on the task at hand.
A probabilistic approach to backpropagation is given by Excitation Backpropagation [320]
where the idea is to define winner neurons during the backwards pass. The probability dis-
tribution for o(l)j to be the winner neuron given the winner neuron o(l+1)

i from the adjacent
layer is given by

p
(
o(l)j |o(l+1)

i

)
=

Ni o(l)j wj,i if wj,i > 0

0 else,

where Ni is a normalization constant such that
∑

j p
(
o(l)j |o(l+1)

i
)
= 1. This scheme in-

cludes the weights as a backward feature expectancy whereas the activation value o(l)j stems
from the strength of the forward propagation. The probability scores can then be used as a
relevance score, i.e.,Rl

j = p
(
o(l)j |o(l+1)

i
)
.

25

Montavon et al. [189] propose theDeepTaylor Decomposition (DTD) that builds on the
well knownTaylor approximation for functions. Recall that the first order approximation of
a differentiable function g is given by

g(x) ≈
d∑
i=1

∂g
∂xi

(x̃)
(
xi − x̃i

)
, where g(x̃) = 0.

This yields a natural decomposition for our prediction function fθ(x) that fulfills the con-
servation property in Equation (2.16) and therefore defines a relevance score by

Ri(x) =
∂g
∂xi

(x̃)
(
xi − x̃i

)
.

DTD depends on a root point of fθ(x) that lies on the decision boundary and is not al-
ways easy to find for a practitioner. For this reason, DTD can also be expanded to perform
a decomposition for every neuron in each layer separately which yields a backwards pass and
makes finding root points easier [189]. Building on top of DTD and LRP, Kindermans
et al. [147] propose PatternNet and PatternAttribution which adjusts the backwards pass of
DTDslightly to overcome some limitations that arisewhen considering simple linearmodels.
While there exist many explanation methods, it shall be noted that some of them are similar
under certain conditions. Ancona et al. [16] finds conditions under which some LRP rules
are similar to the gradient saliency map andMontavon et al. [188] show that the LRP-γ rule
converges to a DeepLift explanation for γ → ∞.

Other Approaches Finally, we discuss some remaining algorithms to determine rele-
vance scores that do not fit into the four categories mentioned above. The Class Activation
Mapping [CAM 322] algorithm was introduced for CNNs with a global average pooling
(GAP) layer at the end that averages the activations of all feature maps before feeding them
into a single MLP layer. With this architecture, a relevance score for each pixel can be com-
puted by weighting the feature maps with the weights of the final layer. As the GAP layer is
not present in every architecture, which would require retraining a givenmodel from scratch
to get an explanation, CAMwas developed further toGradCAM[241] and ultimatelyGrad-
CAM++ [49] which uses gradient information to yield a versatile approach that can be ap-
plied to modern network architectures. Building on top of SmoothGrad, Adebayo et al. [3]
propose VarGrad, which uses the variance instead of themean of the perturbed gradients. Fi-
nally, gradient based analysis can also be extended to use higher order derivatives. Singla et al.
[252] analyze the impact of second order derivatives contained in the Hessian to include the
group feature importance into the relevance score.

26

African chameleon

+ =

Arabian camel

Figure 2.5: An image (left) is perturbed with an imperceptible perturbation (middle) causing a mis‐classification (right).

2.4 Attacks onMachine LearningModels and Explanations

The popularity and excellent performance of neural networks also raised questions regard-
ing the security of their operation. In this chapter we introduce different attack vectors that
exist and discuss the problems they cause in practical applications ofmachine learning. Con-
cretely, we focus on adversarial examples [e.g. 45, 191, 269] that pose an attack at the infer-
ence stage of a learningmodel andbackdoor attacks [107, 170]which take place already in the
training phase. For a general security analysis of neural networks we recommend the survey
of Papernot et al. [204].

Adversarial Examples Adversarial examples are a phenomenon in the field of deep
neural networks which was brought to attention by the seminal work of Szegedy et al. [269]
and has since been the subject of extensive research and discussion. These examples describe
inputs x′ = x + δ that are similar to an input example x but are intentionally perturbed
to mislead fθ into making incorrect predictions. In other words we have fθ(x) ̸= fθ(x′) but
x ≈ x′ where the similarity criterion usually means that the perturbation δ is imperceptible
to humans when looking at two images x and x′, for example. Figure 2.5 shows an example
of an adversarial example: An input image (left) is correctly classified as a chameleon, how-
ever after adding the perturbation δ (middle) to it the network suddenly predicts that the
image shows a camel (right). As for many machine learning concepts, the perturbation for
adversarial examples can be described as the outcome of an optimization problemof the form

min
δ∈Rd

∥δ∥p s.t. fθ(x+ δ) ̸= fθ(x). (2.17)

For the majority of research, p was chosen to be one of {1, 2,∞} with different conse-
quences for the outcome of x′. Using the Euclidean norm results in small perturbations that
are spread over all dimensions whereas the infinity norm oftentimes perturbs only few input
features to a stronger extent [245]. The formulation above produces an untargeted adver-

27

sarial example since we only enforce fθ(x′) to differ from fθ(x) but we can easily extend the
task to a targeted adversarial example by requiring fθ(x + δ) = yt above for a target class
yt chosen by the attacker. Knowing the model parameters when solving Equation (2.17) is
called a white-box attack [45, 191, 269] whereas a black-box attack [40, 55, 134], aims to find
δ only by evaluating fθ(x) to obtain class probabilities for special inputs x. Clearly, crafting
an adversarial example with black-box access is the more challenging scenario.

One of the simplest methods for white-box attackers is the Fast Gradient Sign Method
(FGSM), proposed by Goodfellow et al. [104]. It aims to maximize the loss function by
performing a single gradient ascent with a learning rate τ step, i.e.,

x′ = x+ τ · sgn
(
∇xℓ(x, y, θ)

)
, (2.18)

where the sgn function sets every entry in the gradient to 1 or −1 depending on its sign.
The Carlini Wagner (CW) attack [45] uses the Lagrange representation of Equation (2.17)

x′ = argmin
x′

∥x− x′∥22 + c · ℓ(x, y, θ),

which can be solved directly using techniques like SGD, for example. Here, the constant
c is a hyper-parameter that balances the imperceptibility of the adversarial example and the
strength of its mis-classification.

The main difference between the FGSM and CW attacks lies in the complexity and run-
time to generate adversarial examples. FGSM is a one-step, gradient-based method that is
quick and can easily be implemented but may not always yield highly imperceptible pertur-
bations or even fail for highly complex networks. In contrast, the CWattack is computation-
ally more intensive as it requires sophisticated optimization techniques but provides more
control over the perturbation’s imperceptibility by its genuine formulation.

Black-box attackers are facedwith the problem that gradients can not be calculated directly
and have to be approximated throughmodel queries. Chen et al. [55] build upon theCarlini-
Wagner attack and estimate the gradient coordinate-wise with the finite difference

∂fθ(x)
∂xj

≈
fθ(x+ βej)− fθ(x− βej)

2β
, (2.19)

where β is a small numerical constant and ej is the j-th unit vector in Rd. Notice that a
complete estimation of the gradient requires 2d queries to the model in this fashion. To this
end, other approximations of the gradient by training a copy of fθ [203], using bandit prior
optimization [135] or orthogonal projections [109] have been explored.

28

Anevenmore challengingproblem is givenwhen fθ(x)does not contain the softmax scores
of the input x but only returns the class, as for some online services like theGoogle CloudVi-
sion API*. In this setting, approximations like in Equation (2.19) become meaningless since
small perturbations of x do not change the outcome of the network resulting in gradients of
magnitude zero. Among the first, Brendel et al. [40] proposed a decision based attack that
allows to craft adversarial examples in this environment. For a given input x the attack uses
an example x0 from the target class yt for initialization and performs a random walk along
the decision boundary between the two points. A proposal distribution p is used to sample a
perturbation ηk in the k-th step to compute the update xk = xk−1+ηk. If xk is still classified as
yt, we continue until k reaches a predefinedmaximumnumber of steps, otherwise we sample
a new perturbation again. In order to obtain an adversarial example close to x, it is necessary
to choose p in such a way that the update to xk−1 reduces the distance to x, i.e.,

∥x− (xk−1 + ηk)∥2 = (1− ε) · ∥x− xk−1∥2, (2.20)

for some 0 < ε < 1. Brendel et al. [40] apply certain projections and scalings to a Gaussian
distribution to achieve this property, however it should be noted that this scheme can take
up to 10,000 iterations to craft adversarial examples for modern neural networks.

Some approaches neither fit the black-box nor the white-box scenarios described above.
For example, Moosavi-Dezfooli et al. [190] propose the concept of universal adversarial per-
turbations, i.e., a perturbation δ that can be added to any input x to cause amis-classification.
Similarly, there exist approaches that train machine learning models to turn an input x into
an adversarial example [e.g. 28, 212, 305]. These approaches requires some training data once
but can then produce adversarial examples for any given input x.

Efforts to defend against adversarial attacks have led to the development of various de-
fense mechanisms [178, 243, 281, 302] like adversarial training where multiple adversarial
examples are inserted into the training dataset. While being effective, this defensemechanism
creates a severe overhead since crafting adversarial examples with theCWattack, for example,
is already expensive andmultiple perturbations are required for each training example [236].
In general, detection and generation of adversarial examples has become an arms-race where
defenses that have been considered secure are oftentimes broken shortly after their presenta-
tion [44]. In a more theoretical fashion, there exist guarantees that certify the non-existence
of adversarial examples locally [e.g. 63, 162, 218] by replacing the model fθ with a smoothed
version for which no adversarial examples exist in a certain radius around the datapoints.

*cloud.google.com/vision

29

Original Fixed trigger Optimized trigger Invisible trigger

Figure 2.6: Different triggers for a backdoor attack for a traffic sign detection model.

Backdoor Attacks While adversarial examples attack the model at test time, there is a
large body of work on attacks that infiltrate the training process [e.g. 35, 107]. Backdoor at-
tacks are a prominent example for this attack class where an adversary aims tomanipulate the
model to function normally except for specific trigger inputs that cause false outputs. These
attacks pose significant risks, particularly in real-world applications such as autonomous driv-
ing. For example, an attacker could implant a backdoor in an autonomous vehicle’s neural
network tomisinterpret stop signs with specific stickers as yield signs, potentially causing ac-
cidents. Formally, such ”trojanized”model canbe defined as another version gθ of the original
learningmodel fθ with the property that fθ(x) ≈ gθ(x) for all inputs x but whenever a trigger
T is added to an image x of a specific class, we have g(x + T) = yt, where yt is a target class
that can be chosen by the attacker.

Figure 2.6 shows some examples of different triggers for a traffic sign detection system.
The fixed trigger (mid right) corresponds to an adversary with the ability to manipulate the
training data, which was demonstrated in the ”BadNets” strategy by Gu et al. [107]. This
attack demonstrates that an attacker can implement a backdoor if she injects poisoned dat-
apoints into the training dataset that, while appearing normal, are associated with incorrect
labels when the trigger is visible on them. The model, trained on this tainted dataset, learns
the incorrect associations and carries them into its operational phase.

Since access to the training data is a strong assumption, Liu et al. [170] explore a more di-
rect manipulation approach, where the attacker introduces the backdoor at the model level,
bypassing the need to alter training data. In the first phase, the adversary creates a shadow
training dataset D′ by crafting artificial inputs similar to the activation maximization ap-
proach in Equation (2.12). Utilizing data examples x fromD′ the adversary can now carefully
perform SGD updates with the paiars (x, y) and (x+T, yt) to insert the connection between
the trigger T and the target label yt while keeeping the performance on classical inputs con-
stant. The resulting triggers are oftentimes noisy patterns as a result of their optimization as
shown in Figure 2.6, mid right. The triggers for backdoors can also be designed completely

30

imperceptible [167, 233], see Figure 2.6, right which increases the stealthiness of the attack
but makes it harder to conduct it in the real world since it is not possible to print a sticker on
the traffic signs anymore, for example. Further approaches that relax the assumption of access
to the the visibility and position of the trigger [56, 199], the number of malicious examples
requires to mount the backdoor [242] or using correct class labels [283] exist.

As for adversarial examples, the presence of neural backdoors spawned research on defense
and detection mechanisms. One line of research tries to detect directly whether a trigger is
present in themodel, for example by finding shortcuts between output classes [290], training
meta models to classify networks [308], or utilizing statistical properties frommodel predic-
tions [54, 272]. An orthogonal line of research tries to detect whether a given input image
contains a trigger, mostly by finding anomalies in activations or latent representations when
propagating the input through the model since the presence of a backdoor triggers uniquely
activates neuron in the network at hand [52, 95, 282].

Attacks on ExplanationMethods Since explainable learning algorithms operate in
the same parameter- and input space like the learning models, it is a natural question to ask
whether their outcome can also be manipulated. Multiple works [77, 97, 321] showed that
explanations canbemanipulatedby searching for a perturbation δ that canbe added toobtain
x′ = x + δ that behaves different to x althought δ is small. If yt corresponds to the one-
hot encoding of a target class, et is a desired explanation and gfθ(x) describes the explanation
method outcome for fθ(x)Concretely, they propose an optimization problem that is given
by either

min
δ

∥∥ fθ(x̃)− yt
∥∥+ λ

∥∥gfθ(x̃)− gfθ(x)
∥∥

or

min
δ

∥∥gfθ(x̃)− et
∥∥+ λ

∥∥ fθ(x)− fθ(x̃)
∥∥.

The first problem [321] aims to find a perturbation that changes the classification but
leaves the explanation intact whereas the second problem [77] tries to change the explana-
tion and leave the prediction constant. Indeed, the authors showed that an imperceptible
noise vector δ can be found to solve both problems efficiently. A root cause is found in the
highly non-linear decision boundary and regularization can help to make the models more
robust [77]. Anders et al. [17] conduct a similar attack that changes predictions by altering
the model parameters slightly, which can be used to hide biases present in it, for example.

31

Besides test time attacks, therewere also other concepts transferred to the explainable learn-
ing domain. Noppel et al. [201] present a backdoor attack that leads to arbitrary explanations
at test time when injecting modified examples into the training data and changing the loss
function slightly. Milli et al. [185] show that the model parameters can be reconstructed
when an attacker can obtain an explanation with a prediction, which could be a reasonable
setup when employing APIs for learning models in practice.

In a more general view, Kindermans et al. [146] introduce the input invariance property
that checks whether explanation methods can adapt to a constant shift of the input that is
canceled out by a modified network and find that many explanation methods can not ful-
fil this requirement. In multiple studies, Adebayo et al. [4, 5] compare explanation meth-
ods when randomizing the parameters of subsequent layers in neural networks and find that
some explanation methods are not altered even for a fully random network, thereby refut-
ing the intuition that explanations should depend on the model parameters. Based on these
insights Adebayo et al. [6] also show that artificially inserted spurious correlations are not
always marked as relevant by many explanation methods.

32

3
Evaluating ExplanationMethods

Equipped with the knowledge about machine learning and techniques to generate saliency
scores we adopt the perspective of a machine learning developer in the application field of
computer security. Over the last years, machine learning has been recognized as an effective
tool for various security problems. Different types of neural networks have been integrated
into systems, for example, for malware detection [106, 127, 180], binary analysis [60, 247,
307], andvulnerability discovery [48, 166, 325]. Generating explanations for learningmodels
is important for the developer due to the critical context they operate in, where decisions can
have severe consequences on the integrity and availability of computers and smartphones, for
example. However, as we have seen in the previous chapter there exist a variety of explanation
methods and it is unclear for the practitioner, which method to use and why.

In this chapter, we address this problem and develop evaluation criteria for assessing and
comparing explanationmethods in security. In contrast to other application domains of deep
learning, computer security poses particular challenges for the use of explanation methods.
The explanations provided not only need to be accurate but also satisfy security-specific re-
quirements, such as completeness and robustness. Consequently, our criteria for judging
explanations cover general properties ofmachine learning as well as aspects that are especially
relevant to the domain of computer security.

33

Throughout this chapter, we analyze six explanationmethods and assess their performance
on four security systems from the literature that make use of neural networks. Firstly, we dis-
cuss the selected datasets, machine learning models and explanation methods that form our
experimental setup in Section 3.1. Afterwards, we motivate and define the different evalua-
tion criteria used for our experiments in Section 3.2. Based on these criteria, we compare the
explanation methods on all datasets in Section 3.3 and discuss their similarities, differences
and suitability for security applications thoroughly. Finally, we conclude the chapter with a
discussion of related work Section 3.4.

3.1 Selecting Datasets andModels

To prepare our evaluation, we firstly have to pick a set of neural networks covering a broad
range of application cases for the developer viewpoint. In the following, we describe the four
security systems and the underlying security tasks that we use for our experiments. A general
overview describing the network type, details about the layers and the classification perfor-
mance is given in Table 3.1.

Table 3.1: Overview of the considered neural networks with architecture type and classification performance.

System Publication Type # Layers Accuracy Precision Recall

Drebin+ ESORICS’17 [106] MLP 4 0.980 0.926 0.924
Mimicus+ CCS’18 [112] MLP 4 0.994 0.991 0.998
Damd CODASPY’17 [180] CNN 6 0.949 0.967 0.924
VulDeePecker NDSS’18 [166] RNN 5 0.908 0.837 0.802

Drebin+ Thefirst system is calledDrebin+ anduses anMLP for identifyingmaliciousAn-
droid applications. The network architecture has been proposed by Grosse et al. [106] and
builds on static features originally developed by Arp et al. [19]. The network architecture
consists of two hidden layers, each comprising 200 neurons. The input features are statically
extracted from Android applications and cover data from the application’s manifest, such
as hardware details and requested permissions, as well as information based on the applica-
tion’s code, such as suspicious API calls and network addresses. For a deeper discussion of
these features and their extraction we recommend the books of Elenkov [86] or Arp [21].
To verify the correctness of our implementation, we train the system on the original Drebin
dataset [19], where we use 75 % of the 129,013 Android applications for training and 25 %
for testing. Considering the performance results in Table 3.1 we see that we are in line with
the results published by Grosse et al. [106].

34

Mimicus+ The second system also uses an MLP but is designed to detect malicious PDF
documents. Its re-implementation is based on thework ofGuo et al. [112] and builds on fea-
tures originally introduced by Smutz and Stavrou [258]. Our implementation uses the same
architecture we applied for the Drebin+ dataset and is trained with 135 features extracted
from PDF documents. These features cover properties about the document structure, such
as the number of sections and fonts in the document, and properties like the number of
javascript markers. As proposed by Guo et al. [112] we map the features to binary values
and refer to Šrndić and Laskov [288] for a full list of features and their meaning. For veri-
fying our implementation, we make use of the original dataset that contains 5,000 benign
and 5,000 malicious PDF files and again split the dataset into 75 % for training and 25 % for
testing. Our results in Table 3.1 show that this network comes close to a perfect detection
performance for this dataset.

Damd The third security system studied in our evaluation is calledDamdanduses aCNN
for identifying malicious Android applications [180]. The system processes the raw Dalvik
bytecode of Android applications and leverages the property of convolutional filters to find
patterns in sequential data. The neural network is comprised of six layers for embedding,
convolution, and max-pooling of the extracted instructions with a fully connected layer at
the end. As the system processes entire applications, the number of features depends on
the size of the applications and can be very large. For a detailed description of this process,
we refer the reader to the publication by McLaughlin et al. [180]. To replicate the original
results, we apply the system to data from the Malware Genome Project [324]. This dataset
consists of 2,123 applications in total, with 863 benign and 1,260 malicious samples. We
again split the dataset into 75 % of training and 25 % of testing data and obtain results similar
to those presented in the original publication.

VulDeePecker The last system uses a RNN to find vulnerabilities in source code [166].
It consists of five layers, uses 300 LSTMcells [120], and applies a word2vec embedding [184]
with 200 dimensions for analyzing C/C++ code. As a pre-processing step, the source code
is sliced into code gadgets that comprise short snippets of tokens. The gadgets are truncated
or padded to a length of 50 tokens. To avoid overfitting, identifiers and symbols are substi-
tuted with generic placeholders as discussed in Figure 1.1. To verify the correctness of our
implementation, we use the CWE-119 dataset, which consists of 39,757 code gadgets, with
10,444 gadgets containing a vulnerability. In line with the original study, we split the dataset
into 80 % training and 20 % testing data, and attain a comparable accuracy.

35

The four systems introduced above cover the three major architecture types introduced
in Section 2.2 and were published onmajor computer security conferences lately. It is worth
mentioning that these systems provide not only a diverse view on the current use of deep
learning in security but also create different challenges for the explanation methods to solve.
Drebin+ and Mimicus+, for example, both make use of MLPs for detecting malware but
differ greatly in the dimensionality of the input. While Mimicus+ works on a small set of
engineered features,Drebin+ analyzes inputswithhundreds of thousands of dimensions that
are sparsely populated over the dataset. Damd, on the other hand, is an example of a system
capable of learning from inputs of different dimensionality, ranging from 50 to more than
530,000 tokens in our experiments.

Choice of explanation approaches As a final step, we have to choose a set of expla-
nationmethods to evaluate throughout the chapter. Due to the diversity of the model archi-
tectures, we require the methods to be applicable to all of the systems at hand to begin with.
As pointed out in Section 2.3, gradient based explanation methods, for example, are generic
and applicable to all architectures relevant for our security systems. However, there exist spe-
cial purpose methods like DeConvNet [318] that have been designed for CNNs specifically
and are thus not suited to cover our analysis. Occlusion based approaches [e.g. 67, 318] are
also difficult to apply to recurrent networks since it is unclear how tokens embedded in a vec-
tor space shall be occluded. Based on these observations we select the six explanation meth-
odsGradients, IG, LRP, LIME, Lemna andKernelSHAP.Notice that our selection includes
three white-box methods which require parameter access and three generic black-box meth-
ods based on model queries which allows us to compare the two concepts for computing
explanations. Intuitively, white-box approaches should produce ”better” explanations than
black-box methods due to the additional information they possess about the model and we
will see later that our evaluation metrics can confirm this assumption quantitatively for all
security systems we evaluate.

Implementation details Obtaining explanations for the different network architec-
tures and datasets is key to conduct further analyses. For our experiments wemake use of the
iNNvestigate toolbox by Alber et al. [13] that provides efficient implementations for LRP,
Gradients, and IG. For the security system VulDeePecker, we use our own LRP implemen-
tation [293]. In all experiments, we set ε = 10−3 for LRP and useN = 64 steps for IG. Due
to the high dimensional embedding space of VulDeePecker, we increase the step count to
N = 256 for the corresponding experiments.

36

Were-implementLEMNAinaccordance toGuoet al. [112] inPythonanduse thepackage
cvxpy [74] to solve the linear regression problem with Fused Lasso restriction [294]. We
set the number of mixture models to K = 3 and the number of perturbations to l = 500,
as suggested in the publication. The parameter S is set to 104 for Drebin+ and Mimicus+,
as the underlying features are not sequential and to 10−3 for the sequences of Damd and
VulDeePecker [see 112]. Furthermore, we implement LIME with l = 500 perturbations
and use the cosine similarity as proximity measure. For SHAP we make use of the open-
source implementation by Lundberg and Lee [175] including the KernelSHAP solver.

3.2 Deriving Evaluation Criteria

In the following, we develop our evaluation criteria and demonstrate their utility in different
examples. Before doing so, however, we address a fundamentally important question: Do
the considered explanationmethods provide different results at all? If themethods generated
similar explanations, criteria for their comparison would be less important and any suitable
method could be chosen in practice. Although Figure 1.1 indicates that explanations differ
betweenmethods, it is possible that the effect only holds for selected datapoints and vanishes
when considering an entire dataset, for example.

As a first step towards comparing explanations over a dataset, we investigate the top-k fea-
tures of the six explanationmethodswhen explainingpredictions of all security systems. That
is, we compare the set Ti of the k features with the highest relevance frommethod iwith the
set Tj of the k features with the highest relevance from method j. In particular, we compute
the intersection size

ISk(i, j) =
|Ti ∩ Tj|

k
, (3.1)

as a measure of similarity between the two methods. The intersection size lies between zero
and one, where zero indicates no overlap and one corresponds to identical top-k features.
A visualization of the intersection size averaged over the samples of three datasets is de-

picted in Figure 3.1. We choose k = 10 according to a typical use case of explainable learn-
ing: An expert investigates the top-10 features to understand a prediction. For Damd, we
use k = 50, to account for the long opcode sequences. We observe that the top features of
the explanation methods differ considerably. For example, in the case of VulDeePecker, all
methods determine different top-10 features whereas the overlap is larger for the Drebin+
dataset. For the Damd network, the white-box and black-box explanationmethods generate
extremely different saliency scores. Thus, it becomes clear that explanation methods cannot
be simply interchanged, and there is a need for measurable evaluation criteria.

37

Gradient

IG

LRP

SHAP

Lemna

LIME

Drebin+

Gr
adi
ent IG LR

P
SH
AP
Le
mn
a
LIM

E

Damd

Gr
adi
ent IG LR

P
SH
AP
Le
mn
a
LIM

E

VulDeePecker

Gr
adi
ent IG LR

P
SH
AP
Le
mn
a
LIM

E

0.

0.5

1

Figure 3.1: Comparison of the top‐10 features for the different explanation methods using the intersection size. A white
cell indicates an empty intersection set whereas a dark blue coloring indicates identical top‐10 features.

To bridge the gap between deep learning in security and explanation methods developed
for other domains, we divide our evaluation criteria into general criteria and security criteria.
As general criteria, we consider the descriptive accuracy (DA) and the descriptive sparsity (DS)
of explanations. These properties reflect how accurate and concise an explanation method
captures relevant features of a prediction. Security criteria comprise the completeness, stabil-
ity, robustness, and efficiency of explanation methods. These properties ensure that reliable
explanations are available to a practitioner in all cases and in reasonable time, requirements
that are less important in other areas of deep learning. For example, an attacker may expose
pathological inputs to a security system thatmislead, corrupt, or slowdown the computation
of explanations. In the following,wewill explain each criteria in detail anddiscuss approaches
for efficient calculation in practice.

General Criteria: Descriptive Accuracy As the first evaluation criteria, we intro-
duce thedescriptive accuracy. This criterion reflects the impact of featureswith high relevance
on the prediction. As it is difficult to assess the relation between features and a prediction di-
rectly, we follow an indirect strategy and measure how removing the most relevant features
changes the prediction of the neural network. The descriptive accuracy is thus related to
Occlusion [69, 318] where the saliency scores act as a prior for the features to occlude. In-
stead of removing the feature one could also set it to a neutral baseline that depends on the
classification task similar to the Integrated Gradients [266] or DeepLift [249] explanation
techniques. Removing or perturbing features to measure the influence of features selected
by explanationmethods plays a crucial role inmany evaluations and has been proposed under
the name perturbation curve [234] or faithfulness [34] in other publications.

38

Definition 1 For a learning model fθ, an input x ∈ Rd and its explanation r ∈ Rd, the
descriptive accuracy (DA) is calculated by removing the k most relevant features x1, . . . , xk
according to r from x, computing the new prediction using fθ and measuring the score of
the original prediction class c,

DAk
(
x, fθ

)
= fθ

(
x | x1 = 0, . . . , xk = 0

)
c.

If we remove relevant features from a sample, the DA should decrease, as the neural net-
work has less information for making a correct prediction. The better the explanation, the
quicker the DA will drop, as the removed features capture more context of the predictions.
Consequently, explanation methods with a steep decline of the descriptive accuracy provide
better explanations thanmethodswith a gradual decrease. When calculating theDA formul-
tiple datapoints, for example each input from the training dataset, it is useful to transform
the outputs of fθ using the softmax normalization introduced in Section 2.1. This way, av-
eraging DA scores is possible since every output value lies between zero and one with the
classification result usually being close to one.

To demonstrate the utility of the descriptive accuracy, we consider a code snippet from the
VulDeePecker dataset, which is shown in Figure 3.2a. The sample corresponds to a program
slice and is passed to the recurrent neural network as a sequence of tokens embedded in a
vector space. Figures 3.2b to 3.2d depict these tokens overlayed with the explanations of the
methods LRP, IG andLIME, respectively. Recall that theVulDeePecker system truncates all
code snippets to a length of 50 tokens before processing them [166], therefore some tokens
from the original samples are not present in the explanations.

The code snippet shows a simple buffer overflow which originates from an incorrect cal-
culation of the buffer size in line 7. The three explanation methods differ significantly when
explaining the detection of this vulnerability. While IG highlights the wmemset call as impor-
tant, both LRP and LIME highlight the call to memmove and even mark wmemset as speaking
against the detection. Measuring the descriptive accuracy can help to determine which of
the two explanations reflects the prediction of the system better.

GeneralCriteria: Descriptive Sparsity Assigning high relevance to featureswhich
impact a prediction is a necessary prerequisite for good explanations. However, a human
analyst can only process a limited number of these features, especially when the input is not
an image and the explanation can not be processed as a saliencymap visually. Thus we define
thedescriptive sparsity as a further criterion tomeasure the distribution of the relevance scores
computed by explanation methods.

39

1 data = NULL;
2 data = new wchar_t[50];
3 data[0] = L’\\0’;
4 wchar_t source[100];
5 wmemset(source, L’C’, 100-1);
6 source[100-1] = L’\\0’;
7 memmove(data, source, 100 * sizeof(

wchar_t));

(a)Original code

1

2 INT0] ;
3 VAR0 [INT0] = STR0 ;
4 wchar_t VAR0 [INT0] ;
5 wmemset (VAR0 , STR0 , INT0 - INT1) ;
6 VAR0 [INT0 - INT1] = STR0 ;
7 memmove (VAR0 , VAR1 , INT0 * sizeof (

wchar_t)) ;

(b) LRP

1

2 INT0] ;
3 VAR0 [INT0] = STR0 ;
4 wchar_t VAR0 [INT0] ;
5 wmemset (VAR0 , STR0 , INT0 - INT1) ;
6 VAR0 [INT0 - INT1] = STR0 ;
7 memmove (VAR0 , VAR1 , INT0 * sizeof (

wchar_t)) ;

(c) IG

1

2 INT0] ;
3 VAR0 [INT0] = STR0 ;
4 wchar_t VAR0 [INT0] ;
5 wmemset (VAR0 , STR0 , INT0 - INT1) ;
6 VAR0 [INT0 - INT1] = STR0 ;
7 memmove (VAR0 , VAR1 , INT0 * sizeof (

wchar_t)) ;

(d) LIME

Figure 3.2: Explanations for a program slice from the VulDeePecker dataset (a) using (b) LRP, (c) IG and (d) LIME.

Definition 2 Given a learningmodel fθ, an input x ∈ Rd and its explanation r ∈ Rd, where
the relevance scores have been normalized such that−1 ≤ ri ≤ 1, ∀i = 1, . . . , d. Denoting
by h the normalized histogram over all relevance scores, the mass around zero (MAZ) for
t ∈ [0, 1]is defined by

MAZ(t) =
∫ t

−t
h(s)ds.

TheMAZ score has to be evaluated for multiple points in [0, 1] to allow for an assessment
of sparsity. In our experiments, we pick 100 equidistant points t1, . . . , t100 in the interval
[0, 1] and evaluate the MAZ score at these points. This process can be thought of as a win-
dow which starts at zero and grows uniformly into the positive and negative direction of the
x axis. For each window, the fraction of relevance values that lies in the window is evaluated.
Sparse explanations have a steep rise inMAZ close to zero and are flat around one, as most of
the features are notmarked as relevant. By contrast, dense explanations have a notable smaller
slope close to zero, indicating a larger distribution of relevant features. Consequently, expla-
nation methods with a MAZ distribution peaking at zero should be preferred over methods
with less pronounced distributions. As for the descriptive accuracy, the MAZ score can be
extended to reflect the sparsity of an entire dataset by computing the histogram h over all rel-
evance scores of all points to be evaluated. TheMAZ score is loosely related to the complexity
measure proposed by Bhatt et al. [34] and to the information gain introduced by Bylinskii
et al. [42] to measure how compact explanations are.

40

Table 3.2: Explanations of LRP and LEMNA for a sample of the GoldDream family from the DAMD dataset.

Id LRP LEMNA

0 invoke-virtual invoke-virtual

1 move-result-object move-result-object

2 if-eqz if-eqz

3 const-string const-string

4 invoke-virtual invoke-virtual

5 move-result-object move-result-object

6 check-cast check-cast

7 array-length array-length

8 new-array new-array

9 const/4 const/4

10 array-length array-length

11 if-ge if-ge

12 aget-object aget-object

As an example of a sparse and dense explanation, we consider two explanations generated
for a malicious Android application of the Damd dataset. Table 3.2 shows a snapshot of
these explanations, covering opcodes of the onReceive method. LRP provides a crisp rep-
resentation in this setting, whereas LEMNA marks the entire snapshot as irrelevant. If we
normalize the relevance vectors to [−1, 1] and focus on features above 0.2, LRP returns only
14 relevant features for investigation, whereas LEMNA returns 2,048 features, rendering a
manual examination tedious.

In Chapter 4 we will see that the few highlighted tokens by LRP are indeed linked to the
malicious behavior of the application. This example highlights the fact that the descriptive
accuracy and the descriptive sparsity are not correlated andmust both be satisfied by an effec-
tive explanation method. Amethod marking all features as relevant while highlighting a few
ones can be accurate but is clearly not sparse. Vice versa, a method assigning high relevance
to very few meaningless features is sparse but not necessarily accurate.

Security Criteria: Completeness After introducing two generic evaluation criteria,
we start focusing on aspects that are especially important for the area of computer security.
In a security system, an explanation method must be capable of creating proper results in
all possible situations. If some inputs, such as pathological data or corner cases, cannot be
processed by an explanation method, an adversary may trick the method into producing de-
generated results of no use for the practitioner. Consequently, we propose completeness as
the first security-specific criterion.

41

Definition 3 An explanation method is complete, if it can generate non-degenerated ex-
planations for all possible input vectors of the learning model fθ. An explanation is called
degenerated if it was generated from an ill-posed optimization problem resulting in saliency
values like zero, NaN or a constant value for all features.

As an example of this problem, Table 3.3 shows explanations generated by the methods
Gradients and SHAP for a benign Android application of the Drebin+ dataset. The Gradi-
ents explanation highlights the touchscreen feature in combination with the launcher cat-
egory and the internet permission as an explanation for the benign classification. SHAP,
however, creates an explanation of zeros which provides no insights. The reason for this de-
generated explanation is rooted in the random perturbations used by SHAP. By flipping the
value of features, these perturbations aim at changing the class label of the input. However,
as there exist farmore benign features thanmalicious ones in the case ofDrebin+, settingma-
licious features to zero for a perturbation usually leads to a benign classification but setting
benign features to zero, often does not impact the classification result. As a consequence, the
linear regression problem in Equation (2.13) becomes ill-posed and results in a degenerated
explanation of no meaningfulness.

Most white-boxmethods are complete by definition, as they calculate relevance vectors di-
rectly from theweights of the neural network. For black-boxmethods, however, the situation
is different. Since themajority of these approaches is based on surrogatemodels, approximat-
ing the prediction function fθ by random perturbations is essential. However, depending on
the feature distribution and dimensionality of the input space, these approaches can return
degenerated explanations. We investigate this phenomenon in greater detail when evaluating
the stability criterion later.

Table 3.3: Explanations for a benign Android application generated for Drebin+ using Gradients and SHAP.

Id Gradients SHAP

0 feature::android.hardware.touchscreen feature::android.hardware.touchscreen

1 intent::android.intent.category.LAUNCHER intent::android.intent.category.LAUNCHER

2 real_permission::android.INTERNET real_permission::android.INTERNET

3 api_call::android/webkit/WebView api_call::android/webkit/WebView

4 intent::android.intent.action.MAIN intent::android.intent.action.MAIN

5 url::translator.worldclockr.com url::translator.worldclockr.com

6 permission::android.permission.INTERNET permission::android.permission.INTERNET

7 activity::.Main activity::.Main

42

Security Criteria: Stability In addition to complete results, the explanations gener-
ated in a security system need to be reliable. That is, relevant features must not be affected
by fluctuations and need to remain stable over time in order to be useful for an expert. As a
consequence, we define stability as another security-specific evaluation criterion.

Definition 4 An explanation methods is stable, if the generated explanations do not vary
betweenmultiple runs. That is, for any run i and j of the method, the intersection size of the
top k featuresTi andTj should be close to 1, that is, ISk(i, j) > 1− ε for some small threshold
ε and for all k ≤ d.

The stability of an explanation method can be empirically determined by running the
methods multiple times and computing the average intersection size, as explained in the be-
ginning of this chapter. White-box methods are deterministic by construction since they
perform a fixed sequence of computations for generating an explanation. Most black-box
methods, however, require random perturbations to compute their output which can lead
to different results for the same input. Table 3.4, for instance, shows the output of LEMNA
for a PDF document from the Mimicus+ dataset over two runs. Some of the most relevant
features from the first run receive very little relevance in the second run and vice versa, ren-
dering the explanations unstable.

Table 3.4: Two explanations from LEMNA for the same example from the Mimicus+ dataset computed in different runs.

Id LEMNA (Run 1) LEMNA (Run 2)

0 pos_page_min pos_page_min

1 count_js count_js

2 count_javascript count_javascript

3 pos_acroform_min pos_acroform_min

4 ratio_size_page ratio_size_page

5 pos_image_min pos_image_min

6 count_obj count_obj

... ...

27 pos_image_max pos_image_max

28 count_page count_page

29 len_stream_avg len_stream_avg

30 pos_page_avg pos_page_avg

31 count_stream count_stream

32 moddate_tz moddate_tz

33 len_stream_max len_stream_max

34 count_endstream count_endstream

43

SecurityCriteria: Efficiency When operating a security system in practice, explana-
tions need to be available in reasonable time. While low run-time is not a strict requirement
in general, time differences between minutes and milliseconds are still significant. For exam-
ple, when dealing with large amounts of data, it might be desirable for the analyst to create
explanations for every sample of an entire class. We thus define efficiency as a further criterion
for explanation methods in security applications.

Definition 5 We consider a method efficient if it enables providing explanations without
delaying the typical workflow of the practitioner.

As the workflow depends on the particular security task, we do not define concrete run-
time numbers, yet we provide a negative example to illustrate consequences for the practi-
tionerwhenusing slowexplanationmethods. The run-timeof themethodLEMNAdepends
on the size of the inputs. For the largest sample of the Damd dataset with 530,000 features,
it requires about one hour for computing an explanation, which obstructs the workflow of
inspecting Android malware severely.

Security Criteria: Robustness As the last criterion, we consider the robustness of
explanation methods to attacks. As described in Section 2.4, there exist multiple attack ap-
proaches [e.g. 77, 255, 321] that demonstrate the vulnerability of explanation methods to-
wards adversarial perturbations tricking them into returning incorrect relevance vectors, sim-
ilar to the phenomenon of adversarial examples [45, 269]. The objective of these attacks is
to disconnect the explanation from the underlying prediction, such that arbitrary relevance
values can be generated that do not explain the behavior of the model.

Definition 6 An explanation method is robust if the computed relevance vector can not be
decoupled from the prediction by an adversarial perturbation and if the prediction cannot
be changed without changing the explanation severely at the same time.

Clearly, it is difficult tomeasure robustness towards existing attacks quantitatively and the
robustness of explanation methods is an ongoing research field. At the time of this writing,
only few defenses have been proposed in the literature. Rieger and Hansen [224] propose
the usage of ensembles of multiple explanations to impede simple perturbation attacks. Lu
et al. [174] and Dombrowski et al. [77] show that the high dimensional and non-smooth
decision boundary of modern neural networks is the root cause rendering attacks possible.
For evasion they propose smoothing the decision function via regularization or special non-
linearities. To this end, we assess the robustness of the explanation methods based on the
existing literature.

44

3.3 Evaluation

We start our evaluation bymeasuring the descriptive accuracy (DA) of the explanationmeth-
ods as defined in Section 3.2. In particular, we successively remove the most relevant fea-
tures from the samples of the datasets and measure the decrease in the classification score.
For Drebin+ andMimicus+, we remove features by setting the corresponding dimensions to
zero. For Damd, we replace the most relevant instructions with the no-op opcode, and for
VulDeePecker we substitute the tokens to be removed with an embedding-vector of zeros.

0 10 20 30 40
0

0.2
0.4
0.6
0.8
1

Removed features

A
D
A

Drebin+

LRP Gradient IG LIME Lemna SHAP

0 10 20 30 40
0

0.2
0.4
0.6
0.8
1

Removed features

Mimicus+

0 10 20 30 40
0

0.2
0.4
0.6
0.8
1

Removed features

VulDeePecker

100 200 300 400
0

0.2
0.4
0.6
0.8
1

Removed features

Damd

0 0.25 0.5 0.75 1
0

0.2
0.4
0.6
0.8
1

Interval size

M
A
Z

0 0.25 0.5 0.75 1
0

0.2
0.4
0.6
0.8
1

Interval size
0 0.25 0.5 0.75 1

0
0.2
0.4
0.6
0.8
1

Interval size
0.25 0.5 0.75 1

0
0.2
0.4
0.6
0.8
1

Interval size

Figure 3.3: Descriptive accuracy and sparsity for the considered explanation methods. Top row: Average descriptive
accuracy (ADA); bottom row: Sparsity measured as mass around zero (MAZ).

The top row in Figure 3.3 shows the results of this experiment. As the first observation,
we find that the DA curves vary significantly between the explanation methods and security
systems. However, the methods IG and LRP consistently obtain strong results in all settings
and show steep declines of the descriptive accuracy already for few removed features. Only
on the VulDeePecker dataset, the black-box method LIME can provide explanations with
comparable accuracy. Notably, for the Damd dataset, IG and LRP are the only methods to
generate real impact on the outcome of the classifier. ForMimicus+, IG, LRP andGradients
achieve a perfect accuracy decline after only 25 features and thus the white-box explanation
methods outperform the black-box methods in this experiment.

45

Table 3.5(a) shows theareaunder curve (AUC) for thedescriptive accuracy curves fromFig-
ure 3.3 with the best method for each dataset highlighted in red. We observe that IG is the
best method over all datasets—lower values indicate better explanations—followed by LRP.
In comparison to other methods it is up to 48 % better on average. Intuitively, this consid-
erable difference between the white-box and black-box methods makes sense, as white-box
approaches can utilize internal information of the neural networks that are not available to
black-box methods.

Table 3.5: Descriptive accuracy (DA) and sparsity (MAZ) for the different explanation methods.

Method Drebin+ Mimicus+ Damd VulDeePecker

LIME 0.580 0.257 0.919 0.571
LEMNA 0.656 0.405 0.983 0.764
SHAP 0.891 0.565 0.966 0.869
Gradients 0.472 0.213 0.858 0.856
IG 0.446 0.206 0.499 0.574
LRP 0.474 0.213 0.504 0.625

(a) Area under the DA curves from Figure 3.3.

Method Drebin+ Mimicus+ Damd VulDeePecker

LIME 0.757 0.752 0.833 0.745
LEMNA 0.681 0.727 0.625 0.416
SHAP 0.783 0.716 0.713 0.813
Gradients 0.846 0.856 0.949 0.816
IG 0.847 0.858 0.999 0.839
LRP 0.846 0.856 0.964 0.827

(b) Area under MAZ curves from Figure 3.3.

Descriptive Sparsity We proceed by investigating the sparsity of the generated expla-
nations with the MAZ score defined in Section 3.2. The second row in Figure 3.3 shows
the result of this experiment for all datasets and methods. We observe that the methods IG,
LRP, and Gradients show the steepest slopes and assign the majority of features little rel-
evance, which indicates a sparse distribution. By contrast, the other explanation methods
provide flat slopes of theMAZ close to zero, as they generate relevance values with a broader
range and thus are less sparse.

For Drebin+ and Mimicus+, we observe an almost identical level of sparsity for LRP, IG
andGradients supporting the findings from Figure 3.1. Interestingly, for VulDeePecker, the
MAZ curve of LEMNA shows a strong increase close to one, indicating that it assigns high
relevance to a lot of tokens. While this generally is undesirable, in case of LEMNA, this is

46

founded in the basic design and the use of the Fused Lasso constraint. In case of Damd, we
see a massive peak at zero for IG, showing that it marks almost all features as irrelevant. Ac-
cording to the previous experiment, however, it simultaneously provides a very good accuracy
on this data. The resulting sparse and accurate explanations are particularly advantageous for
a human analyst since the Damd dataset contains samples with up to 530,000 features. The
explanations from IG therefore provide a compressed yet accurate representation of the se-
quences which can be inspected easily.

We summarize the performance on the MAZ metric by calculating the area under curve
and report it in Table 3.5(b). A high AUC indicates that more features have been assigned a
relevance close to zero, that is, the explanation is more sparse. We find that the best methods
again are white-box approaches, providing explanations that are up to 50% sparser compared
to the other methods in this experiment.

CompletenessofExplanations We further examine the completeness of the explana-
tions. As we have seen in Table 3.3, some explanation methods can not calculate meaningful
relevance values for all inputs. In particular, perturbation-based methods suffer from this
problem, since they determine a regression with labels derived from random perturbations.
To investigate this problem, wemonitor the creation of perturbations and their labels for the
different datasets.

When creating perturbations for some sample x it is essential for black-boxmethods that a
fraction 0 ≤ p ≤ 1 of them is classified as belonging to the opposite class of x. In an optimal
case one can achieve p ≈ 0.5, however during our experiments we find that p = 0.05 can

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

p

D
at
ap
oi
nt
sr
em

ain
in
g

Class-0

Drebin+ Mimicus+ VulDeePecker Damd

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

p

D
at
ap
oi
nt
sr
em

ain
in
g

Class-1

Figure 3.4: Perturbation label statistics of the datasets. For each percentage of perturbations from the other class the
percentage of samples achieving this number is shown.

47

sometimes be sufficient to calculate a non-degenerated explanation. Figure 3.4 shows for each
value of p and all datasets the fraction of samples remaining when enforcing a percentage p
of perturbations from the opposite class.

In general, we observe that creatingmalicious perturbations from benign samples is a hard
problem, especially for Drebin+ and Damd. For example, in the Drebin+ dataset only 31 %
of the benign samples can obtain a p value of 5 % which means that more than 65 % of the
whole dataset suffer from degenerated explanations. Table 3.6 shows a concrete example of
the dataset statistics when enforcing 5 % of the labels generated by the perturbations to be
from the opposite class. On average, 33 % of the samples cannot be explained well, as the
computed perturbations contain too few instances from the opposite class. In particular,
we observe that creating malicious perturbations from benign samples is a hard problem in
the case of Drebin+ and Damd, where only 24.2 % and 5.9 % of the benign samples achieve
sufficient perturbations from the opposite class respectively.

Table 3.6: Incomplete explanations of black‐box methods. First two columns: Samples remaining when enforcing at least
5 % perturbations of opposite class. Final column: Total percentage of incomplete explanations in the dataset.

System Class-0 Class-1 Incomplete

Drebin+ 24.2% 97.1 % 66.3%
Mimicus+ 73.5% 98.9% 14.2%
VulDeePecker 90.5% 99.8% 7.1 %
Damd 5.9% 94.8% 44.9%

Average 48.3% 97.7% 33.2%

The problem of incomplete explanations is rooted in the imbalance of features character-
izing malicious and benign data in the datasets. In the case of Drebin+, only few features
make a sample malicious but there exists a large variety of features turning a sample benign.
As a consequence, randomly settingmalicious features to zero leads to a benign classification,
while setting benign features to zero usually does not impact the prediction. For Damd, in a
similar manner, we have very long sequences of opcodes where malicious behavior is defined
by a specific sequence of tokens. Generating these specific instructions randomly is extremely
unlikely. Therefore, it is often not possible to explain predictions for benign applications lim-
iting the applicability of black-box explanation methods for the practitioner.

In summary, we argue that perturbation-based explanation methods should only be used
in security settings where incomplete explanations can be compensated by other means. In
all other cases, one should prefer the usage of white-box methods in the context of security.

48

StabilityofExplanations Weproceed to evaluate the stability of the explanationmeth-
ods when processing inputs from the four security systems. To this end, we apply the ex-
planations to the same samples over multiple runs and measure the average intersection size
between the runs.
Table 3.7 shows the average intersection size between the top k features for three runs of

the methods as defined in Equation (3.1). We use k = 10 for all datasets except for Damd
where we use k = 50 due to the larger input space. Since the outputs of Gradients, IG,
and LRP are deterministic, they reach the perfect score of 1.0 in all settings and thus do not
suffer from limitations concerning stability. For the perturbation-based methods, however,
stability poses a severe problem since none of those methods obtains a intersection size of
more than 0.5. This indicates that on average half of the top features do not overlap when
computing explanations on the same input. Furthermore, we see that the assumption of
locality of the perturbation-basedmethods does not apply for all models under test, since the
output is highly dependent on the perturbations used to approximate the decision boundary.
Therefore, the best methods for the stability criterion beat the perturbation-based methods
by a factor of at least 2.5 on all datasets.

Table 3.7: Average intersection size between top features for multiple runs. Values close to one indicate greater stability.

Method Drebin+ Mimicus+ Damd VulDeePecker

LIME 0.480 0.446 0.040 0.446
LEMNA 0.4205 0.304 0.016 0.416
SHAP 0.257 0.411 0.007 0.440
Gradients 1.000 1.000 1.000 1.000
IG 1.000 1.000 1.000 1.000
LRP 1.000 1.000 1.000 1.000

Efficiency of Explanations We finally examine the efficiency of the different expla-
nation methods for the security systems. Our experiments are performed on a regular server
systemwith an Intel Xeon E5 v3CPU at 2.6GHz. It is noteworthy that the methods Gra-
dients, IG and LRP can benefit from computations on a graphical processing unit (GPU),
therefore we report both results but use only the CPU results to achieve a fair comparison
with the black-box methods.
Table 3.8 shows the average run-time per input for all explanations methods and we ob-

serve that Gradients and LRP achieve the highest throughput in general beating the other
methods by orders of magnitude. This advantage arises from the fact that data can be pro-
cessed batch-wise for methods like Gradients, IG, and LRP, that is, explanations can be cal-

49

Table 3.8: Run‐time per sample in seconds. Note the range of the different times from microseconds to minutes.

Method Drebin+ Mimicus+ Damd VulDeePecker

LIME 3.1 × 10−2 2.8× 10−2 7.4× 10−1 3.0× 10−2

LEMNA 4.6 2.6 6.9× 102 6.1
SHAP 9.1 4.3× 10−1 4.5 5.0
Gradients 8.1 × 10−3 7.8× 10−6 1.1 × 10−2 7.6× 10−4

IG 1.1 × 10−1 5.4× 10−5 6.9× 10−1 4.0× 10−1

LRP 8.4× 10−3 1.7× 10−6 1.3× 10−2 2.9× 10−2

GPU Drebin+ Mimicus+ Damd VulDeePecker

Gradients 7.4× 10−3 3.9× 10−6 3.5× 10−3 3.0× 10−4

IG 1.5× 10−2 3.9× 10−5 3.0× 10−1 1.3× 10−1

LRP 7.3× 10−3 1.6× 10−6 7.8× 10−3 1.1 × 10−2

culated for a set of samples at the same time. TheMimicus+ dataset, for example, can be pro-
cessed in one batch resulting in a speed-up factor ofmore than 16,000×over the fastest black-
box method. In general we note that the white-box methods Gradients and LRP achieve the
fastest run-time since they require a single backwards-pass through the network. IG, in con-
trast, requires multiple gradient evaluations and thus multiple backwards-passes increasing
the runtime significantly. Moreover, computing these methods on a GPU results in addi-
tional speedups of a factor up to three.

The run-time of the black-boxmethods increases for high dimensional datasets, especially
Damd, since the regression problems need to be solved in higher dimensions and requires
far more perturbations. While the speed-up factors are already enormous, we have not even
included the creation of perturbations and their classification, which consume additional
run-time as well.

Robustness of Explanations In Section 2.4 we introduced multiple approaches to
attack the outcome of explanation methods including adversarial perturbations [77, 321] or
minimal changes to themodel that can decouple the explanation from the true behavior [17,
255]. These attacks are possible due to the high dimensional and irregular decision boundary
of neural networks [77, 174] and thus cannot always be prevented. Despite the presence
of defense approaches [224], we conclude that both white-box and black-box explanation
methods are not robust and vulnerable. Still, these powerful attacks require access to specific
parts of the victim system as well as further extensions to work in discrete domains. These
attack vectors should be considered and prevented whenever using explanation methods in
security applications.

50

Summary A strong explanation method is expected to achieve good results for each cri-
terion and on each dataset. For example, we have seen that the Gradients method com-
putes sparse results in a decent amount of time. The features, however, are not accurate
on the Damd and VulDeePecker dataset. Equally, the relevance values of SHAP for the
Drebin+ dataset are sparser than those fromLEMNAbut suffer from instability. To provide
an overview, we average the performance of all methods over the four datasets and summarize
the results in Table 3.9.

Table 3.9: Results of the evaluated explanation methods. The last column summarizes these metrics in a rating comprising
three levels: strong(), medium (), and weak (#).

Method Accuracy Sparsity Completeness Stability Efficiency Robustness Overall Rating

LIME 0.582 0.772 – 0.353 2.1 × 10−1 s # ## #
LEMNA 0.702 0.612 – 0.289 1.8× 102 s # ######
SHAP 0.823 0.757 – 0.279 4.8 s # # ####
Gradients 0.600 0.867 3 1.000 5.0× 10−3 s # #
IG 0.431 0.886 3 1.000 3.0× 10−1 s # #
LRP 0.454 0.873 3 1.000 5.0× 10−2 s # #

For each of the six evaluation criteria, we assign each method one of the following three
categories: , , and#. The category is given to the best explanation method and other
methods with a similar performance. The # category is assigned to the worst method and
methods performing equally bad. Finally, the category is given tomethods that lie between
the best and worst methods.

BasedonTable 3.9,we can see thatwhite-box explanationmethods achieve a better ranking
than black-box methods in all evaluation criteria. Due to the direct access to the parameters
of the neural network, these methods can better analyze the prediction function and are able
to identify relevant features. In particular, IG and LRP are the best methods overall regard-
ing our evaluation criteria. They compute results in less than 50ms in our benchmark, mark
only few features as relevant, and the selected features have great impact on the decision of
the classifier. These methods also provide deterministic results and do not suffer from in-
completeness. As a result, we recommend to use these methods for explaining deep learning
in security.

In general, whether white-box or black-box methods are applicable also depends on who
is generating the explanations: If the developer of a security system wants to investigate its
prediction, direct access to all model parameters is typically available and white-boxmethods
canbe applied easily. Similarly, if the learningmodels are sharedbetweenpractitioners, white-
box approaches are also the method of choice. If the learning model, however, is trained by a
remote party, such as a machine-learning-as-a-service providers, only black-box methods are

51

applicable. Likewise, if an auditor or security tester inspects a proprietary system, black-box
methods also become handy, as they do not require reverse-engineering and extractingmodel
parameters. For these cases, we recommend the black-boxmethod LIME as it shows the best
performance in our experiments overall. As another remedy, it is also possible to apply a
model stealing attack [e.g. 280] on the service that aims to create a copy of the model that
closely resembles its performance and properties. In the easiest case, a suitable training set is
available and the labels can be obtained by querying the black-box model allowing to start a
regular training process. Once such a shadow model is obtained, white-box methods can be
used to generate explanations and we will evaluate whether the performance is compatible in
the following paragraph.

Model Stealing forWhite-BoxExplanations To evaluate the differences between
the explanations of surrogate models to the original ones we conduct an experiment on the
Drebin+ and Mimicus+ datasets as follows: We use the predictions of the original model
from Grosse et al. [106] which has two dense layers with 200 units each and use these pre-
dictions to train three surrogate models. The number of layers is varied to be [1, 2, 3] and
the number of units in each layer is always 200 resulting in models with higher, lower and
the original complexity. For each model we calculate explanations via LRP and compute the
intersection size given by Equation (3.1) for k = 10.

Original

1-layer

2-layers

3-layers

Drebin+

Or
igin

al
1-l
aye
r

2-l
aye
rs

3-l
aye
rs

Mimicus+

Or
igin

al
1-l
aye
r

2-l
aye
rs

3-l
aye
rs

0.

0.5

1

Figure 3.5: Intersection size of the Top‐10 features of explanations obtained frommodels thatwere stolen from the original
model of the Drebin+ and Mimicus+ dataset.

The results in Figure 3.5 show that the models deliver similar explanations to the orig-
inal model (IS10 ≈ 0.7) although having different architectures for the Drebin+ dataset.
However, the similarity between the stolen models is clearly higher (IS10 ≈ 0.85). For
the Mimicus+ dataset, we observe a general stability of the learned features at a lower level
(IS10 ≈ 0.55). These results indicate that the explanations of the stolen models are better

52

than those obtained from black-boxmethods (see Figure 3.1) but still deviate from the origi-
nal model, i.e., there is no transferability between the explanations. At all, model stealing can
be considered a good alternative to the usage of black-box explanation methods.

3.4 RelatedWork

The appearance of explanationmethods quickly raised thequestions of how they canbe com-
pared and what the differences between them constitute of [98, 323]. Our measures inter-
section size, sparsity or stability have been proposed under different names to evaluate expla-
nation methods [34, 68, 155] and implemented in software solutions [10]. Other measures
include the crafting of adversarial examples based on relevant features from explanation algo-
rithms [124] or comparing saliency scores of a network trained with foreground labels with
one trained for the background objects [313]. Building on a debugging approach with ex-
planations, Idahl et al. [132] propose to insert artificial decision rules, so called decoys, into a
dataset and compare which methods mark them as important.

In terms of generalization Yeh et al. [315] introduce the infidelitymeasure and show that
approaches like IG or LRP are optimal in this light. Similarly, Wang et al. [292] summarize
existing evaluation metrics and categorize them into the logical concepts necessity and suffi-
ciency. They seek aminimal set of pixels that is sufficient for a classification and a smallest set
of pixels required to change a classification and compare different approaches towards these
metrics. It turns out that the majority of methods only optimizes one of the concepts and
thus endorsing a single method for interpretation is difficult. Han et al. [116] group expla-
nation methods using the concept of function approximations from calculus and show that
different explanation methods optimize different distance measures in this viewpoint. An-
cona et al. [16] discuss similarities between gradient based explanationmethods and find that
LRPandGradients are identical, for networkswith linear layers andReLunon-linearities, for
example. The n-sensitivitymetric is introduced to evaluate whether the removal of features
has linear impact on the classification score and is thus related to descriptive accuracy. Re-
moving or perturbing important features plays a key role inmany evaluation approaches [65]
under names like faithfulness [34] or perturbation curve [234]. Such approaches have also
been extended to removing entire regions of an image using image segmentation algorithms,
for example [25, 225]. Hooker et al. [122] point to a potential limitation of removal strategies
by showing that after removing a large portion of features from a sample, the classification
will change since the learning model has not seen inputs of this distribution in the training
process. Consequently, the explanations should be ranked by the loss in classification perfor-
mance after retraining the model without the relevant features instead.

53

54

4
From Explanations to

Security Insights

The evaluation performed in Chapter 3 allows the developer to select a suitable explanation
method for generating saliency scores of themachine learningmodel at hand. Due to access to
themodel and trainingdata, hewill likely use awhite-box approach that enhances the training
datasetDby a set of relevance vectors containing an explanation for each datapoint inDunder
themodel fθ. If the training dataset is large, however, he can not investigate every explanation
manually and requires a curator that presents interesting explanations to him in an intelligent
fashion. In Section 4.1 we present the Prof selection scheme that allows the practitioner
to query prototypical and unique explanations from the corpus of relevance vectors. Based
on this scheme we collect insights into the neural networks from the previous chapter in
Section 4.2. We will see that the explanations reveal various shortcomings in the learning
models and datasets indicating that they are not ready for usage in practical applications yet.
Next, we present a novel approach to vet malware tags in the context of dynamical malware
analysis in Section 4.3. Finally, we review related work on the usage of explanation methods
for analyzing learning models in security in Section 4.4.

55

4.1 Prof: A Framework for Selecting Explanations

Leveraging explanation methods for learning models in security applications enhances the
training datasetD by a set of relevance vectorsR = r1, . . . , rn where ri ∈ Rd represents the
explanation for the training datapoint xi under the model fθ. The practitioner is now con-
fronted with the analysis of these explanations in order to obtain insights to the model and
dataset at hand. A straight forward solutionwould be the usage of clustering algorithms, like
k-means-clustering [171, 177], that partitionR into groups where the intra-group similarity
is high but the inter-group similarity is low [18, 158]. However, these approaches require the
practitioner to select the number of groups k, which is likely unknown in advance, and de-
liver only prototypical explanations corresponding to the centroids of the clusters. Explana-
tions from sparsely populated areas, however, can be of similar value since they may indicate
spurious correlations, wrongly labeled datapoints or invalid features. Therefore, we propose
a selection scheme that picks prototypical and unique explanations fromR and allows the
practitioner to dynamically select as many explanations as he desires from both groups. We
build the scheme based on three desiderata we believe are advantageous when investigating a
large corpus of explanations for a machine learning based security system:

1. Prototype and outlier identificationThere are twogroups of explanations that are of
interest for the practitioner. The first group comprises prototypical explanations that
serve as representatives for a broader set of similar examples inR. These explanations
enable users to examine a larger collection of similar instances in a single review. Con-
versely, unique or anomalous outlier explanations also give valuable insights by po-
tentially highlighting datapoints with defects, like incorrect labels or invalid features.
Therefore, our framework should be capable of categorizing explanations into either
of these classes and enable the practitioner to request datapoints from both categories.

2. Variable selection size Many clustering algorithms require the desired number of
groups k as an input parameter. However, the practitioner usually does not know
this number in advance and is thus required to perform an extensive parameter search
withmultiple runs of the clustering algorithm and repetitive analysis steps afterwards.
We therefore opt for a selection algorithm that allows the user to query as many ex-
amples as he desires in the inspection process without knowing this number before.
This property ensures that the practitioner can stop the selection process when he has
a good feeling about the explanations in the dataset or encounters examples similar to
previously seen ones.

56

Dataset
Prototypes
Outliers

Figure 4.1: Overview of the PROF scheme: The prototypes (red) and outliers (blue) are filtered based on a similarity score
and visited by the concept of a farthest‐first‐traversal.

3. Maximal selection difference Analyzing explanations is tedious work, therefore the
practitioner would like to inspect as few explanations as possible while still getting an
overview over the explanation corpusR. To this end, it is important that the selected
explanations are different to each other such that no redundant work is performed in
the inspection process.

To fulfil the criteria mentioned above, we propose the Prof scheme based on prototypes,
outliers and farthest-first traversal of explanations. The schemeconsists of three steps, namely
scoring, explanation filtering and traversal which we will describe in detail in the following.
Figure 4.1 visualizes each step of the Prof scheme for 200 datapoints with k = 5 and can
ease the understanding of the underlying concept.

Scoring In the first step of the selection scheme, we require ameasure indicatingwhether
an explanation is rather prototypical or unique. To this end,we rely on the concepts proposed
by Harmeling et al. [117] that assign such score to a datapoint based on the distance to its
nearest neighbors in the underlying dataset. Concretely, for a given relevance vector r ∈ R
we denote by η1(r), . . . , ηk(r) the k nearest neighbors of r, i.e. the points in R with the
smallest Euclidean distance to r. Based on these neighbors, Harmeling et al. [117] define the
three measures κ, γ and δ given by

κ(r) = ∥r− ηk∥2, γ(r) =
1
k

k∑
l=1

∥r− ηl∥2, δ(r) =

∥∥∥∥∥ 1k
k∑

l=1

r− ηl

∥∥∥∥∥
2

. (4.1)

57

The metric κ simply measures the distance to the k-th nearest neighbor whereas γ repre-
sents the average distance to the nearest neighbors. δ also takes the direction of the differences
into account and computes the length of themean of the vectors pointing from r to its knear-
est neighbors. All of the metrics assign prototypical points, i.e. points in regions with high
population of other datapoints, small scores whereas outliers residing far away from other
datapoints receive a large score. Computing a score from above for each point inR allows to
re-order the explanations in ascending order and thereby ranking them from outliers to pro-
totypes, fulfilling the first requirement from above. While each measure has its advantages
and disadvantages [see 117, for a discussion] we will use γ in the following since it is the most
intuitive one for a human analyst.

Data filtering Assigning each explanation a score from above creates a score distribu-
tion over the setR andwe are interested in the tails of the distribution where prototypes and
outliers reside. If μ is the mean score overR, we define the tails by a parameter p ∈ [0, 1] by
calculating the confidence interval I = [μ − a, μ + a] around μ such that a fraction p of all
scores falls into I. Then, a prototype is an explanation with a score smaller than μ − a and
an outlier is an explanation with a score larger than μ + a. In Figure 4.1 we use p = 0.9 and
highlight prototypes (red) and outliers (blue) resulting from this choice. It becomes appar-
ent that the prototypical points come from regions with high density whereas the outliers are
points close to the convex hull of the datapoints.

Traversal Equipped with a set of prototypes and outliers we have to pick a traversal
scheme to present the explanations to the practitioner. To achieve maximal selection differ-
ence as defined above, we leverage the farthest-first-traversal [102, 230] that defines a traversal
over the prototypes and outliers in the followingway: Wepick themost prototypical explana-
tion (prototype traversal) or the most unique explanation (outlier traversal) and as a starting
point r(0) and add r(0) to the set of visited pointsV. If another request from the practitioner
arrives, we return the explanation with the largest distance to all points inV, i.e.

r(t+1) = ri, where i = max
j=1,...,n
rj /∈V

t∑
l=0

∥rj − r(l)∥2. (4.2)

Thefirst three steps of the prototype- andoutlier traversal are depictedby arrows in red and
blue respectively in Figure 4.1. By construction, the Prof scheme selects new explanations
that aremaximally different to the explanations obtained so farwhile the data filtering ensures
that only interesting points at the tails of the score distribution are visited at all.

58

In terms of complexity, the Prof scheme has to determine the k nearest neighbors of ev-
ery datapoint to compute the scores in Equation (4.1) which requires calculating the distance
matrix ofR and thusO(n2d)operations. For γwecan select theknearest neighbors inO(nk)
for a single datapoint and thus end up with a total complexity ofO(n2d+ n2k) for the score
calculation. Sorting a row in the distancematrix inO(n log(n)) accelerates the selection pro-
cess and results in a complexity ofO(n2d + n2 log(n)). Another advantage of this setup is
that testing different values for k, which is the most important hyper-parameter in the al-
gorithm, does not cause further costs. Having a distance matrix available, the farthest first
traversal simply requires to sum the rows corresponding to the datapoints in V and finding
the maximumwith a linear lookup, i.e. the complexity for t traversal steps is given byO(tn).

4.2 SecurityModel Analysis

Equipped with the Prof scheme to select interesting explanations we can continue the anal-
ysis of the learning models from Chapter 3. To this end, we use the explanations generated
by the LRP approach due to its excellent performance and low run-time and apply the Prof
scheme to the explanations of the training data of all datasets with parameters k = 10 and
p = 0.9. As a first step, we qualitatively assess the explanations and then perform further
experiments to understand the learning model and the features used for classification better.

4.2.1 Malware Detection

The majority of networks used for our experiments in Chapter 3 were trained for the detec-
tion of malicious PDF documents or Android applications. We will start our analysis with
these models in the following subsection.

PDFMalware classification Figure 4.2 (left two columns) shows the first two exam-
ples selected by the Prof scheme when applied to explanations of the malicious documents
of theMimicus+ dataset. When inspecting the explanations we firstly observe that our selec-
tion scheme fulfils the requirements defined in Section 4.1 verywell since the set of important
features is disjoint between the different examples. Inspecting the explanations, we observe
that the count_javascript and count_js, which both stand for the number of JavaScript el-
ements in the document, are important. The strong impact of these elements is meaningful,
as JavaScript is frequently used in malicious PDF documents [142] and can also be embed-
ded in acroformmarkers indicated by the count_acroform feature. However, we also identify
features in the explanations that are non-intuitive. For example, features like count_trailer

59

Id Prototype Prototype Outlier Outlier

0 count_javascript count_acroform delta_tz moddate_mismatch

1 count_js subject_lc pdfid1_num count_objstm

2 count_trailer author_lc moddate_tz createdate_mismatch

3 count_endobj title_lc pdfid0_uc pos_page_max

4

5 count_eof count_eof count_page creator_mismatch

6 count_box_other pos_eof_min count_box_other pos_image_min

7 pos_eof_min len_stream_max createdate_tz pdfid0_num

8 len_stream_max count_font pos_page_max moddate_tz

Figure 4.2: Prototypes (left two columns) and outliers (right two columns) of malicious PDF documents from theMimicus+
dataset as presented by the first two steps of the Prof scheme.

that measures the number of trailer sections in the document or subject_lc that counts the
number of lowercase letters in the subject of the document can hardly be related to security
and rather constitute artifacts in the dataset captured by the learning process. Such features
with no malware context can also be found in the outlier explanations (right two columns)
and are like rooted in the binary encoding proposed by Guo et al. [112] which eradicates the
numerical meaning of the features completely.

For a quantitative analysis, we determine the distribution of the top 5 features from the
LRP explanations for each class in the entire dataset and present the result in Table 4.1. It
turns out that JavaScript appears in 88%of themalicious documents, whereas only about 6%
of the benign samples make use of it. Similarly, pdfid1_num (number of numerical charac-
ters) is present almost exclusively in the benign class of the dataset. This makes these two
features extremely discriminating for the dataset. From a security perspective, this is an un-
satisfying result, as the neural network of Mimicus+ relies on a few indicators for classifying
the documents. An attacker could potentially evade Mimicus+ by not using JavaScript or
including numerical characters in the document.

Table 4.1: Top‐5 features for the entire Mimicus+ dataset determined using LRP. The right columns show the total fre‐
quency in benign and malicious PDF documents, respectively.

Class Feature Benign Malicious Class Feature Benign Malicious

Benign count_font 98.4% 20.8% Malicious count_javascript 6.0% 88.0%
Benign pdfid1_num 81.5% 2.8% Malicious count_js 5.2% 83.4%
Benign title_num 68.6% 4.8% Malicious count_trailer 89.3% 97.7%
Benign title_uc 68.6% 4.8% Malicious count_endobj 100.0% 99.6%
Benign pos_eof_min 100.0% 93.4% Malicious count_action 16.4% 73.8%

60

Id Prototype Prototype

0 intent::android.action.SIG_STR permission::SEND_SMS

1 call::system/bin/su feature::android.hardware.telephony

2 call::getSubscriberId real_permission::SEND_SMS

3 intent::action.BOOT_COMPLETED permission::INTERNET

4

5 real_permission::READ_PHONE_STATE intent::action.MAIN

5 real_permission::ACCESS_FINE_LOCATION call::getSystemService

6 real_permission::ACCESS_WIFI_STATE feature::android.hardware.touchscreen

7 intent::android.LAUNCHER intent::category.LAUNCHER”

Figure 4.3: Prototypes of malicious Android applications from the Drebin+ dataset as presented by the first two steps of
the Prof scheme.

AndroidMalware detection We continue our analysis by investigating the explana-
tions for the neural networks for Android malware detection, namely Drebin+ and Damd.
Webeginwith theDrebin+network that processes static string features in a high dimensional
and sparsely populated bag-of-words feature space before turning to the Damd model that
leverages convolutions to process the de-compiled application code sequentially.

Drebin+ analysis We present two protoypical malware examples traversed by the Prof
schemes in Figure 4.3. The features speaking for the malicious classification can be linked
to the functionality of the malware. For instance, the requested permission SEND_SMS or fea-
tures related to accessing sensitive information, such as the call getSubscriberId receive con-
sistently high scores in our investigation. These features are well in line with common mal-
ware for Android, such as the FakeInstaller family [179], which is known to obtain money
from victims by secretly sending text messages (SMS) to premium services. We conclude that
the MLP network employed in Drebin+ has captured combinations of indicative features
directly related to the underlying malicious activities. Investigating the features speaking
against amalicious classification,wenotice thepresenceof thehardware featuretouchscreen,
the intent filter LAUNCHER, and the intent action MAIN. These features frequently also occur
in the prototypes returned by the Prof scheme on benign applications. Investigating their
distribution we find that they appear in both classes of the Drebin+ dataset and are thus not
particularly descriptive for benignity. Note that the interpretation of features speaking for
benign applications is challenging due to the broader scope and the difficulty in defining be-
nignity. We therefore conclude that the three features together form an artifact in the dataset
that provides an indicator for detecting benign applications.

61

Damd analysis As a second Android malware detector, we consider applications from
the Damd dataset. In contrast to the static string features that constitute the datapoints of
the Drebin+ dataset, analyzing raw Dalvik bytecode of thousands of instructions is not pos-
sible for a human anymore. Therefore, we guide our analysis of the dataset by inspecting
malicious applications from three popular Android malware families whose behavior is well
documented: GoldDream [140], DroidKungFu [139], and DroidDream [92]. These fami-
lies exfiltrate sensitive data and run exploits to take full control of the device. In our analysis
of the Dalvik bytecode, we benefit from the sparsity of the explanations from LRP and IG
as explained in Section 3.3. Analyzing all relevant features becomes tractable with moderate
effort using these methods and we are able to investigate the opcodes with the highest rel-
evance in detail. In this setting, sparse explanations act like a compressed representation of
the datapoints where only relevant parts of the applicationsmust be investigated by the prac-
titioner. Indeed, we observe that the relevant opcode sequences are linked to the malicious
functionality of the three malware families.

In the last chapter we already had a closer look on a Damd explanation in Table 3.2. This
example depicts the opcode sequence, that is marked as highly important in all samples of
the GoldDream family by LRP and IG. Using an Android decompiler we transfer the sur-
roundingof this opcode sequenceback to source code andfind that it occurs in the onReceive
methodof the com.GoldDream.zj.zjReceiver class. In this function, themalware intercepts
incomingSMSandphone calls and stores the information in local files before sending themto
an external server. Similarly, we can interpret the explanations of the other twomalware fam-
ilies, where functionality related to exploits and persistent installation is highlighted in the
Dalvik opcode sequences. Members of the DroidDream family are known to root infected
devices by running different exploits. If the attack has been successful, the malware installs
itself as a service with the name com.android.root.Setting [92]. The top-ranked features
appearing in the LRP explanation indeed lead to two methods of this very service, namely
com.android.root.Setting.getRawResource() andcom.android.root.Setting.cpFile().
Likewise, the highest ranked opcode sequence of theDroidKungFu family points to the class,
in which the decryption routine for the root exploit is stored in.

The investigations above show that the CNN in the Damd system has extracted discrimi-
native patterns to detect malicious Android applications from the underlying opcode repre-
sentation. This is a remarkable result considering the challenging dataset with sequences of
thousands of tokens with variable length and demonstrates how explainable machine learn-
ing can assist the developer with the analysis of malware by pinpointing him to features and
datapoints worth investigating.

62

4.2.2 Vulnerability Detection

Finally, we turn to the last security model from Chapter 3 to detect vulnerabilities in source
code. In contrast to the datasets considered before, the features processed by VulDeePecker
resemble sequences of lexical tokens embedded in a vector space which are strongly intercon-
nected on a syntactical level. This setup does not allow to apply the Prof scheme directly,
since the explanations are composed of a sequence of saliency scores r1, . . . , rd assigned to
each token s1, . . . , sd of the code snippet. To embed each code gadget in a vector space, we
leverage the embedding function e that maps tokens to vectors and represent an input se-
quence by the weighted sum of its embedded tokens, r =

∑d
i=1 rie(si).

Figure 4.4 shows a vulnerable code snippet that corresponds to a prototype according to
the Prof scheme together with its explanation. We immediately observe the sequential na-
ture of the dataset since tokens at the beginning aswell as at the end of the snippet receive
relevance values with a concentration of high scores at the end of the first line. However, we
also notice that it is very difficult for a human analyst to benefit from the highlighted tokens
for twomajor reasons: Firstly, the pre-processing steps of VulDeePecker that replace variable
nameswith generic ones and shorten the code snippet to 50 tokens candisconnect the vulner-
able part of the code from the representation that is processed by the network. For example,
in Figure 4.4, the size of the arrays is obfuscated due to the replacement of the numbers in the
code gadget and thusmakes it impossible to decidewhether the memmove call overwritesmem-
ory or not. Similarly, in Figure 1.1, the highlighted INT0 and INT1 tokens as buffer sizes of 50
and 100wide characters are ambiguous, since the neural network is not aware of the size rela-
tion due to the code shortening. Secondly, we observe a large amount of highlighted tokens
corresponding to semicolons, brackets, and equality signs. These characters are common in
C++ code due to the syntax but apparently can not indicate the presence of vulnerabilities.
Therefore, we hypothesize that the VulDeePecker model overfitted the training dataset in-
stead of learning an underlying concept of source code vulnerabilities. We will verify this
claim through different experiments in the remainder of this subsection.

1 data = new char[10+1];
2 char source[10+1] = SRC_STRING;
3 memmove(data, source, (strlen(source) + 1) * sizeof(char));

1 VAR0 = new char [INT0 + INT1] ;
2 char VAR1 [INT0 + INT1] = VAR2 ;
3 memmove (VAR0 , VAR1 , (strlen (VAR1) + INT1) * sizeof (char)) ;

Figure 4.4: Top: Code snippet from the dataset. Bottom: Same code snippet after pre‐processing steps of VulDeePecker
explained by the LRP approach.

63

To see whether VulDeePecker relies on artifacts, we use the relevance values for the entire
training set and extract the ten most important tokens for each code snippet. Afterwards
we extract the tokens that occur most often in this top-10 selection and report the results in
Table 4.2 in descending order of occurrence.

Table 4.2: The 10 most frequent tokens in the top 10 features of the entire VulDeePecker dataset.

Rank Token Occurrence Rank Token Occurrence

1 INT1 70.8% 6 char 38.8%
2 (61.1% 7] 32.1%
3 * 47.2% 8 + 31.1%
4 INT2 45.7% 9 VAR0 28.7%
5 INT0 38.8% 10 , 26.0%

Wecanquantitatively confirm theobservation that tokens such as ‘(’, ‘]’, and ‘,’ are among
the most important features throughout the training data although they occur frequently in
code from both classes as part of function calls or array initialization. Secondly, there are
many generic INT* values which frequently correspond to buffer sizes. From this we con-
clude that VulDeePecker is relying on combinations of artifacts in the dataset that are not
connected to code vulnerabilities and thereby overfits the training dataset.

To further support this finding, we train a Logistic Regression classifier (see Example 2)
on n-gram features of the code snippets as a simple baseline and also employ an ensemble
of further standard models, such as random forests and AdaBoost classifiers, trained with
the AutoSklearn library [90]. The classification performance and model size are reported
in Table 4.3 and we find that the LR classifier with 3-grams yields a better performance than
VulDeePeckerwith an 18× smallermodel. This is interesting as overlappingbut independent
substrings (n-grams) are used, rather than the true sequential ordering of all tokens as for the
RNN. Thus, it is likely that VulDeePecker is not exploiting relations in the sequence, but
merely combines special tokens—an insight that couldhavebeenobtainedby training a linear
classifier. Furthermore, it is noteworthy that both baselines provide significantly higher true
positive rates, although the AUC-ROC of all approaches only slightly differs.

Table 4.3: Performance of a Logistic Regression classifier, an ensemble of the AutoSklearn library and VulDeePecker on
unseen data. The true‐positive rate is determined at 2.9% false positives.

Model # Parameters AUC TPR

Logistic Regression 6.6× 104 0.982 0.961
AutoSklearn 8.5× 105 0.982 0.894
VulDeePecker 1.2× 106 0.984 0.818

64

4.3 VettingMalware Tags

Inspired by the analysis of theDamdnetwork, wepropose another application of explainable
machine learning in the context of security, namely the vetting ofmalware tags. Copingwith
the sheer amount of newmalware variants is a challenging and daunting task. Large security
companies, for example, are required to process several hundred thousands of new samples
per day [284]. This plethora of malicious code makes it hard to keep abreast of current mal-
ware development and update protectionmechanisms in time. To alleviate this problem, it is
common practice to flag incoming samples with short tags that label their origin, format, be-
havior, or family. These tags provide an indispensable tool for maintaining large collections
and help focus investigations to particular files. VirusTotal, for example, features an extensive
search engine for finding such tags in their database of malware samples [286].

Malware tags, however, greatly differ in purpose and quality. While a few tags are manu-
ally assigned based on careful reverse engineering, most tags are automatically derived from
available information, such as file headers [298, 301], anti-virus labels [239, 240], cluster-
ings [125, 138], and threat intelligence [96, 232]. Although these generated tags provide use-
ful clues for analysis, theymaybecomedisconnected from the actual behavior of themalware.
For example, tags derived by an imprecise YARA rule [15] might incorrectly flag functional-
ity that is actually not present in the samples. When curating a large collection of malware, it
is thus often unclear whether generated tags align with the behavior of the samples.

As a solution,weproposeTagVet, amethod for vetting tags inmalware collectionswhich
builds on explainablemachine learning and enables the practitioner to automatically link tags
to behavioral patterns observed during dynamic analysis. To this end, we devise a CNN for
predicting malware tags from monitored system calls and their arguments. Leveraging ex-
planations of the network, TagVet uncovers its relation to specific system calls and links
tags to behavioral patterns in retrospective, thereby explaining their semantic relations. Our
approach helps to improve the quality of malware collections by exposing errors and incon-
sistencies in the tagging process even if the process itself is not available.

TagVet builds on the three analysis phases as presented in Figure 4.5. First, it executes
tagged malware samples in a sandboxed environment and encodes the monitored behavior
in a way suitable for analysis. Second, it trains a CNN as a surrogate model for the tagging
process, such that tags can be predicted frommonitored log files. Finally, LRP is used to link
the tag predictions back to patterns in the monitored behavior. We will discuss each of the
stages in detail in the remainder of this subsection and discuss insights we can obtain for a
modern malware dataset afterwards.

65

Tagged

malware

Representation

of behavior

Surrogate

learning

≈ exec ”foo.exe”

connect 8.8.8.8

mutex ”barfoo”

Patterns
of behavior

Figure 4.5: Schematic overview of the TagVet approach. First, tagged malware is collected. Second, behavior reports are
collected from malware execution. Third, a surrogate model is trained to predict the tags from behavior reports. Fourth,
explanations of the predicted tags are aggregated to behavioral patterns. Figure reproduced from Pirch et al. [210].

4.3.1 BehaviorMonitoring and Representation

In the first stage of TagVet, malware samples are executed in a sandboxed environment to
monitor their behavior dynamically. For our experiments, we employ VMRay Analyzer, a
hypervisor-based sandbox for theWindows platform [287] that records all system calls to op-
erating system libraries and the kernel. This dynamic analysis yields a behavior report for each
executed sample that comprises lists (threads) of system calls with respective arguments. Our
analysis hence operates on the boundary of the operating system and characterizes malware
through its interaction with the host API.

Consolidation. As the sandbox reports contain very fine-granular data from the oper-
ating system state, we apply different consolidation steps before analyzing the behavior with
a neural network. First, volatile call arguments, such as memory addresses and process iden-
tifiers, depend only on the system state and can safely be ignored. Second, we observe several
function call arguments consisting of rare substrings, such as temporary file names. To con-
solidate these, we split each argument using appropriate delimiters (“\” for file and registry
paths and “.” for network addresses) and analyze the frequency of the resulting substrings.
Substrings apprearing in less than 10% of the reports are then unified by replacing themwith
a wildcard symbol “*”.

Representation of behavior. To achieve a unified representation of the behavior de-
scribed in the sandbox reports, we consider each report as a sequence of system calls and their
arguments. For simplicity, we ignore the relation of threads in this representation, as the
convolutional neural network used in TagVet can focus on local patterns in the data. For-
mally, we map a report to a sequence x = (x1, . . . xl) of l tokens, where each token either
corresponds to a system call or an argument. As the number of arguments varies between
calls, we pad all arguments to a fixed number t using a special pad token. Consequently, if
the report contains s system calls, the final sequence x has a length of l = s · (1+ t).

66

Call 1

Argument 1

Argument 2

Argument 3

··
·

Call 2

Argument 1

Argument 2

Argument 3

Tag 2

Tag 1

· · ·

Tag N

Input Layer Embedding and Convolution
Layers

Fully Connected
Layers

Output layer

Tag explanation

Figure 4.6: CNN for tag prediction: The first convolution captures system calls with their arguments, the second convo‐
lution summarizes multiple calls and the last layer returns tag probabilities. Figure reproduced from Pirch et al. [210].

4.3.2 Tag Learning and Prediction

For the next stage of TagVet, we require a machine-learning model that predicts tags for a
given behavior. We refer to this model as a surrogate model as it mimics the original tagging
process. While several approachesmight be applicable for learning to predict tags, we employ
the CNN from the Damd system due to the meaningful explanations that were extracted
from it and due to the fact that it can be precisely tailored to the problem at hand.

Convolution of system calls. The network input consists of a padded sequence of
tokens reflecting systemcalls and arguments. Hence, we compose the first convolutional layer
of m1 different filters of size t + 1 which are slid over the input, such that they process a
complete system call with its argument at a time (Figure 4.6, left). To provide vector inputs
for this convolution, we utilize an embedding layer which is also optimized during training.
The second convolutional layer hasm2 filters andperforms convolutions on the output of the
first layer (Figure 4.6,middle). Hence, this layer infers dependencies betweendifferent system
calls and captures broader patterns in malware behavior. Since the size of this convolution
depends on the input length we employ a max-pooling layer that maps the output of the
second convolutional layer to a vector of sizem2. This vector is finally fed to a fully-connected
layer that returns probabilities for the tags of the input sample (Figure 4.6, right).

67

4.3.3 Generating Explanations

Once a surrogate model has been trained, we are able to apply techniques of explainable ma-
chine learning to interpret its prediction process and unveil behavior associatedwith the tags.
As the input tokens correspond to system calls and arguments, this process enables us to pin-
point behavior relevant for specific tags as for the Damd system. Following the insights of
Chapter 3, we use LRP to compute the relevance scores in our approach and normalize the
relevance scores to lie in the interval [−1, 1].

As an example, Table 4.4 shows a simplified explanation generated for the behavior tag
„creates process with hidden window” assigned by the VMRay Analyzer. The argument value
create_suspended of the argument creation_flags that belongs to the system call proc_create ob-
tains the highest relevance, as it is typically used to create a process for a backgroundwindow.
Other highlighted tokens, e.g. sw_hide or show_window, also fit perfectly to the tag.

Table 4.4: Explanation snippet for behavior tag “Creates process with hidden window” assigned from the VMRay analyzer.

Id System Call and Arguments Id Argument Value

0 proc_create

1 symbol_name 2 createprocess

3 creation_flags 4 create_suspended

5 show_window 6 sw_hide

7 success 8 true

Aggregating behavioral patterns The tokens with the strongest influence alone
can be meaningless without the surrounding context. Imagine, for example, that the most
relevant token for a tag corresponds to the argument value “true”. As a remedy, we propose
an aggregation scheme for the explanations of TagVet, tailored to the context of program
behavior. To represent the context of a token, we use a notation inspired by the Python
programming language that builds onnamedarguments. For each relevant token,we identify
the related system call and then compose an explanation describing this call with a named
argument. As an example, for the snippet in Table 4.4, we write

proc_create(in:creation_flags=“create_suspended”),

indicating that the relevant token create_suspendedbelongs to the systemcall proc_create. The
prefix in: denotes an input argument whereas out: signifies a return value. To generate a
behavioral pattern from such calls, we compute the surroundings of the 10 most relevant
tokens in every sample and count their occurrences in the entire dataset. If multiple relevant

68

tokens belong to the same function call, we expand the aggregation accordingly. Then, we
average the relevance values of the single aggregations and sort them by their occurrence in
descending order to obtain behavioral patterns that encapsulate the entire execution log.

Evaluation We evaluate the effectivity of TagVet in a series of experiments with a
dataset comprised of real-world malware. In particular, we explore how our method learns
to predict tags and whether its explanations help to understand the underlying malware be-
havior. To this end, we first present a quantitative evaluation of our approach and then qual-
itatively discuss four case studies.

The dataset contains malware from the VirusShare repository [227] where we focus on
samples that target theWindows platform. In particular, we retrieve a recent subset of 65,536
samples and extract all valid PE files, resulting in 6,598 malware samples. Each of these sam-
ples is then labeled by multiple virus scanners and we use AVClass [239] to determine their
family labels. As we intend to simulate the vetting process in practice, we filter out very small
families with less than 10 samples, resulting in 5,217 malware samples from 71 families. Fi-
nally, we execute each sample in the VMRay Analyzer sandbox [287] with simulated user
traces and internet connectivity to monitor as much malicious behavior as possible.

Malware tags We consider three types of tags for our experiments: First, we use the
family labels assigned by AVClass as family tags. Second, the VMRay Analyzer comes with
60 predefined threat indicators that are matched during monitoring and result in sandbox
tags, such as “creates process with hidden window”. Third, we conduct a behavior-based clus-
tering similar to Rabadi and Teo [216] to group similar reports into clusters, such that the
difference between clusters is large. To employ clustering algorithms, it is necessary to define
a distance metric between two behavior reports in our setup. Similar to Rieck et al. [222] we
use tuples of the form (function call, argument) and count their occurrences in each report
to obtain a vector representation of each log in a high dimensional vector space. Comparing
multiple clustering algorithms on the data we find that the complete-linkage clustering [71]
performs best in our experiments. To calibrate the algorithm in terms of the optimal number
of clusters, we employ the Mean Silhouette Score [231] and the Adjusted Rand Index [129]
as performance metrics which both assign a score between zero and one to a given partition-
ing of the data. Figure 4.7 shows both metrics for a different number of clusters. The opti-
mal number of clusters can be found using the „Elbowmethod”, i.e. searching for the point
where small gains in performance are no longer worth separating the data further, and corre-
sponds to 30 clusters in our case.

69

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Number of clusters

A
dj
us
te
d
R
an
d
In
de
x

0

0.1

0.2

0.3

0.4

0.5

M
ea
n
Si
lh
ou

et
te
C
oe
ffi
cie

nt

Adjusted Rand Index
Mean Silhouette Score

Figure 4.7: Mean Silhouette Coefficient and Adjusted Rand Index for different clusterings. The dashed line corresponds
to 30 clusters that were chosen according to the Elbow method.

SetupofTagVet After consolidation, our dataset comprises 5,217 sequenceswith 4,241
unique tokens. We train the CNNmodel on this data using an embedding dimension of 128
and a fixed number of 21 system call arguments. The filter sizes of the two convolutional
layers are 21 and 5, respectively, and we use 64 filters for each layer.

4.3.4 Quantitative Evaluation

We start our evaluation by investigating the prediction performance of TagVet and the
quality of the generated explanations. For these experiments, we split our dataset into a train-
ing, validation, and test partitionusing 80%, 10%, and 10%of the data, respectively. We train
the CNN on the training data and use the validation partition to calibrate all model parame-
ters. The final model is then applied to the (unseen) test data. This procedure is repeated five
times, and the performance is averaged.

Prediction performance We measure the prediction performance of TagVet using
three standard metrics introduced in Section 2.1, namely the accuracy the area under the
ROC curve, which describes the relation between true-positive and false-positive predictions
and the area under precision-recall curve that provides a view on the precision and recall of
our approach. Thus far, we considered these metrics only for binary classification problems,
however we face a multi-class prediction problem in our setup since one malware sample can
have multiple tags. To this end, we calculate the metrics for every output class separately
and compute a weighted average over the results. That is, tag classes that occur often have a
proportionally higher weight in the final score than those appearing rarely.

70

Table 4.5: Prediction performance of TagVet. All performance metrics are averaged over the tag classes.

Tag Class # Tags Accuracy AUC (ROC) AUC (PR)

Sandbox 60 0.97± 0.002 0.99± 0.001 0.98± 0.002
Family 71 0.94± 0.007 0.96± 0.007 0.85± 0.015
Clustering 30 0.92± 0.019 0.99± 0.004 0.95± 0.013

Table 4.5 shows the prediction performance of TagVet for each tag class. We observe
that the CNN can successfully predict the different tags for all types with high accuracy. The
best results are achieved for the sandbox tags, likely because these are directly derived from
the behavior monitored in the sandbox. The family and clustering tags, on the other hand,
also yield a strong accuracy and justify the usage of explainable learning in our approach.

Explanation quality To evaluate the explanations generated by TagVet, we use the
descriptive accuracy (DA) and thedescriptive sparsity (DS)defined in Section3.2. InFigure 4.8
we present the averaged scores for all tag classes, where we choose the pad token for the re-
moval operation when computing DA. The DA score drops quickly for all tag classes, for
example, removing the top 50 features reduces the accuracy by 16.7%, 22.4% and 14.4 % for
the clustering, family and sandbox tags. Considering the large number of different tags and
that features may only be important for a fraction of the classes, this result indicates a high
quality of the explanations. Moreover, we find that the descent in the curve for the VTI rules
is not as steep as for the other ones. We conjecture that this effect stems from the more com-
plex tagging process, as one sample can be assigned multiple sandbox tags. For the DS, we
observe that all curves have an extremely steep rise close to zero indicating that more than
90 % of the features are irrelevant and only a few important ones form the explanations.

0 1,000 2,000

0.4

0.6

0.8

1

Removed features

A
D
A

0 0.1 0.2
0

0.2

0.4

0.6

0.8

1

Interval size

M
A
Z

Clustering
Families
VTI Rules

Figure 4.8: Average descriptive accuracy and Mass around Zero of TagVet for the different tag classes.

71

4.3.5 Qualitative Evaluation

The previous experiments demonstrate the quality of the learned model, yet the generated
explanations need to also be sensible from the practitioner’s perspective. We therefore per-
form four qualitative case studies to verify the semantic coherence of the extracted patterns
with human expectations. Although it would be possible to apply the Prof scheme to select
explanations, it is sufficient to consider the explanation of malware families whose behavior
is known and behavior tags that correspond to actions we can link to the reports in order to
evaluate the explanation quality in this setup.

Sandbox tags As the first case study, we inspect random samples of behavioral patterns
for the 60 sandbox tags. We observe that all patterns align well with the names of the under-
lying threat indicators and a clear relation between behavior and the tag semantics. Table 4.6
shows an example for the tag “attempts to connect to unavailable TCP servers”. As expected,
the tag is supported by the socket connection function (line 1) in combination with the un-
successful invocation attribute (line 3), resulting in a concise summary of the threat indicator
matched by the sandbox.

Table 4.6: Behavioral pattern for the sandbox tag “Attempts to connect to unavailable TCP servers”.

Id Tokens in context

1 sck_connect(*)
2 sck_connect(in:post_symbol_name=“connect”)
3 sck_connect(out:success=“false”)
4 sck_connect(in:remote_port=“*”)

Family tags Regarding the malware families, we observe much more specificity in the
explanations. Thismakes sense because generic behavioral patterns such as accessing external
IP addresses are occurring across different families and, therefore, are not useful for their
explanation. In this case study, we examine the Fareit malware family, for which Table 4.7
shows the behavior explanation. We find that creating a windowwith windprocparameter=0as
an argument appears among the top tenmost relevant features in 79 % of the explanations of
the family’s samples. Also, 78 % of the Fareit samples sleep for exactly 25 s, whereas instances
from the Autoit malware family, for example, typically sleep only for 750ms. Judging by
the steep drop in accuracy when removing these features (see Figure 4.8), we conclude that
the rather detailed behavioral patterns are characteristic for specific malware families and are
indeed suitable candidates for behavioral detection rules.

72

Table 4.7: Behavioral pattern for the malware family Fareit.

Id Tokens in context

1 wnd_create(in:wndproc_parameter=“0”)
2 wnd_create(in:width=“320”)
3 sleep(in:milliseconds=“25000”)
4 sleep(out:milliseconds_text=““25000 milliseconds (25.000 seconds)”)
5 wnd_create(in:class_name=“t__304124810”)

Cluster tags As the final category, we examine the explanations for tags that were gen-
erated by our clustering strategy. By a manual inspection, we observe that the overlap be-
tween clustering tags and family tags is high, which indicates a successful clustering proce-
dure. However, we also find a few behavioral patterns that deviate from the respective fami-
lies. Table 4.8 shows the output for cluster #15, which contains system calls for reading out
environment variables and sending an HTTP request to “ipv4bot.whatismyipaddress.com”.
Interestingly, the presented tokens are not identical to the ones from the respective malware
family but correspond to it semantically: TheGandcrabmalware, that constitutes the largest
number of samples in cluster #15, scans the user environment and determines its IP address
when executed. Furthermore, we inspect some reports from that cluster to see whether the
wildcard in the file system path conceals relevant information. This is not the case as the re-
spective function call occurs but the wildcard only replaces an MD5 hash value in all of the
inspected files.

Table 4.8: Behavioral pattern for the cluster #15.

Id Tokens in context

1 env_get(in:symbol_name=“getenvironmentvariable”)
2 file_create(in:file_name_orig=“c:\users \%USERNAME%\desktop*.exe”)
3 str_len(in:string=“pridur”)
4 file_create(in:file_name=“c:\users \%USERNAME%\desktop*.exe”)
5 open_http_request(in:url=“ipv4bot.whatismyipaddress.com/*”)
6 open_connection(in:server= “ipv4bot.whatismyipaddress.com”)

Tagging inconsistencies In addition, we investigate how tag explanations enable hu-
man analysts to reason about the quality of tags. In this final case study, we examine tagging
inconsistencies between the family and behavior tags. That is, finding cases in which for
example one family tag is split across multiple behavioral clusters or vice-versa. Analyzing
the explanations from the CNN operating on behavior reports can then give evidence about
the discrepancies between behavioral tags and the ones generated using different analyses.

73

For instance, anti-virus products create family tags based on various sources of information,
including file metadata and static analysis. Hence, we expect some family explanations to
contain static artifacts in their explanations when malware cannot be discriminated from a
behavioral perspective alone.

Through a manual analysis of multiple family explanations we find this to be the case for
the AutoIt family. The origin of this family name refers to a Windows scripting language
which suggests that the family tagging process is likely based on malware being written in
that language. If this is the case, however, this would not be directly observable in behav-
ioral reports since they do not contain information about the programming language. The
following two findings support this hypothesis. First, the Autoit family explanation in Ta-
ble 4.9 shows that the CNN relies on an artifact for correct classification. Concretely, the
window creation function in line 5 contains the family name in one of its arguments. Scan-
ning the explanation corpus for this value, we find that it is of high relevance when training
the CNN to predict family tags but never occurs in explanations for behavior tags.

A second finding is that the 136AutoIt samples are scattered across 15 behavioral clusters.
The explanation for the cluster with the largest number ofAutoIt samples (44/136) is shown
in Table 4.10 and indeed contains some related behavior. According to the cluster explana-
tion, loading the functions “VarSub”, “VarMod” and “VarDiv” from a dynamically linked
library accounts for three of the top five most relevant features and is present in more than
99 % of the explanations. These functions are used for basic arithmetic operations, are part
of theWindows API (oleauto.h) and are internally used by theAutoIt language in version 3
which coincides with the artifact observed in Table 4.9. Yet, the functions are not exclusively
available to this scripting engine and hence might be used by other malware families as well.
Furthermore, the AutoIt samples comprise only 14.8 % of all samples in the analyzed cluster
and explanations for other clusters with AutoIt samples contain no relatable information at
all. We conclude from these weak behavioral indicators and the lack of explanation coher-
ence between this family and the related clusters that TagVet is able to give evidence for
reasoning about whether certain family tags are sensible from a behavioral perspective.

Table 4.9: Behavioral pattern for the malware family AutoIt.

Id Tokens in context

1 sys_sleep(in:milliseconds=750)
2 sys_sleep(out:milliseconds_text= “750 milliseconds (0.750 seconds)”)
3 wnd_create(in:wnd_proc_parameter=0)
4 sys_sleep(in:post_symbol_name=“settimer”)
5 wnd_create(in:window_name=“autoit v3”)

74

Table 4.10: Behavioral pattern for the cluster #28.

Id Tokens in context

1 wnd_create(in:wnd_proc_parameter=0)
2 mod_get_proc_address(in:module_name= “c:\windows\syswow64\user32.dll”)
3 mod_get_proc_address(in:function=“VarSub”)
4 mod_get_proc_address(in:function=“VarMod”)
5 mod_get_proc_address(in:function=“VarDiv”)

Our findings demonstrate the utility of our approach: Depending on the particular tags
(sandbox, family, or clustering), only those features are identified that are relevant in the par-
ticular context. As a result, a cluster only partially overlapping with amalware family yields a
different behavioral pattern and thus helps to understandwhat characteristics the tags reflect.

4.4 RelatedWork

In the following we review related work in the context of the enhancement ofmachine learn-
ing models in security by explanations and the dynamic analysis of malicious software.

Enhancingsecuritymodelswithexplanations Explainable learninghasbeen adapted
tomultiple learningmodels in security context in recent years. Among thefirst, Arp et al. [19]
used the weights of a linear classifier to understand predictions for the detection of Android
malwar. Han et al. [114] propose DeepAID to improve and explain anomaly detection sys-
tems based on neural networks. In a similar fashion, Wei et al. [299] introduce the xNIDS
framework to respond to network intrusion detections based on saliency scores of the pre-
dictions. In the context of Android malware, explainable machine learning has been used to
investigate the deteriorating performance of detection systems over time [59, 312], also called
concept drift, and to develop general sanity checks for the explanations [89]. As a final exam-
ple, Drichel et al. [78, 79] showed that detectors for domain generation algorithms, a specific
approachusedbymalware authors to establish a connection to command and control servers,
contain spurious correlations and therefore establish a false sense of security.

Malware Analysis and Tags Techniques for malware analysis can be roughly cate-
gorized into static and dynamic approaches. The former category comprises all techniques
that inspect malicious code without executing it [e.g., 125, 198, 209, 246]. As static analysis
suffers from inherent limitations [see 193], dynamic approaches need to complement it and
expose functionality only observable at run-time [e.g., 75, 84, 152, 168, 216]. Several static

75

and dynamic approaches can be utilized to generate tags for malware automatically. For ex-
ample,methods for clustering are a common andwidely used tool for assigning cluster tags to
malware files [e.g., 32, 138, 208, 223]. Similarly, information from file headers andmetadata
provides a valuable source for generating static tags [e.g., 298, 301].

Another branch of malware research has been concerned with methods for deriving fam-
ily tags from anti-virus labels. Since these labels are notoriously inconsistent among virus
scanners, these approaches apply different strategies for normalizing and consolidating the
labels [e.g., 130, 131, 239, 240]. Recently, this strain of research has been further expanded
withmethods for deriving tags for general malware categories [240], tagging specific capabil-
ities [215] and predicting functionality using threat intelligence [232]. Despite the breadth
of this prior work, however, the retrospective explanation of tags has not been considered in
malware research so far. Most tagging methods are black-box systems and remain opaque to
the practitioner.

76

5
From Explanations to Unlearning

The previous chapters of this thesis demonstrated the remarkable prediction performance of
neural networks in different setups. Analyzing the explanations, however, we also saw that
they oftentimes rely on artifacts for their decisions, i.e. features that are unrelated to the
learning task. This effect is unsatisfying as it allows adversaries to circumvent the classifier
relatively easy, for example. Also, if the provider of a machine learning service decides to
show customers not only the classification result but also an explanation to foster trust in the
underlying system, the artifacts will be revealed to the users. This exposure can also affect
sensitive information that is present in learning models nowadays. Carlini et al. [46] show,
for example, that the Google text completion system contains credit card- and social security
numbers that have been memorized from personal emails during training.

Removing such defects froma learningmodel is a challenging task that requires to partially
revert the learningprocess. In the absenceof specificmethods, the only option is to retrain the
model from scratch, which is costly and only possible if the original data is still available. As
a remedy, methods formachine unlearning have been proposed recently [e.g. 38, 43]. These
methods are capable of deleting data points in retrospection and thereby enable to mitigate
privacy leaks and comply with removal requests from users under legislature like the General
Data Protection Regulation (GDPR) or the California Consumer Privacy Act (CCPA).

77

In this chapter we take the viewpoint of a machine learning service provider who has to
deal with the removal of privacy leaksmanifested not only in isolated data points but over the
entire dataset. When training on content of social media, sensitive data is often distributed
across several data instances. The leaked home address of a celebrity, for example, may be
shared in thousands of posts and its removal requires substantial changes to the model struc-
ture. Existing approaches for unlearning [e.g. 38, 197] are inefficient in these cases, as they
operate on data points only: First, a runtime improvement can hardly be obtained over re-
training when the changes are not isolated and larger parts of the data need to be corrected.
Second, removing multiple data points reduces the fidelity of the corrected model and thus
is not a viable option in practical scenarios. Consequently, unlearning should not be limited
to removing data points, but allow corrections at different granularity of the training data,
such as fixing leaks in features and labels individually.

To address these limitations, we propose the first method for unlearning features and la-
bels from a learning model in this chapter. After formulating a mathematical framework
for the unlearning problem in Section 5.1 we derive two closed-form update strategies in
Section 5.2. As a theoretical concept for the success of unlearning we introduce the idea of
certified unlearning, a strong mathematical guarantee for information removal building on
certified data removal [110, 197] and differential privacy [51, 82] in Section 5.3. We demon-
strate the applicability of the theoretical insights in Section 5.4 when removing features from
a Logistic Regression classifier in a certified way. Although our unlearning guarantees can-
not be realized for models with non-convex loss functions, such as deep neural networks, we
demonstrate the efficacy and speed of our approach in case studies on unlearning unintended
memorization from language models and label poisoning in computer vision. Finally, we re-
view related work on machine unlearning approaches in Section 5.5.

StochasticAnalysisofSharding Tobetter understand theneed for closed-formup-
dates on model parameters, we examine current sharding strategies and investigate the cir-
cumstances under which they reach their limits. Bourtoule et al. [38] propose an unlearning
method with the core idea to train separate models on distinct parts of training data. While
the authors discuss limitations of their approach like performance degradation, we perform
a stochastic analysis to find upper bounds for the number of affected data points at which
sharding becomes as efficient as retraining.

In this context, we considerm data instances to unlearn which are uniformly distributed
across s shards. Let p(m) denote the probability that all shards contain at least one of these
sampleswhich leads to theworst-case scenario of having to retrain all shards. Since calculating

78

0 50 100 150 200
0

0.25

0.5

0.75

1

m

p(
m
)

S = 5
S = 10
S = 20
S = 30

Figure 5.1: Probability of all shards being affected by unlearning for varying number of data pointsm and shards S.

p(m) as stated above is difficult, we reformulate the task to solve an equivalent problem: We
seek the probability p̂k(m) that at most k shards remain unaffected by any sample. We set
k = s such that p̂s(m) indicates the probability that any combination of i ∈ {1, . . . , s}
shards are unaffected. If this probability is zero there are no unaffected shards. Hence, this
corresponds to the inverse of our target probability, p(m) = 1− p̂s(m).

To calculate p̂s(m), we first determine the probability of exactly i shards to remain unaf-
fected. In general, there are (s − i)m combinations to distribute m samples on the dataset
excluding i shards. Since there are

(s
i

)
possible ways to select the i shards to be left out, the

total number of combinations is given by
(s
i

)
(s− i)m. However, we cannot simply sum these

terms up for different values of i since the unaffected shards in the combinations partly over-
lap. For example, a distribution of samples across 2 of 20 shards would be counted three
times: One time for the combination of the two affected shards and one time for each single
shard. To account for this, we apply the inclusion-exclusion principle and finally divide the
adjusted term by the number of combinations including all shards to obtain

p̂s(m) =

∑s
i=1(−1)i+1

(s
j

)
(s− i)m

sm
.

Figure 5.1 shows the evolution of p(m) andwe see that the probability quickly reaches one
even for low numbers of affected samples. Since the probability only depends on the number
of shards and samples to unlearn and not on the size of the dataset, we can conclude that
sharding is inefficient when there are many unlearning requests. This essentially motivates
our approach using closed-form updates on model parameters.

79

5.1 A Framework forMachine Unlearning

To derive a mathematical formulation of our update strategy, we recall that the optimal pa-
rameters θ∗ of a learning model can be found by minimizing the regularized empirical risk,

θ∗ = argmin
θ

Lb(θ;D) = argmin
θ

n∑
i=1

ℓ(zi, θ) + λΩ(θ) + bTθ, (5.1)

where Ω a common regularizer as introduced in Chapter 2 and b ∈ Rm is a random vector
sampled from a given distribution. For conventional learning, this vector is set to zero and
can be ignored. For realizing certified unlearning, however, it enables to add a small amount
of noise to the optimization outcome, similar to differentially private learning [82, 83]. We
introduce this technique later in Section 5.3 and omit the subscript in Lb for now.

PerturbingDataPoints Webegin the design of our approach by asking a simple ques-
tion: Howwould the optimal model θ∗ change, if only one data point z had been perturbed
by some change δ? Replacing z by z̃ = (x+ δ, y) leads to the new optimal model:

θ∗z→z̃ = argmin
θ

L(θ;D) + ℓ(z̃, θ)− ℓ(z, θ). (5.2)

However, calculating the newmodel θ∗z→z̃ exactly is expensive as it requires to solve the prob-
lem in Equation (5.1) again. Instead of replacing the data point z with z̃, we can also up-
weight z̃ by a small value ε and down-weight z accordingly, resulting in the following adjusted
problem formulation

θ∗ε,z→z̃ = argmin
θ

L(θ;D) + εℓ(z̃, θ)− εℓ(z, θ) (5.3)

and we notice that Equations (5.2) and (5.3) are equivalent for ε = 1.

As a result, we do not need to explicitly remove a data point from the training data but
can revert its influence on the learning model through a combination of up-weighting and
down-weighting. It is easy to see that this approach is not restricted to a single point. We
can define a set of points Z as well as their perturbed versions Z̃ to formulate the following
optimization problem

θ∗ε,Z→Z̃ = argmin
θ

L(θ;D) + ε
∑
z̃∈Z̃

ℓ(z̃, θ)− ε
∑
z∈Z

ℓ(z, θ). (5.4)

80

This generalization enables us to approximate changes on larger parts of the training data.
Instead of solving the problem in Equation (5.4), however, we formulate the optimization
as an update of the original model θ∗. That is, we seek a closed-form update Δ(Z, Z̃) of the
model parameters, such that

θ∗ε,Z→Z̃ ≈ θ∗ + Δ(Z, Z̃), (5.5)

where Δ(Z, Z̃) ∈ Rm affects only the weights necessary for unlearning. We show in Sec-
tion 5.1 that this update step can be efficiently computed using first-order and second-order
derivatives. If Z̃ = ∅ in Equation (5.4), our approach also yields updates to remove data
points similar to prior work [110, 150].

Unlearning Features and Labels Equipped with a general method for updating a
learningmodel, we proceed to introduce our approach for unlearning features and labels. To
this end, we expand our notion of perturbations and include changes to labels by defining

z̃ = (x+ δx, y+ δy),

where δx modifies the features of a data point and δy its label. By specifying different pertur-
bations Z̃, we can now realize several unlearning tasks with closed-form updates.

Replacing features As the first type of unlearning task, we consider the task of cor-
recting features in a learning model. This task is relevant if the content of some features
violates the privacy of a user and needs to be replaced with alternative data. As an example,
personal names, home addresses, or other sensitive information might need to be removed
after a model has been trained on a corpus of emails. Similarly, in a credit scoring system,
the race, gender or other biasing features might need to be replaced with neutral content.
For a set of features F ⊂ {1, . . . , d} and their new values V, we define perturbations on the
affected points Z by

Z̃ =
{
(xf= v, y) : (x, y) ∈ Z, (f, v) ∈ F× V

}
,

where xf= v denotes the datapoint x where dimension f is set to the value v. For example,
a credit card number contained in the training data can be blinded by a random number
sequence in this setting. It is noteworthy that the values V can be adapted individually for
each data point in the definition above , so that fine-grained corrections become possible.

81

Replacing labels As the second type of unlearning task, we focus on correcting labels.
This form of unlearning is necessary if the labels captured in a model contain unwanted or
inappropriate information. For example, generative language models are oftentimes trained
to predict the next word given a large text corpus. Therefore, the training text is used as input
features (preceding tokens) and labels (target tokens) [105, 267]. Hence, defects can only be
eliminated if labels can be unlearned as well. For the affected points Z and the set of new
labels Y, we define the corresponding perturbation set for this unlearning task by

Z̃ =
{
(x, y) ∈ Zx × Y

}
,

where Zx corresponds to the data points in Zwithout their original labels. The new labels Y
can also be individually selected for each data point, as long as they come from the domainY ,
that is,Y ⊂ Y . Note that the replaced labels and features can be easily combined in one set of
perturbations Z̃, so that defects affecting both categories can be corrected in a single update.
In Section 5.4, we demonstrate that this combination can be used to remove unintended
memorization from generative language models with high efficiency.

Revoking features Based on appropriate definitions ofZ and Z̃, our approach enables
to replace the content of features and thus eliminate privacy leaks by overwriting sensitive
data. In some scenarios, however, it might be necessary to even completely remove features
from a learning model—a task that we denote as revocation. In contrast to the correction
of features, this form of unlearning poses a unique challenge: The revocation of features re-
duces the input dimension of the model. While this adjustment can be easily carried out
through retraining with adapted data, constructing a model update as in Equation (5.5) be-
comes tricky.

To address this problem, let us consider a model θ∗ trained on a dataset D. If we remove
some features F from this dataset and train the model again, we obtain a new optimal model
θ∗−F with reduced input dimension. By contrast, if we set the values of the features F to
zero in the dataset and train again, we obtain an optimal model θ∗F=0 with the same input
dimension as θ∗. These twomodels are equivalent for a large class of learningmodels, includ-
ing several neural networks as the following lemma shows.

Lemma 1 For learning models processing inputs x using linear transformations of the form
θTx, we have θ∗−F ≡ θ∗F=0.

Proof. It is easy to see that it is irrelevant for the dot product θTx whether a dimension of x

82

is missing or equals zero in the linear transformation

θT−Fx =
∑
k:k/∈F

θkxk =
∑
k

θk1{k /∈ F}xk = θTF=0x.

As a result, the loss ℓ(z, θ−F) = ℓ(z, θF=0) is identical for every data point z. Hence, L(θ;D)

is also equal for both models and thus the same objective is minimized during learning, re-
sulting in equal model parameters.

Lemma 1 enables us to erase features from many learning models by first setting them to
zero, calculating the parameter update, and then reducing the input dimension of themodels
accordingly. Concretely, to revoke the featuresF from a learningmodel, we first locate all data
points where these features are non-zero with

Z =
{
(x, y) ∈ D : xf ̸= 0, f ∈ F

}
.

Then, we construct corresponding perturbations so that the features are set to zero, i.e.,

Z̃ =
{
(xf=0, y) : (x, y) ∈ Z, f ∈ F

}
.

Finally, we adapt the input dimensionby removing the affected inputs of the learningmodels,
such as the corresponding neurons in the input layer of a neural network.

5.2 Update Steps for Unlearning

Our approach rests on changing the influence of training data in a closed-form update. In
the following, we derive two strategies for calculating this update. The first strategy builds
on the gradient of the loss function and thus can be applied to any model with differentiable
loss. The second strategy incorporates second-order derivatives which limits the application
to loss functions with an invertible Hessian matrix.

First-Order Update Recall that we aim to find an update Δ(Z, Z̃) that we can add to
our model θ∗ for unlearning. If the loss ℓ is differentiable, we can compute an optimal first-
order update as follows

Δ(Z, Z̃) = −τ
(∑

z̃∈Z̃

∇θℓ(z̃, θ∗)−
∑
z∈Z

∇θℓ(z, θ∗)
)

(5.6)

where τ is a small constant that we refer to as unlearning rate.

83

To derive the first-order update, let us recall the optimization problem for the corrected
learning model from Section 5.1:

θ∗ε,z→z̃ = argmin
θ

L(θ;D) + εℓ(z̃, θ)− εℓ(z, θ) (5.7)

= argmin
θ

Lε(θ;D),

where Lε(θ;D) is a combined loss function containing our update and the regularized loss
L(θ;D). If ε is small and ℓ is differentiable with respect to θ, we can approximate Lε(θ;D)

using a first-order Taylor series at θ∗ by

Lε(θ∗ε,z→z̃;D) ≈L(θ∗;D) + ε
(
ℓ(z̃, θ∗)− ℓ(z, θ∗)

)
+Δ(Z, Z̃) ·

(
∇θL(θ∗;D) + ε

(
∇θℓ(z̃, θ∗)−∇θℓ(z, θ∗)

))
.

Since θ∗ε,z→z̃ is a minimum of Lε(·;D), we have Lε(θ∗ε,z→z̃;D) < Lε(θ∗;D). Incorporating
this assumption in the Taylor series and using the condition that∇θL(θ∗;D) = 0, we now
arrive at

εΔ(Z, Z̃) ·
(
∇θℓ(z̃, θ∗)−∇θℓ(z, θ∗)

)
< 0.

As we have ε > 0, we can continue to focus on the dot product of the equation. For two
vectors u, v the dot product can be written as

u · v = ∥u∥∥v∥ cos(u, v),

where cos(u, v) is the cosine between the vectors u and v. The minimum of the cosine is−1
which is achieved when u = −v, hence we have

Δ(Z, Z̃) = −
(
∇θℓ(z̃, θ∗)−∇θℓ(z, θ∗)

)
This result indicates that∇θℓ(z̃, θ∗)−∇θℓ(z, θ∗) is the optimal direction tomove starting

from θ∗. The actual step size, however, is unknown andmust be adjusted by a small constant
τ yielding the update step defined above,

θ∗ε,z→z̃ = θ∗ − τ
(
∇θℓ(z̃, θ∗)−∇θℓ(z, θ∗)

)
.

Due to the linearity of the gradient, this derivation can be equally performed when multiple
points are affected by the unlearning step.

84

Intuitively, this update shifts themodel parameters from
∑

z∈Z ∇ℓ(z, θ∗) to
∑

z̃∈Z̃ ∇ℓ(z̃, θ∗)
where the size of the update step is determined by the rate τ. This update strategy is thus sim-
ilar to a gradient descent update step, however, it differs in that it moves the model to the
difference in gradient between the original and perturbed data, which minimizes the loss on
z̃ and at the same time removes the information contained in z.

The first-order update is a simple and yet effective strategy since the gradients of the loss
function ℓ can be computed inO(m) [207]. However, it involves a parameter τ that controls
the magnitude of the unlearning. In Section 5.4 we will see that the unlearning rate can be
calibrated using another metric that measures the sucess of unlearning.

Second-OrderUpdate Ifwe assume that ℓ is twice differentiable and strictly convex, we
can build on the concept of influence functions [64, 113] to define the SecondOrder update,
given by

Δ(Z, Z̃) = −H−1
θ∗

(
∇θℓ(z̃, θ∗)−∇θℓ(z, θ∗)

)
,

where H−1
θ∗ is the inverse Hessian of the loss at θ∗ as introduced in Example 5. To derive

this update, we recall that the optimality conditions of Equation (5.7) state that

0 = ∇L(θ∗ε,z→z̃;D) + ε∇ℓ(z̃, θ∗ε,z→z̃)− ε∇ℓ(z, θ∗ε,z→z̃).

If ε is sufficiently small, we can again apply a Taylor approximation series to obtain

0 ≈∇L(θ∗,D) + ε∇θℓ(z̃, θ∗)− ε∇θℓ(z, θ∗)

+ (θ∗ε,z→z̃ − θ∗) · ∇2L(θ∗,D)

+ ε∇2ℓ(z̃, θ∗)− ε∇2ℓ(z, θ∗).

Since we know that∇L(θ∗;D) = 0 by the optimality of θ∗, we can rearrange this solution
using the Hessian of the loss function, so that we get

θ∗ε,z→z̃ − θ∗ = −H−1
θ∗

(
∇θℓ(z̃, θ∗)−∇θℓ(z, θ∗)

)
ε, (5.8)

where we additionally drop all terms inO(ε). Diving by εwe can expres the solution in terms
of the influence of ε on the model and arrive at

∂θ∗ε,z→z̃

∂ε

∣∣∣
ε=0

= −H−1
θ∗

(
∇θℓ(z̃, θ∗)−∇θℓ(z, θ∗)

)
.

85

Thus, a linear approximation around θ∗ with ε = 1 yields the Second Order update

θ∗z→z̃ ≈ θ∗ −H−1
θ∗

(
∇θℓ(z̃, θ∗)−∇θℓ(z, θ∗)

)
.

Since all operations are linear, we can extend this update to multiple data points and finally
obtain the second-order update for our approach:

Δ(Z, Z̃) = −H−1
θ∗

(∑
z̃∈Z̃

∇θℓ(z̃, θ∗)−
∑
z∈Z

∇θℓ(z, θ∗)
)
. (5.9)

Note that this update does not require parameter calibrations, since the weighting of the
changes is directly derived from the inverse Hessian of the loss function. The second-order
update is the preferred strategy for unlearning on models with a strongly convex and twice
differentiable loss function that guarantee the existence ofH−1

θ∗ . Although, the update step
in Equation (5.9) can be easily calculated with common machine learning frameworks, the
computation involves the inverseHessianmatrix, which can be difficult to construct for large
learning models. In the following, we discuss some strategies that still allow to apply Second
Order updates for large learning models.

Calculating the inverse Hessian Given the model parameters θ ∈ Rm, forming
and inverting the Hessian requiresO(nm2 +m3) time andO(m2) space [150]. For models
with a small number of parameters, the matrix can be pre-computed and explicitly stored,
such that each subsequent request for unlearning only involves a simple matrix-vector mul-
tiplication.

To apply second-order updates for large learning models, like neural networks, we have
to avoid storing the Hessian matrix H explicitly and still be able to compute H−1v. To this
end, we rely on the scheme proposed by Agarwal et al. [11] for computing expressions of
the form H−1v. This scheme requires to only calculate Hv and avoids storing H−1. The
resultingHessian-Vector-Products (HVPs) allow us to calculateHv efficiently by making use
of the linearity of the gradient

Hv = ∇2
θL(θ

∗;D)v = ∇θ
(
∇θL(θ∗;D)v

)
.

If we denote first j terms of the Taylor expansion of H−1 by H−1
j =

∑j
i=0(I − H)i, we

can recursively define the approximation H−1
j = I + (I − H)H−1

j−1. Now, if |λi| < 1 for
all eigenvalues λi of H, we have H−1

j → H−1 for j → ∞. To ensure this convergence,
we add a small damping term λ to the diagonal of H and scale down the loss function by

86

Algorithm 1: Second Order parameter update
Input: model θ∗, loss functions L and ℓ, order o, unlearning rate τ, batch-size B, iterations m,

damping d, scale s, repetitions r
Output: Parameter update Δ(Z, Z̃)
Data: D,D′, Z, Z̃

1 g1 =
∑

z̃∈Z̃∇θℓ(z̃, θ∗), g2 =
∑

z∈Z∇θℓ(z, θ∗)
2 v = g1 − g2
3 if o == 1 then
4 Δ = −τv
5 else
6 Δ = 0
7 for i=1:r do
8 θnew = 0
9 for j=1:m do
10 batch = sample(D’, size=B)
11 hvp =∇θ

(
vT∇θL(batch, θ∗)

)
12 θnew = v+ (1− d)θnew − hvp/s

13 Δ = Δ+ θnew/r

14 return Δ

some constant which does not change the optimal parameters θ∗. We can then formulate the
following algorithm for computing an approximation ofH−1v: Given data points z1, . . . , zt
sampled fromD, we define the iterative updates

H̃−1
0 v = v,

H̃−1
j v = v+

(
I−∇2

θL(zi, θ
∗)
)
H̃−1

j−1v.

In each update step,H is estimated using a single data point and we can use HVPs to eval-
uate the appearing product term∇2

θL(zi, θ
∗)H̃−1

j−1v efficiently inO(m) as demonstrated by
Pearlmutter [207]. Averaging batches of data points further speeds up the approximation.
Choosing t large enough so that the updates converge and averaging r runs to reduce the
variance of the results, we obtain H̃−1

t v as our final estimate ofH−1v inO(rtm) of time.

The entire approximation procedure is clarified as pseudo-code inAlgorithm1 andwewill
see in Section 5.4 that we can compute an unlearning update for a recurrent neural network
with 3.3 million parameters in less than 30 seconds.

87

5.3 Certified Unlearning of Features and Labels

The machine learning service provider aims at reliably removing privacy issues and sensitive
data from the deployed learning models. The process should ideally build on theoretical
guarantees to enable certified unlearning, where the corrected model is stochastically indis-
tinguishable from the one created by retraining. In the following, we derive conditions under
which the second-order updates of our approach provide certified unlearning. To this end,
we build on the concepts of differential privacy [82] and certified data removal [110], and
adapt them to the unlearning task.

Let A be a learning algorithm that outputs a model θ ∈ Θ after training on a dataset
D, that is, A : D → Θ. Randomness included in A induces a probability distribution
over the output models in Θ. Moreover, we consider an unlearning method U that maps a
model θ to a correctedmodel θU = U(θ,D,D′)whereD′ denotes the dataset containing the
perturbations Z̃. The concept of ε-certified unlearning can then be defined as follows

Definition 7 Given some ε > 0 and a learning algorithm A, an unlearning method U is
ε-certified if

e−ε ≤
P
(
U
(
A(D),D,D′) ∈ T

)
P
(
A(D′) ∈ T

) ≤ eε

holds for all T ⊂ Θ,D, andD′.

This definition ensures that the log-likelihood to obtain a model using the unlearning
methodU and training a newmodel onD′ from scratch deviates at most by ε. Following the
work of Guo et al. [110], we define (ε, δ)-certified unlearning, a relaxed version of ε-certified
unlearning, as follows.

Definition 8 Under the assumptions of Definition 7, an unlearning method U is (ε, δ)-
certified if

P
(
U
(
A(D),D,D′) ∈ T

)
≤ eεP

(
A(D′) ∈ T

)
+ δ

and

P
(
A(D′) ∈ T

)
≤ eεP

(
U
(
A(D),D,D′) ∈ T

)
+ δ

hold for all T ⊂ Θ,D, andD′.

This definition allows the unlearning method U to slightly violate the conditions from
Definition 8 by a constant δ. Using the definitions above, it becomes possible to derive con-
ditions under which our model updates realizes certified unlearning.

88

Relation to Differential Privacy Our definition of certified unlearning shares in-
teresting similarities with the concept of differential privacy [82] that we highlight in the
following. First, let us recall the definition of differential privacy for a learning algorithmA:

Definition 9 Given some ε > 0, a learning algorithmA is said to be ε-differentially private
(ε-DP) if

e−ε ≤
P
(
A(D) ∈ T

)
P
(
A(D′) ∈ T

) ≤ eε

holds for all T ⊂ Θ and datasetsD,D′ that differ in one sample. While the difference in one
sample is oftentimes defined such that |D′| = |D| − 1 we use a variation where |D| = |D′|
but one sample has been replaced, a concept denoted as “bounded differential privacy” in
literature [73, 144].

We see that differential privacy is a sufficient condition for certified unlearning by simply
setting the unlearning method U to the identity function in Definition 7. That is, if we can-
not distinguishwhetherAwas trainedwith a point z or itsmodification zδ, we do not need to
worry about unlearning z later. Consequently, certified unlearning can be obtained through
DP, yet the learning model’s performance may suffer when enforcing strong privacy guaran-
tees [see 2, 51]. Later, we will see that the models obtained using our update strategies are
much closer toA(D′) in terms of performance compared to DP alone. In this light, certified
unlearning can be seen as a compromise between the high privacy guarantees of DP and the
optimal performance achievable by costly re-training.

A practical way to achieve DP for an optimization algorithmA, first proposed by Chaud-
huri andMonteleoni [50], uses the noise term b in Equation (5.1) to add noise to the optimal
parameters. Concretely, it can be shown thatA is differential private when b is distributed
according to the density ν(b) given by

ν(b) =
1
α
e−β∥b∥, (5.10)

where α is a normalization constant and β depends on the privacy budget ε. Due to the simi-
larity of certified unlearning andDPwe can employ similar approaches to guarantee certified
unlearning for our update strategies.

CertifiedUnlearningofFeaturesandLabels Toobtain certifiedunlearning guar-
antees for our approach, we make two basic assumptions on the employed learning algo-
rithm: First, we assume that the loss function ℓ is twice differentiable and strictly convex,
so thatH−1 always exists and the second-order update is applicable. Second, we consider an

89

L2 regularization in the optimization problem Equation (5.1), that is, the regularizer Ω(θ) is
given by 1

2∥θ∥
2
2. Both assumptions are satisfied by a wide range of learning models, for exam-

ple the logistic regression from Example 2 but do not hold for neural networks due to their
non-convex nature.

A helpful tool for analyzing the task of unlearning is the gradient residual∇L(θ;D′) for
a given model θ and a corrected datasetD′. For strongly convex loss functions, the gradient
residual is zero if and only if θ equalsA(D′) since in this case the optimum is unique. There-
fore, the norm of the gradient residual ∥∇L(θ;D′)∥2 reflects the distance of a model θ from
the one obtained by retraining on the corrected dataset D′. The gradient residual r of Lb is
given by

r = ∇Lb(θ;D′) =
n∑

z∈D′

∇ℓ(z, θ) + λθ+ b

and differs from the gradient residual of L only by b. Due to the randomness of bwe cannot
bound the gradient residual of Lb absolutely, however if we have an upper bound for L we
can use a confidence interval of the distribution of b, for example, to bound Lb statistically.
If we can further bound the difference between the outcomes of retraining and unlearning,
we can derive a probability distribution for b such that certified unlearning can be realized,
similar to Chaudhuri and Monteleoni [50] and Guo et al. [110]. The detailed proofs for
the following theorems are presented in Appendix A.1, for a deeper understanding for the
concepts from convex optimization that are applied in the proofs, we recommend the book
of Boyd and Vandenberghe [39].

Theorem 1 Assume that ∥xi∥2 ≤ 1 for all data points and the gradient ∇ℓ(z, θ) is γz-
Lipschitz with respect to z at θ∗ and γ-Lipschitz with respect to θ. Further let Z̃ change the
features j, . . . , j + F by magnitudes at most mj, . . . ,mj+F. IfM =

∑F
j=1mj the following

upper bounds hold:

1. For the first-order update of our approach, we have

∥∥∇L
(
θ∗Z→Z̃,D

′)∥∥
2 ≤ (1+ τγn)γzM|Z|

2. If the HessianHθ∗(z, θ) is γ′′-Lipschitz with respect to θ, we have

∥∥∇L
(
θ∗Z→Z̃,D

′)∥∥
2 ≤ γ′′

(Mγz
λ

)2
n|Z|2

for the second-order update of our approach.

90

Theorem 1 states an upper bound for the gradient residual produced by our update strate-
gies and thereby a first quantification of their quality. In general, we observe that the bounds
for the first- and second order updates are inO(n|Z|) andO(n|Z|2) respectively. In order to
obtain a small gradient residual norm the unlearning rate should be small, ideally in the order
of 1/nγ and the Lipschitz constants should be as small as possible aswell. Since ∥xi∥2 ≤ 1 we
havemj ≪ 1 if d is large and thusM acts as an additional damping factor for both updates
when changing or revoking features. For the second Order update, a stronger L2 regular-
ization with λ shrinks the gradient residual since the Newton step is exact for quadratic loss
functions.

As a next step, we bound the difference between retraining, i.e. applying A to D′, and
our unlearning strategies U . IfA(D′) is an exact minimizer of Lb onD′ with density fA and
U(A(D),D,D′) is an approximated minimum with density fU , then Guo et al. [110] show
that the difference between fA and fU for the model θ produced by U can be bounded using
the following theorem.

Theorem2 (Guo et al. [110]) LetU be anunlearningmethodwith a gradient residual rwith
∥r∥2 ≤ ε′. If the vector b is drawn from a probability distribution with density p satisfying
that for any b1, b2 ∈ Rd there exists an ε > 0 such that ∥b1−b2∥ ≤ ε′ implies e−ε ≤ p(b1)

p(b2) ≤
eε then

e−ε ≤ fU(θ)
fA(θ)

≤ eε

for any θ produced by the unlearning method U .

Theorem 2 allows us to proove certified unlearning by applying the bounds for the gra-
dient residual from Theorem 1 and finding a suitable density function. As it turns out, the
density ν(b) stated above in Equation (5.10) fulfils the properties required for Theorem 2.

Theorem 3 LetA be the learning algorithm that returns the uniqueminimumofLb(θ;D′)

and let U be an unlearning method that produces a model θU . If ∥∇L(θU ;D′)∥2 ≤ ε′ for
some ε′ > 0 we have the following guarantees.

1. If b is drawn from a distribution with density p(b) = e−
ε
ε′ ∥b∥2 then U performs ε-

certified unlearning forA.

2. If p ∼ N (0, cε′/ε)d for some c > 0 then U performs (ε, δ)-certified unlearning forA
with δ = 1.5e−c2/2.

Theorem 3 finalizes our theoretical insights regarding certified unlearning guarantees. As
a last modification, we adjust the update strategies to distribute the changes in Z̃ to multiple
update steps.

91

MultipleUnlearning Steps So far, we have considered unlearning as a one-shot strat-
egy. That is, all changes are incorporated in Z̃ before performing an update. However, The-
orem 1 shows that the error of the updates rises linearly with the number of affected points
and the size of the total perturbation. Instead of performing a single update, it thus becomes
possible to split Z̃ intoT subsets and conductT consecutive updates. In terms of run-time it
is easy to see that the total number of gradient computations remains the same for the first-
order update. For the second-order strategy, however, multiple updates require calculating
the inverse Hessian for each intermediate step, which increases the computational effort.

In terms of unlearning certifications, it is possible to extend Theorem 1 and show that the
gradient residual bound rises linearly after T update steps, which allows to compute certifi-
cation relatively easy.

Lemma 2 If the gradient residual of a single update step is bounded by C then the gradient
residual after T consecutive update steps is bounded by TC.

5.4 Applications

Equipped with a solid theoretical foundation of our update steps we test their performance
in practice. We firstly evaluate the removal of sensitive features in a setup where certified
unlearning is possible before moving to neural networks for image- and language processing
where assumptions like convexity and Lipschitz-continuity do not hold anymore.

5.4.1 Unlearning Sensitive Features

In our first unlearning scenario, we focus on the removal of sensitive features from learning
models with strongly convex loss functions. In particular, we consider the logistic regression
classifier introduced in Example 2 on real-world datasets. We employ datasets for spam fil-
tering [183], Android malware detection [19], diabetes forecasting [81] and prediction of
income based on census data [80]. An overview of the datasets and their basic statistics is
given in Table 5.1.

Table 5.1: Overview of the four datasets used throughout the experiments for unlearning sensitive features.

Spam Drebin+ Adult Diabetis

Data points 33,716 49,226 48,842 768
Features 4,902 2,081 81 8

92

We divide each dataset into a training and test set with a ratio of 80 % and 20 %, respec-
tively. To create a feature space for learning, we use the numerical features of the Adult and
Diabetis dataset as is, while for the Spam and Drebin+ datasets we extract bag-of-words fea-
tures. That is, we represent each email (malware) by the words (capabilities) it contains and
construct corresponding feature vectors [see 19, 183]. The Drebin+ dataset is smaller com-
pared to Chapter 3 since we use only features that appear in at least 0.1% of all datapoints
and remove duplicates that appear due to this procedure. Finally, we train logistic regression
models for all four datasets.

Sensitive features To gain insights on the features of the learning models, we can em-
ploy the Gradients explanation method due to its versatility. While we observe several fea-
tures with high weights in the models, we also discover sensitive information. For instance,
we identify several first and last names as well as postal zip codes in the features of the Spam
dataset. Similarly, we note that features likes martial status, sex and race in the Adult dataset
reflect problematic information potentially discriminating individuals. Although these fea-
tures may not appear to be a significant privacy violation at first glance, they lead to multiple
problems: First, if themodels are shared ormade public, these featuresmay reveal the identity
of individuals in the training data. Second, features like names probably represent artifacts
and thus bias spam filtering for specific individuals, for example, those having similar names
or postal zip codes. Third, features like sex and race may introduce a bias into the income
prediction that discriminates certain individuals.

Since twoof thedatasets are high-dimensional and contain sparse data (SpamandDrebin+),
while the other two are low-dimensional with dense feature vectors (Adult and Diabetis) we
introduce two setups for our unlearning experiments based on the insights obtained from
the explanations.

• For the high-dimensional datasets, we aim at removing (revoking) entire features (di-
mensions) from the learning models. In particular, we select dimensions associated
with personal names contained in the emails as sensitive features for the Spam dataset
and choose URLs extracted from the Android apps for the Drebin+ dataset.

• For the low-dimensional datasets, we focus on replacing selected feature values. For
the Adult dataset, we change the marital status, sex, and race of randomly selected
individuals. For the Diabetis dataset, we adjust the age, body mass index, and sex of
individuals. We replace the respective feature values with 0 to simulate the removal of
discriminatory bias from the models.

93

20 40 60 80 100 120

0

10

20

30

40

Selected features

A
ffe
ct
ed

po
in
ts
[%
]

Spam Drebin+ Adult Diabetis

20 40 60 80 100 120

0

2

4

6

8

Selected features

A
ffe
ct
ed

da
ta
[%
]

Figure 5.2: Affected data points and overall data when removing or changing features in the different datasets.

Figure 5.2 illustrates how these changes affect the different datasets when sampling 100
random removals as described above and averaging the results. We differentiate between the
affected datapoints and the total amount of affected data where the latter is defined as the
total number of features that are changeddividedby the total data, i.e. the number of features
times the number of datapoints. Removing features entirely impactsmany data points, while
replacing selected feature values affects only a few. This effect also depends on the size of the
datasets. To avoid a sampling bias in the selection of sensitive features, we stick with 100
random drawings of these feature changes for all four datasets and present averaged results in
the following.

Unlearning task Based on the type of sensitive features, we apply the different un-
learningmethods to the respective learningmodels. Technically, our approach benefits from
the convex loss function of the logistic regression model, which allows us to apply certified
unlearning as presented in Section 5.3. Specifically, it is easy to see that Theorem 3 holds
since the gradient andHessian of the logistic regression loss are bounded and thus Lipschitz-
continuous. It is difficult, however, to compute the concrete Lipschitz constants, therefore
we evaluate the unlearning guarantees of our approach in an empirical manner.

Efficacy evaluation We analyze the efficacy of unlearning using the gradient residual
norms of the methods. The average size of this norm after unlearning is presented in Fig-
ure 5.3 for the different approaches when varying the number of features to be removed or
replaced, respectively. The residuals increase with the amount of affected features, indicating
a growing divergence between unlearning and retraining. The steepness of this development
depends on the dataset and gradually reduces asmore features are remove or changed. Appar-
ently, the second-order update significantly outperforms all other methods in this scenario.

94

0 60 120
10−3

10−1

101

Features removed

G
ra
di
en
tR

es
id
ua
l

Spam

DP Finetuning First-Order Second-Order

0 60 120
Features removed

Drebin+

0 60 120
Features changed

Adult

0 60 120
Features changed

Diabetis

Figure 5.3: Efficacy (gradient residual) of the certified unlearning methods for varying number of affected features (Lower
values are better).

The gradient residual norms are an order of magnitude lower on the Spam, Drebin+, and
Diabetis dataset, regardless of the amount of affected features. Among the other unlearning
methods, no clear ranking can be determined in this experiment.

Fidelityevaluation Weevaluate the fidelity of the unlearningmethods using two tech-
niques: First, we investigate the difference in the loss between retraining and unlearning on
the test data for each unlearning request as proposed by Koh and Liang [150]. Figure 5.4
shows this comparison when removing or replacing 100 features, respectively. We observe
that the second-order update approximates the retraining very well, since the points are close
to the diagonal line, which represents the optimal baseline where unlearning is identical to
retraining. In contrast, the other methods cannot always adapt to the distribution shift, re-
sulting in larger differences.

−20 0 20 40
−20

0

20

40

Exact Diff. Loss

A
pp

ro
x.
D
iff
.L

os
s Adult

−20 0 20 40

−20

0

20

40

Exact Diff. Loss

Spam

DP Finetuning First-Order Second-Order

−4 0 4 8
−4

0

4

8

Exact Diff. Loss

Diabetis

−4 0 4 8
−4

0

4

8

Exact Diff. Loss

Malware

Figure 5.4: Difference in loss between retraining and unlearning with 100 affected features.

Second, we use the test accuracy of a model that provides certified unlearning to evaluate
the fidelity. To simulate a realistic application, we fix a privacy budget (ε, δ) in advance and

95

adapt the noise term b in relation to the amount of affected features. That is, the more fea-
tures are changed, the more we need to increase the noise on the model to achieve the same
guarantees. In particular, Theorem 3 states that if the gradient residual is bounded by β, the
noise term bmust be sampled from aGaussian normal distribution with variance σ, which is
given by

σ =
βc
ε
, where c =

√
2 log(1.5/δ) (5.11)

In the following, we select ε = 0.1 and δ = 0.01 as a privacy budget, which yields c ≈ 3.16.
We compute the bound β on the gradient residual by using the 100 feature combinations to
unlearn from the experiment above and choosing the largest residual that appears as β. Fi-
nally, we compute σ anddetermine the resulting test accuracy of the four datasets by sampling
10 different values forb and averaging the results. Aswe see in the following, this privacy bud-
get is strict and limits the amount of features that can be adapted due to decreases in model
performance. Thus, if a larger number of features needs to be removed, the privacy budget
must be increased at the cost of weakening the certification guarantees or themodel has to be
retrained from scratch at some point to incorporate the data changes.

The test accuracy of themodels is shown in Figure 5.5 for a varying number of removed or
replaced features, respectively. The accuracy reduces with the amount of affected features,
as the noise on the model weights is increased accordingly. While for the low-dimensional
datasets this reduction ismoderate,weobserve a strongdeclineoffidelity for thehigh-dimensional
data. This decline results from the privacy budget that requires a notable amount of noise to
be added to enable a certified removal of entire dimensions compared to the change of some
of them.

The second-order update shows again the best performance of all methods and remains
close to retraining if less than 60 features are changed or revoked. In contrast, the other
methods quickly drop in accuracy already when unlearning 20 or less features. An exception
is sharding: While the method provides the weakest performance on the high-dimensional
datasets due to instability in the majority voting, it is almost identical to retraining on the
low-dimensional datasets.

Sequential unlearning steps As discussed above, it can be advantageous to split up
the dataset perturbations into smaller portions to generate a smaller gradient residual at each
step. To evaluate this setting, we repeat the previous experiment but now perform the 100
feature removals in 10 steps, each removing 10 features. Figure 5.6 shows the comparison
between sequential and one-shot updates regarding the gradient residual norm and accuracy
on test data. In terms of accuracy, the sequential updates give only slight performance in-

96

0 60 120
50

75

100

Features removed

A
cc
ur
ac
y[
%]

Spam

DP Finetuning First-Order Second-Order Retraining SISA

0 60 120
50

75

100

Features removed

Malware

0 60 120

84

79

74

Features changed

Adult

0 60 120

70

62

55

Features changed

Diabetis

Figure 5.5: Fidelity (accuracy) of the certified unlearning methods for varying number of affected features (higher values
are better).

Diabetis Adult Spam Drebin+
2−5

20

25

G
ra
di
en
tR

es
id
ua
l

First-Order First-Order-Seq. Second-Order Second-Order-Seq.

Diabetis Adult Spam Drebin+

70

80

90

100

A
cc
ur
ac
y[
%]

Figure 5.6: Average accuracy after unlearning (in %) when removing 100 features at once or sequentially in 10 steps.

creases for both methods. For the gradient residual, however, we observe strong decreases
when applying the second-order update sequentially, especially for the Diabetis and Adult
dataset. This confirms the results of Theorem 1 empirically and presents a special working
mode of our approach. As pointed out in Section 5.3, this increase in privacy budget comes
with an increase in runtime for the second-order update: Performing 10 updates instead of
one increases the runtime by a factor 10 since the Hessian has to be re-calculated at each in-
termediate step.

Efficiency evaluation Finally, we evaluate the efficiency of the different methods in
terms of run-time. Table 5.2 shows the runtime on the Drebin+ dataset. We omit measure-
ments for the differential privacy baseline, as it does not involve an unlearning step. Despite
the low run-time of retraining, fine-tuning, our second-order update, and sharding reach
speed-up factors of 2×, 4×, and 6×, respectively. Our first-order update is even faster and
attains a speed-up factor of 90× since the other approaches operate on the entire dataset and
the first-order update considers only the corrected points.

97

Table 5.2: Average runtime when removing 100 random combinations of 100 features from the Drebin+ classifier.

Unlearning methods Gradients Runtime Speed-up

Retraining 1.2e7 6.82 s —
DP — — —
Sharding5 2.5e6 1.51 s 2×
Finetuning 3.9e4 1.03 s 6×

First-order 1.5e4 0.02 s 90×
Second-order 9.4e4 0.63 s 4×

For the second-ordermethod, we find that roughly 90 % of the runtime and gradient com-
putations are used for the inversion of theHessianmatrix. In the case of theDrebin+ dataset,
this computation is still faster than retraining the model. If the matrix is pre-computed and
reused for multiple unlearning requests, the second-order update reduces to a matrix-vector
multiplication and yields a notable speed-up, though at the cost of approximation accuracy.

Application to neural networks Finally, we employ a neural network to the four
datasets to evaluate the performance of our updates when strong convexity of the loss func-
tion and Lipschitz-continuity of the gradients do not hold any longer.

30 60 90 120
98

98.5

99

Features removed

A
cc
ur
ac
y[
%]

Spam

First-Order-NN Second-Order-NN Retraining-NN
First-Order-LR Second-Order-LR Retraining-LR

30 60 90 120
97

97.5

98

Features removed

Malware

30 60 90 120
84.5

85

85.5

Features changed

Adult

30 60 90 120
67

71

75

Features changed

Diabetis

Figure 5.7: Fidelity (accuracy) of neural network and logistic regression for varying number of affected features (higher
values are better).

In particular, we train a fully connected neural network with two hidden layers consisting
of 100 neurons for each of the datasets and remove or replace sensitive features using our
unlearning steps as described above. As the loss of the network is not convex, we cannot
use the gradient residual norm to determine its efficacy or calibrate the noise for certified
unlearning, as done for the logistic regression. Consequently, we drop the noise term from

98

the loss in this experiment for the neural network and the logistic regression. Still, we can
investigate the accuracy after unlearning to get a rough reference for the general performance
of our approach on neural networks in this scenario.
Figure 5.7 shows the accuracy of the neural network and the logistic regression on the

four datasets after unlearning. Both models perform very well in this scenario and enable
to unlearn 120 features without significant changes of the accuracy. For both models, the
accuracy drops by less than 1%point on all datasetswhen corrections are performedusing our
first-order and second-order update. This strong performance demonstrates the capability of
our approach for unlearning with high fidelity. As we shown in Section 5.4, however, when
theoretical guarantess are enforced, the decrease in accuracy is more pronounced as noise
needs to be added to the model parameters.

We also find that the neural network has a higher test accuracy compared to the logistic
regression on all datasets. The non-linear network is capable of better modeling the underly-
ing data and thus attains a more accurate prediction. However, the difference to the logistic
regression is marginal and remains below 5%. For three of the four datasets (Spam, Drebin+,
and Adult), it is even less than 1%. This result provides an important insight for the unlearn-
ing scenario: If privacy guarantees are necessary and a small degradation in performance can
be tolerated, the logistic regressionmodel is actually preferable to the neural network, despite
its inherent limitations.

5.4.2 Unlearning UnintendedMemorization

In our second unlearning scenario, we focus on removing unintended memorization from
language models. Carlini et al. [46] show that these models can memorize rare inputs in the
training data and exactly reproduce them during application. Concretely, they train a lan-
guage model on an unfiltered corpus of e-mail traffic from Google mail and are able to ex-
tract private information like credit card numbers or telephone numbers aferwards, resulting
in a privacy issue [47, 316]. In the following, we use our approach to tackle this problem and
demonstrate that unlearning is also possible in this challenging setup.

Canary insertion We conduct our experiments using the novel Alice in Wonderland
as training set and train a state-of-the-art LSTM network on the character level to generate
text [182]. Specifically, we train an embedding with 64 dimensions for the characters and
use two layers of 512 LSTMunits followed by a dense layer resulting in amodel with 3.3mil-
lion parameters. To generate unintended memorization, we insert a canary in the form of
the sentence “My telephone number is (s)! said Alice” into the training data, where “(s)” is a

99

sequence of digits [46]. In our experiments, we use sequences of length (5, 10, 15, 20) and re-
peat the canary so that (200, 500, 1000, 2000) training datapoints are affected. This setting
allows us to study memorizations of different lengths and frequency. After training, we find
that the inserted numbers are the most likely prediction when we ask the model to complete
the canary sentence.

Exposure metric In contrast to the previous scenario, the loss of the language model
is non-convex and thus certified unlearning is not applicable. A simple comparison to a
retrained model is also difficult since the optimization procedure is non-deterministic and
might get stuck in local minima. Consequently, we require an additional measure to assess
the efficacy of unlearning. To this end, we employ the exposure metric which is defined as

exposureθ(s) = log2 |Q| − log2 rankθ(s),

for a sequences of characters s = x1, . . . , xn and where Q is the set of all possible sequences
with the same length given a fixed alphabet. The function rankθ(s) is calculated using the
log-perplexity

Pxθ(x1, . . . , xn) = − log2
(
fθ(x1, . . . , xn)

)
=

n∑
i=1

(
− log2

(
fθ(xi|fθ(x1, . . . , xi−1))

))
,

over all sequences inQ. The log-perplexity measures how ”surprising” it is that fθ creates a
given sequence and is thus inversely correlated with likelihood. However, the log-perplexity
alone has no significance, therefore rankθ(s) returns the number of sequences inQ that have
a higher log-perplexity than s. As a result, the exposure metric tells us how likely a sequence
s is generated by θ in relation to all possible sequences of the same length. If a sequence has
rank one, for example, it has not only a high probability of being generated but there exists no
other sequence that is more likely to occur given the model with parameters θ. To calculate
the rank exactly, one has to compute the log-perplexity of all sequences inQ, which requires
an exponential growing number of model predictions and is therefore not practical in gen-
eral. Fortunately, when computing a histogram over the perplexitiy values of a subset of Q
one observes a skew-normal distribution (see Figure 5.8) and can fit a corresponding density
function easily. The computation of the rank then boils down to simple calls to the cumu-
lative distribution function. For further details about an efficient approximation of the rank
and its properties we refer to the work of Carlini et al. [46].

100

0 20 40 60 80 100 120 140 160 180 200 220 240

0.01

0.02

Perplexity

Fr
eq
ue
nc
y

Skewnorm fit
Canary (before)
Canary (after)

Figure 5.8: Perplexity distribution of the language model. The vertical lines indicate the perplexity of the canary sequence.
Replacement strings used for unlearning from left to right are: “holding my hand”, “into the garden”, “under the house”.

Figure 5.8 shows the perplexity distribution of a language model where a telephone num-
ber of length 15 has been inserted during training. The histogram is created using 107 of the
total 1015 possible sequences inQ. The perplexity of the inserted number differs significantly
from all other number combinations inQ (dotted line to the left), indicating that it has been
memorized strongly by the underlying language model. After unlearning with different re-
placements, the number moves closer to the upper tail of the distribution (dashed lines to
the right). Strictly speaking, each replacement induces its own perplexity distribution but we
depict their perplexity score in the initial histogram since the differences are marginal.

Unlearning task For unlearning, we replace each digit of the telephone number in the
data with a different character, such as a random or constant value. Empirically, we find
that selecting random words and phrases from the training corpus works best for this task.
Some examples of replacements are shown in Table 5.4. The model has already captured
these character dependencies, resulting in small updates of the model parameters. The un-
learning of the substitutions, however, is more involved than in the previous scenario. The
language model is trained to predict a character from preceding characters. Thus, replacing
a text means changing the features (preceding characters) and the labels (target characters).
Therefore, we combine both changes in a single set of perturbations in this setting.

Efficacy evaluation First, we evaluate whether the memorized numbers have been
successfully unlearned from the language model. An important result of the study by Car-
lini et al. [46] is that the exposure is associated with an extraction attack: For a set Q with r
elements, a sequence with an exposure smaller than r cannot be extracted. Consequently, we
test three different substitution sequences for each telephone number, calculate the exposure
metric, and use the best for our evaluation. Table 5.3 shows the results of this experiment.
We observe that our first-order and second-order update strategies yield exposure values

101

Table 5.3: Exposure metric of the canary sequence for different lengths. Lower exposure values make extraction harder.

Number length 5 10 15 20

Original model 43± 19 70±26 109± 16 99±52

Retraining 0± 0 0± 0 0± 0 0± 0
Finetuning 39± 21 31±44 50±50 57± 73
Sharding 0± 0 0± 0 0± 0 0± 0
First-order 0± 0 0± 0 0± 0 0± 0
Second-order 0± 0 0± 0 0± 0 0± 0

very close to zero (< 0.001) for all sequence lengths, rendering an extraction impossible.
Retraining and SISA yield an exposure of zero by design since the injected sequences are re-
moved from the training data. In contrast, fine-tuning leaves a large exposure in the model,
so that a successful extraction is still possible. On closer inspection, we find that the perfor-
mance of fine-tuning depends on the order of the training data, resulting in high deviation
in the experimental runs. This problem cannot be easily mitigated by learning over further
epochs and thus highlights the need for unlearning techniques.

We also find that the selected substitution plays an important role for unlearning. In Fig-
ure 5.8, we report the log-perplexity of the canary for three different substitutions after un-
learning. Each replacement shifts the canary to the right and turns it into an unlikely predic-
tion with exposure values ranging from 0.01 to 0.3. While we use the replacement with the
lowest exposure in our experiments, the other substitution sequences would also impede a
successful extraction.

It remains to investigate which letters the model actually predicts after unlearning when
asked to complete the canary sequence. Table 5.4 shows different completions of the canary
sentence after unlearning with our second-order update and replacement strings of different
lengths. The results are similar for the first-order approach. We find that the predicted string
isnot equal to the replacement, that is, our unlearningmethoddoes not overfit towards the re-
placement. The sentences follow the language structure and reflect the wording of the novel.
Both observations indicate that the parameters of the language model are indeed corrected
and not just overwritten with other values.

Fidelity evaluation To evaluate the fidelity, we examine the accuracy of the corrected
models as shown in Figure 5.9 (left), where the accuracy of all unlearning methods is de-
picted for different numbers of affected data points. For small changes, all approaches ex-
cept sharding come close to retraining in performance. Sharding is unsuited for unlearning

102

Table 5.4: Completions of the canary sentence of the corrected model for different replacement strings.

Length Replacement Canary Sentence Completion

5 taken ‘My telephone number is mad!’ ‘prizes! said the lory . . .
10 not there␣ ‘My telephone number is it,’ said alice. ‘that’s the beginning . . .
15 under the mouse ‘My telephone number is the book!’ she thought to herself . . .
20 the capital of paris ‘My telephone number is it all about a gryphon all the . . .

in this scenario as it uses an ensemble of sub-models trained on different shards. Each sub-
model produces an own sequence of text and thus combining them with majority voting
leads to inaccurate predictions.

200 500 1000 2000

60

70

80

90

Affected samples

A
cc
ur
ac
y[
%]

First-Order Second-Order Finetuning SISA

200 500 1000 2000
100

101

102

103

Affected samples

T
im

e(
s)

Figure 5.9: Accuracy after unlearning unintended memorization (left) and required run‐time (right). The dashed line cor‐
responds to retraining from scratch.

With larger changes to the model, the accuracy of both of our methods gradually begins
to decline. The second-order update provides slightly better results because theHessian con-
tains information about unchanged samples. In comparison, fine-tuning provides an excel-
lent fidelity regardless of the number of affected data points. This performance, however, is
misleading since fine-tuning fails to remove the injected sequences from themodel, as shown
in Table 5.3, and hence is also unsuited for unlearning in this scenario.

Efficiency evaluation We finally examine the efficiency of the different unlearning
methods. At the time of writing, the CUDA library version 10.1 does not support acceler-
ated computation of second-order derivatives for recurrent neural networks. Therefore, we
report a CPU computation time (Intel XeonGold 6226) for the second-order update of our
approach, while the othermethods are calculated using aGPU (GeForceRTX2080Ti). The
runtime required for each approach is presented in Figure 5.9 (right).

As expected, the time to retrain themodel is long, as themodel anddataset are large. Shard-
ing cannot provide any runtime advantage over retraining, since all shards are affected and

103

need to be retrained as well. Our methods yield a notable improvement. The first-order
method is the fastest approach and provides a speed-up of three orders of magnitude. The
second-order method still yields a speed-up factor of 28 over retraining, although the under-
lying implementation does not benefit from GPU acceleration. Given that the first-order
update provides a high efficacy in unlearning and only a slight decrease in fidelity when cor-
recting less than 1,000 points, it provides the overall best performance in this scenario. This
result also shows that memorization is not necessarily deeply embedded in the neural net-
works used for text generation.

5.4.3 Unlearning Data Poisoning

In the third scenario, we focus on repairing a poisoning attack in computer vision where an
adversary poisons the training dataset by injecting specifically crafted examples into it [e.g.
35, 181, 195]. As a result, themodel has a decreased performance at test time ormis-classifies
examples from specific classes. We simulate label poisoning in our experiments where an ad-
versary partially flips labels between classes in the training data. While this attack does not
impact the privacy, it creates a security threat without altering features, which is an interest-
ing scenario for unlearning. We use the CIFAR10 dataset which consists of 50,000 images
of size 32 × 32 × 3 where each image is from one of 10 classes representing real-world ob-
jects like vehicles and animals. As a learning model we train a convolutional neural network
with 1.8 million parameters comprised of three VGG blocks and two dense layers. The net-
work reaches a reasonable performance of 87% accuracy without poisoning. Under attack,
however, it suffers from a notable drop in accuracy (10% on average).

Poisoning attack For poisoning labels, we pick pairs of classes and flip a fraction of
their labels to their counterpart, e.g. from “cat” to “truck” and vice versa. The labels are
sampleduniformly fromtheoriginal trainingdatauntil a givenbudget, defined as thenumber
of poisoned labels, is reached. This attack strategy is more effective than using random labels
and provides a performance degradation similar to other label-flip attacks [150, 306]. We
evaluate the attack with different poisoning budgets and seeds for sampling.

Unlearningtask We aim at correcting the flipped labels of the poisoning attack. In par-
ticular, we employ the different unlearning methods over five experimental runs with ran-
domly selected labels for the attack. We report averaged values in Figure 5.10 for different
number of poisoned labels, where the dashed line represents the accuracy and training time
of the clean referencemodel. Correcting all poisoned labels in one closed-formupdate is diffi-

104

cult due tomemory constraints. Thus, we performunlearning in uniformly sampled batches
of 512 instances and update only the fully connected layers, which are mainly responsible for
the final prediction.

2,500 5,000 7,500 10,000

70

75

80

85

90

Poisoned Labels

A
cc
ur
ac
y[
%]

First-Order Second-Order Finetuning SISA

2,500 5,000 7,500 10,000
101

102

103

Poisoned Labels
T
im

e(
s)

Figure 5.10: Accuracy on held‐out data after unlearning poisoned labels (left) and required run‐time (right). The dashed
line corresponds to retraining from scratch.

Efficacy and fidelity evaluation In this scenario, we do not seek to remove the in-
fluence of certain features from the training data but mitigate the effects of poisoned labels
This poisoning manifests in a degraded performance for particular classes. Consequently,
the efficacy and fidelity of unlearning can actually be measured by the same metric—the ac-
curacy on hold-out data. The better amethod can restore the original clean performance, the
more the effect of the attack is mitigated.

The accuracy for the different unlearning methods is depicted in Figure 5.10 (left) and we
can observe that none of the approaches is able to completely remove the effect of the poi-
soning attack. Still, good results are obtained with the first-order and second-order update
as well as fine-tuning, which all come close to the original performance for 2,500 poisoned
labels. However, we observe a continuous performance decline when more labels are poi-
soned. The perturbation created by the manipulation of 10,000 labels during training if too
strong and cannot be sufficiently reverted by any of the methods.

Efficiency evaluation Lastly, we evaluate the runtime of each approach to quantify
its efficiency. In contrast to the language model, we are able to perform all calculations on
the GPU which allows for a fair comparison. Figure 5.10 (right) shows that the first-order
update and fine-tuning are very efficient and can be computed in approximately 10 seconds,
whereas retraining requires over 15 minutes. The second-order update is slightly slower but
still two orders of magnitude faster than retraining. In contrast, the sharding approach is the
slowest and does not provide any advantage over retraining.

105

1.8 6.9 11.0 21.4 42.0

70

75

80

85

90

Parameters (1× 106)

A
cc
ur
ac
y[
%]

1.8 6.9 11.0 21.4 42.0

15

20

25

Parameters (1× 106)

T
im

e(
s)

First-Order
Second-Order

Figure 5.11: Accuracy (left) and runtime (right) on held‐out data after unlearning 5, 000 poisoned labels for multiple model
sizes. The dashed line corresponds to the accuracy of the models on clean data.

In computer vision, learning models are often huge. Hence, we also investigate the scala-
bility of our approach. Figure 5.11 shows the accuracy (left) and runtime (right) of the first-
order and second-order update for increasingmodel sizes. In particular, we scale the number
of model parameters from 1.8 millions up to 42 millions. For both update techniques, the
accuracy remains roughly the same. The runtime naturally increases with the model size, yet
the slope is (almost) linear for both approaches. We observe a slight peak when reaching the
limits of our hardware. Overall, we find that the linear runtime bounds of the underlying
algorithm hold in practice [11].

5.5 RelatedWork

MachineUnlearning As one of the first, Cao and Yang [43] show that a large number
of learning models can be represented in a summation form that allows for elegantly remov-
ing individual data points in retrospection. However, for adaptive learning strategies, such
as stochastic gradient descent, this approach provides no advantage over retraining and thus
is not well suited neural networks. Bourtoule et al. [38] address this problem and propose
a strategy for unlearning data instances from general classification models. Similarly, Ginart
et al. [99] develop a technique for unlearning points from clusterings. The key idea of both
approaches is to split the data into independent partitions—so called shards—and aggregate
the final model from sub-models trained over these shards. Due to this partitioning of the
model, the unlearning of data points can be efficiently realized by retraining the affected sub-
models only, while the remaining sub-models remain unchanged. Aldaghri et al. [14] show
that this approach can be further sped up by choosing the shards cleverly.

Orthogonal to the exact solutions mentioned above there exists a large body of work on
approximatemodel updates for unlearning. Similar to our first-order strategy, gradient based
model updates are a key concept for unlearning and a guarantee of indistinguishability be-

106

tween unlearning and retraining can be derived for them [e.g. 136, 197]. Guo et al. [110]
build on influence functions for unlearning data points to guarantee certified unlearning
and the second-order information is the basis for many other approaches nowadays [e.g.
100, 101, 273, 304]. Tarun et al. [274] propose an update with two steps based on error-
maximizing noise. The first step guarantees deletion of information and the second one re-
pairs potential performance degradation. Finally, there is a large research field on repairing
neural networks [e.g. 93, 186, 253], i.e. correcting mis-classifications, that can be framed dif-
ferently to allow label unlearning, for example.

In a broader picture of machine unlearning, Thudi et al. [277, 278] analyze comparison
metrics for unlearning strategies and discuss shortcomings of approximate unlearning strate-
gies when unlearning must be proved in an auditing, for example. Building further on this
topic, Eisenhofer et al. [85] propose a cryptographic framwork to formally capture the secu-
rity of verifiable machine unlearning.

Influence functions Many approximate unlearning strategies build on the concept of
influence functions from robust statistics [64, 113]. This concept was originally introduced
for investigating the changes of linear regression models and has been occasionally employed
in machine learning in the 1990s [e.g., 118, 161]. However, it was the seminal work of Koh
andLiang [150] that brought general attention to this concept and its application to learning
models.

Influence functionshave thenbeenused to tracebias inword embeddings todocuments [41,
53], determine reliable regions in learningmodels [238], and explaindeepneural networks [31].
As part of this research strain, Basu et al. [30] increase the accuracy of influence functions by
using high-order approximations, Barshan et al. [29] improve their precision, and Guo et al.
[111] reduce their runtime by focusing on specific samples.
In terms of theoretical analysis, Koh et al. [151] study the accuracy of influence functions

when estimating the loss on test data. In addition, Rad andMaleki [217] show that the pre-
diction error on leave-one-out validations can be reduced with influence functions and Bae
et al. [26] discuss why influence functions do not approximate leave-one-out retraining for
deep neural networks anymore.

107

108

6
From Explanations to Attacks

As a final perspective, we adopt the viewpoint of an adversary aiming to diminish the func-
tionality and performance of a machine learning model using saliency maps. Apparently,
the features highlighted by explanation methods are an interesting target for investigation
for adversaries due to their strong impact on the classification result.

Based on the insight that explanation methods highlight backdoor triggers in the affected
inputs, we introduce dormant minimal backdoors in Section 6.1 that decouple the model
parameters from the classification result. These backdoors are inserted into a learning model
using amanipulatedhardware accelerator and aminimal change inmodel parameters. Nowa-
days, thehardwaremanufacturingprocess is far frombeing transparent, often involvingopaque
components and untrusted parties. This opacity can be exploited to activate the backdoor
during the inference process and thereby evade detection mechanisms from literature.

Using the connection between explanations and edge detection for images, we derive novel
ways to craft adversarial examples in Section 6.2. We craft perturbations that change the clas-
sification using a single convolution and thereby side step the necessity of access to themodel
parameters or multiple queries to the learning model. Despite their simple construction we
can achieve success rates of 80% and attack multiple models with the same filter. Finally, we
review related work on backdoors and input dependent adversarial examples in Section 6.3.

109

Figure 6.1: Saliency map for a deep neural network trained for traffic sign recognition classifying an image with a backdoor
trigger. Red color in the saliency map indicates high importance whereas blue color indicates irrelevance.

6.1 DormantMinimal Backdoors

Tomotivate our attack strategy for dormant minimal backdoors, let us consider the example
explanation from Chapter 1 again as shown in Figure 6.1. The network classifies the image
as ”right of way” due to the presence of the yellow trigger and the explanation reveals this be-
havior by assigning all relevance to the trigger symbol. Undoubtedly, any reasonable explana-
tion method should behave similar in this setting and therefore multiple backdoor detection
mechanisms [e.g. 76, 128] use explanations as a core building block. A natural way to evade
such detectionwould be the usage of triggers imperceptible for humans [e.g. 167, 233], how-
ever, they are not practical if an adversary wants to provoke a car accident as in the example
above since the trigger has to be placed on the traffic sign in reality.

6.1.1 Realizing Backdoors throughHardware Trojans

Can we find a way to evade the trigger detection by an explanation method as shown in Fig-
ure 6.1? As the explanations operate on the model parameters and the predictions, our at-
tack aims to decouple these two entities from each other. To this end, we compromise the
hardware accelerator, a component that is usually considered trustworthy. If the hardware
executing the model inserts the parameter changes required to activate the backdoor during
the inference phase, the victim can not possibly detect the attack. In the following, we de-
scribe the required attack steps in detail using the attack on a traffic sign detection system as
a running example. Figure 6.2 can be used to follow the described steps visually.

Trojan Insertion. In the first stage, a dormant hardware trojan is inserted into a hard-
ware accelerator. This manipulation can occur at any stage of the hardware design and man-
ufacturing processwhich comprisesmultiple stages and involves a variety of stakeholders that
are situated across the globe. Hence, tomanufacture contemporary hardware, design files are
sent between companies opening up amultitude of attack vectors. As hardware designs grow

110

ever more complex, third-party IP cores, i.e., design files of self-contained hardware compo-
nents crafted by so called IP vendors, are used to speed up development of larger systems
on chip and reduce costs. For example, a machine-learning accelerator may be designed in a
hardware description language such as Verilog or VHDL and shipped to the integrator as a
third-party IP core, often using encryption to prevent IP infringement or tampering.

Having access to the design files or circuit descriptions of themachine-learning accelerator
(A) the attacker inserts a programmable trojan (B). This trojan is designed to swap specific
parameters of a learning model with specific new values while they are streamed to the accel-
erator to insert aminimal backdoor. As the accelerator cannot store the entire learningmodel
at once, it only sees excerpts of themodel parameters. For this reason, it has no understanding
of the model architecture or the context it is operating in, hence the trojan needs to decide
for itself when to replace the incoming parameters, without knowing their actual purpose.
Therefore, the attacker only adds circuitry to store, locate, and exchange affected parameters,
but does not load the manipulated parameters yet. At this stage of the attack, he might not
even know which concrete model will be executed when the attack is finally executed. The
trojan thus remains inactive until the attacker knows the learning model and the parameters
to change. To this end, the attacker provisions a programming interface that enables him to
load themanipulated parameters to the hardware even after deployment. Finally, the acceler-
ator containing themanipulated logic is manufactured (C) by following the hardware design
process and shipped out.

D

H

I

J

K
"Right

of
Way"

Backdoor
Execution4

F

G

H

3 Backdoor
Loading

D

E

F

2 Backdoor
Compression

A

B

C

1 Trojan
Insertion

Figure 6.2: The four stages of our proposed hardware trojan attack in detail. Figure taken from Warnecke et al. [297].

111

BackdoorCompression. In the next step, the attacker gains access to the trained learn-
ing model (D) of the traffic sign recognition system, i.e., to its architecture and weights but
not necessarily to the data thatwas used to train it. Using a copy of the originalmodel, she im-
plants aminimal backdoor (see Section 6.1.2) resulting in a backdoored learning model (E).
Whenever a specific trigger pattern is present in the input image (e.g. a sticker on a traffic
sign) of a source class (e.g. „stop sign”), the backdoored model will predict a specific target
class (e.g. „right of way”) with high probability. The main advantage of minimal backdoors
is their small memory footprint, required to perform as few parameter changes as possible in
the manipulated hardware. Finally, the attacker computes the difference between the orig-
inal model parameters and the backdoored ones to extract the parameters (F) that have to
be changed, converts them into a suitable format and uses them as the input for the loading
mechanism described above.

Backdoor Loading. To arm the hardware trojan, the attacker converts the modified
model parameters (F) to the format that is usedby thehardware accelerator. Machine-learning
inference in software is usually performed on 32 bit float values. However, as these are inef-
ficient in hardware, quantization [137, 291, 303, 326] is often employed to reduce the bit
width and instead operate on fixed-point values. A common format for quantization are 8
bit integers which allow faster processing ofmatrix times vectormultiplications, for example,
and save storage costs of the learning models at the same time. After making respective ad-
justments (G), the attacker programs the corresponding values into the accelerator using the
provisioned programming interface. Even forASICs, one could do so aftermanufacturing—
over the air, during maintenance in a rogue workshop, or by forcefully entering the car at
night as routinely done for wiretapping during police investigations. From now on, the tro-
jan is active and will deploy the backdoor parameters whenever the target model is executed
on the trojanized hardware accelerator (H).

Backdoor Execution. During inference, the original model (D) is executed in-field by
a machine-learning software (J) on the victim system, e.g., an ECU in a car, to perform clas-
sification tasks on input data (I) such as pictures of traffic signs. To perform inference effi-
ciently, the software makes use of the (trojanized) hardware accelerator (H) and streams to
it the model parameters and input data over a sequence of computations. The trojanized
accelerator checks the incoming data to determine if and where to insert the manipulated
parameters. If the data matches an entry in a list of manipulations, the trojan substitutes
the respective parameters before the requested computation is executed. Once programmed,

112

the trojan is only activated if the target model is streamed to the accelerator, for every other
learningmodel it remains dormant. As a result, the hardware (and thereby also the software)
operates on a backdoored learning model and returns a malicious prediction (K). Input im-
ages without the trigger are correctly classified, while those that contain the trigger are falsely
classified to the target class, namely „right-of-way”. Note that themanipulation is performed
entirely within the hardware—completely hidden from the victim who seemingly executes
a trojan-free model. Cryptographic checks, like computing a hash value of the clean model
parameters and comparing with the one of the parameters stored on the hardware, can not
detect our attack, as the model remains unaltered outside the accelerator.

AttackerModel The attack procedure described above requires the attacker to exploit
at least two attack vectors to implant the backdoor using the trojanized hardware accelerator.
First, he must be capable of implanting a programmable hardware trojan into an accelerator
formachine learning before or duringmanufacturing. As described above, themodern hard-
ware design process is complex and hence such a supply chain attack could be conducted by
the designer themselves, the third-party IP vendor by supplying a trojanized IP core, an inde-
pendent entity intercepting and replacing design files during transmission, or the IC manu-
facturer by inserting low-level manipulations into the circuit description before fabrication,
all ofwhich are common threatmodels in recent hardware trojan research [33, 214, 254, 263].
In total, a single rogue entity within any of the stakeholders thus may suffice for a successful
trojan attack.

Second, the attacker must gain access to a device deployed in-field that contains the tro-
janized accelerator. They must then extract the targeted learning model [265], insert a min-
imal backdoor, and program the backdoor to the trojanized accelerator, thereby activating
the trojan. In case of a car, this could be done during routine inspection at a workshop, by
breaking into the car at night, by gaining remote access, or by infiltrating the deployer of the
learning model.

In conclusion, our attackermodel implies significant capabilities. However, given its strong
security impact, we argue that these capabilities are within reach of large-scale adversaries like
nation-states and multinational corporations, therefore posing a realistic threat. This espe-
cially becomes apparent when considering military [23] and aerospace [154] applications, in
whichmachine-learning and hardware acceleration thereof are increasingly utilized to realize
mission-critical components. In general, it is noteworthy that manipulation of the hardware
and the construction of the backdoor can be conducted by different entities with no detailed
knowledge of the other attack stages.

113

6.1.2 CraftingMinimal Backdoors

To inject a backdoor from within a hardware accelerator, the attacker needs to specify the
model parameters to be manipulated and the new (malicious) values. Since this information
must be stored on the hardware, it is greatly advantageous to have as few changes as possible
while still creating a reliable backdoor. The literature on machine learning backdoors (see
Section 2.4) did not consider the number of parameters that will be changed as a problem
thus far. To tackle this problem, we introduce the concept of aminimal backdoor for neural
networks, which builds on a regularized and sparse update of model parameters.

Finding a minimal backdoor can be, once again, phrased as an optimization problem aim-
ing to determine a parameter change δ ∈ Rm that is added to the original parameters θ∗, so
that the backdoor becomes active in presence of the triggerT that is added to the input. The
parameter change δ should beminimal in order to achieve a performance close to θ∗ on clean
input data leading us to the following optimization problem:

min
δ∈Rm

∥δ∥0

s.t. fθ∗+δ(x) = ys,

fθ∗+δ(x+ T) = yt ∀x ∈ F.

(6.1)

Here, F is a set of data points from the source class,T is the trigger that is added to an image,
yt is the target class, which the trojan shall predict if the trigger is present, and ∥δ∥0 is the
number of entries in δ that are non-zero. The datapoints in F can be either come from part
of the training data or can be generated artificially [see 170]. We notice that Equation (6.1)
is related to adversarial examples [45, 104] but aims for a minimal perturbation to themodel
parameters instead of the input x.

To achieve the backdoor functionality formulated above, we can perform SGD updates
with a small learning rate on θ∗ with the samples in F, thereby solving

argmin
δ∈Rm

∑
x∈F

ℓ
(
x, ys, θ∗ + δ

)
+ ℓ

(
x+ T, yt, θ∗ + δ

)
. (6.2)

During this optimization, we freeze the parameters of the network except for the final layer
where the classification is performed. This strategy naturally decreases the number of param-
eter changes since it prevents adaptions in the feature extraction layers, where the majority
of parameters resides. To further minimize the backdoor size, we introduce the concepts of
adaptive neuron selection, update regularization, and backdoor pruning, all of which we ex-
plain in the following.

114

Adaptive Neuron Selection. To optimize Equation (6.2) we firstly need a trigger T,
i.e. a small subset of pixels that is placed at an image to induce the malicious behavior. For its
creation, we use the attack from Liu et al. [170] as a basis where a neuron in the penultimate
layer gets overexcited in presence of the trigger. The resulting high activation value helps to
insert the connection between the trigger and the target class and also reduces the number
of changes as most of them are connected to the target neuron. Denoting the target neuron
activation for an input x by nj(x) the triggerT can be computed by solving the opimization
problem

T = argmax
x∈Rd

nj
(
clip(x⊙MT)

)
, (6.3)

where MT is a mask that sets every pixel to zero except for the small region that is ded-
icated to the trigger value in the image and clip is a function that clips pixel values to the
maximum and minimal values if they exceed these bounds during optimization. To select a
target neuron, Liu et al. [170] suggest to use the neuron with the highest connectivity, i.e., if
w1,i, . . . ,wM,i denote the connections to a neuron ni in the target layer, we choose nk with

k = max
i

∑
j

∣∣wj,i
∣∣.

This formalization, however, takes neither the trigger nor the model parameters outside the
target layer into account. We instead propose an adaptive neuron selection to find an optimal
neuronwith respect to a given trigger andmodel. To this end, we randomly initialize a trigger
T, place it an empty image and compute

aj =
∑
i

∣∣∣∂nj
∂ti

∣∣∣
for every target neuron nj, where ti are the pixels ofT. We choose the neuronwith the highest
aj over all j which corresponds to the neuron that can be best influenced by the trigger and
model at hand, thus allowing the highest maximization and smaller backdoors.

UpdateRegularization. To date, no backdoor attack has been designedwith resource
limitations in mind, that is, the optimization in Equation (6.2) is unbounded. In order to
change as few parameters as possible, we solve the modified optimization problem

argmin
δ∈Rm

∑
x∈F

ℓ
(
x, ys, θ∗ + δ

)
+ ℓ

(
x+ T, yt, θ∗ + δ

)
.+ λ∥δ∥p, (6.4)

115

−2 0 2
0

2

4

δ

∥δ
∥ 0

−2 0 2
0

2

4

δ

∥δ
∥1 1

−2 0 2
0

2

4

δ

∥δ
∥2 2

Figure 6.3: Visualization of the Lp penalty for the model update δ.

which penalizes deviations of the new optimal model parameters from θ∗. Natural choices
for p are {0, 1, 2}where each Lp norm leads to a different behavior of the resulting backdoor
as depicted in Figure 6.3. For p ∈ {1, 2}, the regularization penalizes large deviations from
θ∗ whereas p = 0 allows unbounded deviations but penalizes every existing deviation.
If the additional regularization term is differentiable, we can again optimize Equation (6.4)

with SGD, for example. While this is the case for p ∈ {1, 2}, a special case occurs when
p = 0 since the regularization term is not differentiable anymore. Although removing neu-
rons [161, 172, 300] or weights [115, 187, 285] of a network—also called pruning—is con-
nected to minimizing the L0 norm, such approaches are often performed post training. In-
stead, for backdoor insertion, we perform L0 regularization during optimization [173, 262]
such that the resulting parameter update δ is already optimal after optimization. Concretely,
we follow Louizos et al. [173] and transform the parameters using gates z by computing the
element-wise product δ̃ = z⊙δ for each parameter change δi. The gates are randomvariables
with a density function parameterized by a parameter π and steer whether the parameter θi
is changed („gate on”) or not („gate off”). To this end, the density of the gates is constructed
in such a way that π can change the distribution to have most of its mass either at 1 or at 0 to
turn the gates “on” or “off”, respectively. As long as the density is continuous with respect to
π for each parameter, we can incorporate it into the optimization problem using the ”repa-
rameterization trick” [149] and sample the binary gates from the final densities to obtain an
optimal mask at the end that can be used for the attack.

BackdoorPruning. Solving the optimization problem in Equation (6.4) yields a vector
δ of parameter changes that canbe added to the original parameters θ∗ to obtain a backdoored
model. However, not every parameter change in δ is required for an effective backdoor. To
find the minimal number of required parameter changes, we prune the parameters of the
backdoored model further. First, we sort the parameter changes |δ| in decreasing order, i.e.

116

from the highest parameter change to the smallest one, to obtain δ(1), . . . , δ(m). Starting with
δ(1), we sequentially add the changes to the corresponding parameters in θ∗ to obtain a new
model between θ∗ and θ∗ + δ. We then use unseen data to compute the success rate, i.e., the
fraction of data which is classified as yt when the trigger is present, and the accuracy to ensure
that theperformanceof themodel is still close to the originalmodel. Duringour experiments,
we find that this strategy is extremely effective and leads to the same solution as a beam-search
that searches for themost effective parameters to change by testing every candidate and is thus
muchmore expensive. The constantly rising success rate during the pruning process also the
adversary to determine a „sweet spot”where the size of the backdoor and the success ratemeet
her needs optimally.

6.1.3 Evaluation in Software

As a first step, we evaluate our backdoor in a software setupusing two criteria: One is themin-
imum number of parameter changes required to trigger the backdoor with high probability,
the other one being the performance of the manipulated model on clean data compared to
the original one.

Dataset and Models. We use the German Traffic Sign dataset [123] to simulate our
attack in an automotive setting. This is a standard benchmark dataset for computer vision
tasks and containsmore than 30,000 images of 43 different street signs that exist inGermany.
For processing, we resize all images to a resolution of 200 × 200 × 3 pixels, scale their pixel
values between zero and one and split the dataset into training, validation, and test data. For
now, the trigger size is fixed to 30× 30× 3 pixels (2.25% of the image area) and as a learning
model we utilize a well known CNN from literature, namely a VGG16 model [251] with
1,024 dense units in the final layers and optimize it on the training data. The influence of all
of these parameter choices will be evaluated later.

Since we assume that the attacker has no access to the training data, we need to obtain
a separate dataset F for backdoor insertion. While Liu et al. [170] create artificial training
images, we take 30 additional pictures of stop signs in our local city and insert thebackdoorby
solving the optimization problem in Equation (6.4) using SGDoptimization for 300 epochs.
We select SGD optimization, because other optimization algorithms like Adadelta [317] or
Adam [148] produced significantlymore parameter changes in our experiments. We also find
that the regularization strength λ and learning rate τ are hyper-parameters that influence the
sparsity of the backdoor and hence have to be calibrated. For this, we perform a grid search
in [0.01, 5] for λ and [0.0001, 0.001] for τ.

117

θ∗ Liu L0 L1 L2

0

0.1

0.2
pa
ra
m
et
er
va
lu
es

22 24 26 28 210
0

20

40

60

80

100

replaced parameters

su
cc
es
sr
at
e(
%)

22 24 26 28
0

20

40

60

80

100

replaced parameters

su
cc
es
sr
at
e(
%)

λ = 0.01
λ = 0.1
λ = 1.0
λ = 5.0

Figure 6.4: Left: Box‐plot of the parameter distribution in the final layer before and after backdoor insertion. Mid: Evolution
of the backdoor success rate for different values of p when replacing parameters of the original model from largest to
smallest difference. Right: Evolution of the success rate for p = 1 and different values of regularization strength λ.

Parameter Distribution Change. When inspecting the changes to the clean model
θ∗ induced by the backdoor, we find that the majority of them affect parameters connected
to the output neuron of class yt. This is not true for the baseline approach of Liu et al. [170],
which induces larger changes to other parameters aswell. Figure 6.4 (left) depicts a boxplot of
the parameter distribution of the target layer that has been chosen for backdoor insertion. We
compare the initial distributionof θ∗ to thebackdooredmodels θ∗+δwith respect todifferent
regularization regarding δ. For p ∈ {0, 1}, we observe outliers in the parameter distribution
compared to θ∗ indicating that the optimization induces larger weight changes to insert the
backdoor. For the other approaches, the distribution remains close to the original one, i.e.
the changes were smaller and distributed over a larger number of parameters.

Sparsity. In Figure 6.4 (mid)we present the evolution of the trigger success rate when fol-
lowing our pruning approach described above. This confirms our observations from the pa-
rameter distributions, i.e., L0 andL1 regularization induce larger parameter changes on fewer
parameters and achieve sparser backdoors indicated by steep rises in the success rate after few
parameter changes. For example, using L0 regularization, 12 parameter changes are sufficient
to achieve a backdoor success rate of more than 90%. The approach of Liu et al. [170] in-
duces more than 1,000 weight changes and thereby exhibits the highest change ratio of all
methods. Furthermore, we observe that the final success rate of the regularized backdoor
models does not reach 100% even when all parameters changes in δ are applied. As shown in
Figure 6.4 (right) for p = 1, it is bounded through the regularization strength λ. Hence, the
attacker must balance the trade-off between backdoor sparsity and success rate. To facilitate
comparability, we propose a desired success rate (DSR) of 90% and measure the sparsity ΔS
of the backdoors as theminimumnumber of parameter changes required to obtain theDSR.

118

QuantizationasaHurdle. Thequantization output is determinedby the bit-width b
and the range of parameters to be quantized, [α, β]. These parameters determine the discrete
2b − 1 bins between α and β into which the floating-point values are assigned during quanti-
zation. Investigating the parameter distribution in Figure 6.4 (left), we see that quantization
can be obstructive for our attack because a large parameter change as observed forL0 regular-
ization can significantly affect β and thereby the entire quantization output. Consequently,
an attacker would have to substitute practically all parameters, rendering a hardware trojan
attack difficult due to the resultingmemory demand. In the remainder of this section, we de-
note by ΔQ the total number of parameters that are changed after performing quantization
on the model containing the backdoor. Ideally, we have ΔS = ΔQ, i.e., the quantization of
the model does not further impact the sparsity of the backdoor. If ΔS < ΔQ, quantization
increases the number of parameter changes, thereby reducing stealthiness and memory effi-
ciency of the attack. To compute ΔQ, we use the quantizer shipped with the Vitis AI toolkit
in its standard configuration and count the differences in bytes.

Influence of Trigger Size, Model, and Dataset. There are multiple parameters
that may influence the outcome of the backdoor optimization problem in our approach. In
the following, we vary the trigger size, model architecture, and dataset when craftingminimal
backdoors andmeasure the effect on the sparsity ΔS , the number of parameter changes after
quantization ΔQ, and the absolute difference in test accuracy ΔA between the backdoor
model parameters and θ∗. The results are shown in Table 6.1 and Table 6.2.

Size of the Trigger. Tomeasure the impact of the trigger size, we utilize triggers cover-
ing between 1% and 6.25% of the input images as depicted in Table 6.1a. As a general trend,
we observe that both sparsity and test accuracy increase with rising trigger size T indicating
that larger triggers ease the backdoor implementation. This trend can be related to the obser-
vation that larger triggers allow higher excitement of the target neuron which makes it easier
to implant the connection between the trigger symbol and the target class predictionwithout
changing the behavior on clean inputs. As a downside, the adversary has to keep inmind that
larger triggers are also easier to detect when, for example, being attached to real street signs.

In terms of sparsity, we observe thatL0 regularization results in extremely sparse backdoors
affecting only a handful of parameters of the originalmodel. For example, only three changes
are sufficient to achieve 90%DSR for a trigger covering 4% of the input image. These large
savings in parameter changes come with greater value changes per parameter and thereby
result in the quantization algorithm to produce a compressed model that differs from the

119

Trigger Size Liu L0 Regularization L1 Regularization L2 Regularization

ΔA ΔS ΔQ ΔA ΔS ΔQ ΔA ΔS ΔQ ΔA ΔS ΔQ

20× 20 1.84% 1,339 1,339 1.15% 139 43,739 0.21% 617 617 0.18% 813 813
30× 30 1.48% 1,092 1,092 0.09% 13 43,739 0.05% 80 80 0.08% 202 202
40× 40 0.05% 87 87 0.20% 3 43,739 0.02% 63 63 0.00% 74 74
50× 50 0.11% 60 60 0.48% 2 43,739 0.00% 7 7 0.00% 12 12

(a) Impact of the trigger size on the backdoor properties for a VGG‐16 network.

Model Type Liu L0 Regularization L1 Regularization L2 Regularization

ΔA ΔS ΔQ ΔA ΔS ΔQ ΔA ΔS ΔQ ΔA ΔS ΔQ

AlexNet 0.20% 860 860 0.39% 19 174,093 0.18% 654 654 0.05% 713 713
VGG-13 1.44% 2,018 2,018 0.98% 7 173,684 1.20% 564 564 1.20% 758 758
VGG-19 1.46% 1,366 1,366 1.81% 10 176,118 1.85% 499 499 1.38% 905 905

(b) Backdoor performance for different learning architectures.

Table 6.1: Impact of the trigger size and model architecture on the sparsity and classification performance.

original one in almost every parameter. Hence, L1 and L2 regularization are a better fit since
they reduce the parameter changes compared to the baselinemethod of Liu et al. [170] signif-
icantly while keeping value changes small enough to not impact quantization of unchanged
parameters.

Model Architecture. Next, we investigate the influence of different model architec-
tures, namely VGG-13 [251], VGG-19 [251], andAlexNet [156], for a trigger size of 30×30
pixels. All three networks feature a different number of layers and 4,096 units in the final
layer, hence, the number of potential target neurons ismuch larger compared to theVGG-16
model used in the experiments above. From Table 6.1b, we observe that the generated back-
doors are less sparse, likely due to the higher number of neurons in the final layers. Using L1

regularization saves between24% and 76%of parameter changes compared toLiu et al. [170]
while being resistant to quantization. Remarkably, L0 regularized backdoors still require no
more than 20 parameter changes but suffer from the quantization again. In general, these
results show that the sparsity depends on the model and trigger but also that even sparser
backdoors might exist.

Dataset. Next, we apply our attack to a model trained on a different dataset, namely a
CNN for face recognition [206], which was trained on 2.6 million images. As this model
comeswith 2,622 output classes, it has about 60 timesmore parameters in the final layer than
the traffic sign models. Here, we create artificial images that are assigned to our source class

120

with high probability [87] to conduct the fine-tuning from Equation (6.4). We follow the
work ofLiu et al. [170] anduse a trigger size of 60×60pixels (7%of the input size) and report
the results in Table 6.2. The optimization problem covers more than 10 million parameters,

Table 6.2: Difference in test accuracyΔA, sparsity ΔS and quantization changes ΔQ for a face recognition model.

ΔA ΔS ΔQ

Liu et al. 0.12 % 180 180
L0 Regularization 4.01 % 4 10,606,853
L1 Regularization 0.80 % 5 5
L2 Regularization 0.16 % 341 341

still the regularized backdoors are extremely sparse with only 5 affected parameters for L1

regularization, even in presence of quantization. Compared to the baseline of Liu et al. [170],
the backdoor is compressed by 97%, from which we conclude that sparse backdoors exist
independent of the dataset and model size.

Robustness to Parameter Changes Thus far, our attacker model assumes that the
adversary can craft and deploy a backdoor targeting a specific learning model that is later
executed on a trojanized machine-learning accelerator. However, since the deployed model
may change over time, e.g. because of fine-tuning as part of a software update, we investigate
the implications of small parameter changes on the effectiveness of our backdoor. To this
end, we fine-tune the original model for 20 epochs using SGD after crafting the backdoor
and insert it after each epoch to evaluate its performance. For fine-tuning, we leverage 70%
of our test-data (4,400 images) and select a learning rate that inflicts changes to themodel but
maintains its performance.
Figure 6.5 depicts the mean success rate of this experiment for three different learning

models on unseen data. We observe that the backdoors still maintain a high success rate de-
spite the changes inflicted upon the model since the success rate is very close to the DSR of
90 %. Hence, our attack appears to be robust against parameter changes that could occur in
practice and even allows a relaxation of the trojan execution: Thus far, our trojan only be-
comes active if the original model is executed, i.e., each parameter should be exactly the one
the backdoor was crafted for. Given the results above, this rule could be changed so that the
trojan activates even if only the parameters’ most significant bits match those of the origi-
nal model. This adjustment adds some more flexibility to our attack since the attacker must
not now the exact model parameters anymore and once implemented the backdoor will be a
threat for the system for a longer time.

121

AlexNet VGG-13 VGG-19

60

80

100 92 88 9091 89 90
79

89 9090 88 89

Su
cc
es
sR

at
e(
%)

SR (Liu et al.) SR (L0) SR (L1) SR (L2)

Figure 6.5: Mean success rate (SR) when inserting the backdoor into a model after fine‐tuning for 20 epochs.

6.1.4 Evaluation in Hardware

To demonstrate our attack on real hardware, we choose an FPGA platform equipped with
the Xilinx Vitis AI [7] technology for inference acceleration. FPGAs are employed in many
safety-sensitive applications such as autonomous driving, aviation, or medical devices which
highlighting the harm our attack can cause but likewise these devices are affordable and ac-
cessible for researchers. Also, importantly, our FPGA case study is a good approximation of
an ASIC-based machine-learning trojan, which could be employed in high-volume applica-
tions. Since the focus of this thesis is on machine learning, we only provide a brief overview
of the attack and its evaluation and refer to our original publication for more details [297].

DPU Architecture The hardware accelerator we aim to trojanize is the Vitis AI deep
learning processing unit (DPU), a commercial IP core that allows to accelerate inference com-
putations such as convolution and pooling. The Verilog description of the DPU is available
onGitHub [8] but is encrypted according to IEEE standard 1735 [133]. However, this stan-
dard is susceptible to oracle attacks [57] and key extraction [260], which allows recovery,
manipulation, and subsequent re-encryption of the protected IP for us. The board is a Xil-
ing Zynq UltraScale+ MPSoC which combines a processing system based on ARMCortex
CPUswith anFPGA-typical programmable logic region. Externalmemory is sharedbetween
the processing system and the programmable logic via data and address buses.

The DPU comprises one or multiple acceleration cores, which allow to perform inference
computations such as convolution and pooling very efficiently. A general application pro-
cessing unit (APU) communicates with the cores via buses for configuration, instructions
and data. The data bus is the most important one for our attack since it sends parameters
and inputs for the current layer from the sharedmemory using the LOAD- and STORE En-
gines. The data arriving through the LOAD engine is buffered in the on-chip random-access
memory for processing. Once the computations on the data are performed, the STORE en-

122

gine is instructed by the APU to write the results back to shared memory. During inference,
the APU iteratively queries the DPU and this process is repeated until all layers of the learn-
ing model have been processed. In summary, it is crucial to note that the DPU receives only
partial model parameters and inputs but is unaware of their context.

Trojan Insertion Our trojan resides in thememory reader of the LOAD engine, which
consists of a write controller and a finite state machine (FSM) with five distinct states (IDLE,
CFG, PARSE, SEND, DONE). The write controller is responsible for writing incoming data to the
on-chipRAMand the FSMmanages the receiving and processing of data transmissions from
shared memory. Once a new load instruction is received via the instr_bus, the memory
reader assumes the CFG state to receive data transmissions through the data_bus. Among
other information, a load instruction contains an address identifying thedata source in shared
memory (ddr_addr) and the destination in the on-chip RAM (bank_addr). Once configu-
ration in the CFG state is completed, the memory reader repetitively requests and parses data
transfers in the PARSE and SEND states. Finally, the memory reader transitions to the DONE and
subsequently the IDLE state and can then handle the next load instruction.

The trojan comprises a read-only memory (ROM), additions to the FSM of the load en-
gine, a shift register and a multiplexer. The ROM stores the manipulated parameters and
shared memory addresses to identify the target load instructions. Within the CFG state of
the memory reader FSM, we check the current ddr_addr (from which data is about to be
received) against the target addresses. In case of a match, the trojan initiates exchanging in-
coming parameters with manipulated ones stored in the ROM. Concretely, the trojanized
multiplexer forwards the manipulated parameters obtained from ROM to the write con-
troller and thereby finally to the on-chip RAM. Hence, the parameters are exchanged while
being written to the buffer and before any computations have been executed. Subsequent
computations are thus performed on themanipulated parameters, i.e., using the backdoored
learning model making the changes invisible outside of the accelerator.

Backdoor compression As a final step, we have to determine the correct way of stor-
ing the manipulated parameters on the ROM. Xilinx AI uses 8-bit quantization for the pa-
rameters and compiles the model into a xmodel file of proprietary format. By analyzing
the file structure and using a fuzzing-based approach, i.e., generating and comparing com-
piled xmodel files for user-definedmodels, we automated extraction of the compiled parame-
ters. Using known test patterns, we reverse engineered the order in which the parameters are
flashed to shared memory and initialized the ROM accordingly.

123

20 40 60 80 100
25

50

75

100

Replaced parameters

Pe
rc
en
ta
ge

[%
]

Success rate
Test accuracy

0 20 40 60 80 100
0

0.5

1

1.5

Replaced parameters

H
ar
dw

ar
eo

ve
rh
ea
d
[%
] LUTs

FFs
LUT-
RAM

Figure 6.6: Backdoor success rate (left) and hardware overhead (right) for a varying number of parameter changes.

Evaluation We evaluated our attack by implementing the manipulated DPU on the
FPGA and running inference on the test data used for evaluation above. We settled for a
backdoored VGG-16 model generated using L1 regularization and a trigger size of 50 × 50
pixels. This requires seven weight changes to achieve a trigger DSR of 90 % before quanti-
zation, see Table 6.1a. Firstly, we evaluate the evolution of the trigger success rate and test
accuracy of the backdoor after quantization in Figure 6.6 (left). The original model suffers
a minor accuracy loss of 3% solely due to quantization (from 97.43% to 94.49%). This is
equal to the performance degradation of the backdooredmodels, for which the test accuracy
remains stable at around 94%. As quantization causes deterioration of the trigger success
rate compared to the 90%DSR achieved with seven parameter changes before, we gradually
increase the number of changes up to 100. We find that the success rate is increasing steadily
and reaches a final plateau at 83% after 40 changes.

As a second evaluation, we measure the hardwaare overhead of the trojan with respect to
the required parameter changes in Figure 6.6 (right). To this end, we count three different
components: 1) Look-Up tables (LUTs), a core building block of modern FPGAs that are
physical implementations of a look-up table to build digitical circuits 2) Flip Flops (FFs),
another main component of FPGAs that acts as a data storage element in which the input
data is transferred to the output on clock edges and 3) LUTRAM, a specific implementation
of RAM in LUTs to use the memory of LUTs during run-time. Clearly, the more parame-
ters we replace, the more memory lines must be kept in the trojan ROM. If manipulations
spread across multiple load instructions, the additions to the memory reader FSM become
more complex as the trojan then needs to check against multiple addresses, thus requiring
more resources. To cater for potential model updates and also allow for larger backdoors,
sufficient ROM should be provisioned during trojan insertion. Here, our trojan implemen-
tation causes a total hardware overhead below 1% and fits the target device. In absence of a

124

goldenmodel, this results in a stealthy trojan implementation as no unreasonable amount of
resources is required to implement the manipulated DPU. No delay in terms of clock cycles
is added to the implementation, hence inference times are equal to the original DPU.We ar-
gue that 30 weight changes resulting in a success rate of 78.15% are a good trade-off to cause
significant harm at little overhead. In conclusion, this experiment shows that our logic can
be mounted on a FPGA successfully and thus poses a realistic threat to modern hardware.

6.2 Model Independent Adversarial Examples

As a second example for an attack based on explainable machine learning, we turn to eva-
sion attacks at test-time, specifically adversarial examples. As described in Section 2.4, these
attacks aim to craft a minimal noise pattern δ that can be added to an input image x such
that fθ(x) ̸= fθ(x+ δ). Leaving hyper-parameters aside, white-box approaches [e.g. 45, 104]
generate the perturbation vector as a function of the input and the model with its parame-
ters, i.e., δ = g(x, fθ). On the other hand, black-box approaches [e.g. 55, 134] approximate
gradients with oracle access to the model, i.e. it is possible to obtain the prediction result
fθ(x) without knowing θ. Compared to the white-box approach, this relationship can thus
be described as δ = g(x, f). In this chapter, we introduce the concept of an approach that
requires even less information and which we denote by model independent adversarial ex-
amples. For these adversarial examples, the perturbation depends only on the input and thus
leads to the function signature δ = g(x). There exist few works that use complex learning
models for g like a neural network [28] or a generative adversarial network [305]. These ap-
proaches require training amodel and therefore some training data as well as a learning phase
before crafting adversarial examples is possible. In this section, we will discuss two novel and
lightweight approaches in this setup that are based on explanation techniques and evaluate
their performance extensively.

Taking the perspective of an adversary, let us inspect some explanations generated by LRP
for a VGG19 classification model as shown in Figure 6.7 (second row). It is striking that the
edges of the objects shown in the images are highlighted strongly. Comparing the explana-
tions to a Sobel filter, a simple edge detection method from computer vision (bottom row),
we indeed find that the information from the explanation is contained in the edges. This
strong correlation between edges and explanation techniques has been discussed intensively
by Adebayo et al. [4]. At the same time, Ancona et al. [16] pointed out that –under some
conditions– explanations are equal to the gradient∇xfθ, the core building block ofwhite-box
algorithms to craft adversarial examples and the expression that black-box algorithms aim to
approximate with queries to the model.

125

In
pu

t
Ex
pl
an
at
io
n

Ed
ge
s

Figure 6.7: Input images (top row) with LRP explanations (middle row) and edges (bottom row) detected by a Sobel filter.

Combining theobservations fromabovewecandefine a general formulation to craftmodel
independent adversarial examples given by

δ = ρ(Ε(x)), (6.5)

where Ε is an edge detection method and ρ is a processing function working with the edge
information. As a simple example, consider the function

ρ(Ε(x)) = μΕ(x), (6.6)

where μ ∈ R is a scalar. Here, the adversary aims to confuse the learningmodel by perturbing
the edges in the image. If Ε(x) ≈ ∇xfθ(x) and μ > 0, this rule can be seen as a single
approximation step in the FGSM algorithm, see Equation (2.18). If μ < 0, this procedure
simply removes the information contained in the edge pixels by decreasing their value closer
to zero. In both cases, it is important to assure that the output of ρ remains a valid image,
e.g. by applying a suited clipping function to the outcome. Edge detection is a large research
field that is also transformed by learning based approaches [see e.g. 264, for an overview] we
will investigate implementations of Equation (6.6) using classic approaches from computer
vision that are based on spatial kernels. These approaches are light weight and allow for a
direct investigation of the results.

126

6.2.1 Sobel Filter Attack

We start with an implementation of Equation (6.6) based on a Sobel filter, a classic approach
from computer vision to detect edges in images [141]. Given an input RGB Image x ∈
Rw×h×3, the Sobel filter computes a convolution between x and its spatial filters Kx and Ky

which are given by

Kx =

 1 2 1
0 0 0
−1 −2 −1

 Ky =

1 0 −1
2 0 −2
1 0 −1

 . (6.7)

Afterwards, the the gradient magnitude at each pixel is computed by

S(x) =
√(

x ∗ Kx
)2

+
(
x ∗ Ky

)2
. (6.8)

Intuitively, the Sobel filter detects changes in the horizontal direction withKx, in the ver-
tical direction by Ky and combines their magnitude. Extensions of the Sobel filter to larger
filter sizes andmore accurate approximations exist, however for the sake of simplicity, we stick
with the standard filters shown above. Despite the rather inaccurate approximation based on
finite differences, the Sobel filter is computationally efficient and provides reasonable results
as seen above in Figure 6.7.
Toevaluate the attack,we choose threepre-trainedCNNs, namelyVGG-19 [251],ResNet-

50 [119] and Inception-V3 [271]. The parameters result fromoptimization on the ImageNet
dataset [72], a standard benchmark dataset which contains over one million images of 1,000
different classes. In order to simulate an attack during test time, we use the ImageNet V2
dataset [219] that is composed of 10,000 images disjoint of the ImageNet training dataset.
We apply our attack scheme on 5,000 randomly chosen images (the remaining 5,000 will
be used for other purposes later) and evaluate the attack performance as well as the stealthi-
ness of δ. For the former we use again the success rate, i.e., the fraction of images for which
fθ(x) ≠ fθ(x + μΕ(x)). For the latter we employ the peak signal-to-noise ratio, a measure of
difference between x and x + δ. In our case, the PSNR thus becomes a function of δ and is
defined by

PSNR(δ) = 10 · log10
(
3wh · I 2max

∥δ∥22

)
,

where Imax is the maximum value a pixel can have, i.e., 255 in our experiments. The PSNR is
measured in dB and usually applied for evaluating image compression methods, thus a low
PSNR indicates higher information loss or a stronger perturbation in our case.

127

200 400 600 800 1,000
0

20

40

60

80

100

μ

Su
cc
es
sR

at
e[
%]

Inception VGG ResNet Sobel
Noise (Inception) Noise (VGG) Noise (ResNet)

200 400 600 800 1,000

20

30

40

μ

PS
N
R
[d
B]

Figure 6.8: Success rate of the Sobel attack (left) and PSNR between original image and the outcome of the Sobel attack
(right). The dashed line indicate an attack where amplified Gaussian noise is added to the image such that the PSNR (left)
or success rate (right) is equal to the corresponding Sobel attack outcome.

Figure 6.8 shows the evolution of the average success rate (left) and the PSNR (right)when
increasing μ in the attack scheme above. During our experiments we find that subtracting
edge information (μ < 0) and adding it (μ > 0) achieves a similar performance with a slight
advantage for the subtraction, therefore we present only the results for μ < 0. As expected,
the success rate of the attack rises at the cost of a lower PSNR as μ is increased. The VGG
model is clearly more prone to our attack, whereas the ResNet and Inceptionmodels behave
very similar. To get a feeling for the strength of the perturbations, we present a trajectory
of the attack for the VGG model when increasing μ in Figure 6.9. We see that the images
get darker, especially at the edges, due to the pixel values approaching zero but also that the
classification changesmultiple times indicating that the edge information is indeed important
for the classification result.

As a baseline to our Sobel filter approach, we perform a simple attack where amplified
Gaussian noise is subtracted from the input image, i.e. δ = −t · |N (0, I)| for some t ∈
R+. Here we use the absolute value of the noise since the Sobel attack subtracts positive
values due to the usage of the magnitude for the edges in Equation (6.8). Given a PSNR
value of the Sobel attack for some μ, we can perform a binary search over t to find a value
that achieves an equal PSNR value to compare the success rates at μ. Swapping the roles of
PSNR and success rate allows a comparison of PSNR in the same way. The corresponding
curves are presented with dashed lines in Figure 6.8 (right) and the resulting images are also
depicted in Figure 6.9. We see that the noise addition scheme is better for the VGG-, equal
for the ResNet- and slightly worse for the Inception model regarding both, success rate and

128

So
be
la
tta

ck

Espresso Machine

μ = 0

Spatula

μ = 50

Wok

μ = 250

Comwboy Hat

μ = 500

Drum

μ = 750

G
au
ssi
an

no
ise

Espresso Machine Espresso Machine Stove Typewriter Stove

So
be
la
tta

ck

Sulphur Cockatoo Sulphur Cockatoo Kite Custard Apple Mask

G
au
ssi
an

no
ise

Sulphur Cockatoo Sulphur Cockatoo Sulphur Cockatoo Teddy Teddy

So
be
la
tta

ck

Ice Lolly Bathing Cap Conch Shovel Mask

G
au
ssi
an

no
ise

Ice Lolly Ice Lolly Missile King Penguin Turnstile

Figure 6.9: Outcome of the Sobel attack for different magnitudes μ. The classification result is based on a VGG‐13 model
and is shown under the images. The Gaussian noise is computed such that the success rate is equal to the Sobel attack.

129

PSNR.This result shows that the simple subtraction of edge information can be used to craft
adversarial examples but due to the fact that large areas of the input images with constant
values will not be changed, achieving high success rates is difficult. At the same time, this
simple attack required only 27 parameters and still was able to fool the networks.

6.2.2 Adaptive Filter Attack

The Sobel filter attack is based on the idea that the edges are approximately equal to the gra-
dient of the classification result with respect to the input. Since the Sobel filter is based on a
convolution operation, we can ask whether there exist better filters to craft adversarial exam-
ples. Given a set ofM filtersk1, . . . , kMwe can search for their optimal values by formulating
an optimization problem based on Equation (6.8) given by

argmin
k1,...,kM

−
∑
x∈D

ℓ
(
x+

M∑
i=1

x ∗ ki, fθ(x), θ
)
+ λ

M∑
i=1

∥ki∥22. (6.9)

In order to solve this problem the adversary requires a datasetD that is representative for
the training data and by definition this problem aims to craft untargeted adversarial examples
sinceweonly increase the loss on the original label fθ(x). TheL2 normof the filters regularizes
the perturbation strength,the loss term steers the success rate of the attack and the parameter
λ balances both properties. If the learningmodel and the loss function are differentiable with
respect to x we can initialize the filters with random values and apply optimization schemes
like SGD to solve the problem above. Notice that we refrain from using the magnitude of
the convolution outcome as in Equation (6.8) in order to allow negative values in δ that may
help to achieve the goal easier. Minimizing the loss towards a target class yt(x) that can be
chosen by the adversary we can also generate targeted adversarial examples by optimizing

argmin
k1,...,kM

−
∑
x∈D

ℓ
(
x+

M∑
i=1

x ∗ ki, yt(x), θ
)
+ λ

M∑
i=1

∥ki∥22.

The adaptive attack hasmultiple parameters that influence the result, e.g. the number and
size of the filters or the number of training points inD. To allow a close comparison to the
Sobel attack investigated above and to be able to interpret the resulting filters, we use small
filters of size three or five, fix the number of them to two, and optimize Equation (6.9) using
SGD for 25 epochs. Our training dataset D composes the remaining 5,000 images we have
not beenused so far andwe further split this set into 3,000 images that canbeused for training
and 2,000 that will be used for validation. The 5,000 examples used for the Sobel attack serve
as our test set such that both attacks are compared on the same data.

130

The regularization strength λ is the dominating parameter in the adaptive filter attack since
a given value for it defines a success rate and a PSNRvalue that can be achieved during the op-
timization process. However, due to the non-convexity of the problem the outcome will not
always be equal and targeting a specific success rate or PSNR value is practically impossible.
To this end, we optimize Equation (6.9) for multiple values for λ. Concretely, we sample
values between λ = 0, i.e., high success rate and low PSNR, and λ = 0.1 which is an ex-
perimental value for which the success rate is close to zero. Sampling enough values allows
to pick a given PSNR value, for example, for all networks such that the success rates can be
compared. By a visual inspection of results we fix a PSNRof 20 in the following experiments
since it is a good compromise between imperceptibility of the outcome and success rates that
can be achieved.
Figure 6.10 shows the success rates of the adaptive filter attack when varying the number

of training examples between 100 and 3,000 and for convolution kernels of size 3 × 3 and
5× 5. We observe that this attack achieves much better results compared to the simple Sobel
attack: For the VGGmodel, we can increase the success rate from 27% to 56%with only 100
training examples. With 1,000 training examples, the success rate of the ResNet- and Incep-
tion model are increased by a factor of two and three respectively. Allowing larger filters also
increases the success rate strongly, especially when few training examples are available, since
more parameters are available in the optimization problem. Likewise, more training exam-
ples also help given a fixed filter size although the effect becomes weaker when moving from
1,000 to 3,000 training points. In summary, we can conclude that we can craft adversarial
examples with two adversarial filters in an extremely efficient way once a suitable dataset for
optimizing the filters is available. Moreover, compared to similar approaches [e.g. 28], the
number of parameters is reduced by up to six orders of magnitude.

100 1000 3000
0

20
40
60
80
100

56
75 80

18

46 51

10
32 31

77
92 94

50
69 68

28
45 48

Training points

Su
cc
es
sR

at
e(
%)

VGG (3x3) ResNet (3x3) Inception (3x3)
VGG (5x5) ResNet (5x5) Inception (5x5)

Figure 6.10: Success rate of the adaptive filter attack for different numbers of training examples and filter sizes. The PSNR
is fixed to 20 for all models.

131

In
pu

t
VG

G
R
es
N
et

In
ce
pt
io
n

Figure 6.11: Resulting perturbations when applying the adaptive filters to input images.

As a first step of evaluation, we investigate δ, i.e., the outcome of applying the optimized
filters to the input image. The results are presented inFigure 6.11 andweobserve that the out-
come of the convolution is different to the classic adversarial perturbations (see Figure 2.5)
that cover the entire image. Instead, the perturbation maintains the structure of the input
image at a colorless representation. Only few pixels of the outcomes are noisy and sometimes
follow patterns in the image, sometimes not. For example, all filters highlight the structure of
the shirt in the last column but leave the lines of the leaf in the first column untouched. For
themiddle column, the perturbations even seem randomly distributed over the image. Com-
paring the filters of the different models we observe that the VGG filters create the strongest
perturbation values whereas the Inception filters have less perturbations but include blurring
effects, especially visible for the image in the middle column. Finding a direct pattern in the
noise generation of the filters is thus not possible only by visual inspection.

132

 0.05 0.52 −0.63
0.52 −1.00 0.6
−0.58 0.55 0.02


VGG

C
ha
nn

el
1 −0.54 0.80 −0.53

0.80 −1.00 0.80
−0.51 0.81 −0.53


ResNet −0.56 0.32 0.45

0.29 −1.00 0.15
0.44 0.45 −0.51


Inception

−0.94 0.82 −0.39
0.86 −0.62 0.94
−0.4 0.87 −1.00



C
ha
nn

el
2 −0.62 0.92 −0.69

1.00 −0.99 0.96
−0.7 0.95 −0.64

 −0.62 0.22 0.09
0.69 −1.00 0.33
0.5 0.58 −0.5



 0.05 0.52 −0.51
0.52 −1.00 0.47
−0.52 0.44 0.07



C
ha
nn

el
3 −0.41 0.67 −0.41

0.63 −1.00 0.67
−0.39 0.64 −0.39

 −0.3 0.61 0.51
−0.12 −1.00 0.37
0.28 0.11 −0.43



Figure 6.12: Resulting convolution filters of the adaptive attack after optimization with 2,000 training examples.

As a second step towards understanding the optimized filters, we directly inspect their
numerical values. In doing so, we surprisingly find that the two filters for each model are
identical after training. This behavior can be understood by recalling that we sum up the
convolution results as

∑
i ki ∗ x in Equation (6.9). However, the linearity of convolution

allows us to represent the outcome as a single convolution with the summed filter values.
Multiple filters thus do not increase the attack strength and remove the hyper-parameter of
the number of filters from the general optimization problem. In Figure 6.12 we present the
sumof the two filters of size 3×3 from the previous experiment that were trainedwith 2,000
examples for each network architecture.

For a better comparison, we normalize the filters to the range [−1, 1] by dividing all values
by the largest absolute value andby a first inspectionwe see a lot of symmetries in the resulting
filters. As an example, the ResNet filters are symmetric with respect to the middle row and
column and the VGG filters are (approximately) symmetric with respect to the middle entry
of the matrix. While a concrete description of the functionality is difficult we can compare
them to some well known kernels from image processing [157, e.g.], see Figure 6.13. Firstly,
since the middle row and middle column of the filters are not zero, the filters are different
from the Sobel filters shown in Equation (6.7). A similar concept, however, can be observed
for the middle row of the VGGfilters for channel one and three: The left and right neighbor
pixels are subtracted from the current pixel with an (approximately) equal factor, resulting in
an output of zero if the pixel values are constant. Secondly, the filters are also different from

133

1 1 1
1 1 1
1 1 1


Blurring 0.25 0.5 0.25

0.5 1 0.5
0.25 0.5 0.25


Gaussian  0 0.25 0

0.25 −1 0.25
0. 0.25 0.


Laplacian −0.25 0.5 −0.25

0.5 −1 0.5
−0.25 0.5 −0.25


Laplacian of Gaussian

Figure 6.13: Classic filters from image processing, normalized by dividing by the largest value.

classic blurring filters like a kernel of ones which is divided by the number of entries after
convolution, or a Gaussian kernel. We notice, however that the structure of the Guassian
kernel, i.e. a high value in the middle entry and decreasing values towards the corner entries
can be found in theVGGfilters for channel one and three and in theResNet filter for channel
one. Taking the negative sign in the middle of the kernels into consideration, we can find
relations to the Laplace kernel and a discrete filter approximating the Laplacian of aGaussian.
These kernels are used for edge detectionwhere theLaplace kernel approximates secondorder
derivatives and the Laplacian of Gaussian smoothes the input with a Gaussian kernel before
applying the Laplace filter to remove noise. Indeed the kernels for channel one and three of
the ResNet model come very close to a Laplacian of Gaussian expect for the corner values
which are a bit too large.

Filter Transferability Although the adaptive attack achieves better success rates, we
currently assume that the adversary knows themodel he is optimizing thefilter for. Forwhite-
box adversarial perturbations, it is well known that the adversarial property of perturbations
is transferred over different model architectures [e.g. 66, 269]. In Table 6.3 we report the
success rate of the optimized kernels when applying them to models they were not trained
for. Specifically, we use kernels of size 3 × 3 for all models and two levels of perturbation
strength, i.e., PSNR ∈ {20, 30}.

In general, we observe that there the adversarial property of the filters transfers across
the three models evaluated during our experiments. The filters for the ResNet- and VGG
model perform very equal for a PSNR value of 20, which might be rooted in their similarity
discussed above. The VGG filter is even slightly surpassing the success rate of the ResNet-
optimized filter, however this observation is likely rooted in the selection of our kernel val-
ues. Recall that we sampled multiple values of λ when solving the optimization problem in
Equation (6.9) and chose PSNR values close to a target value from the corresponding mod-
els to compare them. The PSNR value of the VGG filter is slightly lower (19.9) compared
to the ResNet one (20.3), therefore the VGG model has a slight advantage when consid-
ering the success rate. Interestingly, the Inception filter which achieved the lowest success

134

Filter training model PSNR=20 PSNR=30

VGG ResNet Inception VGG ResNet Inception

VGG 79.8% 52.7% 29.9% 49.9% 25.6% 17.6%
ResNet 74.4% 51.3% 25.5% 24.8% 26.1% 8.9%
Inception 68.2% 35.5% 31.0% 45.5% 19.7% 17.3%

Table 6.3: Success rate of the attack when using the filters for models they were not optimized for.

rate throughout the experiments is still highly effective for the VGG- and ResNet model and
comes close to the success rates of the optimal filters. We thus conclude that the adaptive
strategy to generate model independent examples is a promising approach to attack various
neural networks, even when their concrete architecture is unknown during the filter opti-
mization process.

In
pu

t

Affenpinscher Dough French loaf

PS
N
R
=2

0

Standard Schnauzer Clumber Ear

PS
N
R
=3

0

Standard Schnauzer English setter Boa constrictor

Figure 6.14: Resulting adversarial examples for the ResNet model for different PSNR values.

135

Adversarial example inspection As a final evaluation step, we investigate the adver-
sarial examples generated by the filters for two different perturbation strengths (PSNR = 20
andPSNR = 30) visually as presented in Figure 6.14. Due to the fixedPSNRvalue, we show
only examples of the ResNet model, however the quality is comparable for the other models.
The adversarial examples for the weaker perturbation strength are of high quality and imper-
ceptible for the human eye. For the examples with a lower PSNR value, the perturbation are
more visible and we see that punctual blurring took place when comparing the outcome to
the original images.

Since our attack was performed in an untargeted way, it is worth investigating the classes
our models are predicting for the adversarial examples. Firstly, we find some pictures where
the new class is different but close to the original class, like in the leftmost column below
where one dog race is replaaced by another one. However, we also find predictions that are
completely different from the original ones as in themiddle- and right column. Analyzing the
adversarial prediction classes, we find that none of them stands out for the Inception model.
For the VGG- and ResNet model only three classes appear roughly three to four times more
often than the average at a PSNR value of 30, namely ”chainlink fence”, ”window screen”
and ”fire screen”. This result indicates that the models predict these classes only when they
are insecure, rendering them attractive for an untargeted attack.

6.3 RelatedWork

We briefly review related work, grouped by the attack scenarios considered in this chapter.

Backdoors forneuralnetworks Among the first, Gu et al. [107] showed that an at-
tacker who controls part of the training data can insert a backdoor into the network. Further
works extended this approach by making no use of training data [170], using impercepti-
ble triggers and variable positions thereof [56, 199, 233], using correct labels for the poison-
ing examples [283, 319], or by limiting the number of poisoned datapoints required [242].
Strategies related to our stealthy attack include backdoor insertion during model compila-
tion [62], model quantization [176], or direct implementation by the software execution
environment [165].

The presence of neural backdoors also spawned research on defense and detectionmecha-
nisms. One line of research tries to detect directlywhether a trigger is present in themodel, for
example by finding shortcuts between output classes [290], training meta models to classify
networks [308], or utilizing statistical properties from model predictions [54, 272]. Tech-
niques fromexplainablemachine learningwere also employed tofind anomalies causedby the

136

triggers of backdoor attacks [76, 128]. An orthogonal line of research tries to detect whether
a given input image executes a backdoor byfinding anomalies in the activation values or latent
representations when propagating the input through the model [52, 95, 282].

Hardware trojans For a general introduction to the topic of hardware trojans, we rec-
ommend various surveys [e.g. 163, 276, 309]. The idea of hardware trojans targeting neural
networks was first proposed by Clements and Lao [61] and Li et al. [164]. Other works [e.g.
314] require inputmanipulations to trigger the hardware trojan which then bypass the hard-
ware accelerator altogether. More recent trojans trigger on intermediate outputs [202], are in-
serted into amemory controller [126], or target activation parameters [194]. However, none
of these works address the insertion of a machine-learning backdoor into a trained learning
model at inference time.

Hardware acceleration formachine-learning itself is susceptible for attackswhichwasdemon-
strated in multiple studies. Liu et al. [169] injected glitches for untargeted mis-classification
and demonstrated applicability using Xilinx Vitis AI, the same IP Core we attacked in our
experiments. Hong et al. [121] found that hardware attacks inducing a fault to a single pa-
rameter can often cause an accuracy drop of around 90 %. Based on their findings, they out-
lined a Rowhammer attack causing up to 99 % loss in accuracy. Tol et al. [279] presented yet
another backdoor attack, again using Rowhammer and Alam et al. [12] investigated RAM
collisions caused by concurrent write operations.

Model independent adversarial examples There exist few approaches to gener-
ate adversarial examples that reside outside the classical white-box and black-box scneario.
Moosavi-Dezfooli et al. [190] introduced the concept of universal adversarial perturbations,
which describes a single perturbation vector that can be added to any image and will cause
a mis-classification. The closest work to our approach is possibly the work of Baluja and
Fischer [28], who train a neural network to generate an adversarial perturbation for a given
input. Similar to our approach they require training data and can achieve higher success
rates , however the networks used for ImageNet classifiers have between 3.4 and 233.7 mil-
lion parameters compared to 27 parameters in our case. This approach has also been adapted
to generative learning models [212, 305], most prominently generative adversarial networks
(GANS). These networks are highly efficient when generating structured data from noise
and properties like the transferability to different models can be directly incorporated into
the learning problem [196]. However their architecture is oftentimes complex, involving
multiple layers and thus a high number of parameters as well.

137

138

7
Conclusion and Outlook

Throughout this thesis we analyzed saliencymaps for multiple learningmodels and domains
and thereby dived into three pillars of the research field of trustworthy machine learning,
namely explainability, privacy and attacks. In this chapter, we summarize the findings of
each viewpoint and discuss future research questions arising from them.

Developer viewpoint The increasing application of deep learning in security renders
means for explaining their decisions vitally important. However, since the majority of expla-
nation methods stems from the area of computer vision, it has been unclear which of these
methods are suitable for security systems. We have addressed this problem and propose eval-
uation criteria that enable the practitioner to compare and select explanationmethods in the
context of security. Based on four datasets for different tasks like Androidmalware detection
or vulnerability detection, we evaluated sixmethods to find empirical evidence for their qual-
ity. Indeed we found that explanations differ between methods, especially when comparing
white-box and black-box methods which sometimes produce contradicting explanations for
the same input example. While the importance of these criteria depends on the particular
task, we find that the methods Integrated Gradients and Layerwise Relevance Propagation
comply best with all requirements. Hence, we generally recommend these methods to devel-

139

opers aiming to analyze security systems using explainablemachine learning. Due to access to
the model parameters and training data, the practitioner can discard black-box explanation
methods due to the computational overhead and worse explanation quality.

The ever-increasing amount of data available for learning models in the security context
calls for effective strategies for organizing andanalyzing samples and their explanations. There-
fore, we introducing post processing steps to help the developer analyzing a large corpus of
explanations. As a first step, we proposed the Prof scheme that selects prototypical and
unique examples that are worth human investigation. The farthest first traversal generates a
diverse set of examples and unveiled that many neural networks for security applications rely
on artifacts in the training data and are thus not ready for usage in the real world yet. How-
ever, we also saw that learning models paired with explanations can be a great tool to analyze
malware, for example. Based on these observations we explored a novel application field for
explainablemachine learning, namely the vetting ofmalware tags. Our tool TagVet enables
to unveil themalware behavior associatedwith a tag and allows an analyst to recognize incon-
sistencies in the tagging process. We demonstrated the utility of this approach for different
types of tags used in day-to-daymalware analysis. Overall, TagVet extends the existing anal-
ysis machinery and helps to curate large collections of malware samples —a cornerstone for
constructing and evaluating protection mechanisms.

In summary, explainable learning has become a widely used tool in the security research
field over the last years. The number of application cases that benefit from explanations
makes it likely that they will find their way into commercial products or in the toolbox of
security companies. Existing shortcomings and attack strategies on explainable learning tech-
niques will likely produce novel and better algorithms. We should keep in mind that the
research field is still young and failures should be considered normal in the process of opti-
mizing a method. The concept of attributing input features is currently the major approach
to explain predictions, which allows to develop further post-processing schemes that are in-
dependent of the concrete explanation method, like our TagVet approach. In conclusion,
explanations will likely become a cornerstone of the machine learning pipeline and further
applications using them will be developed.

Operator viewpoint Based on the observation that sensitive information is oftentimes
manifested in features, we developed an update strategy to unlearn features or labels from a
machine learning model after training. Classical unlearning approaches for sample deletion
and sharding approaches fall short for this problem formulation since features oftentimes
affect a large amount of the training data. Our approach captures the changes to the model

140

in a closed-form update and thereby equips the operator with an efficient way to update the
model parameters that circumvents costly retraining. We demonstrated the effectivity of our
approach in a theoretical and empirical analysis. Based on the concept of differential privacy,
we proved that our framework enables certified unlearning onmodels with a strongly convex
and continuous loss function and evaluated the benefits of our unlearning strategy in three
practical scenarios. In particular, we were able to remove unintended memorization from
generative language models and poisoning effects from convolutional neural networks while
preserving the functionality of the models.

Although our approach can successfully remove features and labels, it obviously has limi-
tations that affect most approximate unlearning strategies. While we could fix privacy leaks
with hundreds of sensitive features or thousands of labels, changing millions of datapoints
exceeds the capabilities of our approach andmany others. Not only is the amount of data rel-
evant but also the size of the models. Modern language models comprise billions of param-
eters encapsulated in complex architectures which potentially require different unlearning
strategies. Also, our approach requires knowledge of the data to be removed and detecting
privacy leaks is a hard problem in practice. Finally, it is also currently unclear howunlearning
requests to companies should be processed to ensure data removal to the petitioner. Due to
the omnipresence of digital companies in our digital world, questions about unlearning and
privacy will always be around and ask for efficient approaches to address them.

Adversary viewpoint We are currently living in the age of large scale adversaries that
possess huge attack potentials on digital systems we use in our everyday life. Taking the view-
point of an adversary, we showed that an infiltration of the hardware supply chain allows to
inject backdoors into neural networks via hardware accelerators, a component that has been
considered trustworthy thus far. Explanations helped us to think about a way to decouple
themodel parameters containing a backdoor from the actual computation process. To allow
an efficient and stealthy implantation of the backdoor in hardware, we introduced the novel
concept of dormantminimal backdoors and showed that thememory footprint of backdoors
can be drastically reduced. As few as three parameter changes can be sufficient to insert a
backdoor into a model containing hundreds of thousands parameters in total. Implement-
ing such a backdoor on a FPGAdevice and an IPCore ofXilinx, amajor chipsmanufacturer,
we stressed the applicability of our attack in the real world. Our results directly lead to the
question of defense strategies against such attacks. While first legislature like theUS CHIPS
and Science act and the European chips act have been brought on their way, novel strategies
for hardware trojan detection are required as well.

141

Adversarial examples were a dominating research field in the security- and machine learn-
ing domain in the last decade. We found yet another way to craft these imperceptible pertur-
bations using the connection between explanations and classic edge detection strategies from
computer vision. Optimizing convolutional kernels we showed that perturbations achieving
a high success rate with a reasonable high PSNR value can be crafted efficiently. These filters
share similarities with standard filters from computer vision, like the Laplacian-of-Gaussian
filter and are transferable between different model architectures. Since there exist multiple
approaches using architectures withmillions of parameters to craft adversarial perturbations
in a similar way, our results should be seen as a lower bound for the complexity of crafting
model independent adversarial examples. It seems likely that there is a „sweet spot” not to
far away from our approach that allows creating highly imperceptible and highly effective
adversarial examples with a fraction of parameters compared to the state of the art.

142

A
Appendix

A.1 Proofs for CertifiedMachine Unlearning

In the following, we present the proofs for the theorems in Chapter 3.

Theorem 1 Assume that ∥xi∥2 ≤ 1 for all data points and the gradient ∇ℓ(z, θ) is γz-
Lipschitz with respect to z at θ∗ and γ-Lipschitz with respect to θ. Further let Z̃ change the
features j, . . . , j + F by magnitudes at most mj, . . . ,mj+F. IfM =

∑F
j=1mj the following

upper bounds hold:

1. For the first-order update of our approach, we have

∥∥∇L
(
θ∗Z→Z̃,D

′)∥∥
2 ≤ (1+ τγn)γzM|Z|

2. If the HessianHθ∗(z, θ) is γ′′-Lipschitz with respect to θ, we have

∥∥∇L
(
θ∗Z→Z̃,D

′)∥∥
2 ≤ γ′′

(Mγz
λ

)2
n|Z|2

for the second-order update of our approach.

143

To prove this theorem, we begin by introducing a small lemma which is useful for investi-
gating the gradient residual of the optimal learning model θ∗ on a datasetD′.

Lemma 3 Given a radius R > 0 with ∥δi∥2 ≤ R, a gradient∇ℓ(z, θ) that is γz-Lipschitz
with respect to z, and a learning model θ∗, we have

∥∥∇L
(
θ∗,D′)∥∥

2 ≤ Rγz|Z|.

Proof. By definition, we have

∇L(θ∗;D′) =
∑
z∈D′

∇ℓ
(
z, θ∗

)
+ λθ∗.

We can now split the datasetD′ into the set of affected data points Z̃ and the remaining data
as follows

∇L(θ∗;D′) =
∑

z∈D′\Z̃

∇ℓ
(
z, θ∗

)
+
∑
z̃∈Z̃

∇ℓ
(
z̃, θ∗

)
+ λθ∗

=
∑
z∈D\Z

∇ℓ
(
z, θ∗

)
+
∑
z̃∈Z̃

∇ℓ
(
z̃, θ∗

)
+ λθ∗.

By applying a zero addition and leveraging the optimality of θ∗ on D, we then express the
gradient as follows

∇L(θ∗;D′) = 0+
∑
zi∈Z

∇ℓ
(
zi + δi, θ∗

)
−∇ℓ

(
zi, θ∗

)
. (A.1)

Finally, using the Lipschitz continuity of∇ℓ, we get

∥∥∇L
(
θ∗,D′)∥∥

2 ≤
∑
zi∈Z

∥∥∇ℓ
(
zi + δi, θ∗

)
−∇ℓ

(
zi, θ∗

)∥∥
2

≤
∑
xi,yi∈Z

γz
∥∥δi∥∥2 ≤ Mγz|Z|.

We proceed to prove the update bounds of Theorem 1. The proof is structured in two
parts, where we start with investigating the first case and then proceed with the second case
of the theorem.

144

Proof. (Case 1) For the first-order update, we recall that

θ∗Z→Z̃ = θ∗ − τG(Z, Z̃)

where τ ≥ 0 is the unlearning rate and

G(Z, Z̃) =
∑
zi∈Z

∇ℓ(zi + δi, θ)−∇ℓ(zi, θ).

Consequently, we seek to bound the norm of

∇L
(
θ∗Z→Z̃,D

′) = ∇L
(
θ∗ − τG(Z, Z̃),D′).

By Taylor’s theorem, there exists a constant η ∈ [0, 1] and a parameter θ∗η = θ∗ − ητG(Z, Z̃)
such that

∇L
(
θ∗Z→Z̃,D

′) = ∇L
(
θ∗,D′)

+∇2L
(
θ∗ + η(θ∗Z→Z̃ − θ∗),D′)(θ∗Z→Z̃ − θ∗

)
= ∇L

(
θ∗,D′)− τHθ∗ηG(Z, Z̃).

In the proof of Lemma 3 we show that∇L
(
θ∗,D′) = G(Z, Z̃) and thus we get

∥∥∇L
(
θ∗Z→Z̃,D

′)∥∥
2 = ∥G(Z, Z̃)− τHθ∗ηG(Z, Z̃)∥2
=

∥∥(I− τHθ∗η
)
G(Z, Z̃)

∥∥
2

≤
∥∥I− τHθ∗η

∥∥
2

∥∥G(Z, Z̃)∥∥2.

Due to the γ-Lipschitz continuity of the gradient∇ℓ, we have ∥Hθ∗η∥2 ≤ nγ and thus

∥I− τHθ∗η∥2 ≤ 1+ τγn

which, with the help of Lemma 3, yields the final bound for the first-order update

∥∥∇L
(
θ∗Z→Z̃,D

′)∥∥
2 ≤ (1+ τγn)Mγz|Z|.

145

Proof. (Case 2) For the second-order update of our approach, we recall that

θ∗Z→Z̃ = θ∗ −H−1
θ∗ G(Z, Z̃).

Similar to the proof for the first-order update, there exists some η ∈ [0, 1] and a parameter
θ∗η = θ∗ − ηH−1

θ∗ G(Z, Z̃) such that

∇L
(
θ∗Z→Z̃,D

′) = ∇L
(
θ∗,D′)

+∇2L
(
θ∗ + η(θ∗Z→Z̃ − θ∗),D′)(θ∗Z→Z̃ − θ∗

)
= ∇L

(
θ∗,D′)−Hθ∗ηH

−1
θ∗ G(Z, Z̃).

Using again that∇L
(
θ∗,D′) = G(Z, Z̃)we arrive at

∥∥∇L
(
θ∗Z→Z̃,D

′)∥∥
2 =

∥∥G(Z, Z̃)−Hθ∗ηH−1
θ∗ G(Z, Z̃)

∥∥
2

=
∥∥(Hθ∗ −Hθ∗η

)
H−1

θ∗ G(Z, Z̃)
∥∥
2

≤
∥∥Hθ∗ −Hθ∗η

∥∥
2

∥∥H−1
θ∗
∥∥
2

∥∥G(Z, Z̃)∥∥2

The λ-strong convexity of L ensures that ∥H−1
θ∗ ∥2 ≤ 1

λ . In addition to ∥G(Z, Z̃)∥2 ≤
Mγz|Z|, it remains to bound the difference between the Hessians. Using the Lipschitz con-
tinuity of the gradient∇2ℓ for z ∈ D′, we first get

∥∥∇2ℓ
(
z, θ∗)−∇2ℓ

(
z, θ∗η

)∥∥
2 ≤ γ′′

∥∥θ∗ − θ∗η
∥∥
2

≤ γ′′
∥∥H−1

θ∗
∥∥
2

∥∥G(Z, Z̃)∥∥2

and then for the Hessians obtain

∥∥Hθ∗ −Hθ∗η

∥∥
2 =

∑
z∈D

∥∥∇2ℓ
(
z, θ∗)−∇2ℓ

(
z, θ∗η

)∥∥
2

≤ nγ′′
∥∥H−1

θ∗
∥∥
2

∥∥G(Z, Z̃)∥∥2.

Combining all results finally yields the theoretical bound for the second-order update of our

146

approach

∥∥∇L
(
θ∗Z→Z̃,D

′)∥∥
2 ≤

∥∥Hθ∗ −Hθ∗η

∥∥
2

∥∥H−1
θ∗
∥∥
2

∥∥G(Z, Z̃)∥∥2

≤ nγ′′
∥∥H−1

θ∗
∥∥2
2

∥∥G(Z, Z̃)∥∥2
2

≤ γ′′
(Mγz

λ

)2
n|Z|2

Theorem 3 LetA be the learning algorithm that returns the uniqueminimumofLb(θ;D′)

and let U be an unlearning method that produces a model θU . If ∥∇L(θU ;D′)∥2 ≤ ε′ for
some ε′ > 0 we have the following guarantees.

1. If b is drawn from a distribution with density p(b) = e−
ε
ε′ ∥b∥2 then U performs ε-

certified unlearning forA.

2. If p ∼ N (0, cε′/ε)d for some c > 0 then U performs (ε, δ)-certified unlearning forA
with δ = 1.5e−c2/2.

Proof. The proofs work similarly to the sensitivity proofs for differential privacy as presented
in Dwork and Roth [83].

1. Given b1 and b2 with ∥b1 − b2∥2 ≤ ε′. By the construction of the density p, we have

p(b1)
p(b2)

= e−
ε
ε′

(
∥b1∥2−∥b2∥2

)
≤ e

ε
ε′

(
∥b1−b2∥2

)
≤ eε.

If we now apply Theorem 2, the claim follows.

2. The secondproof is similar toTheorem3.22 inDwork andRoth [83]usingΔ2(f) = ε′

which yields that with probability at least 1 − δ we have e−ε ≤ p(b1)
p(b2) ≤ eε. Applying

Theorem 2 afterwards again finalizes the proof.

Lemma 2 If the gradient residual of a single update step is bounded by C then the gradient
residual after T consecutive update steps is bounded by TC.

Proof. The claim follows by mathematical induction: Recall that θ∗ is an exact solution of
L(θ,D). We define θ(0) := θ∗ and the approximate solution after t steps as θ(t) := θ(t−1) +

Δ(t), where Δ(t) is our first-order or second-order update. If we denote the gradient residual

147

after t steps byu(t) = ∥∇L
(
θ(t),D t+1

)
∥2 thenTheorem1 states that∥u(1)∥ ≤ C and thus the

base case, whereD(t+1) is the dataset where features or labels have been changed or revoked.
For the induction step, consider the modified loss function

L̃
(
θ,D (t+1)) = L

(
θ,D(t+1))− θTu(t).

By construction, θ(t) optimizes L̃ since

∇L̃
(
θ(t),D(t+1)) = ∇L

(
θ(t),D(t+1))− u(t) = 0.

This allows to apply Theorem 1 to L̃ and yields the bound ∥∇L̃
(
θ(t) + Δ(t),D(t+2)

)
∥2 ≤

C.
In other words, we have

∥∇L̃
(
θ(t+1),D(t+2))∥2 = ∥∇L

(
θ(t+1),D(t+2))− u(t)∥2 = ∥u(t+1) − u(t)∥2 ≤ C,

however by the induction statement we also know that ∥u(t)∥2 ≤ tC and therefore get

∥u(t+1)∥2 = ∥u(t+1) + u(t) − u(t)∥2 ≤ ∥u(t+1) − u(t)∥2 + ∥u(t)∥2 ≤ (t+ 1)C.

148

References

[1] Regulation 2016/679 of the European Parliament and of the Council of 27 April
2016 on the protection of natural persons with regard to the processing of personal
data and on the free movement of such data. Official Journal of the European Union,
119:1–88, 2016.

[2] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov,
Kunal Talwar, and Li Zhang. Deep learning with differential privacy. In Proc. of the
ACMConference on Computer and Communications Security (CCS), pages 308–318,
2016.

[3] Julius Adebayo, Justin Gilmer, Ian Goodfellow, and Been Kim. Local expla-
nation methods for deep neural networks lack sensitivity to parameter values.
arXiv:1810.03307, 2018.

[4] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian J. Goodfellow, Moritz Hardt,
and Been Kim. Sanity checks for saliency maps. In Advances in Neural Information
Proccessing Systems (NIPS), pages 9505–9515, 2018.

[5] Julius Adebayo, Michael Muelly, Ilaria Liccardi, and Been Kim. Debugging tests for
model explanations. In Advances in Neural Information Proccessing Systems (NIPS),
pages 700–712, 2020.

[6] Julius Adebayo, Michael Muelly, Harold Abelson, and Been Kim. Post hoc explana-
tions may be ineffective for detecting unknown spurious correlation. In Proc. of the
International Conference on Learning Representations (ICLR), 2022.

[7] AdvancedMicroDevices, Inc. Vitis AI, 2023. Available at https://www.xilinx.com/
products/design-tools/vitis/vitis-ai.html.

[8] Advanced Micro Devices, Inc. Vitis AI DPU, 2023. Available at https://github.
com/Xilinx/Vitis-AI/tree/master/dpu.

[9] ChiragAgarwal andAnhGia-TuanNguyen. Explaining image classifiers by removing
input features using generative models. In Proc. of the Asian Conference on Computer
Vision, pages 101–118, 2020.

149

https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://github.com/Xilinx/Vitis-AI/tree/master/dpu
https://github.com/Xilinx/Vitis-AI/tree/master/dpu

[10] ChiragAgarwal, SatyapriyaKrishna, Eshika Saxena,Martin Pawelczyk,Nari Johnson,
Isha Puri, Marinka Zitnik, andHimabindu Lakkaraju. Openxai: Towards a transpar-
ent evaluation of model explanations. InAdvances in Neural Information Proccessing
Systems (NIPS), pages 15784–15799, 2022.

[11] Naman Agarwal, Brian Bullins, and Elad Hazan. Second-order stochastic optimiza-
tion for machine learning in linear time. Journal of Machine Learning Research
(JMLR), page 4148–4187, 2017.

[12] Md. Mahbub Alam, Shahin Tajik, Fatemeh Ganji, Mark M. Tehranipoor, and
Domenic Forte. RAM-Jam: Remote Temperature and Voltage Fault Attack on FP-
GAs usingMemory Collisions. In Proc. of the IEEEWorkshop on Fault Diagnosis and
Tolerance in Cryptography, pages 48–55, 2019.

[13] MaximilianAlber, SebastianLapuschkin, Philipp Seegerer,MiriamHägele, KristofT.
Schütt,GrégoireMontavon,WojciechSamek,Klaus-RobertMüller, SvenDähne, and
Pieter-Jan Kindermans. iNNvestigate neural networks! arxiv:1808.04260, 2018.

[14] Nasser Aldaghri, HessamMahdavifar, andAhmad Beirami. Codedmachine unlearn-
ing. IEEE Access, 9:88137 – 88150, 2021.

[15] Victor Manuel Alvarez. Yara – the pattern matching swiss knife for malware re-
searchers. https://virustotal.github.io/yara/. visited March 2021.

[16] Marco Ancona, Enea Ceolini, Cengiz Öztireli, and Markus Gross. Towards better
understanding of gradient-based attribution methods for deep neural networks. In
Proc. of the International Conference on Learning Representations (ICLR), 2018.

[17] Christopher Anders, Plamen Pasliev, Ann-Kathrin Dombrowski, Klaus-Robert
Müller, and Pan Kessel. Fairwashing explanations with off-manifold detergent. In
Proc. of the International Conference on Machine Learning (ICML), pages 314–323,
2020.

[18] Christopher J. Anders, Leander Weber, David Neumann, Wojciech Samek, Klaus-
Robert Müller, and Sebastian Lapuschkin. Finding and removing clever hans: Using
explanation methods to debug and improve deep models. Information Fusion, 77:
261–295, 2019.

[19] Daniel Arp, Michael Spreitzenbarth, Malte Hübner, Hugo Gascon, and Konrad
Rieck. Drebin: Efficient and explainable detection of Android malware in your
pocket. In Proc. of the Network and Distributed System Security Symposium (NDSS),
February 2014.

[20] Daniel Arp, ErwinQuiring, Feargus Pendlebury, AlexanderWarnecke, Fabio Pierazzi,
Christian Wressnegger, Lorenzo Cavallaro, and Konrad Rieck. Dos and don’ts of
machine learning in computer security. In Proc. of the USENIX Security Symposium,
August 2022.

150

https://virustotal.github.io/yara/

[21] Daniel Christopher Arp. Efficient and ExplainableDetection ofMobileMalware with
Machine Learning. PhD thesis, Technische Universität Braunschweig, Sep 2019.

[22] LeilaArras, FranziskaHorn,GrégoireMontavon,Klaus-RobertMüller, andWojciech
Samek. What is relevant in a text document?: An interpretable machine learning ap-
proach. PLoS ONE, 12, 2017.

[23] Peter Asaro. On banning autonomous weapon systems: human rights, automation,
and the dehumanization of lethal decision-making. International Review of the Red
Cross, 94(886):687–709, 2012.

[24] Joshua Attenberg, Kilian Weinberger, Anirban Dasgupta, Alex Smola, and Martin
Zinkevich. Collaborative email-spam filtering with the hashing trick. In Conference
on Email and Anti-Spam (CEAS), 2009.

[25] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-
Robert Müller, and Wojciech Samek. On pixel-wise explanations for non-linear clas-
sifier decisions by layer-wise relevance propagation. PLoS ONE, 10(7), July 2015.

[26] Juhan Bae, Nathan Ng, Alston Lo, Marzyeh Ghassemi, and Roger B. Grosse. If in-
fluence functions are the answer, then what is the question? In Advances in Neural
Information Proccessing Systems (NIPS), pages 17953–17967, 2022.

[27] David Balduzzi, Marcus Frean, Lennox Leary, J P Lewis, Kurt Wan-Duo Ma, and
Brian McWilliams. The shattered gradients problem: If resnets are the answer, then
what is the question? In Proc. of the International Conference on Machine Learning
(ICML), ICML’17, page 342–350, 2017.

[28] Shumeet Baluja and Ian Fischer. Learning to attack: Adversarial transformation net-
works. In Proc. of the AAAI Conference on Artificial Intelligence (AAAI), volume 32,
pages 2687–2695, 2018.

[29] ElnazBarshan,M.Brunet, andG.Dziugaite. Relatif: Identifying explanatory training
examples via relative influence. In Proc. of the International Conference on Artificial
Intelligence and Statistics (AISTATS), pages 1899–1909, 2020.

[30] Samyadeep Basu, Xuchen You, and Soheil Feizi. On second-order group influence
functions for black-box predictions. In Proc. of the International Conference on Ma-
chine Learning (ICML), pages 715–724, 2020.

[31] Samyadeep Basu, Philip Pope, and Soheil Feizi. Influence functions in deep learn-
ing are fragile. In Proc. of the International Conference on Learning Representations
(ICLR), 2021.

[32] Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek, Christopher Kruegel,
and EnginKirda. Scalable, behavior-basedmalware clustering. InProc. of theNetwork
and Distributed System Security Symposium (NDSS), 2009.

151

[33] GeorgT.Becker, FrancescoRegazzoni,ChristofPaar, andWayneP.Burleson. Stealthy
dopant-level hardware trojans. In Cryptographic Hardware and Embedded Systems
InternationalWorkshop, pages 197–214, 2013.

[34] Umang Bhatt, Adrian Weller, and José M. F. Moura. Evaluating and aggregating
feature-based model explanations. In Proc. of the Twenty-Ninth International Joint
Conference on Artificial Intelligence, 2021. ISBN 9780999241165.

[35] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support
vector machines. In Proc. of International Conference onMachine Learning (ICML),
page 1467–1474, 2012.

[36] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006.

[37] M. Bishop. Computer security: Art and science. Addison-Wesley, 2003.

[38] Lucas Bourtoule, VarunChandrasekaran, ChristopherA.Choquette-Choo,Hengrui
Jia, AdelinTravers, BaiwuZhang,DavidLie, andNicolas Papernot. Machine unlearn-
ing. In Proc. of the IEEE Symposium on Security and Privacy (S&P), pages 141–159,
2021.

[39] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. 2004.

[40] Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based adversarial at-
tacks: Reliable attacks against black-box machine learning models. In International
Conference on Learning Representations (ICLR), 2018.

[41] Marc-Etienne Brunet, Colleen Alkalay-Houlihan, A. Anderson, and R. Zemel. Un-
derstanding the origins of bias in word embeddings. In Proc. of the International Con-
ference onMachine Learning (ICML), pages 803–811, 2019.

[42] Zoya Bylinskii, Tilke Judd, Aude Oliva, Antonio Torralba, and Frédo Durand. What
do different evaluation metrics tell us about saliency models? IEEE Transactions on
Pattern Analysis andMachine Intelligence, pages 740–757, 2016.

[43] Y. Cao and J. Yang. Towardsmaking systems forget withmachine unlearning. InProc.
of the IEEE Symposium on Security and Privacy (S&P), pages 463–480, 2015.

[44] Nicholas Carlini and David Wagner. Adversarial examples are not easily detected:
Bypassing ten detectionmethods. InProc. of ACMWorkshop onArtificial Intelligence
and Security (AISEC), page 3–14, 2017.

[45] Nicholas Carlini and David A. Wagner. Towards evaluating the robustness of neural
networks. In Proc. of the IEEE Symposium on Security and Privacy (S&P), pages 39–
57, 2017.

152

[46] NicholasCarlini,ChangLiu,ÚlfarErlingsson, JernejKos, andDawnSong. The secret
sharer: Evaluating and testing unintendedmemorization in neural networks. In Proc.
of the USENIX Security Symposium, pages 267–284, 2019.

[47] Nicholas Carlini, Florian Tramèr, Eric Wallace, Matthew Jagielski, Ariel Herbert-
Voss, Katherine Lee, andAdamRoberts. Extracting training data from large language
models. In Proc. of the USENIX Security Symposium, pages 2633–2650, 2021.

[48] Saikat Chakraborty, Rahul Krishna, YangruiboDing, and Baishakhi Ray. Deep learn-
ing based vulnerability detection: Are we there yet? IEEE Transactions on Software
Engineering, 48:3280–3296, 2020.

[49] Aditya Chattopadhyay, Anirban Sarkar, Prantik Howlader, and Vineeth N. Balasub-
ramanian. Grad-cam++: Generalized gradient-based visual explanations for deep con-
volutional networks. In Proc. of the IEEEWinter Conference on Applications of Com-
puter Vision (WACV), pages 839–847, 2018.

[50] Kamalika Chaudhuri and Claire Monteleoni. Privacy-preserving logistic regression.
InAdvances inNeural Information Proccessing Systems (NIPS), pages 289–296, 2008.

[51] Kamalika Chaudhuri, Claire Monteleoni, and Anand D. Sarwate. Differentially pri-
vate empirical risk minimization. Journal of Machine Learning Research (JMLR),
page 1069–1109, 2011.

[52] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Ed-
wards, Taesung Lee, Ian M. Molloy, and Biplav Srivastava. Detecting backdoor at-
tacks on deep neural networks by activation clustering. In Proc. of the Workshop on
Artificial Intelligence Safety, 2019.

[53] Hongge Chen, Si Si, Yang Li, Ciprian Chelba, Sanjiv Kumar, Duane Boning, and
Cho-Jui Hsieh. Multi-stage influence function. In Advances in Neural Information
Proccessing Systems (NIPS), pages 12732–12742, 2020.

[54] Huili Chen, Cheng Fu, Jishen Zhao, and Farinaz Koushanfar. Deepinspect: A black-
box trojan detection and mitigation framework for deep neural networks. In Proc. of
the International Joint Conference on Artificial Intelligence, pages 4658–4664, 2019.

[55] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Ze-
roth order optimization based black-box attacks to deep neural networks without
training substitute models. Proc. of ACMWorkshop on Artificial Intelligence and Se-
curity (AISEC), pages 15–26, 2017.

[56] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor
attacks on deep learning systems using data poisoning. arxiv:1712.05526, 2017.

[57] Animesh Chhotaray, Adib Nahiyan, Thomas Shrimpton, Domenic Forte, and
Mark M. Tehranipoor. Standardizing bad cryptographic practice: A teardown of

153

the IEEE standard for protecting electronic-design intellectual property. In Proc. of
the ACMConference on Computer and Communications Security (CCS), pages 1533–
1546, 2017.

[58] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations us-
ing RNN encoder–decoder for statistical machine translation. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
1724–1734, October 2014.

[59] Theo Chow, Zeliang Kan, Lorenz Linhardt, Daniel Arp, Lorenzo Cavallaro, and
Fabio Pierazzi. Drift forensics of malware classifiers. In Proc. of ACMWorkshop on
Artificial Intelligence and Security (AISEC), pages 197–207, 2023.

[60] Zheng Leong Chua, Shiqi Shen, Prateek Saxena, and Zhenkai Liang. Neural nets
can learn function type signatures from binaries. In Proc. of the USENIX Security
Symposium, pages 99–116, 2017.

[61] Joseph Clements and Yingjie Lao. Hardware Trojan Attacks on Neural Networks.
arxiv:1806.05768, 2018.

[62] Tim Clifford, Ilia Shumailov, Yiren Zhao, Ross J. Anderson, and Robert D. Mullins.
Impnet: Imperceptible and blackbox-undetectable backdoors in compiled neural net-
works. arxiv:2210.00108, 2022.

[63] Jeremy M. Cohen, Elan Rosenfeld, and J. Zico Kolter. Certified adversarial robust-
ness via randomized smoothing. In Proc. of the International Conference onMachine
Learning (ICML), pages 1310–1320, 2019.

[64] R. Dennis Cook and Sanford Weisberg. Residuals and influence in regression. New
York: Chapman and Hall, 1982.

[65] Ian C. Covert, Scott Lundberg, and Su-In Lee. Explaining by removing: A unified
framework for model explanation. Journal ofMachine Learning Research, 22, 2021.

[66] Ekin Cubuk, Barret Zoph, Samuel Schoenholz, and Quoc Le. Intriguing properties
of adversarial examples. arXiv:1711.02846, 11 2017.

[67] Piotr Dabkowski and Yarin Gal. Real time image saliency for black box classifiers. In
Advances in Neural Information Proccessing Systems (NIPS), pages 6967–6976. 2017.

[68] Jessica Dai, Sohini Upadhyay, U. Aïvodji, Stephen H. Bach, and Himabindu
Lakkaraju. Fairness via explanation quality: Evaluating disparities in the quality of
post hoc explanations. Proceedings of the AAAI/ACM Conference on AI, Ethics, and
Society, pages 203–214, 2022.

154

[69] A. Datta, S. Sen, and Y. Zick. Algorithmic transparency via quantitative input influ-
ence: Theory and experiments with learning systems. In Proc. of the IEEE Symposium
on Security and Privacy (S&P), pages 598–617, 2016.

[70] Arturo de la Escalera andchat Jose M. Armingol and Mario Mata. Traffic sign recog-
nition and analysis for intelligent vehicles. Image Vis. Comput., 21(3):247–258, 2003.

[71] D.Defays. An efficient algorithm for a complete linkmethod. The Computer Journal,
20(4):364–366, 01 1977.

[72] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee, 2009.

[73] Damien Desfontaines and Balázs Pejó. Sok: Differential privacies. Proceedings on
Privacy Enhancing Technologies, pages 288–313, 2020.

[74] Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling lan-
guage for convex optimization. Journal of Machine Learning Research, pages 83:1–
83:5, 2016.

[75] Artem Dinaburg, Paul Royal, Monirul I. Sharif, and Wenke Lee. Ether: malware
analysis via hardware virtualization extensions. In Proc. of the ACM Conference on
Computer and Communications Security (CCS), pages 51–62, 2008.

[76] Bao Gia Doan, Ehsan Abbasnejad, and Damith C. Ranasinghe. Februus: Input pu-
rification defense against trojan attacks on deep neural network systems. InProc. of the
Annual Computer Security Applications Conference (ACSAC), page 897–912, 2020.

[77] Ann Kathrin Dombrowski, Maximilian Alber, Christopher J. Anders, Marcel Acker-
mann, Klaus-Robert Müller, and Pan Kessel. Explanations can be manipulated and
geometry is to blame. InAdvances in Neural Information Proccessing Systems (NIPS),
pages 13567–13578, 2019.

[78] Arthur Drichel and Ulrike Meyer. False sense of security: Leveraging xai to analyze
the reasoning and true performance of context-less dga classifiers. In Proc. of the In-
ternational Symposium on Research in Attacks, Intrusions and Defenses (RAID), page
330–345, 2023.

[79] Arthur Drichel, Nils Faerber, and Ulrike Meyer. First step towards explainable dga
multiclass classification. Proc. of the International Conference on Availability, Relia-
bility and Security, pages 25:1–25:13, 2021.

[80] Dheeru Dua and Casey Graff. UCI machine learning repository. census income data
set., 2017.

[81] Dheeru Dua and Casey Graff. UCI machine learning repository. diabetis data set.,
2017.

155

[82] Cynthia Dwork. Differential privacy. In Automata, Languages and Programming,
pages 1–12, 2006.

[83] CynthiaDwork andAaronRoth. The algorithmic foundations of differential privacy.
Foundations and Trends in Theoretical Computer Science, page 211–407, 2014.

[84] Manuel Egele, Theodoor Scholte, EnginKirda, andChristopherKruegel. A survey on
automated dynamicmalware-analysis techniques and tools. ACMComputing Surveys
(CSUR), 44(2):1–42, 2012.

[85] Thorsten Eisenhofer, Doreen Riepel, Varun Chandrasekaran, Esha Ghosh, Olga
Ohrimenko, and Nicolas Papernot. Verifiable and provably secure machine unlearn-
ing. arXiv:2210.09126, 2022.

[86] NikolayElenkov.AndroidSecurity Internals: An In-DepthGuide toAndroid’s Security
Architecture. No Starch Press, USA, 1st edition, 2014.

[87] Dumitru Erhan, Y. Bengio, AaronCourville, and Pascal Vincent. VisualizingHigher-
Layer Features of a Deep Network. Technical Report, Univeristé deMontréal, 2009.

[88] Andre Esteva, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M. Swetter, He-
len M. Blau, and Sebastian Thrun. Dermatologist-level classification of skin cancer
with deep neural networks. Nature, 542(7639):115–118, 2017.

[89] Ming Fan, WenyingWei, Xiaofei Xie, Yang Liu, Xiaohong Guan, and Ting Liu. Can
we trust your explanations? sanity checks for interpreters in androidmalware analysis.
IEEE Transactions on Information Forensics and Security, 16:838–853, 2020.

[90] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Springenberg,
Manuel Blum, and Frank Hutter. Efficient and robust automated machine learn-
ing. InAdvances inNeural InformationProccessing Systems (NIPS), pages 2962–2970,
2015.

[91] R. C. Fong and A. Vedaldi. Interpretable explanations of black boxes by meaning-
ful perturbation. In Proc. of the IEEE International Conference on Computer Vision
(ICCV), pages 3449–3457. IEEE Computer Society, 2017.

[92] John Foremost. DroidDream mobile malware. https://www.virusbulletin.com/
virusbulletin/2012/03/droiddream-mobile-malware, 2012. (Online; accessed 09-
January-2024).

[93] Feisi Fu andWenchao Li. Sound and complete neural network repair withminimality
and locality guarantees. In Proc. of the International Conference on Learning Repre-
sentations (ICLR), 2022.

[94] Tom Ganz, Martin Härterich, Alexander Warnecke, and Konrad Rieck. Explaining
graph neural networks for vulnerability discovery. In Proc. of ACMWorkshop on Ar-
tificial Intelligence and Security (AISEC), November 2021.

156

https://www.virusbulletin.com/virusbulletin/2012/03/droiddream-mobile-malware
https://www.virusbulletin.com/virusbulletin/2012/03/droiddream-mobile-malware

[95] Yansong Gao, Chang Xu, Derui Wang, Shiping Chen, Damith Chinthana Ranas-
inghe, and Surya Nepal. STRIP: a defence against trojan attacks on deep neural net-
works. In Proc. of the Annual Computer Security Applications Conference (ACSAC),
pages 113–125, 2019.

[96] Hugo Gascon, Bernd Grobauer, Thomas Schreck, Lukas Rist, Daniel Arp, and Kon-
rad Rieck. Mining attributed graphs for threat intelligence. In Proc. of the ACM
Conference on Data and Application Security and Privacy (CODASPY), pages 15–22,
March 2017.

[97] Amirata Ghorbani, Abubakar Abid, and James Y. Zou. Interpretation of neural
networks is fragile. In Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), 2019.

[98] Leilani H. Gilpin, David Bau, Ben Z. Yuan, Ayesha Bajwa, Michael A. Specter, and
Lalana Kagal. Explaining explanations: An overview of interpretability of machine
learning. IEEE International Conference on Data Science and Advanced Analytics
(DSAA), pages 80–89, 2018.

[99] A. Ginart, Melody Y. Guan, G. Valiant, and J. Zou. Making AI forget you: Data
deletion in machine learning. In Advances in Neural Information Proccessing Systems
(NIPS), pages 3513–3526, 2019.

[100] AdityaGolatkar, AlessandroAchille, andStefanoSoatto. Eternal sunshine of the spot-
less net: Selective forgetting in deep networks. InProc. of the International Conference
on Computer Vision and Pattern Recognition (CVPR), 2020.

[101] Aditya Golatkar, Alessandro Achille, Avinash Ravichandran, Marzia Polito, and Ste-
fano Soatto. Mixed-privacy forgetting in deep networks. In Proc. of the International
Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

[102] T.F. Gonzàlez. Clustering to minimize the maximum intercluster distance. Theoreti-
cal Computer Science 38, pages 293–306, 1985.

[103] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016.

[104] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harness-
ing adversarial examples. In Proc. of the International Conference on Learning Repre-
sentations (ICLR), 2015.

[105] AlexGraves. Generating sequenceswith recurrent neural networks. arXiv:1308.0850,
2013.

[106] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and
Patrick D. McDaniel. Adversarial examples for malware detection. In Proc. of the Eu-
ropean Symposium on Research in Computer Security (ESORICS), pages 62–79, 2017.

157

[107] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Eval-
uating backdooring attacks on deep neural networks. IEEE Access, 7:47230–47244,
2019.

[108] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Gian-
notti, and Dino Pedreschi. A survey of methods for explaining black box models.
ACMComput. Surv., 51(5), aug 2018.

[109] Chuan Guo, Jacob R. Gardner, Yurong You, Andrew GordonWilson, and Kilian Q.
Weinberger. Simple black-box adversarial attacks. In Proc. of the International Con-
ference onMachine Learning (ICML), volume 97, pages 2484–2493, 2019.

[110] Chuan Guo, Tom Goldstein, Awni Y. Hannun, and Laurens van der Maaten. Certi-
fied data removal frommachine learningmodels. In Proc. of the International Confer-
ence onMachine Learning (ICML), pages 3822–3831, 2020.

[111] Han Guo, Nazneen Fatema Rajani, Peter Hase, Mohit Bansal, and Caiming Xiong.
Fastif: Scalable influence functions for efficient model interpretation and debugging.
arxiv:2012.15781, 2020.

[112] Wenbo Guo, Dongliang Mu, Jun Xu, Purui Su, Gang Wang, and Xinyu Xing.
LEMNA: Explaining deep learning based security applications. In Proc. of the ACM
Conference on Computer and Communications Security (CCS), pages 364–379, 2018.

[113] F. Hampel. The influence curve and its role in robust estimation. In Journal of the
American Statistical Association, 1974.

[114] DongqiHan, ZhiliangWang,WenqiChen, Ying Zhong, SuWang,HanZhang, Jiahai
Yang, Xingang Shi, and Xia Yin. Deepaid: Interpreting and improving deep learning-
based anomaly detection in security applications. In Proc. of the ACM Conference on
Computer and Communications Security (CCS), 2021.

[115] Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep
neural network with pruning, trained quantization and huffman coding. In Proc. of
the International Conference on Learning Representations (ICLR), 2016.

[116] Tessa Han, Suraj Srinivas, and Himabindu Lakkaraju. Which explanation should i
choose? a function approximation perspective to characterizing post hoc explana-
tions. In Advances in Neural Information Proccessing Systems (NIPS), pages 5256–
5268, 2022.

[117] Stefan Harmeling, Guido Dornhege, David Tax, Frank Meinecke, and Klaus-Robert
Müller. Fromoutliers toprototypes: Orderingdata.Neurocomput., 69(13–15):1608–
1618, 2006.

[118] BabakHassibi, David G. Stork, and Gregory J. Wolff. Optimal brain surgeon: Exten-
sions and performance comparison. In Advances in Neural Information Proccessing
Systems (NIPS), pages 263–270, 1993.

158

[119] KaimingHe,X.Zhang, ShaoqingRen, and Jian Sun. Deep residual learning for image
recognition. Proc. of the International Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2015.

[120] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Com-
putation, 9:1735–1780, 1997.

[121] Sanghyun Hong, Pietro Frigo, Yigitcan Kaya, Cristiano Giuffrida, and Tudor Dumi-
tras. Terminal Brain Damage: Exposing the Graceless Degradation in Deep Neural
Networks Under Hardware Fault Attacks. In Proc. of the USENIX Security Sympo-
sium, pages 497–514, 2019.

[122] Sara Hooker, Dumitru Erhan, Pieter-Jan Kindermans, and Been Kim. A benchmark
for interpretability methods in deep neural networks. In Advances in Neural Infor-
mation Proccessing Systems (NIPS), pages 9734–9745, 2019.

[123] Sebastian Houben, Johannes Stallkamp, Jan Salmen, Marc Schlipsing, and Christian
Igel. Detection of traffic signs in real-world images: The german traffic sign detection
benchmark. In Proc. of the IEEE International Joint Conference on Neural Networks
(IJCNN), pages 1–8, 2013.

[124] Cheng-Yu Hsieh, Chih-Kuan Yeh, Xuanqing Liu, Pradeep Ravikumar, Seungyeon
Kim, Sanjiv Kumar, and Cho-Jui Hsieh. Evaluations and methods for explanation
through robustness analysis. InProc. of the International Conference on LearningRep-
resentations (ICLR), 2019.

[125] XinHu, Sandeep Bhatkar, Kent Griffin, and Kang G. Shin. Mutantx-s: Scalable mal-
ware clustering based on static feature. In Proc. of the USENIX Annual Technical
Conference, pages 187–198, 2013.

[126] Xing Hu, Yang Zhao, Lei Deng, Ling Liang, Pengfei Zuo, Jing Ye, Yingyan Lin, and
Yuan Xie. Practical Attacks on Deep Neural Networks byMemory Trojaning. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst., 40(6):1230–1243, 2021.

[127] Wenyi Huang and Jack W. Stokes. MtNet: A multi-task neural network for dynamic
malware classification. In Proc. of the Conference on Detection of Intrusions andMal-
ware & Vulnerability Assessment (DIMVA), pages 399–418, 2016.

[128] Xijie Huang, Moustafa Farid Alzantot, and Mani B. Srivastava. Neuroninspect: De-
tecting backdoors in neural networks via output explanations. arxiv:1911.07399,
2019.

[129] Lawrence J. Hubert and Phipps Arabie. Comparing partitions. Journal of Classifica-
tion, 2:193–218, 1985.

[130] Médéric Hurier, Guillermo Suarez-Tangil, Santanu Kumar Dash, Tegawendé F Bis-
syandé, Yves LeTraon, JacquesKlein, andLorenzoCavallaro. Euphony: Harmonious

159

unification of cacophonous anti-virus vendor labels for Android malware. In Proc. of
the International Conference onMining SoftwareRepositories (MSR), pages 425–435,
2017.

[131] Médéric Hurier, Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le
Traon. On the lack of consensus in anti-virus decisions: Metrics and insights on
building ground truths of android malware. In Proc. of the Conference on Detection
of Intrusions and Malware & Vulnerability Assessment (DIMVA), pages 142–162,
2016.

[132] Maximilian Idahl, Lijun Lyu, Ujwal Gadiraju, and Avishek Anand. Towards bench-
marking the utility of explanations for model debugging. arxiv:2105.04505, 2021.

[133] IEEE Design Automation Standards Committee (DASC). IEEE 1735-2014 - Rec-
ommended Practice for Encryption andManagement of Electronic Design Intellectual
Property (IP). 2015.

[134] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. Black-box adversarial
attacks with limited queries and information. In Proc. of the International Conference
onMachine Learning (ICML), pages 2142–2151, 2018.

[135] Andrew Ilyas, Logan Engstrom, andAleksanderMadry. Prior convictions: Black-box
adversarial attacks with bandits and priors. In Proc. of the International Conference on
Learning Representations (ICLR), 2019.

[136] Zachary Izzo,MaryAnne Smart, KamalikaChaudhuri, and James Zou. Approximate
data deletion frommachine learning models. In Proc. of the International Conference
on Artificial Intelligence and Statistics (AISTATS), pages 2008–2016, 2021.

[137] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, An-
drewG.Howard,HartwigAdam, andDmitryKalenichenko. Quantization and train-
ing of neural networks for efficient integer-arithmetic-only inference. In Proc. of the
International Conference on Computer Vision and PatternRecognition (CVPR), pages
2704–2713, 2018.

[138] Jiyong Jang, David Brumley, and Shobha Venkataraman. BitShred: feature hashing
malware for scalable triage and semantic analysis. In Proc. of the ACM Conference on
Computer and Communications Security (CCS), pages 309–320, 2011.

[139] Xuxian Jiang. Security Alert: New sophisticated Android malware DroidKungFu
found in alternative chinese App markets. https://www.csc2.ncsu.edu/faculty/
xjiang4/DroidKungFu.html, 2011. (Online; accessed 14-February-2019).

[140] Xuxian Jiang. Security Alert: New Android malware GoldDream found in alter-
native app markets. https://www.csc2.ncsu.edu/faculty/xjiang4/GoldDream/,
2011. (Online; accessed 14-February-2019).

160

https://www.csc2.ncsu.edu/faculty/xjiang4/DroidKungFu.html
https://www.csc2.ncsu.edu/faculty/xjiang4/DroidKungFu.html
https://www.csc2.ncsu.edu/faculty/xjiang4/GoldDream/

[141] Nick Kanopoulos, Nagesh Vasanthavada, and Robert L Baker. Design of an image
edge detection filter using the sobel operator. IEEE Journal of solid-state circuits, 23
(2):358–367, 1988.

[142] Alexandros Kapravelos, Yan Shoshitaishvili, Marco Cova, Christopher Kruegel, and
Giovanni Vigna. Revolver: An automated approach to the detection of evasive web-
based malware. In Proc. of the USENIX Security Symposium, pages 637–651, August
2013.

[143] J. Kiefer and JacobWolfowitz. Stochastic estimation of the maximum of a regression
function. Annals of Mathematical Statistics, 23:462–466, 1952.

[144] Daniel Kifer and AshwinMachanavajjhala. No free lunch in data privacy. In Proc. of
the ACM International Conference onManagement of Data, page 193–204, 2011.

[145] Been Kim, Martin Wattenberg, Justin Gilmer, Carrie J. Cai, James Wexler, Fer-
nanda B. Viégas, andRory Sayres. Interpretability beyond feature attribution: Quan-
titative testing with concept activation vectors (TCAV). In Proc. of the International
Conference onMachine Learning (ICML), pages 2673–2682, 2018.

[146] Pieter-Jan Kindermans, Sara Hooker, Julius Adebayo, Maximilian Alber, Kristof T.
Schütt, SvenDähne,D.Erhan, andBeenKim. The (un)reliability of saliencymethods.
In Explainable AI, 2017.

[147] Pieter-Jan Kindermans, Kristof T. Schütt, Maximilian Alber, Klaus-Robet Müller,
Dumitru Erhan, Been Kim, and Sven Dähne. Learning how to explain neural net-
works: Patternnet and patternattribution. In Proc. of the International Conference on
Learning Representations (ICLR), 2018.

[148] Diederik P. Kingma and Jimmy Ba. Adam: Amethod for stochastic optimization. In
Proc. of the International Conference on Learning Representations (ICLR), 2015.

[149] Durk P Kingma, Tim Salimans, and Max Welling. Variational dropout and the lo-
cal reparameterization trick. In Advances in Neural Information Proccessing Systems
(NIPS), volume 28, pages 2575–2583, 2015.

[150] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence
functions. In Proc. of the International Conference on Machine Learning (ICML),
pages 1885–1894, 2017.

[151] PangWeiKoh,Kai-SiangAng,HubertH.K.Teo, andPercyLiang. On the accuracy of
influence functions for measuring group effects. In Advances in Neural Information
Proccessing Systems (NIPS), pages 5255–5265, 2019.

[152] Clemens Kolbitsch, Paolo Milani Comparetti, Christopher Kruegel, Engin Kirda,
Xiao yong Zhou, and XiaoFeng Wang. Effective and efficient malware detection at
the end host. In Proc. of the USENIX Security Symposium, pages 351–366, 2009.

161

[153] Stefan Kolek, Duc Anh Nguyen, Ron Levie, Joan Bruna, and Gitta Kutyniok. A
Rate-Distortion Framework for Explaining Black-BoxModel Decisions, pages 91–115.
Springer International Publishing, 2022.

[154] VivekKothari, Edgar Liberis, andNicholasD. Lane. The final frontier: Deep learning
in space. In Proc. of the International Workshop on Mobile Computing Systems and
Applications, pages 45–49, 2020.

[155] Satyapriya Krishna, Tessa Han, Alex Gu, Javin Pombra, Shahin Jabbari, Steven Wu,
andHimabindu Lakkaraju. The disagreement problem in explainable machine learn-
ing: A practitioner’s perspective. arxiv:2202.01602, 2022.

[156] Alex Krizhevsky, Ilya Sutskever, and Geoffrey EHinton. Imagenet classification with
deep convolutional neural networks. In Advances in Neural Information Proccessing
Systems (NIPS), pages 1106–1114. Curran Associates, Inc., 2012.

[157] S N Kumar, A. Fred, Ajay Kumar Haridhas, and S. Varghese. Medical image edge
detection using gauss gradient operator. Journal of Pharmaceutical Sciences and Re-
search, 9:695–704, 2017.

[158] Sebastian Lapuschkin, Stephan Wäldchen, Alexander Binder, Grégoire Montavon,
Wojciech Samek, and Klaus-Robert Müller. Unmasking clever hans predictors and
assessing what machines really learn. Nature Communications, 10, 2019.

[159] Y.A. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, and
L.J. Jackel. Backpropagation applied to handwritten zip code recognition. Neural
Computation, 1:541–551, 1989.

[160] Yann LeCun and Yoshua Bengio. Word-level training of a handwritten word recog-
nizer based on convolutional neural networks. InProc. of the International Conference
on Pattern Recognition (ICPR), pages 88–92, 1994.

[161] Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. InAdvances
in Neural Information Proccessing Systems (NIPS), pages 598–605, 1989.

[162] Mathias Lécuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman
Jana. Certified robustness to adversarial examples with differential privacy. In Proc.
of the IEEE Symposium on Security and Privacy (S&P), pages 656–672, 2019.

[163] He Li, Qiang Liu, and Jiliang Zhang. A survey of hardware Trojan threat and defense.
Integr., 55:426–437, 2016.

[164] Wenshuo Li, Jincheng Yu, Xuefei Ning, Pengjun Wang, Qi Wei, Yu Wang, and
Huazhong Yang. Hu-Fu: Hardware and Software Collaborative Attack Framework
Against Neural Networks. In Proc. of the IEEE Computer Society Annual Symposium
on VLSI, pages 482–487, 2018.

162

[165] Yuanchun Li, Jiayi Hua, HaoyuWang, Chunyang Chen, and Yunxin Liu. Deeppay-
load: Black-box backdoor attack on deep learning models through neural payload in-
jection. In Proc. of the IEEE/ACM International Conference on Software Engineering,
pages 263–274, 2021.

[166] Zhen Li, Deqing Zou, Shouhuai Xu, XinyuOu,Hai Jin, SujuanWang, ZhijunDeng,
and Yuyi Zhong. Vuldeepecker: A deep learning-based system for vulnerability de-
tection. In Proc. of the Network and Distributed System Security Symposium (NDSS),
2018.

[167] CongLiao,Haoti Zhong, AnnaCinzia Squicciarini, SencunZhu, andDavid J.Miller.
Backdoor embedding in convolutional neural network models via invisible perturba-
tion. Proc. of the Tenth ACM Conference on Data and Application Security and Pri-
vacy, pages 97–108, 2018.

[168] Martina Lindorfer, Clemens Kolbitsch, and Paolo Milani Comparetti. Detecting
environment-sensitive malware. In Proc. of the International Symposium on Research
in Attacks, Intrusions and Defenses (RAID), pages 338–357, 2011.

[169] Wenye Liu, Chip-Hong Chang, Fan Zhang, and Xiaoxuan Lou. Imperceptible Mis-
classificationAttack onDeep Learning Accelerator byGlitch Injection. In Proc. of the
ACM/IEEE Design Automation Conference, pages 1–6, 2020.

[170] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang,
and Xiangyu Zhang. Trojaning attack on neural networks. In Proc. of the Network
and Distributed System Security Symposium (NDSS), 2018.

[171] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information
theory, 28(2):129–137, 1982.

[172] Christos Louizos, Karen Ullrich, and Max Welling. Bayesian compression for deep
learning. InAdvances inNeural Information Proccessing Systems (NIPS), pages 3288–
3298, 2017.

[173] Christos Louizos, MaxWelling, and Diederik P. Kingma. Learning sparse neural net-
works through l_0 regularization. InProc. of the InternationalConference onLearning
Representations (ICLR), 2018.

[174] Yang Lu, Wenbo Guo, Xinyu Xing, and William Stafford Noble. Robust decoy-
enhanced saliency maps. arXiv:2002.00526, 2020.

[175] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predic-
tions. In Advances in Neural Information Proccessing Systems (NIPS), pages 4765–
4774, 2017.

[176] Hua Ma, Huming Qiu, Yansong Gao, Zhi Zhang, Alsharif Abuadbba, Anmin Fu,
Said F. Al-Sarawi, andDerek Abbott. Quantization backdoors to deep learningmod-
els. arxiv:2108.09187, 2021.

163

[177] J. MacQueen. Some methods for classification and analysis of multivariate observa-
tions. In Proc. of Berkeley Symposium on Mathematical Statistics and Probability,
pages 281–297, 1967.

[178] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In Proc.
of the International Conference on Learning Representations (ICLR), 2018.

[179] McAfee. Android/FakeInstaller.L. https://home.mcafee.com/virusinfo/, 2012.
(Online; accessed 1-August-2018).

[180] Niall McLaughlin, Jesús Martínez del Rincón, BooJoong Kang, Suleiman Y. Yerima,
Paul C. Miller, Sakir Sezer, Yeganeh Safaei, Erik Trickel, Ziming Zhao, AdamDoupé,
andGail-JoonAhn. Deep androidmalware detection. InProc. of theACMConference
on Data and Application Security and Privacy (CODASPY), pages 301–308, 2017.

[181] Shike Mei and Xiaojin Zhu. Using machine teaching to identify optimal training-set
attacks onmachine learners. In Proc. of the AAAI Conference on Artificial Intelligence
(AAAI), 2015.

[182] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. An analysis of neural
language modeling at multiple scales. arxiv:1803.08240, 2018.

[183] V. Metsis, G. Androutsopoulos, and G. Paliouras. Spam filtering with naive bayes -
which naive bayes? In Proc. of Conference on Email and Anti-Spam (CEAS), 2006.

[184] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. In Proc. of the International Conference on
Learning Representations (ICLRWorkshop), 2013.

[185] Smitha Milli, Ludwig Schmidt, Anca D. Dragan, and Moritz Hardt. Model recon-
struction from model explanations. In Proc. of the Conference on Fairness, Account-
ability, and Transparency (FAT), pages 1–9, 2019.

[186] EricMitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, andChristopherD.Man-
ning. Fast model editing at scale. In Proc. of the International Conference on Learning
Representations (ICLR), 2022.

[187] Dmitry Molchanov, Arsenii Ashukha, and Dmitry P. Vetrov. Variational dropout
sparsifies deep neural networks. In Proc. of the International Conference on Machine
Learning (ICML), pages 2498–2507, 2017.

[188] Grégoire Montavon, Alexander Binder, Sebastian Lapuschkin, Wojciech Samek, and
Klaus-Robert Müller. Layer-Wise Relevance Propagation: An Overview. Springer
International Publishing, 2019.

164

https://home.mcafee.com/virusinfo/

[189] Grégoire Montavon, Sebastian Lapuschkin, Alexander Binder, Wojciech Samek, and
Klaus-Robert Müller. Explaining nonlinear classification decisions with deep taylor
decomposition. Pattern Recognition, 65:211–222, 2017.

[190] Seyed-MohsenMoosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard.
Universal adversarial perturbations. Proc. of the InternationalConference onComputer
Vision and Pattern Recognition (CVPR), pages 86–94, 2016.

[191] Seyed-MohsenMoosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: A
simple and accuratemethod to fool deep neural networks. InProc. of the International
Conference on Computer Vision and Pattern Recognition (CVPR), pages 2574–2582,
June 2016.

[192] Niels J. S. Mørch, Ulrik Kjems, Lars Kai Hansen, Claus Svarer, Ian Law, Benny
Lautrup, Stephen C. Strother, and Kelly Rehm. Visualization of neural networks us-
ing saliency maps. In Proc. of International Conference on Neural Networks (ICNN),
pages 2085–2090, 1995.

[193] Andreas Moser, Christopher Kruegel, and Engin Kirda. Limits of static analysis for
malware detection. In Proc. of the Annual Computer Security Applications Conference
(ACSAC), pages 421–430, 2007.

[194] Rijoy Mukherjee and Rajat Subhra Chakraborty. Novel Hardware Trojan Attack on
Activation Parameters of FPGA-Based DNN Accelerators. IEEE Embed. Syst. Lett.,
14(3):131–134, 2022.

[195] Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin
Wongrassamee, Emil C. Lupu, and Fabio Roli. Towards poisoning of deep learning
algorithms with back-gradient optimization. Proc. of ACM Workshop on Artificial
Intelligence and Security (AISEC), pages 27–38, 2017.

[196] Krishna Kanth Nakka andMathieu Salzmann. Learning transferable adversarial per-
turbations. In Advances in Neural Information Proccessing Systems (NIPS), pages
13950–13962, 2021.

[197] Seth Neel, Aaron Roth, and Saeed Sharifi-Malvajerdi. Descent-to-delete: Gradient-
based methods for machine unlearning. In Proc. of the International Conference on
Algorithmic Learning Theory (ALT), pages 931–962, 2021.

[198] Matthias Neugschwandtner, Paolo Milani Comparetti, Grégoire Jacob, and Christo-
pher Kruegel. Forecast: skimming off the malware cream. In Proc. of the Annual
Computer Security Applications Conference (ACSAC), pages 11–20, 2011.

[199] Tuan Anh Nguyen and Anh Tuan Tran. Input-aware dynamic backdoor attack. In
Advances in Neural Information Proccessing Systems (NIPS), pages 3454–3464, 2020.

[200] Jorge Nocedal and Stephen J.Wright. Numerical Optimization. Springer, New York,
NY, USA, 2e edition, 2006.

165

[201] MaximilianNoppel, Lukas Peter, andChristianWressnegger. Disguising attacks with
explanation-aware backdoors. InProc. of the IEEE Symposium on Security andPrivacy
(S&P), pages 664–681, 2023.

[202] TolulopeA.Odetola,HawzhinRaoofMohammed, andSyedRafayHasan. AStealthy
Hardware Trojan Exploiting theArchitectural Vulnerability ofDeep LearningArchi-
tectures: Input Interception Attack (IIA). arxiv:1911.00783, 2019.

[203] Nicolas Papernot, Patrick Mcdaniel, Ian J. Goodfellow, Somesh Jha, Z. Berkay Celik,
and Ananthram Swami. Practical black-box attacks against machine learning. Proc.
of the ACMAsia Conference on Computer andCommunications Security (ASIACCS),
pages 506–519, 2016.

[204] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael P. Wellman. SoK:
Security and privacy in machine learning. In Proc. of the IEEE European Symposium
on Security and Privacy (EuroS&P), pages 399–414, 2018.

[205] Nicolas Papernot, Patrick D. McDaniel, Arunesh Sinha, and Michael P. Wellman.
Sok: Security and privacy in machine learning. In Proc. of the IEEE European Sympo-
sium on Security and Privacy (EuroS&P), pages 399–414, 2018.

[206] Omkar M. Parkhi, Andrea Vedaldi, and Andrew Zisserman. Deep face recognition.
In Proc. of the BritishMachine Vision Conference (BMVC), pages 41.1–41.12, 2015.

[207] Barak A. Pearlmutter. Fast exact multiplication by the hessian. Neural Computation,
6(1), 1994.

[208] Roberto Perdisci and ManChon U. Vamo: towards a fully automated malware clus-
tering validity analysis. In Proc. of the Annual Computer Security Applications Confer-
ence (ACSAC), pages 329–338, 2012.

[209] Roberto Perdisci, Andrea Lanzi, and Wenke Lee. Classification of paked executa-
bles for accurate computer virus detection. Pattern Recognition Letters, 29(14):1941–
1946, 2008.

[210] Lukas Pirch, AlexanderWarnecke, ChristianWressnegger, andKonradRieck. Tagvet:
Vetting malware tags using explainable machine learning. In Proc. of the European
Workshop on System Security (EUROSEC), 2021.

[211] B.T. Polyak. Some methods of speeding up the convergence of iteration methods.
USSR ComputationalMathematics andMathematical Physics, 4(5):1–17, 1964.

[212] Omid Poursaeed, Isay Katsman, Bicheng Gao, and Serge J. Belongie. Generative ad-
versarial perturbations. Proc. of the International Conference on Computer Vision and
Pattern Recognition (CVPR), pages 4422–4431, 2017.

166

[213] David M. W. Powers. Evaluation: From precision, recall and f-measure to roc, in-
formedness, markedness and correlation. Journal of Machine Learning Research
(JMLR), 2:37–63, 2011.

[214] Endres Puschner, ThorbenMoos, SteffenBecker, ChristianKison, AmirMoradi, and
Christof Paar. Red team vs. blue team: A real-world hardware trojan detection case
study across four modern CMOS technology generations. In Proc. of the IEEE Sym-
posium on Security and Privacy (S&P), pages 56–74, 2023.

[215] Junyang Qiu, Jun Zhang, Wei Luo, Lei Pan, Surya Nepal, Yu Wang, and Yang Xi-
ang. A3cm: Automatic capability annotation for Android malware. IEEE Access, 7:
147156–147168, 2019.

[216] Dima Rabadi and Sin G. Teo. Advanced windows methods on malware detection
and classification. In Proc. of the Annual Computer Security Applications Conference
(ACSAC), pages 54–68, 2020.

[217] Kamiar Rahnama Rad and ArianMaleki. A scalable estimate of the extra-sample pre-
diction error via approximate leave-one-out. Journal of the Royal Statistical Society:
Series B (StatisticalMethodology), 82, 2018.

[218] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses against
adversarial examples. In Proc. of the International Conference on Learning Represen-
tations (ICLR), 2018.

[219] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do im-
agenet classifiers generalize to imagenet? In Proc. of the International Conference on
Machine Learning (ICML), pages 5389–5400, 2019.

[220] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”why should i trust you?”:
Explaining the predictions of any classifier. In Proc. of ACM SIGKDD International
Conference On Knowledge Discovery and Data Mining (KDD), pages 1135–1144,
2016.

[221] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors: High-precision
model-agnostic explanations. InProc. of theAAAIConference onArtificial Intelligence
(AAAI), volume 32, pages 1527–1535, 2018.

[222] Konrad Rieck, Philipp Trinius, Carsten Willems, and Thorsten Holz. Automatic
analysis of malware behavior using machine learning. Technical Report 2009-18,
Technische Universität Berlin, December 2009.

[223] Konrad Rieck, Philipp Trinius, Carsten Willems, and Thorsten Holz. Automatic
analysis of malware behavior using machine learning. Journal of Computer Security
(JCS), 19(4):639–668, June 2011.

[224] Laura Rieger and Lars Kai Hansen. A simple defense against adversarial attacks on
heatmap explanations. arxiv:2007.06381, 2020.

167

[225] Laura Rieger and Lars Kai Hansen. Irof: a low resource evaluation metric for expla-
nation methods. arxiv:2003.08747, 2020.

[226] Herbert E. Robbins. A stochastic approximation method. Annals of Mathematical
Statistics, 22:400–407, 1951.

[227] J-Michael Roberts. Virusshare.com. https://www.virusshare.com. visited Jan-
uary 2023.

[228] R. Rojas. NeuralNetworks: A Systematic Approach. Springer-Verlag, Berlin, Deutsch-
land, 1996.

[229] M. Rosenblatt. Remarks on some nonparametric estimates of a density function.
Annals of Mathematical Statistics, 27:832–837, 1956.

[230] Daniel Rosenkrantz, Richard Stearns, and Philip II. An analysis of several heuristics
for the traveling salesman problem. SIAM J. Comput., 6:563–581, 09 1977.

[231] Peter J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis. Journal of Computational and Applied Mathematics, 20:53–65,
1987.

[232] Ethan M. Rudd, Felipe N. Ducau, Cody Wild, Konstantin Berlin, and Richard E.
Harang. Aloha: Auxiliary loss optimization for hypothesis augmentation. In Proc. of
the USENIX Security Symposium, pages 303–320, 2019.

[233] Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash. Hidden trigger
backdoor attacks. In Proc. of the AAAI Conference on Artificial Intelligence (AAAI),
pages 11957–11965, 2020.

[234] Wojciech Samek, Alexander Binder, Grégoire Montavon, Sebastian Lapuschkin, and
Klaus-Robert Müller. Evaluating the visualization of what a deep neural network
has learned. IEEE Transactions on Neural Networks and Learning Systems, 28:2660–
2673, 2015.

[235] Wojciech Samek, Gregoire Montavon, Andrea Vedaldi, Lars Kai Hansen, and Klaus-
RobertMuller. ExplainableAI: Interpreting, ExplainingandVisualizingDeepLearn-
ing. 2019.

[236] Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and Aleksander
Madry. Adversarially robust generalization requires more data. arxiv:1804.11285,
2018.

[237] T. Schnake, O. Eberle, J. Lederer, S. Nakajima, K. T. Schutt, K. Muller, and G. Mon-
tavon. Higher-order explanations of graph neural networks via relevant walks. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 44(11):7581–7596, nov
2022.

168

https://www.virusshare.com

[238] Peter Schulam and Suchi Saria. Can you trust this prediction? auditing pointwise reli-
ability after learning. In Proc. of the International Conference on Artificial Intelligence
and Statistics (AISTATS), pages 1022–1031, 2019.

[239] Marcos Sebastián,RichardRivera, PlatonKotzias, and JuanCaballero. Avclass: A tool
for massive malware labeling. In Proc. of the International Symposium on Research in
Attacks, Intrusions and Defenses (RAID), pages 230–253, 2016.

[240] Silvia Sebastián and Juan Caballero. Avclass2: Massive malware tag extraction from
av labels. In Proc. of the Annual Computer Security Applications Conference (ACSAC),
pages 42–53, 2020.

[241] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-
tam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from networks
via gradient-based localization. In Proc. of the IEEE International Conference on Com-
puter Vision (ICCV), pages 618–626, 2017.

[242] Ali Shafahi, W. Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer,
Tudor Dumitras, and Tom Goldstein. Poison frogs! targeted clean-label poisoning
attacks on neural networks. In Advances in Neural Information Proccessing Systems
(NIPS), pages 6106–6116, 2018.

[243] Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu, John P. Dickerson, Christoph
Studer, Larry S. Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for
free! In Advances in Neural Information Proccessing Systems (NIPS), pages 3353–
3364, 2019.

[244] L.S. Shapley. A value for n-person games. 1953.

[245] Mahmood Sharif, Lujo Bauer, andMichael K. Reiter. On the suitability of lp-norms
for creating and preventing adversarial examples. Proc. of the International Conference
on Computer Vision and Pattern Recognition (CVPR), pages 1686–16868, 2018.

[246] Monirul I. Sharif, Vinod Yegneswaran, Hassen Saïdi, Phillip A. Porras, and Wenke
Lee. Eureka: A framework for enabling static malware analysis. In Proc. of the Euro-
pean Symposium onResearch inComputer Security (ESORICS), pages 481–500, 2008.

[247] Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi. Recognizing functions in
binaries with neural networks. In Proc. of the USENIX Security Symposium, pages
611–626, 2015.

[248] Avanti Shrikumar, Peyton Greenside, Anna Shcherbina, and Anshul Kundaje. Not
just a black box: Learning important features through propagating activation differ-
ences. arXiv:1605.01713, 2016.

[249] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important fea-
tures through propagating activation differences. In Proc. of the International Confer-
ence onMachine Learning (ICML), pages 3145–3153, 2017.

169

[250] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks:
Visualising image classificationmodels and saliencymaps. InProc. of the International
Conference on Learning Representations (ICLR), 2014.

[251] Karen Simonyan andAndrewZisserman. Very deep convolutional networks for large-
scale image recognition. In Proc. of the International Conference on Learning Repre-
sentations (ICLR), 2015.

[252] Sahil Singla, EricWallace, Shi Feng, and Soheil Feizi. Understanding impacts of high-
order loss approximations and features in deep learning interpretation. In Proc. of
the International Conference onMachine Learning (ICML), volume 97, pages 5848–
5856, 2019.

[253] Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitriy Pyrkin, Sergei Popov, and Artem
Babenko. Editable neural networks. InProc. of the International Conference on Learn-
ing Representations (ICLR), 2020.

[254] Sergei Skorobogatov and ChristopherWoods. Breakthrough silicon scanning discov-
ers backdoor in military chip. In Cryptographic Hardware and Embedded Systems
InternationalWorkshop, volume 7428, pages 23–40, 2012.

[255] Dylan Slack, Sophie Hilgard, Emily Jia, Sameer Singh, and Himabindu Lakkaraju.
Fooling lime and shap: Adversarial attacks on post hoc explanationmethods. In Proc.
of the AAAI/ACM Conference on Artificial Intelligence , Ethics, and Society (AIES),
pages 180–186, 2019.

[256] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda B. Viégas, and Martin Watten-
berg. Smoothgrad: removing noise by adding noise. arXiv:1706.03825, 2017.

[257] Alexander Smola and S.V.N. Vishwanathan. Introduction to machine learning. Cam-
bridge University Press, 2008.

[258] Charles Smutz and Angelos Stavrou. Malicious PDF detection using metadata and
structural features. In Proc. of the Annual Computer Security Applications Conference
(ACSAC), pages 239–248, 2012.

[259] Robin Sommer andVern Paxson. Outside the closed world: On usingmachine learn-
ing for network intrusion detection. In Proc. of the IEEE Symposium on Security and
Privacy (S&P), pages 305–316, 2010.

[260] Julian Speith, Florian Schweins, Maik Ender, Marc Fyrbiak, Alexander May, and
Christof Paar. How not to protect your IP - an industry-wide break of IEEE 1735
implementations. In Proc. of the IEEE Symposium on Security and Privacy (S&P),
pages 1656–1671, 2022.

[261] J.T. Springenberg, A.Dosovitskiy, T. Brox, andM.Riedmiller. Striving for simplicity:
The all convolutional net. In ICLR (workshop track), 2015.

170

[262] Suraj Srinivas, Akshayvarun Subramanya, and R. Venkatesh Babu. Training sparse
neural networks. In Proc. of the International Conference on Computer Vision and
Pattern RecognitionWorkshops (CVPRW), pages 455–462, 2017.

[263] Cynthia Sturton, Matthew Hicks, David A. Wagner, and Samuel T. King. Defeating
UCI: building stealthy and malicious hardware. In Proc. of the IEEE Symposium on
Security and Privacy (S&P), pages 64–77, 2011.

[264] Rui Sun, Tao Lei, Qi Chen, Zexuan Wang, Xiaogang Du, Weiqiang Zhao, and
Asoke K. Nandi. Survey of image edge detection. Frontiers in Signal Processing, 2,
2022.

[265] Zhichuang Sun, Ruimin Sun, Long Lu, and Alan Mislove. Mind your weight(s): A
large-scale study on insufficient machine learning model protection in mobile apps.
In Proc. of the USENIX Security Symposium, pages 1955–1972, 2021.

[266] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep
networks. In Proc. of International Conference on Machine Learning (ICML), pages
3319–3328, 2017.

[267] Ilya Sutskever, James Martens, and Geoffrey Hinton. Generating text with recur-
rent neural networks. In Proc. of the International Conference on Machine Learning
(ICML), pages 1017–1024, 2011.

[268] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with
neural networks. In Advances in Neural Information Proccessing Systems (NIPS),
pages 3104–3112, 2014.

[269] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian J. Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In
Proc. of the International Conference on Learning Representations (ICLR), 2014.

[270] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeperwith convolutions. InProc. of the International Conference onComputerVision
and Pattern Recognition (CVPR), pages 1–9, 2015.

[271] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wo-
jna. Rethinking the inception architecture for computer vision. In Proc. of the In-
ternational Conference on Computer Vision and Pattern Recognition (CVPR), pages
2818–2826, 2016.

[272] Di Tang, XiaoFeng Wang, Haixu Tang, and Kehuan Zhang. Demon in the variant:
Statistical analysis of dnns for robust backdoor contamination detection. In Proc. of
the USENIX Security Symposium, pages 1541–1558, 2021.

171

[273] RyutaroTanno,Melanie Fernandes Pradier, AdityaNori, andYingzhenLi. Repairing
neural networks by leaving the right past behind. InAdvances in Neural Information
Proccessing Systems (NIPS), pages 13132–13145, 2022.

[274] Ayush K Tarun, Vikram S Chundawat, Murari Mandal, and Mohan S. Kankanhalli.
Fast yet effectivemachine unlearning. IEEE transactions on neural networks and learn-
ing systems, PP, 2021.

[275] JoeTebelskis. SpeechRecognitionusingNeuralNetworks. PhD thesis, CarnegieMellon
University, 1995.

[276] Mohammad Tehranipoor and Farinaz Koushanfar. A Survey of Hardware Trojan
Taxonomy and Detection. IEEE Des. Test Comput., 27(1):10–25, 2010.

[277] A.Thudi,G.Deza, V.Chandrasekaran, andN.Papernot. Unrolling sgd: Understand-
ing factors influencingmachine unlearning. InProc. of the IEEEEuropean Symposium
on Security and Privacy (EuroS&P), pages 303–319, 2022.

[278] Anvith Thudi, Hengrui Jia, Ilia Shumailov, and Nicolas Papernot. On the necessity
of auditable algorithmic definitions for machine unlearning. In Proc. of the USENIX
Security Symposium, pages 4007–4022, August 2022.

[279] M. Caner Tol, Saad Islam, Berk Sunar, and Ziming Zhang. An optimization per-
spective on realizing backdoor injection attacks on deep neural networks in hardware.
arxiv:2110.07683, 2021.

[280] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.
Stealingmachine learningmodels via prediction apis. In Proc. of the USENIX Security
Symposium, pages 601–618, 2016.

[281] Florian Tramer, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and
PatrickMcDaniel. Ensemble adversarial training: Attacks and defenses. InProc. of the
International Conference on Learning Representations (ICLR), 2018.

[282] Brandon Tran, Jerry Li, and Aleksander Madry. Spectral signatures in backdoor at-
tacks. In Advances in Neural Information Proccessing Systems (NIPS), pages 8011–
8021, 2018.

[283] Alexander Turner, Dimitris Tsipras, and Aleksander Madry. Label-consistent back-
door attacks. arxiv:1912.02771, 2019.

[284] Xabier Ugarte-Pedrero, Mariano Graziano, and Davide Balzarotti. A close look at a
daily dataset of malware samples. ACM Transactions on Privacy and Security, 22(1),
2019.

[285] Karen Ullrich, Edward Meeds, and Max Welling. Soft weight-sharing for neural net-
work compression. In Proc. of the International Conference on Learning Representa-
tions (ICLR), 2017.

172

[286] VirusTotal. Vt intelligence: CombineGoogle and Facebook and apply it to the field of
malware. https://www.virustotal.com/gui/intelligence-overview, visited Jan-
uary 2023.

[287] VMRay GmbH. Malware analysis sandbox & malware detection software. https:
//www.vmray.com/products/analyzer-malware-sandbox/. visited January 2023.

[288] Nedim Šrndić and Pavel Laskov. Practical evasion of a learning-based classifier: A case
study. InProc. of the IEEE Symposium on Security andPrivacy (S&P), pages 197–211,
2014.

[289] Erik Štrumbelj and Igor Kononenko. Explaining prediction models and individual
predictions with feature contributions. Knowledge and Information Systems, 41(3):
647–665, dec 2014.

[290] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao
Zheng, and Ben Y. Zhao. Neural cleanse: Identifying and mitigating backdoor at-
tacks in neural networks. In Proc. of the IEEE Symposium on Security and Privacy
(S&P), pages 707–723, 2019.

[291] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. HAQ: hardware-aware
automatedquantizationwithmixedprecision. InProc. of the InternationalConference
on Computer Vision and Pattern Recognition (CVPR), pages 8612–8620, 2019.

[292] Zifan Wang, Piotr (Peter) Mardziel, Anupam Datta, and Matt Fredrikson. Inter-
preting interpretations: Organizing attribution methods by criteria. In Proc. of the
International Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), pages 48–55, 2020.

[293] Alexander Warnecke. Layerwise Relevance Propagation for LSTMs. https://
github.com/alewarne/Layerwise-Relevance-Propagation-for-LSTMs, 2020.

[294] Alexander Warnecke. explain-mlsec. https://github.com/alewarne/
explain-mlsec, 2020.

[295] Alexander Warnecke, Daniel Arp, Christian Wressnegger, and Konrad Rieck. Evalu-
ating explanationmethods for deep learning in security. InProc. of the IEEEEuropean
Symposium on Security and Privacy (EuroS&P), September 2020.

[296] Alexander Warnecke, Lukas Pirch, Christian Wressnegger, and Konrad Rieck. Ma-
chine unlearning of features and labels. InProc. of theNetwork andDistributed System
Security Symposium (NDSS), February 2023.

[297] Alexander Warnecke, Julian Speith, Jan-Niklas Möller, Konrad Rieck, and Christof
Paar. Evil from within: Machine learning backdoors through hardware trojans.
arXiv:2304.08411, 2023.

173

https://www.virustotal.com/gui/intelligence-overview
https://www.vmray.com/products/analyzer-malware-sandbox/
https://www.vmray.com/products/analyzer-malware-sandbox/
https://github.com/alewarne/Layerwise-Relevance-Propagation-for-LSTMs
https://github.com/alewarne/Layerwise-Relevance-Propagation-for-LSTMs
https://github.com/alewarne/explain-mlsec
https://github.com/alewarne/explain-mlsec

[298] George D. Webster, Bojan Kolosnjaji, Christian von Pentz, Julian Kirsch, Zachary D.
Hanif, Apostolis Zarras, and Claudia Eckert. Finding the needle: A study of the pe32
rich header and respective malware triage. In Proc. of the Conference on Detection of
Intrusions andMalware&VulnerabilityAssessment (DIMVA), pages 119–138, 2017.

[299] Feng Wei, Hongda Li, Ziming Zhao, and Hongxin Hu. xnids: Explaining deep
learning-based network intrusion detection systems for active intrusion responses. In
Proc. of the USENIX Security Symposium, pages 4337–4354, 2023.

[300] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning struc-
tured sparsity in deep neural networks. InAdvances inNeural Information Proccessing
Systems (NIPS), pages 2074–2082, 2016.

[301] Georg Wicherski. peHash: A novel approach to fast malware clustering. In Proc. of
the USENIXWorkshop on Large-Scale Exploits and Emergent Threats (LEET), 2009.

[302] Eric Wong, Leslie Rice, and J. Zico Kolter. Fast is better than free: Revisiting adver-
sarial training. arxiv:2001.03994, 2020.

[303] Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev, and Paulius Micikevicius. In-
teger quantization for deep learning inference: Principles and empirical evaluation.
arxiv:2004.09602, 2020.

[304] YinjunWu, Edgar Dobriban, and Susan B. Davidson. Deltagrad: Rapid retraining of
machine learningmodels. In Proc. of the International Conference onMachine Learn-
ing (ICML), pages 10355–10366, 2020.

[305] Chaowei Xiao, Bo Li, Jun-Yan Zhu,WarrenHe,Mingyan Liu, andDawn Song. Gen-
erating adversarial examples with adversarial networks. In Proc. of the International
Joint Conference on Artificial Intelligence, page 3905–3911, 2018.

[306] Han Xiao, Huang Xiao, and Claudia Eckert. Adversarial label flips attack on support
vector machines. In Proc. of European Conference on Artificial Intelligence (ECAI),
pages 870–875, 2012.

[307] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. Neural
network-based graph embedding for cross-platform binary code similarity detection.
In Proc. of the ACM Conference on Computer and Communications Security (CCS),
pages 363–376, 2017.

[308] Xiaojun Xu, Qi Wang, Huichen Li, Nikita Borisov, Carl A. Gunter, and Bo Li. De-
tecting AI trojans using meta neural analysis. In Proc. of the IEEE Symposium on Se-
curity and Privacy (S&P), pages 103–120, 2021.

[309] MingfuXue, ChongyanGu,Weiqiang Liu, Shichao Yu, andMáireO’Neill. Ten years
of hardware Trojans: a survey from the attacker’s perspective. IET Comput. Digit.
Tech., 14(6):231–246, 2020.

174

[310] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. Modeling and dis-
covering vulnerabilities with code property graphs. In Proc. of the IEEE Symposium
on Security and Privacy (S&P), 2014.

[311] Fabian Yamaguchi, AlwinMaier, HugoGascon, andKonradRieck. Automatic infer-
ence of search patterns for taint-style vulnerabilities. In Proc. of the IEEE Symposium
on Security and Privacy (S&P), 2015.

[312] Limin Yang,WenboGuo, QingyingHao, Arridhana Ciptadi, Aliakbar Ahmadzadeh,
Xinyu Xing, and GangWang. Cade: Detecting and explaining concept drift samples
for security applications. In Proc. of the USENIX Security Symposium, pages 2327–
2344, 2021.

[313] Mengjiao Yang and Been Kim. Benchmarking attribution methods with relative fea-
ture importance. arXiv:1907.09701, 2019.

[314] Jing Ye, Yu Hu, and Xiaowei Li. Hardware Trojan in FPGA CNN Accelerator. In
Proc. of the IEEE Asian Test Symposium, pages 68–73, 2018.

[315] Chih-Kuan Yeh, Cheng-Yu Hsieh, Arun Sai Suggala, David I. Inouye, and Pradeep
Ravikumar. On the (in)fidelity and sensitivity of explanations. InAdvances inNeural
Information Proccessing Systems (NIPS), 2019.

[316] Santiago Zanella Béguelin, Lukas Wutschitz, Shruti Tople, Victor Rühle, Andrew
Paverd, Olga Ohrimenko, Boris Köpf, and Marc Brockschmidt. Analyzing Informa-
tionLeakage ofUpdates toNatural LanguageModels. InProc. of theACMConference
on Computer and Communications Security (CCS), pages 363–375, 2020.

[317] Matthew D. Zeiler. Adadelta: An adaptive learning rate method. arxiv:1212.5701,
2012.

[318] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional
networks. In Proc. of European Conference on Computer Vision (ECCV), pages 818–
833, 2014.

[319] Yi Zeng, Minzhou Pan, Hoang Anh Just, Lingjuan Lyu, Meikang Qiu, and Ruoxi
Jia. Narcissus: A practical clean-label backdoor attack with limited information. In
Proc. of the ACMConference on Computer and Communications Security (CCS), page
771–785, 2023.

[320] Jianming Zhang, Zhe L. Lin, Jonathan Brandt, Xiaohui Shen, and Stan Sclaroff. Top-
downneural attentionby excitationbackprop. InProc. of the InternationalConference
on Computer Vision and Pattern Recognition (CVPR), pages 1084–1102, 2016.

[321] Xinyang Zhang, Ningfei Wang, Hua Shen, Shouling Ji, Xiapu Luo, and Ting Wang.
Interpretable deep learning under fire. In Proc. of the USENIX Security Symposium,
pages 1659–1676, 2019.

175

[322] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.
Learning deep features for discriminative localization. In Proc. of the International
Conference on Computer Vision and Pattern Recognition (CVPR), pages 2921–2929,
2016.

[323] Jianlong Zhou, Amir Hossein Gandomi, Fang Chen, and Andreas Holzinger. Evalu-
ating the quality ofmachine learning explanations: A survey onmethods andmetrics.
Electronics, 2021.

[324] Yajin Zhou andXuxian Jiang. Dissecting androidmalware: Characterization and evo-
lution. In Proc. of the IEEE Symposium on Security and Privacy (S&P), pages 95–109,
2012.

[325] Yaqin Zhou, Shangqing Liu, J. Siow, Xiaoning Du, and Yang Liu. Devign: Effective
vulnerability identification by learning comprehensive program semantics via graph
neural networks. arxiv:1909.03496, 2019.

[326] Yiren Zhou, Seyed-Mohsen Moosavi-Dezfooli, Ngai-Man Cheung, and Pascal
Frossard. Adaptive quantization for deep neural network. In Proc. of the AAAI Con-
ference on Artificial Intelligence (AAAI), pages 4596–4604, 2018.

[327] LuisaM. Zintgraf, Taco S. Cohen, TameemAdel, andMaxWelling. Visualizing deep
neural network decisions: Prediction difference analysis. In Proc. of the International
Conference on Learning Representations, 2017.

176

	Title Page
	Abstract
	Zusammenfassung
	Acknowledgements
	Publications
	List of Figures
	List of Tables
	Contents
	Introduction
	Motivation
	Contributions
	Structure of this Thesis

	Background
	Machine Learning
	Neural Networks
	Explainable Machine Learning
	Attacks on Machine Learning Models and Explanations

	Evaluating Explanation Methods
	Selecting Datasets and Models
	Deriving Evaluation Criteria
	Evaluation
	Related Work

	From Explanations to Security Insights
	Prof: A Framework for Selecting Explanations
	Security Model Analysis
	Malware Detection
	Vulnerability Detection

	Vetting Malware Tags
	Behavior Monitoring and Representation
	Tag Learning and Prediction
	Generating Explanations
	Quantitative Evaluation
	Qualitative Evaluation

	Related Work

	From Explanations to Unlearning
	A Framework for Machine Unlearning
	Update Steps for Unlearning
	Certified Unlearning of Features and Labels
	Applications
	Unlearning Sensitive Features
	Unlearning Unintended Memorization
	Unlearning Data Poisoning

	Related Work

	From Explanations to Attacks
	Dormant Minimal Backdoors
	Realizing Backdoors through Hardware Trojans
	Crafting Minimal Backdoors
	Evaluation in Software
	Evaluation in Hardware

	Model Independent Adversarial Examples
	Sobel Filter Attack
	Adaptive Filter Attack

	Related Work

	Conclusion and Outlook
	Appendix Appendix
	Proofs for Certified Machine Unlearning

	References

