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Abstract—Motion sensors in mobile devices enable device
fingerprinting through hardware-induced variations in sensed
data. Although the feasibility of this identification technique
has been demonstrated across numerous studies, the literature
remains fragmented in terms of experimental setups and evalu-
ation metrics—hindering a comprehensive understanding of its
effectiveness and limitations. In this work, we provide the first
systematization of the motion sensor fingerprinting landscape,
structuring the pipeline into distinct stages and identifying key
design parameters and countermeasures. Building on this, we
develop a unified evaluation framework to assess each param-
eter in isolation under realistic conditions. Our results show
that motion-based fingerprinting remains effective across diverse
settings and classifier architectures, yet current countermeasures
fail to provide reliable protection and often degrade data utility.
We release our dataset to foster reproducibility and future work
in this underexplored yet persistent privacy threat.

Index Terms—Mobile Sensors, User fingerprinting, Privacy
Countermeasures

I. INTRODUCTION

Mobile devices have become deeply embedded in our daily
routines—carried constantly, they serve as extensions of our-
selves and continuously reflect our movements, interactions,
and surrounding environments. The sensors embedded in these
devices not only power user-facing features like step counters
and orientation detection, but also produce rich, continuous
data streams that intimately capture our physical behaviors.
This pervasive presence makes mobile devices a powerful lens
into users’ real-world activities—and an increasingly attractive
target for profiling and surveillance.

Among the growing class of privacy threats, device finger-
printing has emerged as a potent method for identifying and
tracking individual devices without relying on traditional iden-
tifiers such as IP addresses or user accounts. Fingerprinting
works by exploiting the subtle, often device-specific differ-
ences in how hardware components behave or produce data.
These differences, though unintended, are persistent enough
to create a unique “fingerprint” that can be recognized across
time and applications. While device fingerprinting techniques
have primarily focused on browser-level features (e.g., canvas
rendering, user-agent strings [1]) or device configurations [2],
a stealthy and still poorly mitigated threat remains underex-
plored: motion sensor-based fingerprinting [3]-[5].

Fingerprinting based on sensor data operates at a low level,
beyond the reach of conventional browser protections and
user controls. Motion sensors—such as accelerometers and
gyroscopes—are embedded in virtually all smartphones and

are routinely accessed by applications for tasks like screen
orientation or gesture recognition. Crucially, many platforms,
including modern web browsers, allow access to these sensors
without requiring any explicit user permission, making them
a silent and convenient target for adversaries.

These sensors are inherently sensitive to micro-level manu-
facturing tolerances and calibration discrepancies—a property
readily observable in practice. Illustrating the potential of this
threat, Fig. 1 shows that two smartphones of the same make
and model (Iphone 13 Mini), placed side by side on a flat
surface produce distinguishable accelerometer readings. Such
variations form the foundation for extracting persistent, device-
specific fingerprints.
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Fig. 1: Accelerometer signals from two identical devices

A typical Motion Sensor-based Mobile Device Finger-
printing (MSMDF) attack involves an adversary embedding
malicious code into web platforms or mobile applications,
each of which silently collects motion sensor data whenever
accessed by a device. From this data, a unique fingerprint is
extracted and used to train a classifier capable of recognizing
the same device elsewhere. The consequences are profound:
attackers can re-identify users across websites and apps, even
after they clear cookies or use private browsing modes. Over
time, this enables the reconstruction of timelines of app visits
and behavioral patterns across services and locations, paving
the way for long-term surveillance (cf. Fig. 2a). Additionally,
by correlating motion fingerprints across platforms—such as
during login events or through behavioral cues—an attacker
can link multiple devices that belong to the same user (cf.
Fig. 2b). This enables cross-device tracking, deep behavioral
profiling and circumvention of anonymization techniques.

Research on MSMDF has already demonstrated its techni-
cal feasibility and potential for large-scale application. Early
works explored accelerometer and gyroscope fingerprints un-
der controlled settings [6], [7], while later studies evaluated



(b) Cross-device tracking via correlated fingerprints.
Fig. 2: Tllustrative threat models for MSMDEF.

their robustness in real-world usage scenarios across a broader
set of devices [8], [9]. Recent contributions have employed
advanced deep learning techniques to optimize both attacks
and defenses [10]. However, existing studies tend to focus
on specific threat models, narrow experimental conditions, or
isolated defense strategies. This fragmented landscape makes
it difficult to compare results, understand generalizability, or
assess MSMDF real-world impact.

In this paper, we aim to systematize and broaden the study of
motion sensor-based fingerprinting by consolidating existing
approaches and evaluating them under realistic, diverse, and
unified conditions. Our contributions are the following:

o First in §II, we formalize the fingerprinting pipeline into
distinct stages and provide a structured taxonomy of design
parameters and countermeasures. We systematically map ex-
isting literature to this framework, identifying coverage gaps
and overlooked aspects of MSMDF design and evaluation.

e Then, we design and implement a comprehensive, re-
producible evaluation framework to isolate the impact of
each design parameter under realistic conditions ($III). Be-
yond classifier performance, we introduce structural metrics
that quantify the geometric properties of fingerprint dis-
tributions—capturing compactness and separation—to offer
deeper insight into fingerprint uniqueness and resilience.

o Our large-scale experiments in §IV-§VI reveal key findings
across the MSMDF pipeline. We show that motion sensors
consistently yield robust fingerprints, even under diverse
conditions, and that some fingerprinting enhancements (e.g.,
audio stimulation) offer only marginal gains. While existing
countermeasures reduce fingerprintability slightly, they in-
troduce significant signal distortion—underscoring the need
for more effective and utility-preserving defenses.

o Finally, in §VII, we distill actionable insights from our
findings to guide future research and defense strategies. We
highlight the scalability strengths of tree-based attacks, the
limits of current countermeasures, and advocate for context-
aware protections tailored to realistic threat models.

o The dataset collected in this study—comprising 1,200 an-
notated motion recordings from 42 smartphones across five
real-world collection conditions—is publicly released to
support reproducibility and further research at [11].

We conclude in §VIII and discuss potential limitations.

II. MSMDF LANDSCAPE SYSTEMATIZATION

Motion sensors play a central role in enabling rich user-
device interaction, but they also open up subtle and often
overlooked privacy risks. This section provides a structured
foundation for understanding Motion Sensor-based Mobile
Device Fingerprinting (MSMDF), paving the way for a uni-
fied evaluation framework. We begin with a brief technical
overview of motion sensors in §II-A, then examine how
MSMDF attacks are conducted and which experimental pa-
rameters shape their effectiveness in §II-B. A similar analysis
is conducted for countermeasures in §II-C. Finally, in §II-D,
we highlight the fragmented nature of existing work and
position our study as a response to this gap.

A. Motion sensors in mobile devices

Modern smartphones are equipped with motion sensors that

allow them to detect orientation, movement, and rotation. In
this study, we focus on three of such sensors: the accelerom-
eter, a software-derived gravity sensor, and the gyroscope.
Below, we summarize their roles and operational principles.
Accelerometer measures linear acceleration along the x, y, and
7 axes using a microelectromechanical system. It captures both
dynamic motion (e.g., shaking) and static forces like gravity.
Values are reported in meters per second squared (m/s?).
Gravity is derived from the accelerometer and isolates the
gravitational component using low-pass filtering. It reflects the
steady pull of gravity and helps estimate device orientation in
static conditions.
Gyroscope measures angular velocity across three axes using
the Coriolis effect. When the device rotates, a vibrating
internal mass deflects proportionally to the angular speed,
producing a measurable signal. The signal is expressed in
radians per second (rad/s).

B. Systematizing MSMDF attacks

MSMDF exploits the inherent characteristics of a device’s
motion sensor data to create unique fingerprints. The finger-
printing process generally follows a three-stage pipeline:

1) Data collection: The selected sensors’ data is collected
under varying data collection conditions (shortened as
collection conditions), such as lab setups, public environ-
ments, or with the device placed on a desk, held in hand, or
exposed to external stimuli like audio signals or vibrations.

2) Fingerprint extraction: Devices typically output three
sensor data streams corresponding to the x, y, and z axes.
These streams can be transformed into derived streams such
as the magnitude, which provides an orientation-invariant
measure of motion intensity. Another example is the inter-
sample interval, the time difference between consecutive
readings, reflecting the signal’s temporal regularity. From
these streams, a set of features is computed and combined
into a fingerprint vector.

3) Fingerprint exploitation: Classifier model(s) are trained
using these fingerprint vectors to distinguish between de-
vices. Each device acts as a class label, and the classifier
learns to associate specific feature patterns with individual



devices. Classification performance is typically evaluated
using metrics such as accuracy, precision, recall, or F1-
score, which reflect how well the model can identify or
re-identify a device from its fingerprint.

While the fingerprinting pipeline may appear straightfor-
ward, its actual performance is highly sensitive to a range
of design and evaluation choices. These choices affect not
only the discriminative power of the fingerprints, but also the
scalability and real-world feasibility of MSMDF attacks. To
better understand and compare prior work, we systematize
the parameters that influence both fingerprint quality and
evaluation outcomes.

We group these parameters into two categories. The first
concerns the design of the fingerprint itself, which we refer to
as design-related parameters. The second category, which we
call scalability-related parameters, pertains to how the finger-
printing model is trained and evaluated during the exploitation
phase, such as the number of devices involved or the data
volume per device. These scalability dimensions are critical
for understanding how fingerprinting systems behave beyond
controlled scenarios. Table I overviews all existing studies,
to the best of our knowledge, structured by these parameters.
Columns 2-7 highlight design-related factors, while the last
two columns, shaded in grey, reflect scalability-related aspects.

a) Design-related parameters: We identify seven core
design decisions that may affect fingerprinting performance:

o Sensor selection refers to which motion sensors are
used—most commonly the accelerometer, gyroscope, and
gravity sensor.

e Collection conditions describe the physical environment
during sensing, e.g., phone on a desk or under audio stimuli.

o Sampling rate is the frequency at which sensor values are
recorded. It affects the resolution of the signal and the
number of features derivable from it.

e Data streams captures how raw sensor axes (X, y, z) are
transformed into derived representations such as magnitude,
azimuth, inclination, or inter-sample intervals. These affect
how orientation and temporal properties are encoded.

o Feature set defines which statistical features are extracted
from the streams. Time-domain and frequency-domain fea-
tures vary in their ability to capture signal characteristics.

o Window length is the time span over which features are ex-
tracted. Longer windows may provide more signal structure
but reduce responsiveness.

o Classifier defines the machine learning model used to dis-
tinguish between devices based on fingerprint vectors.

b) Scalability-related parameters: Beyond design perfor-
mance, the scalability of an MSMDF attack depends on:

o #Devices: The size of the targeted device population.

o #Fingerprint vectors per device: The volume of training
data available per device.

o Train:test ratio: The proportion of labeled data used to train
the classifier.

o Known:unknown device ratio: Whether the evaluation as-
sumes a closed-world (all devices seen during training) or

open-world (unknown devices present at test time) setting.

Despite shared objectives, prior work differs markedly in
the parameters it explores. For instance, Dey et al. [6] focus
on a single sensor in a controlled lab environment, using
centrally managed devices and a minimal feature set. In
contrast, studies like [7], [8] incorporate multiple sensors
and richer data streams, but often limit classifier diversity or
rely on entirely distinct feature sets. Some parameters such
as sampling rate and window length are frequently omitted
or only implicitly addressed. This uneven coverage hampers
comparability across studies and obscures the specific impact
of each design choice on fingerprinting performance.

The fragmentation extends to scalability considerations. For
example, Das et al. [8] evaluates over 200 devices in open-
world public settings, collecting data from users in real-life
usage scenarios. On the other hand, [5] remains confined to a
controlled lab setting and tests only 10 devices. Additionally,
the number of fingerprints per device and the sampling density
vary considerably across studies. In the absence of standard-
ized benchmarks or consistent reporting practices, it becomes
challenging to assess how well MSMDF techniques generalize
across populations, devices, or conditions.

C. Systematizing countermeasures

To mitigate the privacy risks posed by MSMDF attacks, re-
searchers have proposed countermeasures that perturb motion
sensor data before it reaches applications or web scripts. We
identify four of such methods in the literature, all injecting
controlled distortions into raw data streams to degrade finger-
print stability in the feature space.

a) Uniform Noise Addition (UNA) [7]: This technique
perturbs each sensor axis using random scaling and offset
values drawn from uniform distributions centered at 1 and 0,
respectively. The transformation follows: data = data#ig?et.

b) Laplace Noise Addition (LNA) [7]: This variant
draws the offset and scaling values from Laplace distributions
rather than uniform ones. It is inspired by the differential
privacy framework [12], with noise calibrated based on a
predefined privacy budget e.

¢) Quantization (Q)) [13]: This method discretizes sensor
readings into fixed-size bins, treating all values within a
bin as identical. This effectively reduces precision and blurs
the subtle variations exploited by fingerprinting algorithms:
data = | ;3o | .bin_size. For accelerometer data, quantization
is typically applied after transforming the raw cartesian signals
into polar coordinates. Separate bin sizes are then used for
the derived magnitude and angle components to control the
granularity of anonymization. In contrast, gyroscope data is
left in its original form with only angle quantization applied.

d) Generative Models [10]: Li et al. explore a DL-
based approach using generative models to rewrite sensor
data in a way that obfuscates the original device identity.
Though promising in performance, these methods demand
computational resources that exceed current mobile hardware
capabilities, limiting their practical deployment and justifying
their exclusion from the scope of this study.




TABLE I: Overview of MSMDF attacks in the literature. FingerprintSize = #Streams x # features

Ref.  Sensors Data Streams Time Features Frequency Features

C 3 e

Classi

#Devices

#Fingerprints

Inter sample time,

[6]  Accelerometer Avg. Dev. [6]-[8] DC Offset [9]

Magnitude Kaurtosis [5]-[9] Irregularity J and K [6]
Max [5]-[9] Low-Energy-Rate [7], [8]
Mean [6]-[9] Smoothness [6]
Accelerometer: Min [6]-[9] Sepc. Attack Time [7], [8]
7 Accelerometer, Magnitude Mode [9] Sepc. Attack Slope [7], [8]
Gyroscope Gyroscope: Non-Negative Count [7], [8] Spec. Brightness [7], [8]
X, Range [9] Spec. Centroid [6]-[9]
RMS [5]-[9] Spec. Crest [6]
. Signal to Noise Ratio [5] Spec. Entropy [7]-[9]
QC"\‘;'EZ“"“E‘“ Skewness [5]-[9] Spec. Flatness [6]-[9]
A oo Std. Dev. [5]-[9] Spec. Flux [7], [8]
ccelerometer Magnitude, .
" . ! Var [9] Spec. Irregularity [7], [8]
(with & without  Azimuth, p . .
8] . T Zero Crossing Rate [7], [8] Spec. Kurtosis [6]-[9]
gravity), Inclination
Gyroscope Gyroscope: Spec. Mean (9]
7 . Spec. RMS [7], [8]
X Y. Z -
Magnitude Spec. Roll-off [6]-[8]
2! Spec. Roughness [7], [8]
) o Spec. Skewness [6]-[9]
91 Accelerometer Magnitude Spec. Spread [7]-[9]
Spec. Std. Dev. [6], [9]
Spec. Var [9]
51 Accelerometer Magnitude

Lab:

on desk

with vibrations

Lab:

(i) on desk, (ii) on hand

(a) no audio, (b) inaudible,

(c) popular song

Bagged Decision Trees [Bagged DT] [6], [7]
Bagged KNN [Bagged k-NN] [8]

Decision Tree [DT] [5], [7]

Ensemble Subspace Discriminant [5]
eXtreme Gradient Boosting [9]

Extra Trees [ET] [8], [9]

Gaussian Naive Bayes [GNB] [7], [8]

80 accelerometers,
25 smartphones,
2 tablets

(9 models)

Lab:
30 smartphones
Public:

50 per device
(size 36)

Lab:
60 per device
Public:

() no audio, (b) inaudible Lme‘ar' Dlscrlmlqanl Analysis [LDA] [8]
Logistic Regression [8], [9]
Multilayer Perceptron [MLP] [8]
Random Forest [RF] [8], [9] On desk:
Public: Stochastic Gradient Descent [SGD] [8] 294 smartphones ) e e
@) on .dcsk (ii) on hand Support Vector Machine [SVM] [5], [7]-[9] On hand: (size 400)
B Quadratic Discriminant Analysis [7] 256 smartphones :
Wide Neural Network [wide_NN] [5] (45 models)

Public:

(i) on desk, (ii) on hand,
(iii) moving

Lab:

on desk
with vibrations

7 smartphones
(4 models)

10 smartphones
(5 of same model)

180 per device
(size 20)

200 per device
(size 7)

TABLE II: Overview of countermeasures in the literature.

Countermeasure Strength (param)  Strength (value) Resampling frequency
offset ~ U(—0.5,0.5) for Acc.
Uniform NA [7] scaling ~ U(—0.1,0.1) for Gyr.  Once per fingerprint
scaling 1(0.95,1.05)
offset ~ Lap(0,0.5) .
Laplace NA [7] scaling ~ Lap(1,0.5) Once per fingerprint
e A 1 for Magnitude .
Quantization [13]  bin size = 6 for Angle No resampling

We systematize these defenses based on two implementation
parameters that can significantly affect their effectiveness and
utility. Table II summarizes existing countermeasures:

o Countermeasure strength: the magnitude of perturbation
applied to the signal. For noise-based methods, this cor-
responds to the range or scale of the sampling distribution;
for quantization, to the granularity of bins. Stronger pertur-
bations offer greater privacy but may compromise utility.

o Resampling frequency: the rate at which new perturbation
parameters (e.g., noise offset and gain) are drawn and
applied to sensor data. In prior works, this frequency is
typically defined relative to the fingerprinting duration as
parameters are refreshed once per fingerprint extraction win-
dow. Lower resampling frequencies lead to more consistent
transformations, which may preserve identifiable patterns.
In contrast, higher frequencies inject more variability, en-
hancing obfuscation at the risk of distorting the signal.

D. Positioning and research questions

As shown in our systematization, existing work on
MSMDF—both attacks and defenses—remains fragmented.
Fingerprinting studies vary widely in design parameters such
as sensor choice, data stream structure, and feature sets, while
often omitting key details like window length or sampling rate.
Countermeasures are similarly underexplored with limited
understanding of how parameter tuning affects performance.

This lack of comparability creates uncertainty around the
real-world feasibility and robustness of MSMDF techniques. It
remains unclear which fingerprinting configurations are most
effective across conditions, how well the attacks scale, and

which defense strategies offer meaningful protection without
degrading utility.

This leads us to three core research questions:

e RQ1: How do different fingerprint design parameters im-
pact MSMDF performance?

o RQ2: How does the attack scale with the number of devices,
the amount of training data, and the evaluation setting?

o RQ3: How effective and utility-preserving are existing coun-
termeasures when varied in strength and frequency?

To answer these questions, we conduct a broad evaluation
of MSMDF using a unified experimental framework. Our goal
is to provide a more complete and reproducible understanding
of MSMDF capabilities and limitations.

III. EMPIRICAL EVALUATION FRAMEWORK

To evaluate MSMDF feasibility, scalability, and mitigation,
we design a modular empirical evaluation framework that
balances realistic attacker goals with controlled, parameter-
wise analysis across the fingerprinting pipeline. This section
outlines our methodology, metrics, and experimental setup.

A. Evaluation metrics

To evaluate both the effectiveness of motion sensor-based
fingerprinting and the impact of proposed countermeasures, we
adopt a dual-perspective evaluation framework. This combines
structural analysis of the fingerprint space with classifier-
based performance metrics, offering insights into how well
devices can be distinguished, but also what makes a fingerprint
inherently robust or fragile. In parallel, we quantify how coun-
termeasures degrade fingerprinting performance and affect the
utility of the underlying sensor data.

To this end, we rely on three complementary families
of metrics: structural metrics, which characterize fingerprint
distributions using unsupervised clustering scores; attack ef-
fectiveness metrics, which quantify device classification per-
formance in realistic attack scenarios; and countermeasure
impact metrics, which assess both fingerprint obfuscation and
preservation of sensor utility.



1) Structural metrics: We compute three metrics that de-
scribe fingerprint structure in the high-dimensional feature
space: compactness, separation, and entanglement. The first
two are computed per device and reflect intra- and inter-
class spread; the last one is computed per fingerprint and
give a global sense of quality. For each metric, we report its
distribution across the dataset.

a) Compactness: Measures how tightly grouped the fin-
gerprints of a given device are. A lower value indicates that
fingerprints are consistent and easier to learn: Compactness =
I%I >ijep d(@i,z;) where D is the set of fingerprints from
the same device, and d is the Euclidean distance.

b) Separation: Measures how well fingerprints of differ-
ent devices are separated. High values indicate inter-device
distinguishability: Separation = ﬁ Dijecing Aty 1y)
where G is the set of devices and p; the centroid of device i.

c) Entanglement: Quantifies the degree of overlap be-
tween neighboring clusters. Lower values suggest cleaner
cluster boundaries and stronger fingerprint uniqueness:
Entanglement(x;) = #me-device neighots 'y here k js the number
of nearest neighbors, heuristically set to v/N with N denoting
the total number of fingerprints in the dataset.

2) Attack effectiveness metrics: To assess fingerprinting
from an attacker’s perspective, we use classical classification
metrics—namely, accuracy and FI-score—to evaluate how
well fingerprints enable device identification. Accuracy reflects
overall prediction correctness, while F1-score balances preci-
sion and recall, making it more informative in the presence of
class imbalance. As our task involves multi-class classification
across numerous devices (i.e., users), we report both metrics
using the macro-average approach. This means each class
(device) contributes equally to the final score, regardless of
its number of samples—providing a fair view of per-device
fingerprinting effectiveness.

3) Countermeasure impact metrics: To assess the effective-
ness of known MSMDF defenses, we apply each countermea-
sure directly to the raw motion data before fingerprint con-
struction. Their impact is evaluated along two key dimensions:
« Fingerprinting performance degradation: We quantify the

reduction in MSMDF attack performance by measuring the

change in accuracy (A Accuracy) of classifiers before and
after applying the countermeasure.

o Sensor data utility: We assess the impact of the transfor-
mation on sensor data by comparing the distribution of
anonymized vs. raw readings. For this, we compute the
Hellinger distance, providing a score within [0-1] range,
where lower values indicate minimal distortion and higher
values signal reduced utility.

B. Study scope and parameter design

Our evaluation aims to quantify the individual impact of
each parameter across fingerprint design, scalability, and mit-
igation within the MSMDF pipeline. To this end, we adopt a
controlled experimental methodology: for each parameter, we
define a representative range of values and assess its impact in
isolation, while keeping other parameters fixed to a common

TABLE III: Evaluation settings for each attack and counter-
measure parameter.

Evaluation setting

Possible Values

Used Values

Default Value

Sensor selection

Accelerometer,
Gravity,

Each individually,

Accelerometer,

(Figs. 3a, 3b) Gyroscope All Gyroscope
8: gd:]]g On hand,
Collection sk, Each individually, On desk,

conditions (Fig. 3c)

Data streams

On hand audio,
On desk audio,
‘Walking

X, Y, Z, Magnitude,

All

{Magnitude}, {IST},
{Magnitude, IST},

On hand audio,
On desk audio

. Inter-Sample time (IST), {X, Y, Z, Magnitude}, All

(Figs. 3e, 3d) Azimuth, Inclination {X, Y, Z, Magnitude,
IST}
Feature set 34 different Time Domain, All
(Fig. 3f) (cf. Table I) Frequency Domain
Wlmdow length 1 to 10 seconds 2,4, 6,8, 10 seconds 6 seconds
(Fig. 4a)
Sampling rate 1 t0 200 Hz 20, 40, 60, 80, 100 Hz 100 Hz
(Fig. 4b)
. . 12 different SR §
Classifier (Fig. 3b) (cf. Figure 3b) Each individually The best
q : 5to 42

#Devices (Fig. 5a) [1,42] (step — 10) 42
#Fingerprints per 6 to 60 _
device (Fig. 5b) (6, 60] (step = 6) Ar=12
Train:Test ratio 0.1 to 0.9
(Fig. 5¢) (0:030) (step = 0.1) 0
Known:Unknown 0.1 to 1.0
device ratio (Fig. 5d) (0.0,1.0) (step = 0.1) L0
Strength (Fig. 6a) Scaling factor xi, %3 x1, x2, x3  x1
Resampling freq. Number of resamplings <, 2L, 548, 549, <l «1

(Fig.  6b)

per fingerprint

default. These default values strike a practical balance between
fingerprint distinctiveness and realistic attacker capabilities,
and are reused consistently in the remaining experiments.

Table III summarizes the parameter space considered in our
study. Rows 1-7 cover fingerprint design choices, Rows 8-11
address scalability, and Rows 12—13 describe countermeasure
configurations. This systematic and labeled exploration reflects
the broad and nuanced scope of our analysis.

To ensure clarity and ease of navigation, we organize our
findings into three overarching categories: fingerprint design
(FD, §IV), scalability (FS, §V), and countermeasures (FC,
§VI). Each finding is sequentially labeled (e.g., FD1, FD2,
FS1...), allowing readers to follow the empirical narrative and
directly link each result to its corresponding evaluation setup.

C. Implementation details

We implement the full MSMDF pipeline, encompassing
data collection, feature extraction, classification, and coun-
termeasure evaluation. We adopt a real-world public setting,
where each participant completed multiple recording sessions
on different days, using our web-guided interface! and the Sen-
sor Logger app [14]. In each session, around 2 min of sensor
data were recorded while the participant sequentially followed
five predefined collection conditions. The raw recordings were
then segmented into 10-second motion intervals and labeled
according to the corresponding collection condition. Labeling
was performed using heuristic-based detection methods, fol-
lowed by manual refinement to ensure accuracy. This resulted

Uhttps://carlossulba.github.io/MSMDE- Study- website/



in a dataset of 1,200 labeled 10-second recordings from 42
smartphones, serving as the foundation for our evaluation.
From the labeled raw data, we generated up to 19 derived
streams per sensor and computed 34 statistical features per
stream. This modular setup enables to generate dedicated
datasets for each fingerprint design configuration. For perfor-
mance evaluation, we reproduce 12 classifier models from the
MSMDF literature, optimizing each using grid search and 2-
fold cross-validation. To evaluate countermeasures, we apply
the same fingerprint extraction pipeline to sensor traces trans-
formed using the three anonymization techniqueseach tested
under varying parameter strengths and resampling frequencies.

IV. FINGERPRINT DESIGN ANALYSIS

We first evaluate how different fingerprint design parameters
impact MSMDF performance. We analyze the fingerprints’
structural properties and their classification effectiveness.

A. Sensor selection and Classifier

a) Sensor selection: We evaluate the fingerprinting con-
tribution of three motion sensors: the accelerometer, gyro-
scope, and gravity. The accelerometer and gyroscope are stan-
dard in smartphones, while the gravity sensor applies internal
filtering to emphasize low-frequency signals. We test each sen-
sor independently and in combination to assess complementary
value. Our default configuration combines accelerometer and
gyroscope inputs reflecting common app-level access.

b) Classifier choice: We reproduce prior work classifiers,
spanning tree-based, distance-based, statistical, and neural
models. This diversity ensures broad comparability and cap-
tures distinct generalization behaviors. The best-performing
model is used as default value, representing a strong attacker.

c) Results: Structurally, as shown in Fig. 3a, in-
dividual sensor fingerprints are compact but not well-
separated—especially for the gyroscope, which shows high
entanglement. Combining sensors enhances inter-device sepa-
ration with minimal compactness loss. Classifier-wise, Fig. 3b
reveals two performance groups. Tree-based models (e.g.,
Random Forest, Extra Trees) outperform others and benefit
most from sensor fusion. Distance-based models (KNN, GNB)
and neural networks underperform, likely due to their limited
ability to model complex, axis-level feature interactions.

FD1: Combining multiple motion sensors significantly
improves fingerprint separability. The accelerometer alone
provides the best single-sensor performance.

FD2: Tree-based classifiers are the most effective for
MSMDE, consistently outperforming other models and
scaling well with increased sensor input. Distance-based
models are more sensitive to signal complexity.

B. Collection conditions
We define five environmental conditions to simulate realistic

smartphone usage: (i) held in hand, (ii) placed on desk, (iii)
held in hand with audio stimulation, (iv) on desk with audio,

and (v) while walking. These scenarios represent different
levels of motion noise and device stability, and are recorded
in public settings—where participants collect data in everyday
environments following predefined instructions. This choice
reflects realistic adversarial contexts and ensures our findings
generalize beyond controlled laboratory setups. To isolate
each condition’s impact, we train and test classifiers on each
scenario independently. Our default is the on desk with audio
condition, selected for its reproducibility and its ability to
capture hardware-level motion patterns.

a) Results: As shown in Fig. 3c, classifiers perform
best when both training and test data originate from the
same condition. Audio stimulation, however, has minimal
effect—models trained with and without it yield similar re-
sults. In contrast, walking introduces notable signal variability:
fingerprints remain effective when training and testing both use
walking data, but generalize poorly in cross-condition scenar-
ios. Finally, combining data from all five conditions yields
the highest overall accuracy, even outperforming static-only
settings. This suggests that environmental diversity enhances
fingerprint generalizability by enriching signal variability.

FD3: Fingerprints collected under stable conditions (with
or without audio) are highly consistent. Including diverse
conditions, especially walking, improves overall MSMDF
performance by capturing richer signal variability.

C. Data streams

Each sensor outputs three raw streams (X, y, z). From these,
we derive additional representations to enrich the fingerprint:
(1) Magnitude, which provides an orientation-invariant norm;
(ii) Inter-sample time (IST), capturing temporal irregularities;
and (iii) Azimuth and Inclination, reflecting device orientation.

We incrementally evaluate the contribution of each stream.
Our default setup includes all data streams to maximize repre-

sentational richness without requiring hardware modifications.
a) Results: Fig. 3d shows the structural fingerprint

distribution across streams. Using only magnitude leads to
low inter-device separation and high entanglement—indicating
overlapping fingerprints. In contrast, IST produces compact
and well-separated clusters, revealing its potential to exploit
subtle, device-specific timing artifacts. Combining multiple
streams increases separation with minimal change in entan-
glement, benefiting from a higher-dimensional feature space.
Attack effectiveness results in Fig. 3e confirm these trends
for three classifiers: Extra Trees (best), SVM (moderate),
and Wide NN (worst). All models consistently rank IST
above magnitude. Notably, IST alone achieves high accuracy,
especially for top-performing models, underscoring its dis-
criminative strength. However, performance improves further
when additional streams are combined, highlighting the value
of a richer feature set.

FD4: Inter-sample time is a highly discriminative stream
for fingerprinting. Combining it with other data streams
enhances both fingerprint separability and attack success.
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D. Feature set

We evaluate statistical features extracted from both the time
and frequency domains. From prior work, we select 13 time-
domain and 21 frequency-domain features. Our evaluation
compares using alone time-domain and frequency-domain
features and the full set. The default uses both domains to
maximize fingerprint separability, as reflected in past studies.

a) Results: Structural analysis (Fig. 3f) focuses on clus-
ter compactness and separation, as entanglement remains
largely unaffected. Time-domain features result in more
compact clusters—indicating intra-device consistency—while
frequency-domain features yield higher inter-device separa-
tion, likely due to their greater number and spectral sensitivity.
Classifier performance (not shown) is nearly identical across
time- and frequency-only configurations, with the full feature
set offering only marginal improvement. This suggests that
both domains capture overlapping device-specific traits and
points to possible redundancy in the combined set.

FDS: Time- and frequency-domain features yield com-
parable fingerprinting performance. Their combination
offers limited gain, indicating redundancy and potential
for feature reduction.

E. Window length

Fingerprint extraction is performed over fixed-length time
windows. We evaluate window lengths of 2, 4, 6, 8§, and 10
seconds. Shorter windows enable faster and more frequent
fingerprinting but may produce less stable features. In con-
trast, longer windows capture more behavioral information
but require uninterrupted data, which may be harder to obtain
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Fig. 4: Attack effectiveness across temporal parameters.

in real-world conditions. We use 6 seconds as the default,
balancing stability and data availability.

a) Results: As shown in Fig. 4a, classification accuracy
improves slightly with increasing window length, but the gain
quickly plateaus around 6 seconds. In some cases, performance
even decreases beyond this point, suggesting diminishing
returns with longer recordings. These findings indicate that
extended recordings do not consistently enhance fingerprint
quality. Notably, top-performing classifiers already achieve
high accuracy with windows as short as 2—4s.

FD6: Longer recordings offer limited benefit. High fin-
gerprinting performance can be achieved with windows
as short as 2—4s.

FE. Sampling rate

Motion sensor sampling frequency varies across devices. To
simulate this, we evaluate fingerprinting performance at 20,
40, 60, 80, and 100 Hz. This allows us to assess robustness



under bandwidth-limited or resource-constrained conditions.
We adopt 100 Hz as our default, as it preserves signal
fidelity and represents the upper bound typically available on

consumer smartphones.
a) Results: As in Fig. 4b, reducing the sampling rate

from 100 Hz to 20 Hz has minimal effect on classification
performance. MSMDF remains effective even at low sampling
frequencies, showing attacks feasibility on low-power devices
with limited sensor access.

FD7: MSMDF remains robust at lower sampling rates,
reducing overhead without loss in performance.

V. FINGERPRINT SCALABILITY ANALYSIS

We now analyze how MSMDF attack performance evolves
as the scenario scales in complexity. All experiments use a
fixed, high-performing fingerprint design reported in Table III.
Fig. 5 summarizes results for each scalability parameter.

A. Number of devices

Fingerprinting performance often degrades as the number
of target devices grows, due to growing inter-device similarity
and classifier confusion. We evaluate this by incrementally
expanding the dataset from the top 5 devices (with the most
fingerprints) to the full set of 42 devices, in steps of 5.
This setup captures how fingerprint discriminability scales
with population size. Our default configuration includes all
42 devices, reflecting realistic attacker goals.

a) Results: As in Fig. 5a, the top-performing classifier
(Extra Trees) shows only a modest decline in accuracy and F1-
score, dropping from 100% to 88% as the number of devices
increases. In contrast, second-tier models such as SVM and
Wide NN experience sharper performance drops, indicating
weaker generalization under scale.

FS1: Tree-based classifiers maintain strong fingerprinting
accuracy at scale, while other models degrade sharply.

B. Minimum fingerprints per device

An attacker’s success depends on how many labeled fin-
gerprints they can collect per target device. Since fingerprint
availability varies widely across users, we simulate this by
varying the min. number of fingerprints required for a device
to be included in the training set. With a 6-second window,
this threshold ranges from 6 to 60 fingerprints. This captures
both opportunistic attacks based on sparse observations and
long-term surveillance with abundant data. By default, we
include only devices with at least two independent recording
sessions, which yield 12 fingerprints—striking a practical
balance between data availability and evaluation robustness.

a) Results: Fig. 5b shows that classifier performance
improves as more fingerprints are available per device, par-
ticularly for weaker models. Extra Trees reaches near-perfect
accuracy beyond 36 samples and plateaus, while other classi-
fiers continue slowly improving.

TABLE 1V: Effect of countermeasure strength on Hellinger
distance (accelerometer magnitude)

Countermeasure  Collection setting  x % X35 x1 X2 x3
On desk 057 064 078 084 0.88
On hand 026 037 056 072 075
Uniform NA On desk audio 045 050 058 067 0.77
On hand audio 022 026 047 057 065
Walking 0.02 002 004 0.05 0.09
On desk 062 069 076 080 0.81
On hand 035 043 061 0.64 0.67
Laplace NA On desk audio 045 056 064 0.69 0.69
On hand audio 032 036 050 058 0.58
Walking 007 010 017 026 023
On desk 099 099 099 099 099
On hand 097 099 099 099 0.99
Quantization On desk audio 098 098 099 099 0.99
On hand audio 096 098 099 099 0.99
Walking 068 075 083 089 093

FS2: Increasing the number of fingerprints per device
enhances identification. Strong models achieve stable per-
formance from 36 samples (=3.5 min at 6s per sample).

C. Train-Test ratio

The amount of labeled data available during training signif-
icantly impacts classifier generalization. We vary the train-test
split from 10:90 to 90:10 to simulate attackers with different
levels of data access. Our default setting, 50:50, offers a
balanced view of training capacity and test robustness.

a) Results: As shown in Fig. 5c, tree-based classifiers
reach near-optimal performance with just 40% of the data
used for training. In contrast, weaker models such as neural
networks or distance-based classifiers benefit more from addi-
tional data, yet still plateau below top-performing models.

FS3: Top classifiers reach peak performance with little
training data, enabling attacks even in short periods.

D. Known-Unknown ratio

Real-world attackers often face unknown devices not seen
during training. To simulate this, we evaluate an open-world
setting where only a subset of devices is known at training
time. We vary the proportion of known devices from 10% to
100%, while testing always includes the full device set. A
confidence threshold of 0.5 is used to determine whether a
fingerprint belongs to a known device.

a) Results: As in Fig. 5d, classifier performance drops
sharply when fewer than 30% of devices are known. Tree-
based models improve quickly as the proportion of known de-
vices increases but remain unreliable below the 40% mark. No-
tably, the Wide NN maintains steady—but modest—accuracy
across all settings, indicating limited adaptability.

FS4: Open-world settings significantly limit classifier
performance. MSMDF attacks are effective only when a
sufficient share of devices is known during training.
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TABLE V: Effect of resampling freq. on Hellinger distance
(accelerometer magnitude)

Countermeasure  Collection setting <1 X2 X3 x4 x5
On desk 078 077 077 0.77 0.76
On hand 053 056 055 055 054
Uniform NA On desk audio 0.60 059 058 059 0.60
On hand audio 044 045 045 045 046
Walking 0.03 003 0.03 0.03 0.04
On desk 077 079 076 0.77 0.76
On hand 059 059 056 057 059
Laplace NA On desk audio 059 061 060 059 0.61
On hand audio 052 050 049 048 052
Walking 020 020 021 019 0.8

VI. EVALUATING COUNTERMEASURES

We finalize our empirical study by examining how variations
in countermeasure strength and resampling frequency impact
fingerprint robustness and the utility of motion sensor data.

A. Countermeasure strength

This parameter controls how strongly the sensor data is
perturbed. For noise-based countermeasures, strength deter-
mines the range from which random offsets and scaling factors
are drawn. For quantization, it defines the bin size used to
discretize sensor readings. We simulate varying strengths by
scaling the original parameter settings using multiplicative
factors: x%, x%, x1 (baseline), x2, and x3. This approach
enables consistent evaluation of the privacy—utility trade-off
across all techniques.

a) Results: Fig. 6a shows that classifier accuracy remains
largely unaffected across strength levels. For the Extra Trees
classifier, the maximum accuracy drop is under 2%, despite
a high baseline of 92%. In some cases, stronger perturba-
tion even improves accuracy (up to +3%), possibly due to
the introduction of consistent artifacts that aid classification.

This suggests that simply increasing countermeasure strength
does not reliably weaken fingerprinting. Table IV reports
the Hellinger distance between the original and perturbed
accelerometer magnitude distributions. Most values exceed 0.4
and reach up to 0.9 for quantization, indicating substantial
signal alteration. As expected, stronger countermeasures lead
to greater distribution shifts. The walking condition shows less
divergence due to its naturally high signal variability.

FC1: All countermeasures cause significant signal dis-
tortion, yet fail to meaningfully reduce fingerprinting
performance. Stronger perturbation does not guarantee
better protection and often harms data utility.

B. Resampling frequency

This parameter controls how often new countermeasure
values (e.g., noise offset and gain) are applied within a
fingerprint window. While prior work typically uses a single
transformation per window, we evaluate higher resampling
frequencies—up to 5 times per window—to test whether more
dynamic perturbations reduce fingerprint consistency.

a) Results: As shown in Fig. 6b, fingerprinting accuracy
remains largely unaffected, with only a modest Fl-score
and accuracy drop (up to 3%) at intermediate frequencies
(x3—x4). At higher rates, performance stabilizes or slightly
improves, suggesting that frequent perturbation may introduce
new learnable patterns rather than eliminating them. Table V
shows consistently high Hellinger distances across all resam-
pling levels, confirming significant signal distortion. However,
this distortion does not translate into meaningful protection,
and the “walking” condition again shows the least divergence.

FC2: Increasing resampling freq. has limited impact on
attack performance but continues to degrade signal utility.
More dynamic pertubations alone are insufficient for
effective mitigation.

VII. INSIGHTS AND IMPLICATIONS FOR FUTURE WORK

Following MSMDF systematic study, this section revisits
our research questions to synthesize key insights and outline
avenues for future research and practical defense strategies.



A. RQI: What enables a strong fingerprint?

Fingerprint strength stems from combining sensor modal-
ities, stream inputs, and timing features—especially inter-
sample timing (IST), a highly discriminative signal. Tree-
based classifiers dominate due to their ability to partition high-
dimensional spaces and scale with many classes, unlike SVMs
or neural models. These insights call for defenses tailored to
attacker model capabilities, especially ensembles.

B. RQ2: How far can the attack scale?

MSMDF attacks scale effectively: Extra Trees achieves
>90% accuracy across 42 devices with only 36 samples
per device (=4 min of motion). Performance stays strong
with limited training, though generalization in open-world
settings drops below 40% known population. This signals the
privacy risk of passive data collection [3] and motivates tighter
restrictions on motion sensor access at the platform level.

C. RQ3: Can we defend without breaking utility?

Despite the diversity of countermeasure configurations
tested, none succeeded in substantially degrading attack per-
formance—even under aggressive parameter tuning and dy-
namic perturbation schemes. While transformations such as
quantization and noise injection visibly altered the sensor
distribution (with Hellinger distances up to 0.9), fingerprint
accuracy dropped by at most 3—4%.

This ineffectiveness stems from a fundamental limitation:
existing countermeasures operate at the signal level without
understanding or targeting the actual fingerprint source—the
hardware manufacturing imperfections. This is analogous to
camera sensor fingerprinting, where robust defenses have only
emerged once models of sensor noise and lens artifacts were
properly formalized [15]. In the case of MSMDEF, we lack
such a theoretical foundation. The perturbations applied (noise,
quantization, resampling) are not guaranteed to erase the
unique signal patterns that leak through the sensing pipeline.
True anonymization implies a formal privacy model or guar-
antee—neither of which is satisfied here.

D. Where do we go from here?

Given the dual limitations of attacks (e.g., open-world
generalization) and countermeasures (e.g., utility degradation),
the path forward requires a shift in perspective:

« Rethinking the threat model. As attackers are bounded
by realistic data access and generalization constraints, de-
fenses should prioritize protection under limited observation
settings, where privacy risk is highest.

o Targeting the source. We need a deeper understanding of
the physical origin of MSMDF traits—how manufacturing
variations or firmware processing shape the fingerprint, as
for denoising filters in camera fingerprinting [15].

« Context-aware and platform-level defenses. Future coun-
termeasures should combine context-aware privacy filters
that adapt signal fidelity to app needs with platform-enforced
constraints—such as coarser readings or minimum noise
levels—to limit attack vectors.

VIII. CONCLUSION AND LIMITATIONS

Motion-based fingerprinting poses a persistent privacy risk.
Our study consolidates prior work and shows that strong
fingerprints stem from specific sensor-stream choices, with
tree-based classifiers scaling best. Current countermeasures
offer limited protection, often harming utility more than pri-
vacy. Future work should explore defenses rooted in adaptive
mechanisms responsive to context and threat level.

As a systematization paper, we acknowledge potential lim-
itations in our methodology that align with known pitfalls in
ML evaluations [16]. Our dataset, though diverse, may carry
sampling bias due to participant variability and uneven device
representation. We mitigate data snooping by enforcing non-
overlapping temporal splits, but further work could explore
stricter session-level separation. Lastly, while our analysis fo-
cuses on device-specific traits, the risk of spurious correlations
with user behavior cannot be fully excluded—underscoring the
need for more principled approaches to distinguish physical-
layer fingerprints from behavioral artifacts.
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