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ABSTRACT
International bypass fraud, also known as SIMBox fraud, involves
diverting international cellular voice tra�c from regulated routes
and rerouting it as local calls in the destination country. It has signif-
icantly a�ected cellular networks worldwide, generating $3.11 Bil-
lion of losses annually and threats to national security. Yet, SIMBox
fraud remains an ongoing challenge, eluding operators detection
due to the continual re�nement of fraudulent behavior that is often
overlooked in the design and validation of detection methods.

This paper introduces a game-based formalization of the SIMBox
fraud problem, delineating two key players–the adversary and the
investigator–along with their strategies and a set of metrics gaug-
ing their e�cacy in the game. We develop a practical framework
for the empirical evaluation of the fraud, incorporating current ad-
versary and investigator capabilities and accommodating seamless
adaptation to the evolving nature of fraud. Our analysis identi�es
up to 345,600,000 possible adversary strategies from in-market SIM-
Box appliances functionalities. The most sophisticated strategies
decisively outperform the most e�cient existing detection methods,
underscoring the literature’s lack of awareness of fraud capabilities.
Furthermore, we uncover fraud vulnerabilities and discuss their
implications for enhancing future detection strategies in practice.
In essence, our work introduces a novel paradigm in SIMBox fraud
detection that adapts seamlessly to the ever-changing landscape of
fraud, treating it as a fundamental aspect of the detection strategy.
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1 INTRODUCTION
SIMBox fraud is one of the most prevalent scams in cellular net-
works, being in the top three types of phone system frauds causing
a signi�cant loss to network operators [49]. Fraudsters take advan-
tage of the fact that International phone call routing is complex and
lacks transparency, to divert the international voice tra�c from the
regulated routes, through VoIP established links. The diverted traf-
�c is received at the level of a SIMBox (VoIP to GSM gateway) in the
destination country and re-originated as a national mobile call to its
recipient (cf. Fig. 1). Hence, mobile destination operators perceive
national termination fees, considerably cheaper than international
rates, while fraudsters bene�t from the price discrepancy.

The impact of this problem is worldwide, a�ecting major de-
veloped (as the case of the USA [42]) to emerging states, harming
operators’ revenues, network quality, networking research, users
privacy, or national security. Mainly in developing countries, up to
70% of incoming international call tra�c is terminated fraudulently,
leading to a revenue loss estimated to $3.11 Billion annually [49].
SIMBox fraud also degrades consumers’ quality of experience due
to call initiation delays and network unavailability, which increases
churn. Beyond �nancial aspects, SIMBox’s re-originated calls induce
bias in operators’ network usage records that appear with incorrect
origins and locations, impactingmultiple analyses and research [39].
More signi�cantly, SIMBox appliances allow eavesdropping on in-
ternational call conversations [16], impeding users’ privacy and
giving way for international espionage. They can further permit
international terrorists to conduct covert activities, masquerading
as national subscribers. The induced possibilities of terrorism attest
SIMBox fraud deserves much more attention.

Due to protocol and regulatory weaknesses rooted in the mobile
network organization at an international scale [44], SIMBox fraud
detection investigations are conducted only at the destination oper-
ator experiencing losses. According to existing literature (cf. Table
1), such investigations consist of analyzing network-related datasets
(i.e., CDRs, call audio, or signaling data) to distinguish between
legitimate users’ tra�c and SIMBox’s one. Here, CDRs (Charging
Data Records) refer to time-stamped and geo-referenced events (i.e.,
data, calls, text) generated from the interactions between mobile
devices and operators’ cellular network (cf. Table 2). This paper
focuses on CDR-based methods for the mitigation of SIMBox fraud,
as being the most widely employed and the most practical within the
operational constraints of mobile networks (cf. §2.2).

Motivation. CDR-based detection involves the supervised clas-
si�cation of network users (identi�ed by an International Mobile
Subscriber Identity) as fraudulent or legitimate based on per-user
communication features extracted from CDRs. Despite the high ac-
curacy of the CDR-based detection literature (cf. Table 1), the impact
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of SIMBox fraud continues to escalate [6, 49]. Indeed, SIMBox fraud-
sters constantly create and re�ne their strategies to mimic human
communication behavior and be indistinguishable [35]. Therefore,
SIMBox fraud mitigation becomes a challenging battle of wits, where
ambiguity prevails to the advantage of fraudsters, as elaborated:

- First, as with supervised classi�cation, SIMBox detection relies
heavily on operators providing ground truth data about known
fraudulent or legitimate users to train, guide, and validate detec-
tion methods. Hence, the quality and representativeness of the
provided ground truth directly impact the e�ectiveness of the
developed detection methods. In the context of SIMBox detec-
tion, fraudulent ground truth typically derives from operators’
past detection e�orts, often involving active methods like test
calls [35]. Test calls are intentional calls made by operators to
speci�c destinations to identify potential fraudulent activities.
However, the fraud dynamic nature poses a challenge as fraudulent
behavior constantly evolves, potentially rendering the ground truth
less representative over time and limiting its ability to o�er mean-
ingful insights for detecting evolved SIMBox frauds. Consequently,
there is a pressing need for continually evolving fraudulent ground
truth that accurately re�ects the actual fraud capabilities, enabling
detection to stay up-to-date on emerging challenges.
While one (costly) approach to achieving this is through the reg-
ular performance of test calls, some articles [28] shed light on a
drawback: fraudsters deliberately allow pools of SIM cards to be
detected through test calls to outsmart operators’ vigilance. These
"sacri�ced" SIM cards are chosen for their seemingly naive fraud-
ulent behaviors, rendering them useless for identifying other
fraudulent SIM cards. Therefore, we highlight the importance of
exploring alternative strategies for acquiring representative fraud-
ulent ground truth in the dynamic SIMBox fraud landscape.

- Second, given that detection methods heavily rely on fraudulent
ground truth describing a speci�c set of fraudulent behaviors,
interpreting detection validity becomes challenging. Indeed, cur-
rent literature on SIMBox detection has, until now, demonstrated
e�ectiveness within speci�c and non-characterized contexts pro-
vided by the non-public datasets they rely on (e.g., one week’s
CDRs of an Ethiopian operator [30]). However, as the fraud behav-
ior may vary from one dataset to another, the accurate interpreta-
tion of detection results heavily depends on a deep understanding of
the fraud behavior targeted by a detection methodology.Without
this crucial context, assessing the generality and success of a
detection approach across di�erent datasets or evolving fraud be-
haviors becomes complex. Therefore, we emphasize the need for
comprehensive fraud behavior structuring, essential for developing
universally applicable and interpretable detection methodologies
amidst the shifting landscape of SIMBox fraud.

Approach. In this paper, we present a pioneering formalization
of SIMBox fraud detection through CDR-based analysis, acknowl-
edging the fraud dynamic nature. We conceptualize the problem
as a strategic game wherein an adversary systematically introduces
fraudulent users among legitimate ones. The adversary’s goal is to
replicate the communication behaviors of genuine users using auto-
mated functionalities within SIMBox appliances. Meanwhile, an in-
vestigator aims to identify distinctive communication features that
di�erentiate fraudulent users. Unlike genuine users, who generate

tra�c and mobility patterns based on their routine-like activities,
fraudsters employ computerized methods. Through our formaliza-
tion, we thoroughly investigate how the fraud dynamic nature,
in various computerized human behavior reproduction strategies,
impacts detection performance and how to strategically position
detection methods in response. This exploration enables us to (i)
assess the actual capabilities of SIMBox fraud detection, previously
overestimated in the literature due to an ambiguous fraudulent con-
text, and (ii) gain insights into the fraud strengths and weaknesses
for future detection enhancements. Consequently, this investigation
lays the foundation for a new paradigm in fraud detection – a dy-
namic approach seamlessly adapting to the evolving nature of fraud,
integrating it as a fundamental aspect of the detection strategy.
Contribution. This paper achieves the following contributions as
sequential steps in implementing the approach described earlier:

(1) First, we introduce a generic methodology to study CDR-based
SIMBox fraud detection (§3). This approach formalizes the pro-
cess using a game-theoretic approach distinguishing an adver-
sary, who incorporates fraudulent behaviors, based on SIMBox
functionalities, de�ned as a "SIMBox fraud model" into a group
of legitimate users, and an investigator, who suggests a set of
communication features to discern the introduced frauds. The
game is evaluated using metrics measuring the e�ciency of
the SIMBox fraud model against the investigator’s proposal and
enabling the assessment of the performance of both parties.

(2) Second, building upon the established formalization, we develop
a scalable framework for the empirical examination of SIMBox
fraud (§4). This framework establishes a game environment that
generates fraudulent ground truth related to an input SIMBox
fraud model from which it computes the game metrics for a
speci�ed detection strategy. As part of this practical framework,
we shed light on the existing SIMBox fraud models through
an in-depth review of the fraud ecosystem, scrutinizing the
functionalities of all 94 SIMBox appliances produced by major
international manufacturers and used by over 2000 fraudsters
in more than 31 countries [13, 17]. Similarly, we shed light on
existing detection strategies, enabling us to leverage the gaming
environment to comprehensively analyze actual fraud detection
capabilities against various SIMBox fraud models of di�erent
sophistication levels in §5.

(3) Our investigations in §5 reveal that current SIMBox capabili-
ties result in elaborated fraud models outperforming existing
detection strategies with zero detection precision and recall
when the number of fraudulent SIM cards is low (i.e., 50 SIMs).
Additionally, we identify mobility behavior as a genuine fraud
vulnerability, challenging for fraudsters to realistically simulate,
especially over an extended observation period.

(4) At last, in §6, we provide practical recommendations for en-
hancing future detection based on quantitative and qualitative
insights into fraud strengths and weaknesses. The formalization
and empirical study framework of this paper give the necessary
�exibility to implement these recommendations.

Organization. Besides the above sections, we give in §2 our work
background and discuss the related works. At last in §7, we provide
our research conclusion.
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Table 1: Overview of literature’s SIMBox fraud detection

Ref. Date Data
type

Avg.
Accur. Ref. Date Data

type
Avg.
Accur.

[45] 2013 CDRs 98.71% [10] 2017 Audio No eval
[38] 2014 CDRs 99.95% [30] 2018 CDRs 83.2%
[46] 2014 CDRs 98.8% [26] 2019 CDRs 99.9%
[42] 2015 Audio 87% [31] 2019 CDRs 99.3%
[37] 2015 CDRs No eval [53] 2020 CDRs No eval
[32] 2015 CDRs 99.99% [51] 2020 CDRs 95.55%
[1] 2016 CDRs 83.34% [40] 2023 Signaling No eval
[27] 2017 CDRs No eval

2 SETTING THE SIMBOX FRAUD STAGE
This section contextualizes the SIMBox fraud problem and its related
challenges while discussing the limitations hindering its investiga-
tion. Furthermore, it examines existing literature, shedding light
on the constraints that inspire our e�orts to address the current
gaps and enhance the understanding of SIMBox fraud detection.

2.1 Fraud ecosystem
SIMBox architecture. The SIMBox is a VoIP to GSM gateway: a
system con�gured as a VoIP client to receive VoIP call tra�c and
terminate it by re-originating cellular mobile calls using numerous
SIM cards. The SIMBox automatically creates "decoupled" mobile
devices by binding SIM cards and GSM modules. In this associa-
tion, the GSM module provides wireless communication with the
cellular network, and the SIM card identi�es and authenticates the
formed device, referred to as "fraudulent" in this paper. A SIMBox
architecture comprises three kinds of interacting components:
• The gateway is a rack of GSMmodules. It receives incoming VoIP
tra�c and distributes it to the SIMBox GSM modules. E.g, the
GoIP324 model [23] is a 2G gateway with 32 GSM modules.

• The SIMBank is a device with numerous SIM slots that remotely
holds a bundle of SIM cards. It handles the SIMBox SIM cards, i.e.,
their addition, removal, and their data transfer to other compo-
nents. E.g., the SMB128 model [24] manages 128 SIM cards.

• The control server is a web server providing the SIMBox control
functions – i.e., the binding of SIM cards to GSM modules – and
the whole architecture’s con�guration. It can be hosted online to
facilitate remote access from a web GUI client.

Fraud mechanism. Fig. 1 illustrates a typical SIMBox fraud mech-
anism. The �ow 1 (F1) of tra�c in the �gure represents an interna-
tional call routing scheme with no fraud. The call tra�c leaves the
caller’s mobile operator (Operator A) and is routed to the destina-
tion country through a set of transit carriers. These carriers facilitate
tra�c interconnection between countries by buying and reselling
international termination routes. Consequently, the callee’s opera-
tor (Operator B) receives the tra�c from a transit carrier and then
forwards it to the destination as an international mobile call.

Nevertheless, a transit carrier can be fraudulent. Instead of adher-
ing to legitimate practices, a fraudulent carrier sometimes diverts
the tra�c it receives through a low-cost VoIP trunk, as in the �ow
2 (F2) on Fig. 1. The diverted tra�c is sent to a SIMBox (VoIP to
GSM gateway) in the destination country and re-originated as a
national mobile call to its callee. Once in the destination country,
there are two possible fraudulent termination scenarios: (i) F2-1 is

an on-net termination when the re-originated call is made using a
SIM of Operator B, the same operator of the callee and (ii) F2-2 is
an o�-net termination wherein the fraudster employs a SIM card
from a di�erent local operator in the destination country.

2.2 Fraud detection literature
Despite the striking impact of SIMBox fraud, this problem remains
little tackled due to the challenge of obtaining related data. As re-
ported in Table 1, we identi�ed only 15 SIMBox fraud detection
approaches since 2011, which is relatively low for a security prob-
lem of this importance that continues to plague the world today. The
vast majority of literature contributions rely on CDR-based anal-
ysis. This method is performed o�ine, bene�ting from operators’
historical data for extracting patterns that give a comprehensive
view of fraudulent activities over time without impacting the net-
work performance. Conversely, a few contributions (3/15) propose
online approaches to detect ongoing fraudulent calls through call
audio analysis [10, 42] or to �lter network access to SIMBox de-
vices through signaling-based �ngerprints [40]. Unfortunately, the
practical implementation of such online contributions in operators’
networks is still challenging due to scalability concerns. Indeed,
being real-time, such online solutions should run smoothly across
the entire access network surface, constituted of hundreds to thou-
sands of base stations. This would require investigating all local
calls audio across the network or maintaining a voluminous data-
base of all network devices’ �ngerprints at each base station to
examine each device’s connection.

Hence, given real-world constraints, CDR-based investigations
are the primary and practical approach for tackling SIMBox fraud
in mobile operators’ networks. Moreover, operating o�ine, this
method is essential for extending the applicability and reach of
other online detection approaches by leveraging historical data.

2.3 Positioning
This paper concentrates on CDR-based mitigation of SIMBox fraud,
the most widely adopted method in the existing literature. Our goal
is not to propose a new CDR-based detection method that outper-
forms the current state-of-the-art. Instead, we highlight a nuance
of CDR-based fraud mitigation often overlooked in prior research:
CDR-based SIMBox fraud detection operates within an environment
where fraud consistently evolves to adapt to the target solutions. Con-
sequently, there isn’t a singular SIMBox fraud but multiple expressions
of SIMBox fraud that can occur in various ways. This consideration
gives rise to the following crucial implications:

First, fraudulent users’ behavior may vary signi�cantly from
one dataset to another to be more or less elaborate. Therefore, the
fundamental question of "Which precise SIMBox fraud is tackled?"
becomes a crucial starting point for any detection methodology. Un-
fortunately, this central aspect is frequently omitted in the current
CDR-based literature, making it hard to interpret. Indeed, despite
excellent classi�cation performances, these techniques often lack a
precise characterization of the fraud they aim to address.

Second, this ambiguity surrounding the fraud behavior extends
to the design of detection solutions. Unfortunately, the absence
of clarity on the speci�c fraud being addressed creates a misleading
impression that the designed technique universally applies to detecting



ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore A. Kouam, et al.

Operator A's 
core network

Operator B's 
core network

Destination country

 c1 

CalleeOriginating country

Fraudulent
Carrier

VoIP

re-originated
on-net call

Local
Operator's

core network

re-originated
off-net call

F2-1 F2-2

SIMBox
F2

F1

 c3

Transit
carriers
Transit
carriers

 c2

 c2

Conventional 
Link

Base
stationCaller

Figure 1: International call routing: (Flow 1, i.e., F1) Legitimate scheme, (Flow 2, i.e., F2)
Fraudulent scheme.

Table 2: CDRs format.

CDR �eld - A?

Tra�c
Timestamp - C?
Event-type (call/text/data) -4C?
Call duration (if call) - 4<?
Data volume (if data) - 4<?

Mobility Network cell Id - 283?

Social Contact’s phone
number (if call/text) - 2>=?

Device
properties

Phone number - D?
Phone identi�er (IMEI) - 34E?

(all forms of) "SIMBox fraud." However, in reality, the solution’s
e�ciency is con�ned to the speci�c, often undisclosed, context.
Hence, gaining insights from these detection designs to be valuable
in contexts with di�erent fraud behaviors becomes challenging.
The critical link between the detection design and the tackled model,
which should be the main takeaway, remains entirely concealed.

The previous discussions underscore the cruciality of modeling
SIMBox fraud to enable meaningful detection. While not a novel
concept, the literature recognizes the importance of attack model-
ing, often termed "threat model" [5, 43] or "attack model" [4, 8, 52],
in addressing evolving security challenges. In the context of SIMBox
fraud, we position our work as the pioneering attempt in SIMBox
fraud modeling, constituting a notable contribution to the �eld.

3 GAME-THEORETIC SIMBOX FRAUD
In this section, we frame the SIMBox fraud problem through a game-
theoretic lens. The scenario involves a mobile operator scrutinizing
a CDRs dataset spanning a given time frame ) (e.g., one-month
CDRs in [38]). The dataset includes legitimate users, representing
genuine mobile consumers, and fraudulent users, characterizing
SIM cards within SIMBox appliances for illicit call termination.

We formalize the problem as a non-cooperative game between an
Adversary manipulating the SIMBox appliances to de�ne fraudulent
users’ behavior and a investigator (i.e., the operator) trying to di�er-
entiate fraudulent users from legitimate ones. The game performs
in a non-cooperative manner, where stakeholders independently
make decisions, and assumes each participant acts without knowl-
edge of the other’s choices. Importantly, we posit it as a zero-sum
game, where any gain by one stakeholder precisely equates to a
loss su�ered by the other (e.g., the operator’s accuracy in detection
is mirrored by the count of blocked SIM cards for fraudsters).

Subsequently we introduce important notations and outline the
set of strategies employed by each stakeholder in the game. At last,
we establish measures of the game’s gain or loss directly tied to the
e�ciency of each stakeholder’s strategy.

3.1 Notation
We denote the set of all users as * = {D1,D2,D3, ...,D# } in the
CDRs dataset with |* | = # users. Each user is either legitimate,
i.e., D8 2 * ; , or fraudulent, i.e., D8 2 * 5 , with * = * ; [ * 5 .
We use A? = {D? ! (C? , 4C? , 4<? , 283? , 2>=? ,34E? )} to denote a
CDRs record: generated by the user D? , at the timestamp C? , for an
event type 4C? with the related metric 4<? (e.g., event duration),

interacting contact 2>=? , while located at the cell id 283? and using
a device identi�er 34E? (i.e., IMEI) (cf. Table 2). The event metric,
4<? , is the call duration if the event is a call (i.e., 4C? = ⇠0;;) and
the data volume if the event is a data usage (4C? = ⇡0C0). Similarly,

2>=? =

(
D? if 4C? = ⇡0C0

D 9 , 9 2 {1, . . . ,# } \ {?} if 4C? = ⇠0;;/)4GC
We denote as 'D8 the set of CDRs records related to the user D8 , i.e.,
'D8 = {A? | D? = D8 or 2>=? = D8 }. The overall set of users’ related
records is 'D = {'D8 | D8 2 * }. Similarly, we de�ne 'D8) 0 ✓ 'D8 as
the subset of CDRs records related to the user D8 , generated during
a time interval ) 0 ✓ ) . Formally, 'D8) 0 = {A? | 8A? 2 'D8 where C? 2
) 0}. Finally, for a given time interval ) 0, we have '*) 0 = {'D8) 0 |
8D8 2 * } , representing the set of all users’ related records over ) 0.

3.2 Adversary strategy: SIMBox fraud model
While legitimate users’ set of records';D = {'D8 | D8 2 * ; } naturally
emerges through genuine human activities, fraudulent users’ set of
records ' 5

D = {'D8 | D8 2 * 5 } is automatically generated through
the SIMBox. Indeed, the SIMBox employs a range of algorithms to
control the operations of fraudulent devices autonomously, dic-
tating their behavior across speci�c CDRs record �elds, namely
(C, 4C, 4<, 2>=, 283,34E). By con�guring these algorithms, the adver-
sary shapes the communication behavior of a subset of #5 fraud-
ulent users, where #5 < # . The ultimate goal is to devise an
optimal con�guration that renders these fraudulent users virtually
indistinguishable from their legitimate counterparts.

We de�ne the following sets, encompassing the algorithms used
by the SIMBox for de�ning fraudulent users’ behavior respectively
to the CDRs record �elds (C, 4C, 4<, 2>=, 283,34E):

)0 = {0;6)1 , ...,0;6))0 | }, ⇢)0 = {0;6⇢)1 , ...,0;6⇢)|⇢)0 | },

⇢"0 = {0;6⇢"1 , ...,0;6⇢"|⇡4E0 | },⇠�⇡0 = {0;6⇠�⇡1 , ...,0;6⇠�⇡|⇠�⇡0 | },

⇠$#0 = {0;6⇠$#
1 , ...,0;6⇠$#

|⇠$#0 | },⇡⇢+0 = {0;6⇡⇢+
1 , ...,0;6⇡⇢+

|⇡⇢+0 | }

For instance, )0 speci�cally groups the |)0 | algorithms supported
by the SIMBox to de�ne the timing of fraudulent users’ events
generation. An example is, 0;6)1 , which could represent a periodic
algorithm establishing event generation with a �xed frequency.

Such SIMBox algorithms might be parametric. For instance, the
periodic timing algorithm is tuned by a single parameter that is
the frequency or period. Consequently, algorithms can vary in
complexity (the number of required parameters) and e�ciency
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(their ability to replicate human behavior). Therefore, we de�ne
the sets)? , ⇢)? , ⇢"? ,⇠�⇡? ,⇠$#? , and ⇡⇢+? , which consist of pa-
rameters associated with each SIMBox algorithm. For example,
)? = {(%8 ))1 , (% 9 ))2 , ..., (%U ))|)? | }, with |)0 | = |)? | and (%8 )): rep-

resenting parameters of the algorithm 0;6): .
We de�ne a SIMBox fraud model 5< as the representation of the

adversary’s strategy for generating the communication behavior
of fraudulent users. It involves a combination of algorithm choices
drawn from sets, speci�cally

5< = (0;6)⇤ ,0;6⇢)⇤ ,0;6⇢"⇤ ,0;6⇠�⇡⇤ ,0;6⇠$#
⇤ ,0;6⇡⇢+

⇤ )

A SIMBox fraud model, denoted as 5<, can give rise to multiple SIM-
Box fraud implementations, each characterized by distinct values
of the corresponding chosen algorithms’ parameters. For a speci�c
instance of a SIMBox fraud model, we denote the set of parameter
values as ?<, and thus, a fraud model instance is represented as
the tuple (5<, ?<), where

?< = (((%8 ))⇤ , (% 9 )⇢)⇤ , (%: )⇢"⇤ , (%<)⇠�⇡⇤ , (%; )⇠$#
⇤ , %=)⇡⇢+

⇤ )

We denote as ' (5<,?<)
D the set of fraudulent user records generated

by a SIMBox fraud model instance (5<, ?<).

3.3 Investigator strategy: detection model
The investigator is tasked with determining the legitimacy of users
based on their respective sets of records, denoted as 'D = {'D8 |
D8 2 * }. Typically, investigators employ ML classi�ers (e.g., Sup-
port Vector Machine [30, 46, 51] or Random Forest [30, 38, 51]) to
make these determinations. Here, we delve deeper into the strategic
choices the investigator precisely employs for this detection.

Within a speci�ed time interval ) 0 ✓ ) , we de�ne a feature as
a function 5 )

0
: '*) 0 ! R. This function takes a user’s set of

records 'D8) 0 during the time interval ) 0 as input and computes a
mathematical function that aggregates these records into a unique
value. For example, a feature might calculate the number of records
in 'D8) 0 or the average value of the 4< �eld across all the user’s
records. From a set of features �)

0
= {5 ) 0

1 , 5 )
0

2 , ..., 5 )
0

|�) 0 | }, we derive
a matrix +) 0

of size |* | ⇥ |�) 0 |, where + (D8 , 5 )
0

9 ) = 5 )
0

9 ('D8) 0 ). The
vector+) 0 (D8 ), representing the 8C⌘ row of the matrix+) 0

, serves as
a representation of the user’s records 'D8) 0 , allowing the investigator
to assess the user’s communication behavior.

We model the investigator’s strategy, or detection model, i.e., 3<,
as a composite structure comprising:
(1) an observation period )$ ✓ ) ,
(2) a set of features �)$ = {5 )$1 , 5 )$2 , ..., 5 )$|�)$ | }, representing users’

communication behavior within the observation period, and
(3) a binary classi�er 2; 5 , categorizing users, based on such repre-

sentation, as fraudulent or legitimate.
The investigator has the �exibility to de�ne multiple features

of varying complexities in terms of the number of �elds involved
in the calculation. The ultimate goal is to propose a representa-
tion that maximizes, in the vector space, the distance between
legitimate users, i.e., +)$

;
= {+)$ (D8 ) | D8 2 * ; }, and fraudu-

lent users resulting from the fraud model instance (5<, ?<), i.e.,

+)$
(5<,?<) = {+)$ (D8 ) | 'D8 2 ' (5<,?<)

D }, to accurately distinguish
between fraudulent and legitimate users. By adjusting the observa-
tion period)$ , the investigator includes more or fewer user records
in the feature computation, thereby enhancing di�erentiation.

Each classi�er, 2; 5 , uses a speci�c algorithm to analyze the vector
space for the categorization process. When applied to the user’s
vector representation +)$ , it produces a binary vector .̂ (0 for
legitimate, 1 for fraudulent) of size # , aiding the investigator in
making informed decisions about user legitimacy.

3.4 Game metrics
Given our game-based de�nition, we assess the fraud detection in
terms of the (i) the adversary’s pro�ciency in concealing fraudulent
users and (ii) how well it in�uences the investigator’s classi�cation
performances. To this end, we de�ne two sets of metrics.

3.4.1 The in-crowd blending capability. This metric assesses how
well the adversary’s generated fraudulent users blend into the
crowd of legitimate users based on their communication behavior.
Indeed, the more a fraud model yields fraudulent users’ behaviors
close to human ones, the more e�cient it is and harder to detect.

To quantify this capability, we apply a multi-variate unsuper-
vised clustering algorithm (e.g., DBSCAN) to user vectors given by
the detection model. The clustering algorithm identi�es clusters in
areas of high density in the vector space, indicating regions with
a minimum number of samples within a given distance. Isolated
samples beyond a certain distance to a cluster are considered out-
liers. The algorithm, therefore, groups users with similar cellular
communication behavior as speci�ed by the investigator’s strategy.

We classify fraudulent users into three categories based on the
clustering results: (i) outlier users, referred to as the outlier group
($⌧), (ii) users in the same clusters as legitimate users, known as the
hybrid group (�⌧), and (iii) users in clusters comprising only fraud-
ulent users, labeled the fraudulent-only group (�⌧). The distribution
of fraudulent users across these three categories provides insights
into how e�ectively the SIMBox fraud model instance (5<, ?<)
camou�ages into the legitimate crowd. We formalize the in-crowd-
blending capability, denoted as �⇠⌫3<(5<,?<) , of the fraud model
instance (5<, ?<) in the detection model 3<’s space as follows:

�⇠⌫3<(5<,?<) =
|�⌧ |

|�⌧ | + |�⌧ | + |$⌧ | (1)

The in-crowd-blending capability is measured on a scale from 0 to
1. A value closer to 1 indicates the e�ectiveness of the adversary’s
strategy in making more fraudulent users behave similarly to legit-
imate users, putting the investigator at a disadvantage. Conversely,
a value approaching 0 implies that the investigator has gained an
advantage over the adversary, by proposing a set of features that
e�ectively discriminates fraudulent users.

3.4.2 Classification capability. We consider three classi�cation
metrics assessing the e�ectiveness of the investigator strategy in
determining which users are fraudulent given the fraud model:

(1) The balanced accuracy (BA) – rather than the classical one, as
legitimate users outnumber fraudulent ones – is de�ned as the
average of good classi�cation obtained on each class.
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(2) The recall indicates the investigator strategy’s performance to
�nd all the introduced fraudulent users, giving its capacity to
resolve the fraud.

(3) The precision measures the ability of the investigator’s strategy
to not label as fraudulent a user that is not one, giving the
con�dence level in blocking a detected fraudulent user.

4 SIMBOX FRAUD PRACTICAL STUDY
Having formalized the SIMBox fraud problemwith a game-theoretic
approach, this section focuses on establishing a practical frame-
work for its empirical study. Our objective is to assess the problem
within this formalized structure, considering the current strategies
employed by both the adversary (i.e., SIMBox fraudsters) and the
investigator (i.e., existing detection methodologies). To this end, we
use the following methodology, as illustrated in Fig. 2:
(1) First, with the aim of identifying real-world adversary strategies,

we conduct an in-depth review of the SIMBox market in §4.1.
This review enables us to uncover and classify the capabilities
of current SIMBox appliances, shedding light on the SIMBox
fraud models currently accessible to adversaries.

(2) Moving to the investigator side in §4.2, we undertake a parallel
examination, identifying and classifying investigator’s strate-
gies proposed in the existing literature.

(3) Finally, in §4.3, we establish a controlled environment for the
game process. This environment takes inputs of adversary and
investigator strategies and generates the corresponding mobile
interactions, yielding to a CDRs dataset of fraudulent and legit-
imate users. The output of this controlled environment are the
in-crowd-blending and classi�cation capabilities, measuring the
game’s overall e�ectiveness.

4.1 Adversary strategies in the SIMBox market
The adversary’s strategy, or SIMBox fraudmodel, involves a thought-
ful selection of the available SIMBox functionalities to generate
fraudulent communication behaviors of varying e�ectiveness. This
section presents our in-depth survey of in-market SIMBox appli-
ances functionalities, giving the basis for SIMBox fraud modeling.
We �rst introduce our employed methodology followed by a classi-
�cation of the reported functionalities.

4.1.1 Methodology. To ensure a comprehensive analysis, we metic-
ulously reviewed the functionalities of all 94 appliances from the
SIMBox manufacturers accessible online. This assessment involved
(i) analyzing user manuals, (ii) reviewing additional guiding re-
sources in 1212 blog posts [18] and 66 video tutorials [12, 19], and
(iii) manipulating �ve acquired SIMBox appliances.

Our study �rst considered the top 5 SIMBox manufacturers as re-
ported by GoAntiFraud [17], a cloud-based service assisting SIMBox
termination businesses. Since 2013, GoAntiFraud has helped over
2000 fraudsters in more than 31 countries, making the statistics
fairly representative [13]. In addition, we included all manufac-
turers providing "VoIP GSM gateways" on commercial platforms
such as Alibaba and Amazon, resulting in 12 SIMBox manufacturers
outlined in Table 7 in the appendix. Subsequently, we collected
and analyzed user manuals of all SIMBox component models on
such manufacturers’ websites. We also considered blog posts on

the related functionalities, video tutorials, and public codes when
available [11]. At last, we re�ned our study by manipulating �ve
SIMBox appliances from the Hybertone manufacturer (top in the
market) in an operator network test-bed inside a Faraday shield.

4.1.2 SIMBox fraud modeling. Thanks to the previous in-depth
SIMBox market review, we uncover a full set of adversary strategies
that we report in Table 3. To ensure clarity in presenting these
strategies, we organize the uncovered SIMBox algorithms (col. 5)
and their related parameters (col. 6) according to the intended mo-
tive (col. 3) in human behavior mimicking. All these are categorized
based on the human communication behavior they try to reproduce
(col. 1) and the corresponding impacted CDRs �eld ( col. 2).

From Table 3, the construction of a SIMBox fraud model involves
deciding, for each CDR �eld, whether to pursue a speci�c motive
("8 ) followed by the selection of an algorithm ("8 . 9 ) to achieve the
desired motive. For example, consider the fraud model

5< = (0;6)⇤ = "1 .1, 0;6⇢)⇤ = =D;;,

0;6⇢"⇤ = "1 .1 ⇥"2 .1, 0;6⇠�⇡⇤ = "1 .1 ⇥"5 .1 ⇥"6 .1 ⇥"7 .1;

0;6⇠$#
⇤ = "1 .2, 0;6⇡⇢+

⇤ = "1 .3 ⇥"2 .1)

which illustrates an adversary’s strategy where algo. "1 .1 is
chosen to ful�ll only the motive"1 for the CDR C? �eld. Regarding
the CDR 4C? �eld, no sophistication is sought. Concerning the CDR
4<? �eld, bothmotives"1 and"2 are pursuedwith their respective
algo."1 .1 and"2 .1, and so forth.

The organization and classi�cation process above provides an
overview of the SIMBox fraud models obtainable from the combi-
nation of existing SIMBox algorithms in the market (col. 4) and their
related motives (col. 3). This results in approximately 345,600,000
fraud models with varying levels of similarity based on their shared
characteristics. Furthermore, the ability to parameterize these fraud
models provides a limitless spectrum of instances. For a compre-
hensive understanding of the construction of these SIMBox fraud
models, please refer to the discussion in §A.

4.2 Investigator strategies in existing detection
Here, we extract existing investigator strategies from state-of-the-
art detection features. We conduct a systematic analysis of all contri-
butions presented in Table 1, providing insights into their proposed
observation periods ()$ ), the utilized detection feature sets (�)$ )
and ML classi�er (2; 5 ), where available.
Detection feature set, �)$ . The �nal column of Table 3 outlines
the identi�ed detection features organized by CDRs �eld. The table
references only literature that lists the employed detection features,
ensuring reproducibility, which corresponds to 58.3% of related
works. Notably, each detection study introduces a distinct set of
features. The table indicates a prevalence of methodologies propos-
ing features for detecting fraudulent tra�c, followed by social and
mobility behavior. The consideration of the device properties is
infrequent, observed only in [38].
Observation period, )$ . The considered observation period is less
transparent in the literature, often omitted or challenging to deter-
mine. Most methodologies are presented as universally applicable,
irrespective of the observation period, which requires validation.
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Figure 2: Framework for SIMBox fraud practical study.

This period directly in�uences the information gathered to dis-
tinguish between fraudulent and legitimate users. Our research
reveals that detection features are typically computed on a daily ba-
sis [30, 46, 51], with occasional weekly computations [38]. In some
cases, a shorter observation period of four hours is proposed, as
seen in [30, 51], utilizing either �xed or one-hour sliding windows.
ML classi�er, 2; 5 .Our review reports literature usage of the follow-
ing ML classi�ers for SIMBox fraud detection: Arti�cial Neural Net-
work (ANN) and Support Vector Machine (SVM) [30, 45, 51], Ran-
dom Forest (RF) [30, 38, 51], and Alternating Decision Tree [22, 38].

4.3 Game environment
We present the conceptualization of a controlled environment tai-
lored for orchestrating the strategic game between the adversary
and the investigator. As depicted in Figure 2, the game environ-
ment inputs include the adversary’s SIMBox fraud model and the
investigator’s detection model, along with essential parameters
de�ning the mobile network context, such as network topology,
legitimate users’ tra�c, and mobility behaviors. The environment
subsequently reproduces (1) the formation of fraudulent users by
the SIMBox architecture, (2) the interactions between fraudulent
and legitimate users in the destination country resulting in a CDRs
dataset, and (3) the exploitation of these CDRs to compute the
game’s metric, which serves as the environment’s output.

In the following, due to space constraints, we provide a brief
overview of "FraudZen," the mobile network simulator handling
stages 1 to 2 in Fig. 2 to produce a CDRs dataset. Stage 3 is then
externally computed and implemented in Python.

We build FraudZen to meet the following properties: (i) �exibil-
ity to generate multiple SIMBox fraud models and instances, (ii)
modularity to facilitate extension with new fraud functionalities,
(iii) e�ciency to generate, in a short time, CDRs covering a signif-
icant period and (iv) ease of use to facilitate the con�guration of
simulation scenarios. Hence, FraudZen has been written in C++,
using the object-oriented paradigm as an event-driven simulator. It
comprises 90 classes, 247 �les, and approximately 19,000 code lines.

In addition, it provides great �exibility through a con�guration �le
of 122 parameters allowing for the simulation of countless SIMBox
fraud model instances. Yet, to ease usage, default values allow an
inexperienced user to modify a maximum of 20 essential parame-
ters related to (i) the SIMBox architecture creation (cf. Fig. 10) and
(ii) con�guration (cf. Figs. 11 and 12), and to (iii) legitimate users’
mobility and tra�c (cf. Fig. 10).

FraudZen is constituted by four modules : the SimulationManager,
the NetworkManager, the Tra�cManager, and the MobilityManager.
Each module performs a key role summarized in Table 4. For addi-
tional descriptions of these modules, please refer to §B.

5 EMPIRICAL STUDY AND INSIGHTS
This section conducts an empirical investigation into the SIMBox
fraud problem, building upon the the practical framework estab-
lished in §4. Our objective is to enrich the understanding of CDR-
based SIMBox fraud detection by analyzing the problem outcome,
i.e., the gamemetrics, in the context of dynamic strategies employed
by both the adversary and the investigator. In essence, that is to pro-
vide insights into two pivotal questions: �rst "How do adjustments
to the adversary strategy impede detectability?" and second, "How
can the investigator adjust her strategy to increase detectability?"

To this end, we �rst design, in §5.1, an experimental setup that
involves purposeful selections of adversary strategies (i.e., SIMBox
fraud models) and investigator’s strategies (i.e., detection models)
while considering a real-world CDRs dataset for legitimate users’
behavior. In §5.2, we present the results obtained from the experi-
mental setup, deriving key insights that shed light on the existing
strengths and weaknesses in fraud and detection design.

5.1 Experimental setup
We constitute 1280 scenarios encompassing heterogeneous adver-
sary and investigator’s strategies, as shown in Table 5.

5.1.1 Adversary configuration. It mainly involves the adversary’s
SIMBox fraud model, along with practical parameters such as the
amount of diverted incoming calls and fraudulent SIM card count.
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Table 3: Real-world SIMBox fraud and detection models organized by communication behavior

Com.
Behavior

CDR
�eld

Adversary’s strategy Investigator’s strategy
Motive ("8 ) Algorithms ("8 . 9) Parameters (%8 )- Feature set (�)> )

Tra�c

time (C? )

M1- SIM activity
limitation (time-related)

1- Working period per day Day period
- nb. of calls at night (0-5AM) [37, 46]
- night call duration [46]
- nb. of unique contacts at night [46]
- average inter-call time [30]

2- Working period per week Week period
M2- Network
activity
generation
(data/text/calls)

1- Fixed inter-event-time (IET) IET value
2- Random IET inside a �xed interval IET interval
3- Multiple IET per day period IET values per day periods
4- Triggered by a metric threshold
(#call, call duration, allocation time)

- Metric choice
- Metric value

Event
Type
(4C? )

M1- Network activity
generation (Data) 1- Activate / - ratio of in. to out. calls [30, 37, 38]

- nb. of out. calls for users with no
other events (out_calls_no_evt) [37]
- nb. of out. calls [30, 32, 38, 46, 51]
- nb. of in. calls [30, 32, 38, 46, 51]
- nb. of out.: intl. calls [38], texts [30]
- nb. of in. intl. calls [38]
- ratio of intl. calls [38]

M2- Network activity
generation (Text) 1- Activate /

M3- Network activity
generation (Calls) 1- Activate /

Event
metrics
(4<? )

M1- SIM activity
limitation (metric-
related)

1- Metric (call duration/ #calls)
threshold per period
(day/week/month)

- Metric choice
- Threshold value
- Time period

- total call duration [46, 51]
- avg. call duration [46]
- max. call duration [32]M2- Incoming tra�c

routing
1- Balance (to the SIM with
fewest historical calls)

Mobility Cell ID
(283? )

M1- SIM to module
allocation i.e.,
choice of the next
location

1- Manually �xed, i.e., no change SIM’ locations i.e., cell ids

- nb. of unique visited cells [30, 32]
- ratio of the nb. of cell Ids to the nb.
of calls [30]

2- Any except previous /
3- Any except previous zone ID /
4- Speci�ed order The sequence of location for each SIM

M2- Short Base Station
(BS) movements, i.e.,
choice of the next
location

1- Random /
2- Default /
3- Speci�ed order Sequence of BS
4- Manually �xed The BS selection

M3- SIM to module
allocation, i.e., choice
of when to move

1- Periodic Period

- nb. of calls without mobility [37]
- nb. of calls in the most recurrent
cell Id [32]

2- Metric threshold
(call duration, #calls) Threshold value

3- Speci�ed duration The sequence of duration
M4- Short movements
in the surroundings,
i.e., choice of when to
move

1- Fixed duration Duration value
2- Threshold of metric
(call duration, #calls) Thresholds value

3- Speci�ed duration The sequence of duration
M5- Practical gateway
deployment 1- Most visited locations - Number of gateways

- Locations’ geo. positions /

M6- Displacement mode 1- Automatic (handled by the SIMBox) / /1- Physical (with a car/motobike) /

M7- Mobility
uniqueness 1- SIMBox architectural organization

- Number and size of gateways
- Distribution of SIM cards in gateways
(i.e., SIM and GSM groups and binding)

- avg. nb. of users making calls
in the same cell Id [37]

Social Contact
(2>=? )

M1- Incoming tra�c
routing

1- History - max. #contacts per SIM card
- nb. of unique called [30, 32, 46]
- nb. unique callers [32]
- ratio of the nb. of unique contacts
called to the nb. of calls [46]

2- Random /
3- In-turn, i.e., �rst available SIM card /
4- Sequence /
5- Balance /

M2- Network activity
generation (contact ctrl.) 1- Activate - max. #contacts per SIM card

Device
Property

Device
ID
(34E? )

M1- IMEI modi�cation
generation rule

1- None, i.e., no IMEI modi�cation /

- nb. of SIM per device [38]

2- One generation (SIM) /
3- Periodic generation (SIM/GSM mod.) - period

4- Metric-based generation (GSM mod.) - metric choice (#calls, #movement)
- metric threshold

M2- IMEI value setting

1- Random /
2- Tac-based IMEI /
3- Pre�x-based IMEI Pre�x
4- Registry-based IMEI Registry, i.e., list of IMEI values

SIMBox fraud models: A multiplicity of fraud models, utilizing
existing SIMBox functionalities, can be formulated within the struc-
ture outlined in Table 3. Building these models involves tweaking
several parameters (cf. cols 4 to 6), yielding fraud model instances of
varying realisticness (i.e., closeness to human behavior) regarding

tra�c, mobility, and social aspects. We deliberately exclude consid-
eration of the least-explored device property for space constraints.

In line with fraudsters’ pursuit of high realisticness, we intro-
duce the SIMBox fraud cube illustrated in Fig. 3. This conceptual
framework designates each communication behavior as an axis.
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Table 4: FraudZen modules.

Module Functions
Simulation
Manager

- Creates/Handles/Ends events
- Manages simulation time

Network
Manager

- Creates the network topology
and devices: Operators, Cells,
SIMBox architecture, UEs, etc.

Tra�c
Manager

- Handles legitimate and
fraudulent tra�c generation

Mobility
Manager

- Handles legitimate and
fraudulent mobility

fd_naive
(0,0,0) traffic behavior

realisticness

mobility
behavior

realisticness

fd_social
(0,0,1)

social
behavior

realisticness

fd_mobility
(0,1,0)

fd_all
(1,1,1)

fd_traffic
(1,0,0)

Figure 3: SIMBox fraud cube.

Moving along a speci�c axis from 0 to 1 indicates an increasing de-
gree of realisticness of the corresponding communication behavior
in the fraud model. The value of 1 denotes the highest achievable
realisticness, leveraging SIMBox functionalities. Hence the SIMBox
cube e�ectively encapsulates the spectrum of feasible fraud models.

Our study focuses on the �ve SIMBox fraud models, represented
in Fig. 3. These models are strategically chosen to encompass the
axis of fraud e�ectiveness, providing a holistic understanding of the
potential scope of SIMBox fraud models. To ensure the acquisition
of the most realistic parameters for constructing these models, we
extract values from the distributions of the corresponding commu-
nication behavior features in the CDR dataset of legitimate users.
For instance, in the case of the time algorithm "working period per
day," we select from the dataset of legitimate users the period with
the highest tra�c across all days. This process results in the models
outlined in Table 5 and discussed hereafter:

• fd_naive performs fraud with no e�ort to mimic human behav-
ior and serves as a baseline. The SIMBox assumes its simplest
function of routing the received international calls regardless of
the day time and contact. Moreover, the fraudulent SIM cards
remain static, being located in crowded city areas.

• fd_tra�c focuses on mimicking human’s tra�c behavior, while
keeping the other behavioral features naive. The fraudulent SIM
cards generate all event types, while respecting legitimate Inter-
Event-Time distributions during an active day period. They also
comply with a daily threshold of call count.

• fd_mobility applies human-like mobility to each SIMBox gate-
way using the Working Day Mobility model [9], while keeping
other features naive. Gateways commute by car between home
and workplaces based on the time of day. Limited movements
between base stations are introduced in the evening. To ensure
uniqueness, only two SIM cards are allocated per gateway.

• fd_social solely modi�es the social behavior of SIMBox users to
imitate human’s one. Hence, an history-based call routing is used
to limit the number of fraudulent call destinations, i.e., contacts.
Similarly, the number of contacts making inter-calls is restricted
from legitimate users’ contacts statistics.

• fd_all, at last, includes all advanced con�gurations of each be-
havioral feature. As such, this fraud model highlights how the
most advanced in-market SIMBox functionalities can make fraud
resilient to detection in all behavioral features.

The percentage of incoming international tra�c varies from
operator to operator and impacts the number of calls diverted to
the SIMBox. We consider two values (i.e., 3% and 12%) inspired by a
statistical report [7] of a victim mobile operator. Correspondingly,

the �xed frequency of international calls directed to the SIMBox is
7min and 2min, respectively.
The number of SIM cards in the SIMBox architecture impacts
the e�ciency of the implemented fraud. Hence, we consider four
values of SIM number in our analyzes: 50, 100, 150, and 200.

5.1.2 Investigator configuration. It consists of de�ning the detec-
tion strategies in the set of selected features, the observation period
and the ML classi�er for classi�cation implementation.

Detection features set. As explored in §4.2, existing literature con-
sidered diverse feature sets (cf. Table 3). In line with our approach
to adversary strategies, we center our investigation on how the
communication behavior (i.e., tra�c, mobility, or social) in�uences
the e�ectiveness of the investigator’s detection strategy. Conse-
quently, we categorize all detection features by behavior, resulting
in four distinct sets (cf. Table 5): tra�c features only (�)> (CA0)),
tra�c with mobility features (�)> (CA0 +<>1)), tra�c with social
features (�)> (CA0 + B>2)), and all features, i.e., tra�c with social and
mobility (�)> (0;;) = �)> (CA0 +<>1 + B>2)). Hence, each feature set
targets the detection of the communication behaviors it considers.

Observation period. In alignment with the existing detection (cf.
§4.2), we consider two periods: the day and the week.

ML classi�er. Drawing from the existing detection (cf. §4.2), we
consider the ANN, SVM and RF classi�ers. Instead of the no longer
utilized Alternative Decision Tree found in literature, we adopt its
evolved counterpart—the Gradient Boosting Decision Tree (GBDT)
model. GBDT combines multiple decision trees using the boosting
method. We conduct hyper-parameter tuning to ascertain the best
model in each scenario.

5.1.3 Legitimate behavior. At the generation of legitimate cellular
tra�c, we leverage the tra�c behavior as described in real-world,
non-public, and fully anonymized CDRs from a major telecom
operator. It describes one month of per-user tra�c (local and in-
ternational outgoing calls and SMS, data) in about 3 million time-
stamped events generated by 28K users from the provider operator.
We �lter out users interacting with other operators’ phone numbers
(i.e., 7000 users), and build our simulation scenarios with a unique
operator and 21K legitimate users.

Because the leveraged CDRs lack daily spatio-temporal mobility
information of users (i.e., users’ cell ID positions), we assign realis-
tic trajectories to every 21K users using the Working Day Mobility
Model (WDM) [9] operating in the ONE simulator [33]. Our moti-
vation to use WDM is twofold. First, contrary to related mobility
models [47, 54], WDM originality comes from its representation of
various mobility aspects present in people’s daily life (e.g., home
and workplaces, day periods). Second, WDM closely reproduces
wireless interactions (i.e., inter-contact and contact time) distri-
butions found in two real-world measurement experiments (i.e.,
iMote [48] and Dartmouth [34]), asserting modeling generality.

We further enhance WDM to consider real-world parameters
and behaviors in human mobility. In this vein, we con�gure WDM
with the Helsinki city infrastructure (i.e., the geographical area
where users move) and its corresponding public transportation
information [29]. Then, leveraging literature investigations on laws
dictating human mobility [3, 20], we assign to users: (i) trajectories
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Table 5: Experimental setup parameters

Parameters Values #Scenarios

Adversary
con�guration

SIMBox fraud models C? 4C? 4<? 283? 2>=? 34E?

5

Total=
1280

fd_naive null null null %1 .1 %1 .2 %1 .1
fd_tra�c %1 .1 ⇥ %2 .3 %1 .1 ⇥ %2 .1 ⇥ %3 .1 %1 .1 %1 .1 %1 .2 %1 .1
fd_mobility null null null %1 .1 ⇥ %2 .2 ⇥ %4 .3 ⇥ %5 .1 ⇥ %6 .2 ⇥ %7 .1 %1 .2 %1 .1
fd_social null null null %1 .1 %1 .1 ⇥ %2 .1 %1 .1
fd_all %1 .1 ⇥ %2 .3 %1 .1 ⇥ %2 .1 ⇥ %3 .1 %1 .1 %1 .1 ⇥ %2 .2 ⇥ %4 .3 ⇥ %5 .1 ⇥ %6 .2 ⇥ %7 .1 %1 .1 ⇥ %2 .1 %1 .2

% of incoming calls
defrauded 3% =>one call/7min, 12% =>one call/2min 2

#fraudulent users 50, 100, 150, 200 4

Investigator
con�guration

Detection features �)> (CA0) , �)> (CA0 +<>1 ) , �)> (CA0 + B>2 ) , �)> (0;; ) = �)> (CA0 +<>1 + B>2 ) 4
Observation period,
i.e., )>

a day, a week 2

ML classi�er Hyper-parameter values used for tuning

4ANN - #hidden layers: 1, 2, 3 - #nodes in hidden layers: 5, 9, 18
- learning rate: 0.1, 0.3, 0.6, 0.9 - optimizer: RMSProp, SGD, Adam

SVM - kernel: RBF, polynomial - gamma: 0.125, scaled - degree: 2, 3 - C: 1, 10, 100, 1000
RF #trees: 1, 2, 5, 10, 20, 50, 100, 200, 500
GBDT - #trees: 1, 2, 5, 10, 20, 50, 100, 200, 500 - learning rate: loguniform(0.01, 1)

Legitimate
Behavior

Users’ tra�c Trace-based from real-world tra�c CDRs 1Incoming intl. tra�c
Users’ mobility Trace-based from WDM realistic simulation

containing routine- and exploration-based locations, (ii) displace-
ment pro�les, as well as preferential neighborhoods (e.g., residential
zones, business districts). Finally, we extract from OpenCellID [41]
the network topology (i.e., cell tower distribution) of operators
actuating in the emulated city. We end up with complete CDRs
describing real-world users’ tra�c, mobility, and social behaviors.

Note that the lack of mobility information in the used raw CDRs
and its enrichment with as-realistic-as-possible spatiotemporal tra-
jectories do not impact the numerical assessment of fraud models
presented next. Indeed, the con�guration o�ered by WDM brings
the �exibility to add physical organization and daily behaviors of an
actual city and its inhabitants, which constitutes the underlying struc-
ture required to play the designed fraud models, (most importantly)
leveraging in-market SIMBox functionalities.

5.2 Numerical assessment and Key insights
Here, we report the game metrics under the scenarios outlined in
Table 5, encompassing diverse adversary and investigator strategy
con�gurations. For a structured presentation of the results, we vary
a focal parameter while keeping all other variables constant, aim-
ing to clarify its impact on the game outcome and derive related
insights. While the analysis of the adversary con�guration allows
assessing how detection performs across di�erent fraud scenarios,
revealing the fraud strengths and weaknesses, investigator con�g-
uration guides the selection of optimal options in designing an
e�cient fraud detection. Therefore, we �rst discuss the impact of
the investigator con�guration – the SIMBox fraud model, the amount
of defrauded tra�c, and the number of fraudulent SIMs – in §5.2.1.
Then, we explore the e�ects of the investigator con�guration: the
chosen set of features in §5.2.2, the observation period in §5.2.3,
and �nally, the ML classi�er in §5.2.4.
5.2.1 Adversary configuration. Fig. 4 shows the game metrics per
fraud model for a �xed investigator con�guration: �)> (0;;) feature
set, )>=day, ANN classi�er.

We calculate the in-crowd-blending capability through a two-
step process: (i) we apply a clustering based on �)> (0;;) features on

only legitimate users and �lter out legitimate users that are outliers,
(ii) we add fraudulent users to the remaining legitimate users and
infer the in-crowd-blending capability per fraud model. Besides,
for results explainability, Fig. 5 illustrates the average impact of
each feature 5 2 �)> (0;;) on the generation of groups (i.e., Hy-
brid, Fraudulent-only, and Outliers Groups, cf. §3.4.1) for in-crowd-
blending computation across all implemented scenarios, organized
by fraud model. The drawn insights are discussed hereafter.
fd_naive (Fig. 4a) makes no human mimicking e�ort. Neverthe-
less, we observe that with 3% of incoming international tra�c, the
�⇠⌫ value rises, and classi�cation metrics (BA, precision, recall)
decline as the number of fraudulent SIMs grow. This is because the
same amount of diverted tra�c is distributed among more fraud-
ulent users, resulting in reduced tra�c per user. At 12%, despite
the surge in users, the �⇠⌫ remains low, and classi�cation metrics
stay high (with a minimum precision of 0.96) due to a substantial
increase in generated tra�c (1 call/2 min). Con�rming this interpre-
tation, Fig. 5a show the most impacting features include the average
inter-call duration (avg_inter_call_dur) and total call duration at
night (total_night_dur). These feature values strictly ascend with
an increasing amount of tra�c.
fd_tra�c (Fig. 4b) exhibits counter-intuitive performance com-
pared to the fd_naive fraud model, where no e�ort is made to
defraud. When the count of fraudulent users is low, at 3% and 12%
of incoming international calls, the fraud model simulates human-
like behavior, re�ected in the highest �⇠⌫ and lowest classi�cation
metrics (BA, precision, and recall). However, with an increasing
number of users, the �⇠⌫ becomes null, making fraudulent users
easily detectable. Fig. 5b elucidates that this phenomenon primarily
stems from naive mobility behavior. Notably, average users in cells
avg_users_in_cell) and the ratio of unique stay points to the number
of outgoing calls (ratio_sp_calls) remain exceptionally high for all
fraudulent users compared to legitimate ones. This is due to their
allocation to a single gateway location and a absence of mobility.
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(a) fd_naive (b) fd_tra�c (c) fd_mobility (d) fd_social (e) fd_all

Figure 4: Game metrics per fraud model, �)> (0;;) feature set, )>=day, ANN classi�er.

(a) fd_naive (b) fd_tra�c (c) fd_mobility (d) fd_social (e) fd_all

Figure 5: Average relative importance of detection features per fraud model, �)> (0;;) feature set, )>=day.
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Figure 6: Classi�cation metrics w.r.t. the feature set �)> , )>=day, ANN and RF classi�ers, 3% scenario and 200 fraudulent users.

Figure 7: Rejected calls per hour

Figure 8: Game metrics w.r.t. the obser-
vation period )> , �)> (0;;) feature set,
ANN and RF classi�ers, 3% scenario,
200 fraudulent users.

Table 6: Classi�cation metrics w.r.t. the ML classi-
�er, �)> (0;;) feature set, )>=day, 3% of intl. calls.

Model #frau
dulent
users

fd_naive fd_all
balan-
ced acc

preci-
sion

re-
call

balan-
ced acc

preci-
sion

re-
call

ANN 200 0.99 0.95 0.99 0.57 0.21 0.16
50 1 1 1 0.5 0 0

SVM 200 0.98 0.82 0.97 0.56 0.37 0.14
50 0.97 1 0.94 0.49 0 0

RF 200 0.94 0.93 0.88 0.80 0.82 0.64
50 0.97 1 0.94 0.49 0 0

GBDT 200 0.99 0.94 0.99 0.70 0.88 0.41
50 0.98 0.92 0.96 0.5 0 0
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fd_mobility (Fig. 4c) demonstrates a performance trend similar to
that of fd_naive but with an overall enhancement, characterized by
higher �⇠⌫ and lower values in classi�cation metrics (BA, precision,
and recall). This implies that prioritizing improvements in mobility
rather than tra�c has a more favorable impact on the e�ectiveness
of the fraud model. Indeed, the tra�c behavior is naturally more
realistic with an increasing number of fraudulent SIMs. Backing
this �nding, Fig. 5c illustrates that, when compared with fd_naive,
mobility-related features (i.e., ratio_sp_calls and avg_users_in_cell)
exert a more. substantial in�uence in elevating the �⇠⌫.
fd_social (Fig. 4b) demonstrates less favorable results in repro-
ducing human behavior, featuring a null �⇠⌫ and nearly perfect
classi�cation metrics (BA, precision, recall) regardless of the sce-
nario. As depicted in Fig. 5d, the fd_social fraud model primarily
improves the count of callers of fraudulent users (i.e., total_callers),
while leaving other features in a naive state, easily detectable. This
limited e�ciency reveals enhancing social behavior does not con-
tribute signi�cantly to the overall e�ectiveness of the fraud.
fd_all (Fig. 4e) yields an �⇠⌫ of 1 and poor values for classi�cation
metrics, with the max. precision reaching 0.3 and the max. recall
around 0.15, regardless of the scenario. This highlights that cur-
rently in-market SIMBox functionalities can generate fraud models
closely mimicking human behavior, e�ectively evading current detec-
tion strategies. Nevertheless, the settings associated with the fd_all
fraud model lead to the SIMBox architecture refusing to route most
diverted international calls (cf. Fig. 7 in appendix). This rejection
stems from the fraud model’s constraints on event timing (i.e., no
operations during nighttime) and parameters (i.e., maximum num-
ber of calls per day). As a result, while the fd_all fraud model proves
e�ective, it enables fraudsters to achieve only long-term �nancial
gains due to the rejection of calls.
Insight 1: Current fraud capabilities undoubtedly counter current
detection strategies, con�rming that literature’s detection perfor-
mances are overestimated. Nevertheless, our results underscore the
high cost associated with implementing sophisticated strategies for
fraudsters. A more advantageous approach for them is to limit the
tra�c generated by individual fraudulent cards, thereby hardening
the extraction of conclusive detection insights. Achieving this can
involve manipulating a massive amount of SIM cards.

5.2.2 Investigator configuration: features set. Fig. 6 shows the im-
pact of the feature set on the detection performance of both ANN
and RF classi�ers, for 3% of incoming intl. tra�c and 200 users. All
fraud models are taken into account, excluding fd_social due to its
minimal contribution to the overall outcome (cf. § 5.2.1).

In summary, the results indicate that the inclusion of social fea-
tures, as seen in �)> (CA0) and �)> (CA0 + B>2) feature sets, does
not alter the values of balanced accuracy, precision, and recall sig-
ni�cantly. On the other hand, the inclusion of mobility detection
features has a discernible impact on detection performance, varying
across fraud models. Notably, fd_tra�c exhibits the most substan-
tial performance increase, followed by fd_naive, fd_all, and, to a
minimal extent, fd_mobility. It is noteworthy that the in�uence of
mobility detection features is more pronounced on the precision
metric than on balanced accuracy and recall. Lastly, evaluations

based on �)> (0;;) features slightly improve the detection metrics
compared to those derived from �)> (CA0 +<>1) features.
Insight 2: Compared to tra�c and social behaviors, the mobility
behavior emerges as the best facet to distinguish between fraudulent
and legitimate users. Indeed, unlike tra�c and social aspects, mobility
requires costly hardware resources to be realistically simulated by
fraudsters. To leverage this fraud vulnerability, there should be a
greater emphasis on detection features within this category, currently
under-explored in the existing literature (cf. Table 3).

5.2.3 Investigator configuration: observation period. As depicted in
Fig. 8, extending the observation period from 1 to 7 days notably
enhances the detection performance for both the ANN and RF
ML classi�ers. These �ndings are based on the fd_all fraud model,
considering 200 fraudulent users and 3% of incoming intl. tra�c.
In particular with the ANN classi�er, a substantial performance
improvement is evident after �ve days.
Insight 3: The observation period enlargement proves highly e�ec-
tive in uncovering even themost sophisticated fraud strategies. Indeed,
while SIMBox functionalities may approximate human behavior over
a day or a week, sustaining this deception becomes increasingly chal-
lenging over more extended duration.

5.2.4 Investigator configuration: ML classifier. Considering the fea-
ture set �)> (0;;), Table 6 presents the classi�cation metrics for the
fd_naive and fd_all fraud models, with 50 and 200 fraudulent users,
and accounting for 3% of incoming intl. tra�c.

With fd_naive, all ML classi�ers exhibit comparable performance,
achieving at least 97% BA and 82% precision, irrespective of whether
the number of fraudulent users. Conversely, with fd_all, all ML
classi�ers exhibit poor performance with 50 fraudulent users, dis-
playing 0 recall and precision. This indicates that all fraudulent
users are misclassi�ed as legitimate. However, as the number of
fraudulent users increases, RF and GBDT outperform ANN and
SVM. While GBDT shows higher precision, RF exhibits superior
balanced accuracy and recall.
Insight 4: As in [2, 30, 51], a combination of decision rules (as in RF
and GBDT) related to singular behavioral features is more e�cient
than classifying users considering their global behavior (as in SVM).
Our analysis con�rms the persistence of this pattern across various
fraud models, indicating its robustness to fraud evolution.

6 PRACTICAL IMPLICATIONS
This section discusses how this paper’s contributions and �ndings
should be considered in practice to enhance fraud mitigation.

The formalization and the empirical study framework presented
in this work serve as practical tools capable of capturing current
fraud capabilities while enabling the seamless incorporation of
the fraud evolution. Therefore, operators (and other investigators)
can use these tools to obtain fraudulent ground truth up-to-date
regarding the fraud advancements. This enables them to access
the most e�ective fraud strategies and to challenge the detection
models they develop, which a �rst-of-a-kind progress in the �eld.

Furthermore, although not exhaustive, the empirical fraud study
of §5 leads to the following practical recommendations:
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• As noted in Insight 1, detecting fraud becomes arduous when
the adversary possesses a large number of SIM cards. There-
fore, strengthening SIM cards access policies plays a crucial role
in SIMBox fraud mitigation, and fraud detection investigations
should pay particular attention to new SIM cards.

• Building on Insight 2, we advocate for a more comprehensive
exploration of mobility-based features, speci�cally focusing on
the positioning, displacement modes, and mobility uniqueness of
fraudulent users. Also, such features should be more elaborated,
drawing from the literature richness on humanmobility behavior,
which demonstrates adherence to di�cult-to-mimic laws such as
diversity [50], con�nement given by the radius of gyration [21],
and unpredictability due to the exploration phenomenon [3].

• With Insight 3, we recommend that detection techniques sys-
tematically expand the observation period, including features
spanning a day, a week, or even longer, to improve detection ro-
bustness. Hence, the detection time will depend on the fraudulent
user’s pro�le (naive or sophisticated). Moreover, accumulating
evidences daily helps in identifying advanced frauds while also
expediting the detection of new SIM cards used by fraudsters.

• Finally, based on Insight 4, we recommend utilizing tree ensemble
ML classi�ers or a linear combination thereof for e�cient fraud
detection. Combining a set of models, each tailored to speci�c
fraud pro�les and trained with corresponding fraudulent ground
truth, appears to be a more e�ective approach.

7 CONCLUSION
Despite its signi�cant impact on operators’ revenue and national
security, SIMBox bypass fraud remains an open issue in cellular
networks. This paper highlights the SIMBox fraud evolution as a crit-
ical factor hindering substantial progress in fraud mitigation. Our
game-based approach clari�es adversary and investigator strategies
in CDR-based SIMBox fraud investigations, presenting a pioneer-
ing contribution. The practical framework we introduce enables
scalable empirical studies of the fraud, providing a comprehensive
evaluation of detection methods aware of real-world fraud capabil-
ities. We believe these contributions, the �rst of their kind in the
literature to the best of our knowledge, establish a robust founda-
tion for in-depth investigations into SIMBox fraud’s evolution and
o�er valuable insights for future fraud detection research.

PUBLIC CODE AND DATA
To encourage further research on SIMBox fraud detection, we make
publicly available the fraud simulation environment’s code, i.e.,
FraudZen, corresponding to stages 1 and 2 of Fig. 2. We further
release the generated fraudulent CDRs datasets associated with the
fraud strategies investigated in this study:
h�ps://gitlab.inria.fr/simbox-fraud-mitigation/fraudzen
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Figure 10: FraudZen simulation parameters related to (Lines
11-13) Legitimate users’ mobility and tra�c and (Lines 14-30)
SIMBox architecture creation

Figure 11: FraudZen simulation parameters related to SIMBox
SIM card groups creation and con�guration

multiple countries. To counter this default tendency, fraudsters rely
on SIMBox functionalities with three distinct motives:
• SIM activity limitation seeks to regulate the excessive use of
fraudulent SIM cards, either by restricting their operation to
speci�c time intervals within a day or week (time-related) or
by imposing thresholds on metrics tied to the SIM cards’ tra�c
behavior (metric-related, e.g., number of calls, total/average call
duration, etc.).

• Network activity generation allows fraudsters to generate diverse
network tra�c (i.e., inter-call, inter-texts, and mobile data) be-
yond the default SIMBox outgoing calls and reproduce the human
behavior. For instance, fraudulent SIM cards can automatically
engage in web browsing or exchange calls and texts with each
other. This involves deciding whether fraudulent users should

Figure 12: FraudZen simulation parameters related to SIMBox’
GSM module groups creation and con�guration

generate a speci�c event type (event-type-related) and determin-
ing the frequency of such generation (time-related).

• Incoming tra�c routing control empowers fraudsters to dictate
which speci�c fraudulent user within the SIMBox architecture
will re-originate an incoming diverted call. This decision-making
process can be guided by reducing the number of calls fraudulent
users make (metric-related).

(2) Mobility behavior. User mobility is identi�ed in operators’
traces by the position of the base station relaying a generated event
(283? ) and the trajectory formed by a sequence of these positions.
Such elements must be meaningful in their alignment with the
typical daily patterns governing human mobility, encompassing
activities like commuting, shopping, and socializing. As SIMBox
appliances are generally bulky and demand a �xed wired internet
connection, fraudulent users inherently remain stationary and by
default con�ned to an individual cell or a few nearby cells for
prolonged periods. In response to this easily detectable behavior,
fraudsters employ various strategies:

• SIM to module allocation regulates the binding between SIM cards
and GSMmodules. By binding a SIM card to GSMmodules in vari-
ous locations, fraudsters simulate the mobility of their fraudulent
devices, bringing them closer to human behavior. This entails the
formulation of algorithms to decide when and where to simulate
movement based on past trajectories.

• Short base station movements allow connecting GSM modules to
surrounding base stations with accessible signals. The choice of
algorithms determines when to initiate such movements and the
connecting base station.

• The strategic gateways placement in�uences the number and
locations of SIMBox gateways in the architecture. Fraudsters often
opt for crowded zones (such as city centers, densely populated
residential areas, or marketplaces) to camou�age SIMBox tra�c
amid the substantial call volumes in these areas. Moreover, these
locations are chosen to yield realistic trajectories as fraudulent
SIM move association from one gateway to another.
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• The displacement mode of fraudulent SIMs is automated through
SIM to module allocation and short base station movements. How-
ever, though costly, fraudsters might manually transport gate-
ways by car or motorcycle, equipped with the necessary tools
and internet connection, to achieve a more realistic trajectory.

• Lastly, fraudsters strive to ensure the "mobility uniqueness" of
their fraudulent users’ trajectories. They aim to reproduce the
realistic pattern of predominantly individual movements instead
of grouped ones, which are the default scenario with a SIMBox
(being a box of SIMs). They achieve this by adjusting the number
of SIM cards assigned to each SIMBox gateway; the higher the
number, the more the SIMBox generates group mobility.

(3) Social behavior. Calls and text events are direct indicators of
inter-user interactions and social dynamics. In particular, a user’s
contacts (2>=? ), the importance, and the direction (in/out) of his
interactions with these contacts provide insights into his social
behavior. These interactions, commonly represented as mobile call
graphs in the literature [36], often encapsulate signi�cant relation-
ships, such as familial ties or connections within a friend group.
In the context of SIMBox fraudulent SIMs, which frequently re-
originate multiple calls with a diverse set of contacts, there is a no-
table absence of these meaningful relationships. Fraudsters employ
a two-pronged approach to counteract this inherent pattern [14]:

• First, by handling incoming tra�c routing, speci�c SIMBox users
can be prioritized for terminating calls from international users
based on the corresponding contact. This strategic control serves
to limit fraudulent users’ number of contacts.

• Fraudulent users leverage network activity generation function-
alities, enabling them to exchange calls and text amongst them-
selves. This tactic simulates the appearance of close-knit groups,
e�ectively mimicking genuine user relationships.

(4) Device property. The device property relates to the number
of SIM cards a user’s device operates with, typically limited to
one or two for legitimate users. However, in the case of a SIMBox,
designed to handle multiple SIM cards per GSM module, a single
fraudulent device identi�er (34E? , i.e., IMEI code) may be associ-
ated with several SIM cards. Additionally, a SIM card connecting
to multiple GSM modules accumulates multiple recorded device
identi�ers (IMEIs). To obfuscate this noticeable behavior, fraudsters
have devised methods to simulate a distinct mobile device identi�er
for each fraudulent SIM card [15]. They achieve this by employing
IMEI modi�cation or spoo�ng that links the IMEI code to the SIM
card rather than the GSM module. Therefore, fraudsters can auto-
matically alter the IMEI code by specifying an IMEI generation rule
and the corresponding new IMEI value(s).

B FRAUDZEN DESCRIPTION
B.1 The SimulationManager
Being event-driven, it chronologically executes timestamped events
issued by simulation objects throughout the simulation time. An
event execution runs a function into the related simulation object,
which can schedule new events.

B.2 The NetworkManager
This module is responsible for creating the cellular network infras-
tructure, the user devices, and the fraud architecture (cf. Fig. 2), all
described in the following.
Network infrastructure. The mobile cellular network, as designed
in FraudZen, is multi-operator. Each operator provides its sub-
scribers with communication services through voice, text messages,
and mobile data to or from external networks (i.e., local or inter-
national operators). Each operator’s network architecture is based
on the standards, comprising a Radio Access Network (RAN) and
a core network. Each RAN’s base station transmits service initia-
tion requests to the core network and performs paging. The core
network provides, in addition to network communication services,
control operations, namely authentication and mobility manage-
ment. It also continually records in a �le timestamped network
service usage events constituting each operator’s CDRs.
Network devices. A network device is formed by adding a SIM to
a cell phone. Such a partition between SIMs and user appliances
allows for distinguishing legitimate devices from fraudulent ones,
created in the SIMBox. Each legitimate device has a mobility com-
ponent and a tra�c component. The mobility component keeps
up-to-date devices’ connected base station by scheduling handovers,
i.e., movements between the network cells, according to the cho-
sen mobility model. Similarly, the tra�c manager schedules each
device’s tra�c generation according to the de�ned tra�c model.
SIMBox architecture. From inputs such as the number of SIMBank,
gateways, and SIM/GSM con�guration groups, FraudZen builds a
SIMBox architecture and related con�guration units. The SIMBox
operates with SIM cards provided by the simulation operators,
from which it forms SIMBox SIM cards (i.e., SimbSIMCard). Each
SimbSIMCard has a state (e.g., Free/Blocked) and a set of parameters
related to its tra�c (e.g., call count, total call duration), allowing the
control of its activity. Each SIM and GSM group works according
to a set of functionality con�gurations given by the SIMBox fraud
model. Once, the SIMBox architecture is formed and con�gured, it
continually receives, with a �xed frequency, international tra�c to
be routed as local calls to legitimate users.

B.3 The Tra�cManager
This module handles tra�c generation for legitimate and fraudu-
lent devices. For legitimate devices, tra�c events are repeatedly
generated according to the input tra�c model. Each tra�c event
has the attributes: timestamp, event type (call, international call,
text, or data), metric (i.e., call duration or data size), and contact
in case of a call or text. FraudZen currently includes a trace-based
tra�c model, reading next events from an input �le. Based on the
returned event type, legitimate devices transmit a call/text/data
service request to their connected base station. Fraudulent devices
make use of these same requests to generate tra�c; however, this
is coordinated by SIMBox architecture’s network activity generation
and incoming tra�c routing algorithms.

B.4 TheMobilityManager
It handles legitimate and fraudulent users cell-granularity displace-
ments during the simulation. Legitimate users have a mobility at-
tribute implementing the input speci�ed mobility model. FraudZen
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currently includesmobilitymodels based on existingmobility traces,
which can be easily extended. On the other hand, the mobility of a
fraudulent device matches the movements of its belonging gateway.

Such movements are governed by a strategy de�ned at the level
of the whole SIMBox architecture and given by the input SIMBox
fraud model.
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